1
|
de Melo NC, Sampaio E Souza PC, Marques RC, Bernardi JVE, Bastos WR, Cunha MPL. Environmental exposure to metal(loid)s and hypertensive disorders of pregnancy: A systematic review. ENVIRONMENTAL RESEARCH 2024; 257:119391. [PMID: 38857855 DOI: 10.1016/j.envres.2024.119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Environmental exposure to metal(loid)s has been associated with adverse effects on human health, but the systemic repercussion of these elements on the development of hypertensive disorders of pregnancy (HDP) is still poorly understood. OBJECTIVE To summarize evidence published about the influence of environmental exposure to aluminum, arsenic, barium, cadmium, lead, strontium and mercury on the development of HDP. METHODS We conducted a systematic literature review according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The search strategy was validated by the Peer Review of Electronic Search Strategies. We searched for articles published up to February 2023 in seven databases without language restriction. Two researchers conducted the steps for selection, data extraction and evaluation of the methodological quality of the instruments for epidemiological studies of the Joanna Briggs Institute. Any disagreements were resolved by a third researcher. RESULTS We obtained 5076 records, of which 37 articles met the inclusion criteria moderate to high methodological quality. Single exposure to metal(loid)s was predominant, and the leading biological matrix analyzed to detect the concentrations from exposure was maternal blood. Lead was the metal investigated the most, and had the largest number of studies showing positive association with HDP. In relation to the other metal(loid)s, higher levels were found in women with HDP in comparison with healthy women, but the finding of a cause-effect relationship was inconsistent. CONCLUSIONS Although we found evidence of harmful effects of the metal(loid)s studied on human health, the results were inconclusive with regard to HDP. Longitudinal studies that consider prospective investigation, adjustment of confounding factors and the interference of other contaminants in the exacerbation of oxidative stress in women from the preconception phase to the puerperal period should be encouraged.
Collapse
Affiliation(s)
- Nayra Carla de Melo
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76801-059, Brazil; WCP Environmental Biogeochemistry Laboratory, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76815-800, Brazil.
| | - Priscilla Cristovam Sampaio E Souza
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76801-059, Brazil
| | - Rejane Correa Marques
- Postgraduate Program in Environmental Sciences and Conservation, Federal University of Rio de Janeiro Janeiro (UFRJ), Macaé, Rio de Janeiro, 27965-045, Brazil
| | - José Vicente Elias Bernardi
- Geostatistics and Geodesy Laboratory, UnB Planaltina College, University of Brasília, Planaltina, Federal District, 73345-010, Brazil
| | - Wanderley Rodrigues Bastos
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76801-059, Brazil; WCP Environmental Biogeochemistry Laboratory, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76815-800, Brazil
| | - Mônica Pereira Lima Cunha
- Postgraduate Program in Regional Development and Environment, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76801-059, Brazil; WCP Environmental Biogeochemistry Laboratory, Federal University of Rondônia Foundation, Porto Velho, Rondônia, 76815-800, Brazil
| |
Collapse
|
2
|
Sardar F, Kamsani YS, Ramly F, Mohamed Noor Khan NA, Sardar R, Aminuddin AA. Cadmium Associated Preeclampsia: A Systematic Literature Review of Pregnancy and Birth Outcomes. Biol Trace Elem Res 2024:10.1007/s12011-024-04364-5. [PMID: 39256331 DOI: 10.1007/s12011-024-04364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Preeclampsia (PE), caused by multiple factors, is one of the most serious complications of pregnancy. Cadmium (Cd) is a heavy metal environmental pollutant, reproductive toxicant, and endocrine disruptor, which can increase the risk of PE. Cd toxicity due to occupational, diet, and environmental factors has worsened the risk. Studies showed elevated Cd concentration in maternal blood and placenta of PE women. However, the implicit association between Cd associated PE is still not highlighted. We systematically reviewed Cd-associated PE and its effect on pregnancy and birth outcomes. Based on "Preferred reporting items for systematic reviews and meta-analyses (PRISMA)" guidelines, eighty-six studies were identified by PubMed, Web of Science (WOS), and Scopus databases. Publications were included until October 2023 and articles screened based on our inclusion criteria. Our study identified that the exposure of controlled and uncontrolled Cd induces PE, which negatively affects pregnancy and birth outcomes. Given the serious nature of this finding, Cd is a potential adverse agent that impacts pregnancy and future neonatal health. Further comprehensive studies covering the whole trimesters of pregnancy and neonatal developments are warranted. Data on the molecular mechanisms behind Cd-induced PE is also essential for potential preventive, diagnostic, or therapeutic targets.
Collapse
Affiliation(s)
- Fatima Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Fathi Ramly
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nor Ashikin Mohamed Noor Khan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Razia Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Anisa Aishah Aminuddin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
3
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. J Physiol 2024. [PMID: 39197088 DOI: 10.1113/jp286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1β secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1β were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Research & Development, IQProducts, Groningen, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Yu Z, Yu T, Li X, Lin W, Li X, Zhai M, Yin J, Zhao L, Liu X, Zhao B, Duan C, Cheng H, Wang F, Wei Z, Yang Y. Cadmium exposure activates mitophagy through downregulating thyroid hormone receptor/PGC1α signal in preeclampsia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116259. [PMID: 38581905 DOI: 10.1016/j.ecoenv.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Weilong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuemeng Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiancai Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Baojing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cancan Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui25 Medical University, Hefei 230032, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
5
|
He J, Pu Y, Du Y, Liu H, Wang X, He S, Ai S, Dang Y. An exploratory study on the association of multiple metals in serum with preeclampsia. Front Public Health 2024; 12:1336188. [PMID: 38504684 PMCID: PMC10948457 DOI: 10.3389/fpubh.2024.1336188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Background Individual metal levels are potential risk factors for the development of preeclampsia (PE). However, understanding of relationship between multiple metals and PE remains elusive. Purpose The purpose of this study was to explore whether eight metals [zinc (Zn), manganese (Mn), copper (Cu), nickel (Ni), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg)] in serum had a certain relationship with PE. Methods A study was conducted in Dongguan, China. The concentrations of metals in maternal serum were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Data on various factors were collected through a face-to-face interview and hospital electronic medical records. The unconditional logistic regression model, principal component analysis (PCA) and Bayesian Kernel Machine Regression (BKMR) were applied in our study. Results The logistic regression model revealed that the elevated levels of Cu, Pb, and Hg were associated with an increased risk of PE. According to PCA, principal component 1 (PC1) was predominated by Hg, Pb, Mn, Ni, Cu, and As, and PC1 was associated with an increased risk of PE, while PC2 was predominated by Cd and Zn. The results of BKMR indicated a significant positive cumulative effect of serum metals on PE risk, with Ni and Cu exhibiting a significant positive effect. Moreover, BKMR results also revealed the nonlinear effects of Ni and Cd. Conclusion The investigation suggests a potential positive cumulative impact of serum metals on the occurrence of PE, with a particular emphasis on Cu as a potential risk factor for the onset and exacerbation of PE. These findings offer valuable insights for guiding future studies on this concern.
Collapse
Affiliation(s)
- Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yudong Pu
- Songshan Lake Central Hospital of Dongguan City, Dongguan, China
| | - Yue Du
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haixia Liu
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxue Wang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Shuzhen He
- Songshan Lake Central Hospital of Dongguan City, Dongguan, China
| | - Shiwei Ai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Chen L, Zhao W, Zhao L, Liang Q, Tang J, Zhou W, Zhang Y, Wen H. Exposure to heavy metals and trace elements among pregnant women with twins: levels and association with twin growth discordance. Front Public Health 2024; 12:1203381. [PMID: 38444437 PMCID: PMC10912306 DOI: 10.3389/fpubh.2024.1203381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Background Twin growth discordance is one of the leading causes of perinatal mortality in twin pregnancies. Whether prenatal exposure to heavy metals and trace elements is associated with twin growth discordance has not been studied yet. Objective To evaluate the prenatal level of heavy metals and trace elements in twin pregnancy and its relationship with twin growth discordance. Methods This study involving 60 twin pairs and their mothers was conducted in Zhejiang Province, China, in 2020-2021. The concentration of heavy metals and trace elements in maternal blood, umbilical cord, and placenta were collected at delivery and measured by inductively coupled plasma tandem mass spectrometer. The association of prenatal level with twin growth discordance was evaluated using conditional logistic regression. Results High levels of heavy metal elements (thallium in maternal blood and umbilical cord blood of larger twins, vanadium in the placenta of larger twins) and trace elements (iodine in the placenta of larger twins) during pregnancy, as well as low levels of heavy metal elements (strontium in the umbilical cord blood of larger twins, strontium and chromium in the umbilical cord blood of smaller twins, strontium in the placenta of larger twins, molybdenum and lead in the placenta of smaller twins and difference of molybdenum in the placenta of twins), are associated with intertwin birthweight discordance. Univariate regression analyses showed a significant effect of gestational age at delivery and eleven trace element data on intertwin birthweight discordance. Multivariable logistic regression analysis with transformed variables as dichotomous risk factors combined with baseline demographic characteristics showed Tl in maternal blood as an independent risk factor. The model constructed by combining Tl in maternal blood (OR = 54.833, 95% CI, 3.839-83.156) with the gestational week (OR = 0.618, 95% CI, 0.463-0.824) had good predictive power for intertwin birthweight discordance (AUC = 0.871). The sensitivity analysis results indicate that the effect of maternal blood thallium on intertwin birthweight discordance is stable and reliable. Conclusion To our knowledge, ours is the first case-control study to investigate the association between elevated maternal thallium levels before delivery and twin growth discordance.
Collapse
Affiliation(s)
- Lu Chen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongxin Liang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Weixiao Zhou
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Zhang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Wen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Li C, Luo J, Yang Y, Wang Q, Zheng Y, Zhong Z. The relationship between cadmium exposure and preeclampsia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1259680. [PMID: 38105903 PMCID: PMC10722428 DOI: 10.3389/fmed.2023.1259680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Cadmium (Cd) is a heavy metal associated with several human disorders. Preeclampsia is a major cause of maternal mortality worldwide. The association between maternal Cd exposure and preeclampsia remains elusive. Methods To better understand this relationship, we conducted a systematic review and meta-analysis of eligible studies from five databases (PubMed, Embase, Web of Science, Scopus, and CNKI) from their inception to September 10, 2022. The quality of these studies was evaluated using the Newcastle-Ottawa quality assessment scale (NOS). We use random-effects models to calculate overall standardized mean differences (SMDs) and 95% confidence intervals (CIs). Sensitivity analyses were performed to assess the robustness of our results. We also evaluated publication bias using Egger's and Begg's tests. Additionally, we conducted meta-regression and sub-group analyses to identify potential sources of heterogeneity between studies. Results Our analysis included a total of 17 studies with 10,373 participants. We found a significant association between maternal cadmium exposure and the risk of preeclampsia (SMD 0.27, 95% CI 0.09-0.44, p < 0.01). No significant publication bias was detected in Begg's or Egger's tests. Meta-regression suggested that geographical location, year of publication, cadmium samples, sample size, and measurement methods did not contribute to heterogeneity between studies. Conclusion Our findings suggest that maternal blood cadmium levels are associated with an increased risk of preeclampsia. In contrast, the pregnant women's urine or placental levels of cadmium may not suggest preeclamptic risk during pregnancy. Further high-quality clinical studies and animal experiments are needed to understand this association better. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=361291, identifier: CRD42022361291.
Collapse
Affiliation(s)
- Chu Li
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
- The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiamin Luo
- Department of Ultrasound Medicine, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
| | - Yunping Yang
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
- The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianqian Wang
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
| | - Yanmei Zheng
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
| | - Zixing Zhong
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Zhejiang, China
| |
Collapse
|
8
|
Kozlosky D, Doherty C, Buckley B, Goedken MJ, Miller RK, Huh DD, Barrett ES, Aleksunes LM. Fetoplacental Disposition and Toxicity of Cadmium in Mice Lacking the Bcrp Transporter. Toxicol Sci 2023; 197:kfad115. [PMID: 37941438 PMCID: PMC10823776 DOI: 10.1093/toxsci/kfad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The environmental toxicant cadmium (Cd) impairs the growth of rodents and humans in utero which in turn heightens susceptibility to diseases later in life. We previously demonstrated that the maternal-facing efflux transporter, breast cancer resistance protein (human BCRP/ABCG2, mouse Bcrp/Abcg2) confers resistance against Cd toxicity in human trophoblasts. In the current study, we sought to determine whether the absence of Bcrp alters the fetoplacental disposition and toxicity of Cd in mice. Pregnant female wild-type (WT) and Bcrp-null mice (n = 9-10/group) were administered a single injection of saline (5 ml/kg) or CdCl2 (5 mg/kg) on gestational day (GD) 9. Following Cd treatment, Bcrp-null offspring were shorter and accumulated more Cd in their placentas on GD 17 compared to WT mice. Because Cd can adversely impact placentation and transplacental nutrient delivery in mice, multiple pathways were assessed using morphometrics and immunohistochemistry including placenta zonation, vasculature development, and nutrient transporter expression. Most notably, the placentas of Bcrp-null mice had reduced immunostaining of the cell adhesion marker, β-catenin, and the trophoblast marker, cytokeratin, as well as decreased expression of divalent metal nutrient transporters (Dmt1, Zip14, and ZnT1) following Cd treatment. In summary, the absence of Bcrp expression increased placental concentrations of Cd which was associated with shorter fetal size that may be related to differential changes in molecular patterns of placental development and nutrition.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
| | - Cathleen Doherty
- Department of Earth and Planetary Sciences, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
9
|
Kozlosky D, Lu A, Doherty C, Buckley B, Goedken MJ, Miller RK, Barrett ES, Aleksunes LM. Cadmium reduces growth of male fetuses by impairing development of the placental vasculature and reducing expression of nutrient transporters. Toxicol Appl Pharmacol 2023; 475:116636. [PMID: 37487938 PMCID: PMC10528997 DOI: 10.1016/j.taap.2023.116636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
In utero exposure to the toxic metal cadmium (Cd) alters fetoplacental growth in rodents and has been inversely associated with birth weight and infant size in some birth cohorts. Moreover, studies suggest that Cd may have differential effects on growth and development according to offspring sex. The purpose of the current study was to evaluate changes in male and female fetoplacental development following a single injection of saline (5 ml/kg ip) or cadmium chloride (CdCl2, 2.5, 5 mg/kg, ip) on gestational day (GD) 9. By GD18, no changes in fetal or placental weights were observed after treatment with 2.5 mg/kg CdCl2. By comparison, the weight and length of male fetuses and their placentas were reduced following treatment with 5 mg/kg CdCl2 whereas no change was observed in females. In addition, the area of maternal and fetal blood vessels as well as the expression of the glucose transporters, Glut1 and Glut3, and the endothelial marker, CD34, were reduced in the placentas of CdCl2-treated male offspring compared to females. Interestingly, the placentas of females accumulated 80% more Cd than males after CdCl2 (5 mg/kg) administration. Female placentas also had higher concentrations of zinc and the zinc transporter Znt1 compared to males which may explain the limited changes in fetal growth observed following CdCl2 treatment. Taken together, disruption of vasculature development and reduced expression of glucose transporters in the placenta provide potential mechanisms underlying reduced fetal growth in male offspring despite the greater accumulation of Cd in female placentas.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA..
| | - Richard K Miller
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA..
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.; School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA..
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| |
Collapse
|
10
|
Barrett ES, Rivera-Núñez Z, Getz K, Ohman-Strickland P, Zhang R, Kozlosky D, Doherty CL, Buckley BT, Brunner J, Miller RK, O'Connor TG, Aleksunes LM. Protective role of the placental efflux transporter BCRP/ABCG2 in the relationship between prenatal cadmium exposure, placenta weight, and size at birth. ENVIRONMENTAL RESEARCH 2023; 225:115597. [PMID: 36863650 PMCID: PMC10091184 DOI: 10.1016/j.envres.2023.115597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIM Placental efflux transporter proteins, such as BCRP, reduce the placental and fetal toxicity of environmental contaminants but have received little attention in perinatal environmental epidemiology. Here, we evaluate the potential protective role of BCRP following prenatal exposure to cadmium, a metal that preferentially accumulates in the placenta and adversely impacts fetal growth. We hypothesized that individuals with a reduced function polymorphism in ABCG2, the gene encoding BCRP, would be most vulnerable to the adverse impacts of prenatal cadmium exposure, notably, smaller placental and fetal size. METHODS We measured cadmium in maternal urine samples at each trimester and in term placentas from UPSIDE-ECHO study participants (NY, USA; n = 269). We fit adjusted multivariable linear regression and generalized estimating equation models to examine log-transformed urinary and placental cadmium concentrations in relation to birthweight, birth length, placental weight, and fetoplacental weight ratio (FPR) and stratified models by ABCG2 Q141K (C421A) genotype. RESULTS Overall 17% of participants expressed the reduced-function ABCG2 C421A variant (AA or AC). Placental cadmium concentrations were inversely associated with placental weight (β = -19.55; 95%CI: -37.06, -2.04) and trended towards higher FPR (β = 0.25; 95%CI: -0.01, 0.52) with stronger associations in 421A variant infants. Notably, higher placental cadmium concentrations in 421A variant infants were associated with reduced placental weight (β = -49.42; 95%CI: 98.87, 0.03), and higher FPR (β = 0.85, 95%CI: 0.18, 1.52), while higher urinary cadmium concentration was associated with longer birth length (β = 0.98; 95%CI: 0.37, 1.59), lower ponderal index (β = -0.09; 95%CI: 0.15, -0.03), and higher FPR (β = 0.42; 95%CI: 0.14, 0.71). CONCLUSIONS Infants with reduced function ABCG2 polymorphisms may be particularly vulnerable to the developmental toxicity of cadmium as well as other xenobiotics that are BCRP substrates. Additional work examining the influence of placental transporters in environmental epidemiology cohorts is warranted.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Kylie Getz
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Biostatistics and Epidemiology Services Center, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Ranran Zhang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Danielle Kozlosky
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Cathleen L Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian T Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Departments of Psychiatry, Psychology, and Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Departments of Environmental Medicine, Pathology and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Departments of Psychiatry, Psychology, and Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
11
|
Xu P, Guo J, Jin Y, Lee SC, Li Z, Kong L, Liu M, Niu X, Liu Y, Bai G, Ren L, Ren B, Fan L, Zhao M, Wang L. Toxic effects of maternal cadmium exposure on the metabolism and transport system of amino acids in the maternal livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114726. [PMID: 36898312 DOI: 10.1016/j.ecoenv.2023.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fetal growth restriction (FGR) is one of the most common obstetric diseases, and affects approximately 10 % of all pregnancies worldwide. Maternal cadmium (Cd) exposure is one of the factors that may increase the risk of the development of FGR. However, its underlying mechanisms remain largely unknown. In this study, using Cd-treated mice as an experimental model, we analyzed the levels of some nutrients in the circulation and the fetal livers by biochemical assays; the expression patterns of several key genes involved in the nutrient uptake and transport, and the metabolic changes in the maternal livers were also examined by quantitative real-time PCR and gas chromatography-time of flight-mass spectrometry method. Our results showed that, the Cd treatment specifically reduced the levels of total amino acids in the peripheral circulation and the fetal livers. Concomitantly, Cd upregulated the expressions of three amino acid transport genes (SNAT4, SNAT7 and ASCT1) in the maternal livers. The metabolic profiling of maternal livers also revealed that, several amino acids and their derivatives were also increased in response to the Cd treatment. Further bioinformatics analysis indicated that the experimental treatment activated the metabolic pathways, including the alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism. These findings suggest that maternal Cd exposure activate the amino acid metabolism and increase the amino acid uptake in the maternal liver, which reduces the supply of amino acids to the fetus via the circulation. We suspect that this underlies the Cd-evoked FGR.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Lvliang Comprehensive Test Center, Lvliang 033000, China.
| | - Jing Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yaling Jin
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shao Chin Lee
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Kong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ming Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai 201300, China
| | - Guoqiang Bai
- Lvliang Comprehensive Test Center, Lvliang 033000, China
| | - Lu Ren
- The Eleventh Clinical College of Shanxi Medical University, Lvliang People's Hospital, Lvliang 033000, China
| | - Bei Ren
- Institute of Drug Testing Technology, Shanxi Provincial Inspection and Testing Center, Taiyuan 030001, China
| | - Linxiao Fan
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Borghese MM, Fisher M, Ashley-Martin J, Fraser WD, Trottier H, Lanphear B, Johnson M, Helewa M, Foster W, Walker M, Arbuckle TE. Individual, Independent, and Joint Associations of Toxic Metals and Manganese on Hypertensive Disorders of Pregnancy: Results from the MIREC Canadian Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47014. [PMID: 37079392 PMCID: PMC10117658 DOI: 10.1289/ehp10825] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Toxic metals, such as lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg), may be associated with a higher risk of gestational hypertension and preeclampsia, whereas manganese (Mn) is an essential metal that may be protective. OBJECTIVES We estimated the individual, independent, and joint associations of Pb, Cd, As, Hg, and Mn on the risk of developing gestational hypertension and preeclampsia in a cohort of Canadian women. METHODS Metal concentrations were analyzed in first and third trimester maternal blood (n = 1,560 ). We measured blood pressure after 20 wk gestation to diagnose gestational hypertension, whereas proteinuria and other complications defined preeclampsia. We estimated individual and independent (adjusted for coexposure) relative risks (RRs) for each doubling of metal concentrations and examined interactions between toxic metals and Mn. We used quantile g-computation to estimate the joint effect of trimester-specific exposures. RESULTS Each doubling of third trimester Pb (RR = 1.54 ; 95% CI: 1.06, 2.22) and first trimester blood As (RR = 1.25 ; 95% CI: 1.01, 1.58) was independently associated with a higher risk of developing preeclampsia. First trimester blood As (RR = 3.40 ; 95% CI: 1.40, 8.28) and Mn (RR = 0.63 ; 95% CI: 0.42, 0.94) concentrations were associated with a higher and lower risk, respectively, of developing gestational hypertension. Mn modified the association with As such that the deleterious association with As was stronger at lower concentrations of Mn. First trimester urinary dimethylarsinic acid concentrations were not associated with gestational hypertension (RR = 1.31 ; 95% CI: 0.60, 2.85) or preeclampsia (RR = 0.92 ; 95% CI: 0.68, 1.24). We did not observe overall joint effects for blood metals. DISCUSSION Our results confirm that even low blood Pb concentrations are a risk factor for preeclampsia. Women with higher blood As concentrations combined with lower Mn in early pregnancy were more likely to develop gestational hypertension. These pregnancy complications impact maternal and neonatal health. Understanding the contribution of toxic metals and Mn is of public health importance. https://doi.org/10.1289/EHP10825.
Collapse
Affiliation(s)
- Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Helen Trottier
- Department of Social and Preventive Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Warren Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Mark Walker
- Department of Obstetrics, Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Dong X, Ding A, Hu H, Xu F, Liu L, Wu M. Placental Barrier on Cadmium Transfer from Mother to Fetus in Related to Pregnancy Complications. Int J Womens Health 2023; 15:179-190. [PMID: 36798790 PMCID: PMC9926993 DOI: 10.2147/ijwh.s393067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Purpose As two of the most severe and common medical disorders during pregnancy, gestational diabetes mellitus (GDM) and hypertensive disorder complicating pregnancy (HDCP) cause adverse effects on placental barrier function and thus may lead to a high risk of intrauterine exposure to toxic metals from mother to fetus. This study investigates the impact of the placental barrier on the transfer of cadmium (Cd) from mother to fetus and the relationship between pregnancy complications. Methods A total of 107 pairs of samples were collected in Kunming, China; 29 were from healthy pregnant women, and 78 were from patients with pregnancy complications. Cd was measured in each mother's placenta and maternal and umbilical cord blood. The expressions of MT and Cd-MT complex in blood and placental tissue samples were determined by enzyme-linked immunosorbent assay (ELISA). Results The cesarean section rate in the whole pathological group (60.7%) was higher than that in the normal group (20.7%), and the ratio of the effective barrier (ratio of maternal blood to umbilical cord blood>1) in the pathological group (74%) was lower than that in the normal group (79%). In addition, the proportion of practical placental barriers in women aged 20-25 years was 83.3%, 76.3% in women aged 26-30 years, 74.3% in women aged 31-35 years, 70% in women aged 36-40 years, and 71% in women aged 40-45 years. The Cd content in the placenta of the three pathological groups was significantly higher than that in maternal and umbilical cord blood (P<0.05), and the distribution of Cd was the same as that in the normal group. However, there was no significant difference between maternal and umbilical cord blood Cd concentrations in the pathological group. The Cd concentration in the normal group's maternal blood was significantly higher than that in cord blood (P<0.05). In addition, the expression levels of both metallothionein (MT) and Cd-MT complex in placenta is much higher than in maternal and umbilical blood, and which in normal group are significantly higher than those in pathological group. Conclusion Both mothers and fetuses are at increased health risk for pregnancy disorders when maternal age, BMI, or body weight increases. Increased maternal age increases the likelihood of Cd transfer from the mother to the fetus. Pregnancy complications may induce lower expression of MT, thus reducing the Cd-MT complex in the placenta, weakening the placental barrier, and increasing the risk of Cd transfer and exposure to the fetus.
Collapse
Affiliation(s)
- Xudong Dong
- The Obstetrical Department of the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China,Faculty of Life Science and Technology, Kunming University of Science & Technology, Kunming, 650500, People’s Republic of China
| | - Ailing Ding
- Faculty of Life Science and Technology, Kunming University of Science & Technology, Kunming, 650500, People’s Republic of China
| | - Hong Hu
- The Obstetrical Department of the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Fanping Xu
- The Obstetrical Department of the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Lingyan Liu
- The Obstetrical Department of the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Min Wu
- The Obstetrical Department of the First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China,Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, People’s Republic of China,Correspondence: Min Wu, Email
| |
Collapse
|
14
|
Ogushi S, Nakanishi T, Kimura T. Cadmium inhibits differentiation of human trophoblast stem cells into extravillous trophoblasts and disrupts epigenetic changes within the promoter region of the HLA-G gene. Toxicol Sci 2023; 191:25-33. [PMID: 36370079 DOI: 10.1093/toxsci/kfac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal widely distributed in the environment. Maternal whole-blood Cd levels during pregnancy are positively associated with the risk of early preterm birth. We hypothesized that Cd inhibits trophoblast differentiation, resulting in the development of hypertensive disorders of pregnancy and a high risk of early preterm birth. Using the CT27 human trophoblast stem cell line, we found that exposing these cells to 0.1-0.4 µM Cd inhibited their differentiation into extravillous cytotrophoblasts (EVTs). Supporting this finding, we found that expression of the metal-binding protein metallothionein, which suppresses the toxicity of Cd, is low in EVTs. We also found that Cd exposure changes the methylation status of the promoter region of the HLA-G gene, which is specifically expressed in EVTs. Together, these results suggest that Cd inhibits placental formation by suppressing trophoblast differentiation into EVTs. This suppression may underlie the increased risk of gestational hypertension in women with high whole-blood Cd levels.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| |
Collapse
|
15
|
Hao Y, Wu W, Fraser WD, Huang H. Association between residential proximity to municipal solid waste incinerator sites and birth outcomes in Shanghai: a retrospective cohort study of births during 2014-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2460-2470. [PMID: 34496690 DOI: 10.1080/09603123.2021.1970116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
We tested the hypothesis of whether maternal residential proximity to municipal solid waste incinerator (MSWI) sites could significantly affect birth outcomes. This retrospective birth cohort study conducted at the International Peace Maternity and Infant Hospital, Shanghai, China, included 59,606 mothers with singleton live births during 2014-2018. Multivariate generalized linear models were used to examine associations between residential proximity to MSWI sites and birth outcomes. Small for gestational age (SGA) was significantly more common among children with maternal residential proximity to MSWI sites (odds ratio [OR]=1.20, 95% confidence interval [CI]: 1.07-1.34). Maternal prepregnancy body mass index (BMI) influenced this association. Infants of underweight mothers (prepregnancy BMI <18.5 kg/m2) with MSWI exposure (OR=2.00, 95% CI: 1.58-2.52) had higher risks of SGA than their counterparts. Our findings underscore the need to prevent adverse environmental effects of MSWI on birth outcomes; improved exposure assessment measures are warranted in future studies.
Collapse
Affiliation(s)
- Yanhui Hao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weibin Wu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - William D Fraser
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
16
|
Li X, Yu T, Zhai M, Wu Y, Zhao B, Duan C, Cheng H, Li H, Wei Z, Yang Y, Yu Z. Maternal cadmium exposure impairs placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114055. [PMID: 36075122 DOI: 10.1016/j.ecoenv.2022.114055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Cadmium is a ubiquitous environmental pollutant, which can increase the risk of preeclampsia. This study was designed to determine the mechanism of cadmium exposure during pregnancy impaired placental angiogenesis that was associated with the occurrence of preeclampsia. The effects of cadmium exposure on placental thyroid hormone receptor signaling were explored. JEG3 cells were treated with CdCl2 (20 μM) and the Dio2 inhibitor, IOP (100 μM). Cadmium levels in maternal blood and placentae were increased in preeclampsia group. Placental angiogenesis of preeclampsia was decreased with decreased expression of PLGF and VEGF and increased expression of sFlt1. Meanwhile, the expression and nuclear translocation of thyroid hormone receptor α were decreased in preeclampsia placenta, as well as the expression of Dio2, but not the expression and nuclear translocation of thyroid hormone receptor β. Furthermore, we found that cadmium exposure downregulated the expression of thyroid hormone receptor α and Dio2, but not the expression of thyroid hormone receptor β in JEG3 cells. Also, we found that cadmium exposure decreased the expression of PLGF and VEGF and increased the expression of sFlt1 in JEG3 cells. IOP pretreatment decreased the expression of PLGF and increased the expression of sFlt1. In conclusion, our results elucidated that cadmium exposure would impair placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling.
Collapse
Affiliation(s)
- Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yongyuan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baojing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cancan Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Han Li
- Department of Electrocardiogram Diagnosis, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230060, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhen Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
17
|
Zhang X, Chen K, Meng Z, Jia R, Lian F, Lin F. Cadmium-induced preeclampsia-like phenotype in the rat is related to decreased progesterone synthesis in the placenta. Xenobiotica 2022; 52:625-632. [DOI: 10.1080/00498254.2022.2124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xiaojie Zhang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kai Chen
- Wenzhou Medical University, Wenzhou 325000, China
| | - Zhu Meng
- Wenzhou Medical University, Wenzhou 325000, China
| | - Ru Jia
- Wenzhou Medical University, Wenzhou 325000, China
| | - Feifei Lian
- Wenzhou Medical University, Wenzhou 325000, China
| | - Feng Lin
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
18
|
Ogushi S, Nakanishi T, Kimura T. Cadmium inhibits forskolin-induced differentiation of human placental BeWo cells. J Toxicol Sci 2022; 47:309-315. [PMID: 35908931 DOI: 10.2131/jts.47.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is an environmental pollutant. Blood Cd levels in pregnant women have been associated with premature births, infant birth size, placenta previa, and placenta accreta. There have been concerns on the reproductive developmental toxicity of Cd. The choriocarcinoma cell line BeWo, a cellular in vitro model for studying syncytial fusion, has been widely used to study the reproductive and developmental toxic effects of pollutants. Here, we examine the inhibitory effect of Cd against forskolin (FSK)-induced BeWo differentiation. Results showed that Cd exposure inhibited the FSK-induced expression of syncytiotrophoblast-related genes LGALS13, ERVFRD1, SDC1, and CGB3. Inhibition of LGALS13 expression was due to the inhibition of the PKA pathway, whereas the inhibition of the other three genes could be due to the inhibition of the other pathways. These findings could help clarify the reproductive and developmental toxicity of Cd.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| |
Collapse
|
19
|
Xing H, Liu Q, Hou Y, Tian Z, Liu J. Cadmium mediates pyroptosis of human dermal lymphatic endothelial cells in a NLRP3 inflammasome-dependent manner. J Toxicol Sci 2022; 47:237-247. [PMID: 35650140 DOI: 10.2131/jts.47.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyroptosis is a form of inflammasome-trigged programmed cell death in response to a variety of stimulators, including environmental cytotoxic pollutant Cadmium (Cd). Vascular endothelial cell is one of the first-line cell types of Cd cell toxicity. Studies report that Cd exposure causes pyroptosis in vascular endothelial cells. Vascular and lymphatic endothelial cells have many common properties, but these two cell types are distinguished in gene expression profile and the responsive behaviors to chemokine or physical stimulations. Whether Cd exposure also causes pyroptosis in lymphatic endothelial cells has not been investigated. Here, we found that Cd treatment significantly decreased the viability of human dermal lymphatic endothelial cells (HDLECs). Cd treatment induced inflammasome activation indicated by elevated cleavage of pro-caspase-1 into active form Casp1p20, elevated secretion of pro-inflammatory cytokines and production of reactive oxygen species (ROS). Flow cytometry showed that caspase-1 activity was significantly increased in Cd-treated cells. Moreover, knockdown of NLRP3 effectively rescued Cd-induced inflammasome activation and pyroptosis in HDLECs. Collectively, our results indicated that Cd induced pyroptosis in a NLRP3 inflammasome-dependent manner in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Haiyan Xing
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China
| | - Qiang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China.,Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Ju Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China.,Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, China
| |
Collapse
|
20
|
Rduch T, Tsolaki E, El Baz Y, Leschka S, Born D, Kinkel J, Anthis AHC, Fischer T, Jochum W, Hornung R, Gogos A, Herrmann IK. The Role of Inorganics in Preeclampsia Assessed by Multiscale Multimodal Characterization of Placentae. Front Med (Lausanne) 2022; 9:857529. [PMID: 35433726 PMCID: PMC9009444 DOI: 10.3389/fmed.2022.857529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is one of the most dangerous diseases in pregnancy. Because of the hypertensive nature of preeclampsia, placental calcifications are believed to be a predictor for its occurrence, analogous to their role in cardiovascular diseases. However, the prevalence and the relevance of calcifications for the clinical outcome with respect to preeclampsia remains controversial. In addition, the role of other inorganic components present in the placental tissue in the development of preeclampsia has rarely been investigated. In this work, we therefore characterized inorganic constituents in placental tissue in groups of both normotensive and preeclamptic patients (N = 20 each) using a multi-scale and multi-modal approach. Examinations included elemental analysis (metallomics), sonography, computed tomography (CT), histology, scanning electron microscopy, X-ray fluorescence and energy dispersive X-ray spectroscopy. Our data show that tissue contents of several heavy metals (Al, Cd, Ni, Co, Mn, Pb, and As) were elevated whereas the Rb content was decreased in preeclamptic compared to normotensive placentae. However, the median mineral content (Ca, P, Mg, Na, K) was remarkably comparable between the two groups and CT showed lower calcified volumes and fewer crystalline deposits in preeclamptic placentae. Electron microscopy investigations revealed four distinct types of calcifications, all predominantly composed of calcium, phosphorus and oxygen with variable contents of magnesium in tissues of both maternal and fetal origin in both preeclamptic and normotensive placentae. In conclusion our study suggests that heavy metals, combined with other factors, can be associated with the development of preeclampsia, however, with no obvious correlation between calcifications and preeclampsia.
Collapse
Affiliation(s)
- Thomas Rduch
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Elena Tsolaki
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Yassir El Baz
- Department of Radiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Sebastian Leschka
- Department of Radiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Diana Born
- Institute of Pathology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Janis Kinkel
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Alexandre H C Anthis
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Tina Fischer
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - René Hornung
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Alexander Gogos
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
A scoping review of infant and children health effects associated with cadmium exposure. Regul Toxicol Pharmacol 2022; 131:105155. [DOI: 10.1016/j.yrtph.2022.105155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
|
22
|
Kısadere İ, Karaman M, Aydın MF, Donmez N, Usta M. The protective effects of chitosan oligosaccharide (COS) on cadmium-induced neurotoxicity in Wistar rats. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 77:755-763. [PMID: 34842077 DOI: 10.1080/19338244.2021.2008852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of the study was to investigate the influence of chitosan oligosaccharide (COS) on some antioxidant and cytokine levels in the rat hippocampus as well as synaptophysin (SYP) immunoreactivity in the cerebral cortex of the cadmium (Cd) exposed rats. Thirty-two male albino Wistar rats were divided randomly into four equal groups as control (C; n = 8), Cd (n = 8), COS (n = 8), and Cd + COS (CdCOS; n = 8). The rats in the Cd and CdCOS groups received Cd chloride (CdCl2) (2 mg/kg/d) orally by gastric gavage three times a week for 4 weeks. Besides, COS (200 mg/kg/d) was administered to COS and CdCOS groups five times a week for 4 weeks. Then, they were decapitated and hippocampal/cerebral cortex tissue samples were taken for measurement of GSH levels, CAT and SOD activities, MDA values, TNF-α, IL-6, and IL-10 levels as well as SYP immunoreactivity. Although tissue GSH levels were determined the lowest in the Cd group, these values were attenuated with COS treatment in the CdCOS group (p < .01). In addition, TNF-α levels were alleviated by COS treatment in the CdCOS group when compared to Cd (p < .01). SYP-positive cells were investigated in the cerebral cortex and found mild in the CdCOS group. COS exhibits potential protective effects on Cd-induced neurotoxicity in rats.
Collapse
Affiliation(s)
- İhsan Kısadere
- Department of Physiology, Faculty of Veterinary Medicine, University of Balıkesir, Balıkesir, Turkey
| | - Musa Karaman
- Department of Pathology, Faculty of Veterinary Medicine, University of Balıkesir, Balikesir, Turkey
| | - Mehmet Faruk Aydın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Balıkesir, Balıkesir, Turkey
| | - Nurcan Donmez
- Department of Physiology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Mustafa Usta
- Department of Pathology, Faculty of Veterinary Medicine, University of Balıkesir, Balikesir, Turkey
| |
Collapse
|
23
|
Hussey MR, Suter MK, Mohanty AF, Enquobahrie DA. Placental cadmium, placental genetic variations, and birth size. J Matern Fetal Neonatal Med 2021; 35:8594-8602. [PMID: 34666587 DOI: 10.1080/14767058.2021.1989404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maternal cadmium (Cd) burden has been associated with offspring birth size measures, yet associations of placental Cd with birth size are less clear. Further, the role of genetics in these associations has not been examined. We investigated associations of placental Cd with birth size and placental genotypes. We also examined the potential role of placental genotypes as modifiers of placental Cd and birth size associations. METHODS Participants were 490 mother-child pairs from the Omega and Placenta Microarray studies based in Seattle, WA. Placental Cd was measured using Agilent 7500 ICP-MS. The birth size was characterized using birth weight (BW), ponderal index (PI), and head circumference (HC). Eleven placental single nucleotide polymorphisms (SNPs) related to metal transport, growth regulation, endocrine response, and cell signaling were genotyped. Adjusted multivariable linear regression models were used to examine overall and sex-specific associations of placental Cd with birth size (BW, PI and HC), as well as associations of placental genotypes with placental Cd. Effect modification of placenta Cd and birth size associations by placental SNPs was examined using interaction terms and stratified analyses. RESULTS Mean maternal age was 33.6 years (SD = 4.4). Mean and median placental Cd levels were 4.0 ng/g tissue (SD = 2.7 ng/g tissue) and 3.6 ng/g (IQR 2.5 - 5.2 ng/g), respectively. Overall, compared with infants in the lowest quartile for placental Cd, infants in the second (ß = -102.8 g, 95% CI: -220.7, 15.1), third (ß = -83.2 g, 95% CI: -199.3, 32.9) and fourth (ß = -109.2 g, 95% CI: -225.4, 7.1) quartiles had lower BW, though associations were not statistically significant (all p-values > .05, trend p-value = .11). Among male infants, infants in the second (ß = -203.3 g, 95% CI: -379.7, -27.0) and fourth quartiles (ß = -198.3 g, 95% CI: -364.2, -32.5) had lower BW compared with those in the first quartiles (p-values < .05, trend p-value = .08). Similar relationships were not observed among female infants, though infant sex-placental Cd interaction terms were not significant. Similarly, male, but not female, infants had marginally significant positive associations between placental Cd and ponderal index (trend p-value = .06). The minor rs3811647 allele of the placental transferrin gene (NCBI Gene ID: 7018) was associated with an increase in Cd among all infants (p-value = .04). We did not find differences in associations of placental Cd with birth size markers among infants stratified by rs3811647 genotype. CONCLUSIONS Placental Cd was inversely associated with BW among male infants. The rs3811647 SNP of the transferrin gene was associated with placental Cd.
Collapse
Affiliation(s)
- Michael R Hussey
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Megan K Suter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - April F Mohanty
- Informatics, Decision Enhancement, and Analytic Sciences Center (IDEAS), VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
24
|
The Associations between Sex Hormones and Lipid Profiles in Serum of Women with Different Phenotypes of Polycystic Ovary Syndrome. J Clin Med 2021; 10:jcm10173941. [PMID: 34501389 PMCID: PMC8432258 DOI: 10.3390/jcm10173941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
We aimed to evaluate the relationship between selected serum sex hormones and lipid profiles in a group of women with polycystic ovary syndrome (PCOS) dividing according to four phenotypes, value of body mass index (BMI), and presence of hyperlipidemia. The study included 606 Caucasian women. Lipids and selected hormones were estimated using commercially available procedures during hospitalization in 2017. Phenotype of PCOS, BMI value, and hyperlipidemia were significant factors that influenced androgen hormone concentrations, such as total and free testosterone and androstenedione as well as the value of free androgen index (FAI). Moreover, significant changes in concentrations of dehydroepiandrosterone sulphate and sex hormone binding globulin (SHBG) were found between those groups. Higher quartiles of triglyceride concentrations increased the odds ratio of decreased concentrations of SHBG or increased values of FAI, while an adverse relation was found in case of HDL-C. The concentration of estradiol in the blood of women with PCOS was not associated with lipid profile parameters in any investigated groups. Probably, irregularities in sex hormone concentrations during PCOS is not directly associated with lipid profile parameters but could be reflective of the concentration of SHBG or the ratio of SHBG and total testosterone and their association with lipids.
Collapse
|
25
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
26
|
Lum JTS, Chan YN, Leung KSY. Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta 2021; 234:122683. [PMID: 34364482 DOI: 10.1016/j.talanta.2021.122683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Humans are continuously exposed to numerous environmental pollutants including potentially toxic elements. Essential elements play an important role in human health. Abnormal elemental levels in the body, in different forms that existed, have been reported to be correlated with different diseases and environmental exposure. Blood is the conventional biological sample used in human biomonitoring. However, blood samples can only reflect short-term exposure and require invasive sampling, which poses infection risk to individuals. In recent years, the number of research evaluating the effectiveness of non-invasive samples (hair, nails, urine, meconium, breast milk, placenta, cord blood, saliva and teeth) for human biomonitoring is increasing. These samples can be collected easily and provide extra information in addition to blood analysis. Yet, the correlation between the elemental concentration in non-invasive samples and in blood is not well established, which hinders the application of those samples in routine human biomonitoring. This review aims at providing a fundamental overview of analytical methods of non-invasive samples in human biomonitoring. The content covers the sample collection and pretreatment, sample preparation and instrumental analysis. The technical discussions are separated into solution analysis and solid analysis. In the last section, the authors highlight some of the perspectives on the future of elemental analysis in human biomonitoring.
Collapse
Affiliation(s)
- Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yun-Nam Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
27
|
Padula AM, Ma C, Huang H, Morello-Frosch R, Woodruff TJ, Carmichael SL. Drinking water contaminants in California and hypertensive disorders in pregnancy. Environ Epidemiol 2021; 5:e149. [PMID: 33870020 PMCID: PMC8043732 DOI: 10.1097/ee9.0000000000000149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 12/07/2022] Open
Abstract
Environmental pollutants have been associated with hypertensive disorders in pregnancy including gestational hypertension, preeclampsia, and eclampsia, though few have focused on drinking water contamination. Water pollution can be an important source of exposures that may contribute to adverse pregnancy outcomes. METHODS We linked water quality data on 13 contaminants and two violations from the California Communities Environmental Health Screening Tool to birth records from vital statistics and hospital discharge records (2007-2012) to examine the relationship between drinking water contamination and hypertensive disorders in pregnancy. We examined contaminants in single- and multipollutant models. Additionally, we examined if the relationship between water contamination and hypertensive disorders in pregnancy differed by neighborhood poverty, individual socioeconomic status, and race/ethnicity. RESULTS Arsenic, nitrate, trihalomethane, hexavalent chromium, and uranium were detected in a majority of water systems. Increased risk of hypertensive disorders in pregnancy was modestly associated with exposure to cadmium, lead, trihalomethane, and hexavalent chromium in drinking water after adjusting for covariates in single pollutant models with odds ratios ranging from 1.01 to 1.08. In multipollutant models, cadmium was consistent, lead and trihalomethane were stronger, and additional contaminants were associated with hypertensive disorders in pregnancy including trichloroethylene, 1,2-Dibromo-3-chloropropane, nitrate, and tetrachloroethylene. Other contaminants either showed null results or modest inverse associations. The relationship between water contaminants and hypertensive disorders in pregnancy did not differ by neighborhood poverty. CONCLUSIONS We found increased risk of hypertensive disorders in pregnancy associated with exposure to several contaminants in drinking water in California. Results for cadmium, lead, trihalomethane, and hexavalent chromium were robust in multipollutant models.
Collapse
Affiliation(s)
- Amy M. Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Chen Ma
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Hongtai Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, Berkeley, California
| | - Tracey J. Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Suzan L. Carmichael
- Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, Berkeley, California
| |
Collapse
|
28
|
Bizoń A, Milnerowicz H, Kowalska-Piastun K, Milnerowicz-Nabzdyk E. The Impact of Early Pregnancy and Exposure to Tobacco Smoke on Blood Antioxidant Status and Copper, Zinc, Cadmium Concentration-A Pilot Study. Antioxidants (Basel) 2021; 10:antiox10030493. [PMID: 33809854 PMCID: PMC8004252 DOI: 10.3390/antiox10030493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to evaluate the impact of early pregnancy and exposure to tobacco smoke on antioxidant status and copper, zinc, and cadmium concentrations in the blood of non-smoking and smoking, as well as non-pregnant or pregnant women. The study included 213 women. More specifically, 150 women in first trimester of pregnancy and 63 non-pregnant women. Women were divided into subgroups according to exposure to tobacco smoke. Pregnancy significant influences higher copper and lower zinc concentration in the serum, whereas exposure to tobacco smoke during pregnancy is mainly associated with an elevation in cadmium and zinc concentration. It seems that metallothionein, superoxide dismutase, and glutathione peroxidase are the important antioxidants during early pregnancy, when exposure to tobacco smoke occurs, whereas the pregnancy itself is associated with a higher concentration of metallothionein and activity of catalase. Both pregnancy in the first trimester and exposure to tobacco smoke decrease glutathione concentration. In addition, active and passive maternal smoking have a similarly negative effect on antioxidant status in the first trimester. Early pregnancy as well as exposure to tobacco smoke is associated with significant alteration in antioxidant status and copper, zinc, and cadmium concentration. Due to a small number of smoking subjects (11 cases of non-pregnant, active smokers and 14 pregnant active smokers), the obtained results should be treated as a pilot, and this should be considered for future studies.
Collapse
Affiliation(s)
- Anna Bizoń
- Department of Biomedical and Environmental Analysis, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.M.); (K.K.-P.)
- Correspondence: ; Tel.: +48-71-784-0175; Fax: +48-71-784-0172
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analysis, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.M.); (K.K.-P.)
| | - Katarzyna Kowalska-Piastun
- Department of Biomedical and Environmental Analysis, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.M.); (K.K.-P.)
| | - Ewa Milnerowicz-Nabzdyk
- 2nd Department and Clinic of Obstetrics and Gynecology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
29
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
30
|
Cadmium exposure reduces invasion of the human trophoblast-derived HTR-8/SVneo cells by inhibiting cell adhesion and matrix metalloproteinase-9 secretion. Reprod Toxicol 2021; 100:68-73. [PMID: 33422613 DOI: 10.1016/j.reprotox.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 01/19/2023]
Abstract
Preeclampsia and intrauterine growth restriction, multisystemic disorders characterized by a shallow trophoblast invasion, have been associated with maternal cadmium (Cd) exposure. The molecular mechanisms of this association remain unknown. Cell adhesion and matrix metalloproteinase production are essential for an adequate trophoblast invasion. Thus, the aim of this study was to determine the effect of Cd exposure on invasion, adhesion, and matrix metalloproteinase-9 (MMP-9) production in the trophoblast-derived HTR-8/SVneo cell line. Cultured HTR-8/SVneo trophoblast cells were incubated with different concentrations of CdCl2 for 6 h. Cell invasion was determined by the transwell assay, while cell adhesion was examined on collagen type I. MMP-9 release and activity were measured by ELISA and zymography, respectively. MMP-9 mRNA expression was detected by reverse-transcription polymerase chain reaction, while intracellular MMP-9 protein was assessed by Western blotting. Cd exposure significantly decreased the invasion and adhesion of HTR-8/SVneo cells. Also, MMP-9 levels and activity in the culture medium were significantly reduced after Cd incubation. In contrast, MMP-9 mRNA expression and intracellular protein levels were significantly increased. These data indicate that Cd reduces trophoblast cells invasiveness by inhibiting cell adhesion and MMP-9 secretion.
Collapse
|
31
|
Ovayolu A, Turksoy VA, Gun I, Karaman E, Dogan I, Turgut A. Analyses of maternal plasma cadmium, lead, and vanadium levels in the diagnosis and severity of late-onset preeclampsia: a prospective and comparative study. J Matern Fetal Neonatal Med 2021; 35:4803-4809. [PMID: 33406955 DOI: 10.1080/14767058.2020.1864318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cadmium, lead, and vanadium, important pollutants produced from anthropogenic activities, have been suggested to be embryotoxic and fetotoxic in many studies. However, the causes of preeclampsia are little known and heavy metals merit further investigation. We tested whether late-onset preeclampsia (L-PrE) was associated with exposure to these metals. METHODS This study was designed to determine maternal plasma cadmium, lead, and vanadium concentrations in women with L-PrE (n = 46) compared with those of normotensive women (n = 46). The concentrations of the metals were measured using inductively coupled plasma-mass spectrometry and compared. RESULTS The groups were matched for maternal age, gestational age, and gravidity (p ≥ 0.05). Vanadium concentrations differed between the groups (p = 0.007). In contrast, there were no significant differences in the concentrations of cadmium and lead between the groups (p ≥ 0.05). There was no difference between the concentrations of the metals in patients with mild (n = 23) and severe (n = 23) preeclampsia in L-PrE (p ≥ 0.05). A significant discriminative role of vanadium for the presence of L-PrE, with a cutoff value of 1.84 µg/L, was found in ROC curve analysis. When the patients with and without small-for-gestational-age infants were compared (n = 12, and n = 80, respectively), it was determined that there were no differences between cadmium, lead, and vanadium concentrations (p ≥ 0.05). CONCLUSION Lower levels of vanadium might be associated with the development of L-PrE. Our findings require further investigation in other populations.
Collapse
Affiliation(s)
- Ali Ovayolu
- Department of Obstetrics and Gynecology, Cengiz Gokcek Women's and Children's Hospital, Gaziantep, Turkey
| | - Vugar Ali Turksoy
- Department of Public Health, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Ismet Gun
- Department of Obstetrics and Gynecology, Faculty of Medicine, Near East University, Lefkosa-TRNC, Cyprus
| | - Erbil Karaman
- Department of Gynecology and Obstetrics, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| | - Ilkay Dogan
- Department of Biostatistics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdulkadir Turgut
- Department of Obstetrics and Gynecology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
32
|
Wang Y, Wang K, Han T, Zhang P, Chen X, Wu W, Feng Y, Yang H, Li M, Xie B, Guo P, Warren JL, Shi X, Wang S, Zhang Y. Exposure to multiple metals and prevalence for preeclampsia in Taiyuan, China. ENVIRONMENT INTERNATIONAL 2020; 145:106098. [PMID: 32916414 DOI: 10.1016/j.envint.2020.106098] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several studies with small sample size have reported inconsistent associations between single metal and preeclampsia (PE). Very few studies have investigated metal mixtures and PE. METHODS Blood concentrations of chromium (Cr), cadmium, mercury (Hg), arsenic (As), lead (Pb), nickel, cobalt, and antimony were measured using inductively coupled plasma-mass spectrometry among 427 PE women and 427 matched controls from Taiyuan, China. Multivariate logistic regression models, weighted quantile sum (WQS) regression, and principal component analysis were employed to examine exposure to single metals and metal mixtures in relation to PE. RESULTS An increased prevalence of PE was associated with Cr (OR = 1.76, 95% CI: 1.18, 2.62 and 1.90, 1.22, 2.93 for the middle and high vs. low), Hg (OR = 1.60, 95% CI: 1.08, 2.38 for the high vs. low) and As (OR = 1.64, 95% CI: 1.07, 2.52 for the middle vs. low). The WQS index, predominated by Cr, Hg, Pb, and As, was positively associated with PE. A principal component characterized by Cr and As also exhibited excessive association with PE. The highest PE prevalence was found among women who were overweight/obese before pregnancy and had high Cr levels compared to women who had pre-pregnancy normal body mass index (BMI) and low Cr levels. CONCLUSIONS Our study provided evidence that exposure to multiple metals was associated with increased prevalence of PE, and the observed association with multiple metals was dominated by Cr, As. Our study also suggested that pre-pregnancy BMI might modify the association between Cr and PE.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Keke Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Tianbi Han
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Ping Zhang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weiwei Wu
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Yongliang Feng
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Hailan Yang
- Department of Obstetrics, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Mei Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Bingjie Xie
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Pengge Guo
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Widhalm R, Ellinger I, Granitzer S, Forsthuber M, Bajtela R, Gelles K, Hartig PY, Hengstschläger M, Zeisler H, Salzer H, Gundacker C. Human placental cell line HTR-8/SVneo accumulates cadmium by divalent metal transporters DMT1 and ZIP14. Metallomics 2020; 12:1822-1833. [PMID: 33146651 DOI: 10.1039/d0mt00199f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cadmium (Cd) is a global pollutant that accumulates in the placenta and can cause placental dysfunction. Although iron transporters have been suggested to participate in placental Cd uptake, it is still unknown which transporters are actually involved in this process. We specifically aimed to study the role of three iron transporters in the uptake of Cd into the placental cell line HTR-8/SVneo. For this purpose, Divalent Metal Transporter (DMT)1 and ZRT/IRT like protein (ZIP)8 and ZIP14 were downregulated and changes in cellular Cd levels analysed in relation to controls. As clearly shown by the reduction of the Cd content by ∼60% in DMT1- and ZIP14-downregulated cells, the two proteins are essential for Cd accumulation in HTR-8/SVneo cells. Using a validated antibody, we show DMT1 to be localised in situ in trophoblast and stromal cells. We further wanted to investigate how placental cells cope with Cd loading and which metallothionein (MT) isoforms they express. Cd-exposed cells accumulate Cd in a dose-dependent manner and upregulate MT2A accordingly (up to 15-fold induction upon 5 μM CdCl2 treatment for 72 h). 5 μM Cd exposure for 72 h decreased cell number to 60%, an effect that was aggravated by MT2A depletion (cell number reduced to 30%) indicating additive effects. In conclusion, our data suggest that DMT1 and ZIP14 are required for Cd uptake into human placental cells that upregulate MT2A to store and detoxify the metal. Cd storage in the placenta reduces Cd transport to the fetus, which, however, could impair placental functions and fetal development.
Collapse
Affiliation(s)
- Raimund Widhalm
- Karl-Landsteiner Private University for Health Sciences, Krems, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gajewska K, Błażewicz A, Laskowska M, Niziński P, Dymara-Konopka W, Komsta Ł. Chemical elements and preeclampsia - An overview of current problems, challenges and significance of recent research. J Trace Elem Med Biol 2020; 59:126468. [PMID: 32007824 DOI: 10.1016/j.jtemb.2020.126468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Data on the elemental status, redistribution of the elements, role of occupational exposure and dietary assessment in preeclampsia (PE) are scarce. There are many disparities in the findings of essential and non-essential elements' role in PE. In this article we overview the changes in the content of selected elements in pregnancy complicated with the disorder of complex and not fully understood etiology. We have focused on important limitations and highlighted shortcomings in research from the last ten years period. METHODS The Scopus and PubMed electronic databases have been searched for English-language articles published within the time interval 2008-2018, with full text available and with the key words "preeclampsia" and "chemical element" (i.e. separately: Cd, Pb, As, Ni, Mo, Co, Cr, Mn, Se, I, Fe, Sr, Cu, Zn, Mg, K and Na) appearing in the title, abstract or keywords. RESULTS A total of 48 publications were eligible for this overview. Surprisingly only 4% of papers considered environmental exposure, 8%- diet and 2 %- comorbid diseases. In most published papers, occupational exposure was neglected. Meta-analysis was possible for seven elements in serum (Ca, Cu, Fe, Mg, Mn, Se, Zn), and two elements (Se, Zn) in plasma. It showed negative shift for most elements, however only several were statistically significant. CONLUSIONS The overview of the published data on PE and chemical elements yields varied results. Some of the reasons may be the difference in not duly validated method of determination, and huge discrepancies in study designs. The lack of detailed description of studied and control population and small number of samples constitute the most common limitations of such studies. Many of them describe the use of a single analytical procedure, therefore the quality of research may be insufficient to obtain reliable results. A history of elements' status and intake before and during pregnancy is usually not examined. Dietary assessment should be done at different stages of pregnancy, and whenever possible in the periconceptional period as well. It still needs to be established whether the deficiency of certain elements or their excess may be an etiopathogenic factor and a developmental cause of PE, and if it may serve as a target of actions in the causal treatment or even prevention of the occurrence of this disease.
Collapse
Affiliation(s)
- Katarzyna Gajewska
- Chair of Chemistry, Department of Analytical Chemistry, Medical University of Lublin, Poland.
| | - Anna Błażewicz
- Chair of Chemistry, Department of Analytical Chemistry, Medical University of Lublin, Poland
| | - Marzena Laskowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Poland
| | - Przemysław Niziński
- Chair of Chemistry, Department of Analytical Chemistry, Medical University of Lublin, Poland
| | | | - Łukasz Komsta
- Department of Medicinal Chemistry, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Poland
| |
Collapse
|
35
|
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, Padula A, Woodruff TJ. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol 2020; 92:14-56. [PMID: 31055053 PMCID: PMC6824944 DOI: 10.1016/j.reprotox.2019.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
Pregnancy is a unique period when biological changes can increase sensitivity to chemical exposures. Pregnant women are exposed to multiple environmental chemicals via air, food, water, and consumer products, including flame retardants, plasticizers, and pesticides. Lead exposure increases risk of pregnancy-induced hypertensive disorders, although women's health risks are poorly characterized for most chemicals. Research on prenatal exposures has focused on fetal outcomes and less on maternal outcomes. We reviewed epidemiologic literature on chemical exposures during pregnancy and three maternal outcomes: preeclampsia, gestational diabetes, and breast cancer. We found that pregnancy can heighten susceptibility to environmental chemicals and women's health risks, although variations in study design and exposure assessment limited study comparability. Future research should include pregnancy as a critical period for women's health. Incorporating biomarkers of exposure and effect, deliberate timing and method of measurement, and consistent adjustment of potential confounders would strengthen research on the exposome and women's health.
Collapse
Affiliation(s)
- Julia Varshavsky
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA.
| | - Anna Smith
- University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - Aolin Wang
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA; University of California, San Francisco, Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Elizabeth Hom
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Monika Izano
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Hongtai Huang
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA; University of California, San Francisco, Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Amy Padula
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Tracey J Woodruff
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| |
Collapse
|
36
|
Liu T, Zhang M, Guallar E, Wang G, Hong X, Wang X, Mueller NT. Trace Minerals, Heavy Metals, and Preeclampsia: Findings from the Boston Birth Cohort. J Am Heart Assoc 2019; 8:e012436. [PMID: 31426704 PMCID: PMC6759885 DOI: 10.1161/jaha.119.012436] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Background Preeclampsia is a leading contributor to maternal and perinatal morbidity and mortality. In mice experiments, manganese (Mn) and selenium (Se) are protective whereas cadmium (Cd) is promotive for preeclampsia. Epidemiologic findings on these chemical elements have been inconsistent. To confirm experimental findings in mice, we examined associations of trace minerals (Mn and Se) and heavy metals (Cd, lead [Pb], and mercury [Hg]) with preeclampsia in a birth cohort. Methods and Results A total of 1274 women from the Boston Birth Cohort (enrolled since 1998) had complete data on the exposures and outcome. We measured Mn, Se, Cd, Pb, and Hg from red blood cells collected within 24 to 72 hours after delivery. We ascertained preeclampsia diagnosis from medical records. We used Poisson regression with robust variance models to estimate prevalence ratios (PRs) and 95% CIs. A total of 115 (9.0%) women developed preeclampsia. We observed evidence of a dose-response trend for Mn (P for trend<0.001) and to some extent for Cd (P for trend=0.009) quintiles. After multivariable adjustment, a 1 SD increment in Mn was associated with 32% lower risk of developing preeclampsia (PR=0.68; 95% CI, 0.54-0.86), whereas a 1 SD increment in Cd was associated with 15% higher risk of preeclampsia (PR=1.15; 95% CI, 0.98-1.36). Null associations were observed for Se, Pb, and Hg. Conclusions Findings from our cohort, consistent with evidence from mice experiments and human studies, indicate that women with lower blood concentration of Mn or higher Cd are more likely to develop preeclampsia.
Collapse
Affiliation(s)
- Tiange Liu
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchJohns Hopkins UniversityBaltimoreMD
| | - Mingyu Zhang
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Eliseo Guallar
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchJohns Hopkins UniversityBaltimoreMD
| | - Guoying Wang
- Center on the Early Life Origins of DiseaseDepartment of Population, Family and Reproductive HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Xiumei Hong
- Center on the Early Life Origins of DiseaseDepartment of Population, Family and Reproductive HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Xiaobin Wang
- Center on the Early Life Origins of DiseaseDepartment of Population, Family and Reproductive HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Division of General Pediatrics & Adolescent MedicineDepartment of PediatricsJohns Hopkins School of MedicineBaltimoreMD
| | - Noel T. Mueller
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchJohns Hopkins UniversityBaltimoreMD
| |
Collapse
|
37
|
Bommarito PA, Kim SS, Meeker JD, Fry RC, Cantonwine DE, McElrath TF, Ferguson KK. Urinary trace metals, maternal circulating angiogenic biomarkers, and preeclampsia: a single-contaminant and mixture-based approach. Environ Health 2019; 18:63. [PMID: 31300062 PMCID: PMC6624941 DOI: 10.1186/s12940-019-0503-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposures to toxic metals and deficiencies in essential metals disrupt placentation and may contribute to preeclampsia. However, effects of exposure to combinations of metals remain unknown. OBJECTIVE We investigated the relationship between urinary trace metals, circulating angiogenic biomarkers, and preeclampsia using the LIFECODES birth cohort. METHODS Urine samples collected during pregnancy were analyzed for 17 trace metals and plasma samples were analyzed for soluble fms-like tyrosine-1 (sFlt-1) and placental growth factor (PlGF). Cox proportional hazard models were used to estimate the hazard ratios (HR) of preeclampsia associated with urinary trace metals. Linear regression models were used to estimate the relationship between urinary trace metals and angiogenic biomarkers. Principal components analysis (PCA) was used to identify groups of metals and interactions between principal components (PCs) loaded by toxic and essential metals were examined. RESULTS In single-contaminant models, several toxic and essential metals were associated with lower PlGF and higher sFlt-1/PlGF ratio. Detection of urinary chromium was associated with preeclampsia: HR (95% Confidence Interval [CI]) = 3.48 (1.02, 11.8) and an IQR-increase in urinary selenium was associated with reduced risk of preeclampsia (HR: 0.28, 95% CI: 0.08, 0.94). Using PCA, 3 PCs were identified, characterized by essential metals (PC1), toxic metals (PC2), and seafood-associated metals (PC3). PC1 and PC2 were associated with lower PlGF levels, but not preeclampsia risk in the overall cohort. CONCLUSIONS Trace urinary metals may be associated with adverse profiles of angiogenic biomarkers and preeclampsia.
Collapse
Affiliation(s)
- Paige A. Bommarito
- Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599 USA
| | - Stephani S. Kim
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
| | - Rebecca C. Fry
- Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599 USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, 104 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - David E. Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, 104 Mason Farm Road, Chapel Hill, NC 27599 USA
| |
Collapse
|
38
|
Zhang K, Hu M, Zhang L, Zhang Q, Huang Y. The Effect of BML-111 in Preeclampsia Rat Model Induced by the Low Dose of Cadmium Chloride. AJP Rep 2019; 9:e201-e208. [PMID: 31281736 PMCID: PMC6609334 DOI: 10.1055/s-0039-1693016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Aim This article determines the optimal time and dose of cadmium chloride (CdCl 2 ) injected to pregnant rat to establish experimental preeclampsia (PE) model. In addition, the therapeutic potential of BML-111, a lipoxin A4 analogue, in the CdCl 2 -induced PE model was also evaluated. Methods Peritoneal injection of two dose of CdCl 2 for successive 6 days was tested in the pregnant rats starting from various gestational days (GDs). During this process, the systolic blood pressure and the body weight of pregnant rats and neonatal rats were monitored. The pathological changes of the placenta and kidney were evaluated by hematoxylin and eosin staining. The phosphorylation of extracellular signal-regulated kinase 1/2 and signal transducer and activator of transcription 3 in the placentas was detected by Western blot, and the messenger ribonucleic acid expression of interleukin (IL)-6, tumor necrosis factor-α, and IL-10 in the placentas were detected by real-time polymerase chain reaction. BML-111 at the dose of 1 mg/kg/day was peritoneally injected into the rat after establishing the PE model to test its therapeutic potential. Results In the present study, we successfully established the PE model in pregnant rats by intraperitoneally injection of CdCl 2 at the dose of 0.125 mg/kg/day from GD 9 to 14. We recapitulated multiple features of clinical PE in CdCl 2 -induced rat, including high blood pressure, renal dysfunction, and inflammatory response in placenta. Furthermore, treatment with BML-111 significantly relieved multiple features in our PE rat model. Conclusions BML-111 has a potential therapeutic effect in pregnant rats with CdCl 2 -induced PE, which appears to be mediated through inhibition of inflammatory processes in the placenta.
Collapse
Affiliation(s)
- KeKe Zhang
- Department of Gynaecology and Obstetrics, JinHua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Min Hu
- Department of Gynaecology and Obstetrics, JinHua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Lin Zhang
- Department of Gynaecology and Obstetrics, JinHua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Qiong Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou University, WenZhou, Zhejiang, China
| | - Yinping Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou University, WenZhou, Zhejiang, China
| |
Collapse
|
39
|
Paniagua L, Diaz-Cueto L, Huerta-Reyes M, Arechavaleta-Velasco F. Cadmium exposure induces interleukin-6 production via ROS-dependent activation of the ERK1/2 but independent of JNK signaling pathway in human placental JEG-3 trophoblast cells. Reprod Toxicol 2019; 89:28-34. [PMID: 31252067 DOI: 10.1016/j.reprotox.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Maternal exposure to cadmium (Cd) has been associated with preeclampsia (PE), which is a multisystemic disorder characterized by endothelial dysfunction. Elevated interleukin (IL)-6 expression is linked to PE and has been suggested to contribute to maternal endothelial dysfunction. Cd induces IL-6 production in various cell types through different signaling pathways. Thus, this study was designed to investigate the effect of Cd on IL-6 production and the underlying mechanisms in a trophoblast-derived cell line. Cultured JEG-3 trophoblast cells were exposed to non-toxic concentrations of CdCl2 in the presence or absence of various MAPK inhibitors or N-Acetyl-L-cysteine (NAC). IL-6 was measured by ELISA. Phosphorylation of ERK1/2, JNK, and c-Jun was assessed by Western blotting. Cd exposure induced IL-6 production and increased ERK1/2, JNK, and c-Jun phosphorylation. NAC and the inhibition of ERK1/2 significantly reduced Cd-induced IL-6 production. These data indicate that Cd induces IL-6 production in trophoblast cells through a ROS-dependent activation of ERK1/2.
Collapse
Affiliation(s)
- Lucero Paniagua
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Dr. Luis Castelazo Ayala", IMSS, CDMX, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Laura Diaz-Cueto
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Dr. Luis Castelazo Ayala", IMSS, CDMX, Mexico
| | - Maira Huerta-Reyes
- Unidad de Investigacion Medica en Enfermedades Nefrologicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda Gutiérrez", Centro Medico Nacional Siglo XXI, IMSS, CDMX, Mexico
| | - Fabian Arechavaleta-Velasco
- Unidad de Investigacion Medica en Medicina Reproductiva, UMAE Hospital de Gineco Obstetricia No. 4 "Dr. Luis Castelazo Ayala", IMSS, CDMX, Mexico.
| |
Collapse
|
40
|
Xu P, Guo H, Wang H, Lee SC, Liu M, Pan Y, Zheng J, Zheng K, Wang H, Xie Y, Bai X, Liu Y, Zhao M, Wang L. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction. Toxicology 2019; 423:112-122. [PMID: 31152847 DOI: 10.1016/j.tox.2019.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/01/2019] [Accepted: 05/27/2019] [Indexed: 01/22/2023]
Abstract
Cadmium (Cd) is one of the environmental pollutants, which has multiple toxic effects on fetuses and placentas. Placental fatty acid (FA) uptake and transport are critical for the fetal and placental development. We aimed to analyze the triglyceride (TG) level, the expression patterns of several key genes involved in FA uptake and transport, and the molecular mechanisms for the altered gene expressions in placentas in response to Cd treatment. Our results showed that the placental TG level was significantly decreased in the Cd-exposed placentas. Fatty acid transporting protein 1 (FATP1), FATP6 and fatty acid binding protein 3 (FABP3) were significantly down-regulated in the placentas from Cd-exposed mice. The expression level of phospho-p38 MAPK was increased by Cd treatment, while the protein level of total p38 MAPK remained unchanged. The expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) and the hypoxia-inducible factor-1α (HIF-1α) were significantly decreased in the Cd-exposed placentas. The methylation levels of the promoter regions of FATP1, FATP6 and FABP3 showed no significant differences between the treatment and control groups. In addition, the circulating non-esterified fatty acid (NEFA), total cholesterol (TC), and TG levels were not decreased in the maternal serum from the Cd-exposed mice. Therefore, our results suggest Cd exposure dose not reduce the maternal FA supply, but reduces the placental TG level. Cd treatment also downregulates the placental expressions of FATP1, FATP6 and FABP3, respectively associated with p38-MAPK, p38 MAPK/PPAR-γ and HIF-1α pathways.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Huiqin Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Huan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Shao Chin Lee
- School of Life Science, Shanxi University, Taiyuan 030006, China; School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongliang Pan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou 313000, China.
| | - Jian Zheng
- Department of Cardiopulmonary Function Examination, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China.
| | - Kang Zheng
- Special Ward, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China.
| | - Huihui Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Yuxin Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai 201300, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
41
|
Everson TM, Marable C, Deyssenroth MA, Punshon T, Jackson BP, Lambertini L, Karagas MR, Chen J, Marsit CJ. Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57005. [PMID: 31082282 PMCID: PMC6791491 DOI: 10.1289/ehp4264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns. OBJECTIVES We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific patterns, across two independent epidemiologic studies. METHODS We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; [Formula: see text]) and the Rhode Island Child Health Study (RICHS; [Formula: see text]). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine heterogeneity in the associations by fetal sex. RESULTS We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) ([Formula: see text]), and lower expression of h19 imprinted maternally expressed transcript (H19) ([Formula: see text]) and necdin, MAGE family member (NDN) ([Formula: see text]) across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta ([Formula: see text]). Additionally, the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight z-scores. DISCUSSION The differential regulation of a set of imprinted genes, particularly DLX5, H19, and NDN, in association with prenatal Cd exposure may be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender. https://doi.org/10.1289/EHP4264.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Carmen Marable
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Kocylowski R, Grzesiak M, Gaj Z, Lorenc W, Bakinowska E, Barałkiewicz D, von Kaisenberg CS, Lamers Y, Suliburska J. Associations between the Level of Trace Elements and Minerals and Folate in Maternal Serum and Amniotic Fluid and Congenital Abnormalities. Nutrients 2019; 11:E328. [PMID: 30717440 PMCID: PMC6413094 DOI: 10.3390/nu11020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Congenital birth defects may result in a critical condition affecting the baby, including severe fetal/neonatal handicap and mortality. Several studies have shown that genetic, nutritional, and environmental factors may have an impact on fetal development and neonatal health. The relevance of essential and toxic elements on fetal development has not yet been fully investigated, and the results of recent research indicate that these elements may be crucial in the assessment of the risk of malformations in neonates. We determined the association between essential and toxic elements and the level of folate in maternal serum (MS) and amniotic fluid (AF), along with neonatal abnormalities. A total of 258 pregnant Polish women in the age group of 17⁻42 years participated in this study. AF and MS were collected during vaginal delivery or during cesarean section. An inductively coupled plasma mass spectrometry technique was used to determine the levels of various elements in AF and MS. The results of this exploratory study indicate that the levels of essential and toxic elements are associated with fetal and newborn anatomical abnormalities and growth disorders.
Collapse
Affiliation(s)
- Rafal Kocylowski
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska 281/289, 93-338 Lodz, Poland.
- PreMediCare New Med Medical Center, ul. Drużbickiego 13, 61-693 Poznan, Poland.
| | - Mariusz Grzesiak
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska 281/289, 93-338 Lodz, Poland.
| | - Zuzanna Gaj
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska 281/289, 93-338 Lodz, Poland.
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska 281/289, 93-338 Lodz, Poland.
| | - Wiktor Lorenc
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Umultowska 89b, 61-614 Poznan, Poland.
| | - Ewa Bakinowska
- Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Umultowska 89b, 61-614 Poznan, Poland.
| | - Constantin S von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Yvonne Lamers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Poznan, Poland, ul. Wojska Polskiego 31, 60-624 Poznan, Poland.
| |
Collapse
|
43
|
Feng J, Wang X, Li H, Wang L, Tang Z. Silencing of Annexin A1 suppressed the apoptosis and inflammatory response of preeclampsia rat trophoblasts. Int J Mol Med 2018; 42:3125-3134. [PMID: 30272262 PMCID: PMC6202081 DOI: 10.3892/ijmm.2018.3887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) is a disorder that is characterized by pregnancy-induced hypertension. It has been reported that Annexin A1 (ANXA1) is highly expressed in the plasma of women diagnosed with PE. Therefore, the present study aimed to examine the effect of ANXA1 on PE rats. The PE animal model was constructed in rats using Nω-nitro-L-arginine methyl ester (L-NAME), and the blood pressure and urine protein levels of rats were detected. The pathological features of placental tissue, and the levels of inflammatory factors and ANXA1 were respectively measured by hematoxylin-eosin staining, enzyme-linked immunosorbent assay and immunohistochemical assay. The activity of trophoblasts obtained from PE placental tissue was measured using immunofluorescence staining, while cell apoptosis was assessed using flow cytometry. The levels of associated factors were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results identified that systolic blood pressure, diastolic blood pressure, mean arterial pressure and urine protein levels were enhanced, and that the contents of ANXA1, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6 and IL-8 were increased in the L-NAME group. Transfection with small interfering RNA (siRNA)-ANXA1 markedly decreased the apoptosis and inflammatory response of trophoblasts. In addition, siRNA-ANXA1 upregulated the levels of B-cell lymphoma-2 (Bcl-2) and pro-caspase-3, and downregulated the levels of Bcl-2-associated X protein, cleaved-caspase-3, TNF-α, IL-1β, IL-6 and IL-8. Furthermore, siRNA-ANXA1 repressed the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3); however, siRNA-ANXA1 did not alter the levels of JAK2 and STAT3. Therefore, silencing of ANXA1 suppressed the apoptosis and inflammatory response of PE rat trophoblasts, and downregulated JAK2/STAK3 pathway.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinling Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongyan Li
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Li Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zengjun Tang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To assess the strength of evidence for associations between environmental toxicants and hypertensive disorders of pregnancy, suggest potential biological mechanisms based on animal and in vitro studies, and highlight avenues for future research. RECENT FINDINGS Evidence is strongest for links between persistent chemicals, including lead, cadmium, organochlorine pesticides, and polycyclic biphenyls, and preeclampsia, although associations are sometimes not detectable at low-exposure levels. Results have been inconclusive for bisphenols, phthalates, and organophosphates. Biological pathways may include oxidative stress, epigenetic changes, endocrine disruption, and abnormal placental vascularization. Additional prospective epidemiologic studies beginning in the preconception period and extending postpartum are needed to assess the life course trajectory of environmental exposures and women's reproductive and cardiovascular health. Future studies should also consider interactions between chemicals and consider nonlinear associations. These results confirm recommendations by the International Federation of Gynecology and Obstetrics, the American Society for Reproductive Medicine, the American Academy of Pediatrics, and the Endocrine Society that providers counsel their pregnant patients to limit exposure to environmental toxicants.
Collapse
|
45
|
Rosen EM, Muñoz MI, McElrath T, Cantonwine DE, Ferguson KK. Environmental contaminants and preeclampsia: a systematic literature review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:291-319. [PMID: 30582407 PMCID: PMC6374047 DOI: 10.1080/10937404.2018.1554515] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Preeclampsia is a medical condition specific to pregnancy characterized by high blood pressure and protein in the woman's urine, indicating kidney damage. It is one of the most serious reproductive conditions, posing substantial risks to the baby and potentially fatal for the mother. The causes of preeclampsia are largely unknown and environmental contaminants merit further investigation. The aim of this review was to determine the association between environmental chemical exposures and preeclampsia. PubMed was searched for articles examining a priori chemical exposures and preeclampsia through April 2018. Studies were included in our review if they included at least 10 cases, evaluated preeclampsia independent of gestational hypertension, and used either measured or modeled exposure assessments. Our review contained 28 investigations examining persistent organic pollutants (POP) (6 studies), drinking water contaminants (1 study), atmospheric pollutants (11 studies), metals and metalloids (6 studies), and other environmental contaminants (4 studies). There were an insufficient number of investigations on most chemicals to draw definitive conclusions, but strong evidence existed for an association between preeclampsia and cadmium (Cd). There is suggestive evidence for associations between nitrogen dioxide (NO2), particulate matter (PM)2.5, and traffic exposure with preeclampsia. There is evidence for an association between preeclampsia and Cd but insufficient literature to evaluate many other environmental chemicals. Additional studies using repeated measures, appropriate biological matrices, and mixtures methods are needed to expand this area of research and address the limitations of previous studies.
Collapse
Affiliation(s)
- Emma M Rosen
- a Epidemiology Branch , National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA
| | - Mg Isabel Muñoz
- a Epidemiology Branch , National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA
| | - Thomas McElrath
- b Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology , Brigham and Women's Hospital , Boston , MA , USA
| | - David E Cantonwine
- b Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology , Brigham and Women's Hospital , Boston , MA , USA
| | - Kelly K Ferguson
- a Epidemiology Branch , National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA
| |
Collapse
|