1
|
Quasmi MN, Kumar D, Jangra A. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Toxicol Rep 2025; 14:101859. [PMID: 39758802 PMCID: PMC11699442 DOI: 10.1016/j.toxrep.2024.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Acrylamide (AA) has raised concerns throughout the world in recent years because of its potential negative effects on human health. Numerous researches on humans and animals have connected a high dietary exposure to AA to a possible risk of cancer. Additionally, higher consumption of acrylamide has also been associated with dysfunctioning of various organ systems from nervous system to the reproductive system. Acrylamide is primarily metabolised into the glycidamide inside the body which gets accumulated in different tissues including kidney and liver, and chronic exposure to this can lead to the nephrotoxicity and hepatotoxicity through different molecular mechanisms. This review summarizes the various sources, formation and metabolism of the dietary acrylamide along with the different molecular mechanisms such as oxidative stress, inflammation, DNA damage, autophagy, mitochondrial dysfunction and morphological changes in nephron and hepatocytes through which acrylamide exerts its deleterious effect on kidney and liver causing nephrotoxicity and hepatotoxicity. This review summarizes various animal and cellular studies that demonstrate AA-induced nephrotoxicity and hepatotoxicity. Lastly, the article emphasizes on underlying protective molecular mechanisms of various pharmacological interventions against acrylamide induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mohammed Nazish Quasmi
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
2
|
Aydemir D, Karabulut G, Barlas N, Ulusu NN. DEHP impairs the oxidative stress response and disrupts trace element and mineral metabolism within the mitochondria of detoxification organs. Toxicol Ind Health 2025; 41:108-121. [PMID: 39652877 DOI: 10.1177/07482337241306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely utilized plasticizer in various consumer products, is classified as an endocrine disruptor and has been implicated in numerous adverse health effects, including oxidative stress, inflammation, and metabolic disturbances. Despite the growing body of literature addressing the systemic effects of DEHP, the specific influence of DEHP-induced oxidative stress on mitochondrial function within detoxification organs, particularly the liver and kidneys, remains largely unexplored. This study evaluated the effects of DEHP exposure (0, 100, 200, and 400 mg/kg/day) on mitochondrial oxidative stress, trace elements, and mineral metabolism associated with signaling pathways in the liver and kidneys of rats. Altered mitochondrial oxidative stress status was indicated by impaired glucose 6-phosphate dehydrogenase (G6PD), 6-phosphoglucerate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx) activities, along with significant disruptions in essential minerals and trace elements, including Na, Mg, Cu, Zn, and Fe. Key oxidative stress signaling pathways, such as NF-κB, Akt, STAT3, and CREB, glucose, and tissue homeostasis, displayed dose-dependent responses to DEHP, indicating complex regulatory mechanisms. This study represents the first comprehensive investigation into DEHP-induced mitochondrial dysfunction, highlighting its effects on oxidative stress metabolism, trace element homeostasis, and cellular signaling pathways in detoxification organs. These findings provide novel insights into the mitochondrial mechanisms underlying DEHP toxicity and underscores the need for further research into the implications of plasticizer exposure on human health.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, Koc University, Sariyer, Istanbul
- Research Center for Translational Medicine (KUTTAM), Koc University, Sariyer, Turkey
| | - Gozde Karabulut
- Department of Biology, Dumlupınar University, Kütahya, Turkey
| | | | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, Koc University, Sariyer, Istanbul
- Research Center for Translational Medicine (KUTTAM), Koc University, Sariyer, Turkey
| |
Collapse
|
3
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
4
|
Aydemir D, Salman N, Kerimzade U, Anapali-Aykac M, Ulutin T, Komurcu-Bayrak E, Kaya-Dagistanli F, Alaca BE, Ulusu NN. The impact of the vitamin D and resveratrol administration on the stiffness and elasticity of T2DM rat aorta associated with the trace element and mineral levels. J Trace Elem Med Biol 2024; 86:127497. [PMID: 39033582 DOI: 10.1016/j.jtemb.2024.127497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is directly associated with increased aortic stiffness, reduced aortic elasticity, and aortic dissection, which are independent risk factors for cardiovascular death. Since Vit D and resveratrol have been reported due to their cardioprotective effects, in this study, we aim to evaluate the impact of Vit D and resveratrol treatment alone or in combination on the aortic health associated with trace element and mineral levels in a high-fructose diet/streptozotocin-induced T2DM model. METHODS We investigated biomechanical changes of the aorta samples via a custom-built stretcher, where trace element and mineral levels in aorta samples were determined via inductively coupled plasma mass spectrometry (ICP-MS) following acidic microwave digestion. RESULTS Vitamin D treatment ameliorated the adverse effects of T2DM on aortic stiffness, aortic elasticity, and relaxation modulus in diabetic rats. Trace element and mineral levels correlated with cardiovascular homeostasis, including Fe, Cu, Zn, Se, and Na, have been regulated upon Vit D treatment in diabetic and healthy rats. On the other hand, resveratrol treatment alone or in combination with Vit D did not show any positive effects on biomechanical properties and trace element metabolism of diabetic or healthy rats, according to our data. CONCLUSION Vit D can be used in T2DM patients to protect their cardiovascular health and should be considered a promising targeted therapy approach via nanoparticles to target cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, Koç University, School of Medicine, Sariyer, Istanbul 34450, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Naveed Salman
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Umut Kerimzade
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Merve Anapali-Aykac
- Department of Medical Biology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Evrim Komurcu-Bayrak
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Fatma Kaya-Dagistanli
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - B Erdem Alaca
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, Koç University, School of Medicine, Sariyer, Istanbul 34450, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey.
| |
Collapse
|
5
|
Aydemir D, Öztürk K, Arslan FB, Çalis S, Ulusu NN. Gemcitabine-loaded chitosan nanoparticles enhanced apoptotic and ferroptotic response of gemcitabine treatment alone in the pancreatic cancer cells in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9051-9066. [PMID: 38884675 PMCID: PMC11522156 DOI: 10.1007/s00210-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Gemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research. We synthesized GEM-loaded NPs prepared with a method that combines ultrasonication and ionotropic gelation to overcome GEM-related limitations in PDAC. CFPAC-1 cells were treated with increased concentrations of GEM, empty chitosan, and GEM-loaded NPs (0.66, 1.32, 2.64, 5.32 µg/ml) for up to 48 h. Empty chitosan NPs did not show toxicity on L929 cells. Antioxidant enzyme activities, including glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx), significantly reduced in GEM-loaded NPs compared to the GEM associated with increased oxidative stress, PPP, and glycolysis. Bcl-xL, NOXA/mcl-1, and Ca2+ levels significantly increased in GEM-loaded NP-administered cells compared to the GEM and control groups. In contrast, JNK, p38, STAT3, Akt, and CREB levels significantly decreased in the GEM-loaded NP group, addressing enhanced apoptotic response compared to the GEM alone. Increased ferroptosis activity in GEM-loaded NP-administered groups has been validated via decreased antioxidant enzyme activities, increased cytosolic Fe, Zn, Mg, and Mn levels, and reduced GPx activity compared to the GEM and control groups. For the first time in the literature, we showed biocompatible GEM-loaded NPs enhanced apoptotic and ferroptotic response in CFPAC-1 cells via downregulation of antioxidant, glycolysis, and PPP metabolism compared to the GEM alone.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| |
Collapse
|
6
|
Kumar V, Kumar R, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates Di-2-ethylhexyl phthalate (DEHP) induced hepatotoxicity in a mouse model via TNF-α and NF-κβ signaling. 3 Biotech 2024; 14:181. [PMID: 38911474 PMCID: PMC11189377 DOI: 10.1007/s13205-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κβ (NF-κβ) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κβ coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κβ.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004 India
| |
Collapse
|
7
|
Guerrelli D, Desai M, Semaan Y, Essa Y, Zurakowski D, Cendali F, Reisz J, D'Alessandro A, Luban N, Posnack NG. Prevalence and clinical implications of heightened plastic chemical exposure in pediatric patients undergoing cardiopulmonary bypass. Transfusion 2024; 64:808-823. [PMID: 38590100 DOI: 10.1111/trf.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.
Collapse
Affiliation(s)
- Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, DC, USA
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - Youssef Semaan
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Department of Cardiovascular Services - Perfusion, Children's National Hospital, Washington, DC, USA
| | - Yasin Essa
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Naomi Luban
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Hematology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
8
|
Cheng Y, Zhu J, Tang Q, Wang J, Feng J, Zhou Y, Li J, Pan F, Han X, Lu C, Wang X, Langston ME, Chung BI, Wu W, Xia Y. Exposure to particulate matter may affect semen quality via trace metals: Evidence from a retrospective cohort study on fertile males. CHEMOSPHERE 2024; 346:140582. [PMID: 38303402 DOI: 10.1016/j.chemosphere.2023.140582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 02/03/2024]
Abstract
Particulate matter (PM) exposure may be associated with male semen quality. Besides, PM exposure induces up and down levels of trace metals in tissues or organs. The levels of trace metals in semen are critical for adverse male semen quality. This study aims to evaluate the concentrations of seminal-level trace metals in fertile men and assess its associations with PM exposure and to explore the mediation role of trace metals in seminal plasma plays in the relationship between PM exposure and semen quality. Total 1225 fertile men who participated in a cohort study from 2014 to 2016 were finally recruited. Multivariate linear regression was applied to explore associations between each two of PM exposure, trace metals and semen parameters. 1-year PM2.5 and PM10 exposure levels were positively associated with arsenic (As), mercury (Hg), lanthanum (La), praseodymium (Pr), neodymium (Nd) but negatively associated with vanadium (V), magnesium (Mg), strontium (Sr), barium (Ba) in semen. It was also found that most of the elements were associated with total sperm number, followed by sperm concentration. Redundancy analysis (RDA) also determined several strong positive correlations or negative correlations between 1-year PM exposure and trace metals. Mediation analysis found that trace metals had a potentially compensatory or synergetic indirect effect on the total effect of the association between 1-year PM exposure and semen quality. The retrospective cohort study provides long-term PM exposure that may cause abnormal semen quality by affecting seminal plasma element levels.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaqi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialin Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Marvin E Langston
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, United States
| | - Benjamin I Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Lu Z, Huang Q, Chen F, Li E, Lin H, Qin X. Oyster Peptide-Zinc Complex Ameliorates Di-(2-ethylhexyl) Phthalate-Induced Testis Injury in Male Mice and Improving Gut Microbiota. Foods 2023; 13:93. [PMID: 38201121 PMCID: PMC10778688 DOI: 10.3390/foods13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which can cause damage to male reproductive organs, especially the atrophy of the testis. Meanwhile, DEHP can also lead to a decrease in testicular zinc content, but the role of zinc remains unclear. This study aims to prepare oyster peptide-zinc complex (OPZC) to alleviate DEHP-induced reproductive damage in mice. OPZC was successfully obtained through electron microscopy, X-ray diffraction, and thermogravimetric analysis, with stable structure and high water-solubility. Low dose oyster peptide-zinc complex (OPZCL) significantly reduced the reproductive damage caused by DEHP in mice. Further research had shown that OPZCL restored the content of serum hormones and the activity of oxidative stress kinases to normal, while also normalizing testicular zinc and selenium levels. In addition, it also recovered the disorder of gut microbiota, reduced the proportion of Bacteroides, increased the abundance of Ligilactobacillus, and restored the proportion of Acidobacteriota, Chloroflexi, and Proteobacteria. Therefore, OPZCL can relieve the reproductive damage caused by DEHP in mice by restoring testicular zinc homeostasis and the composition of intestinal microbiota, indicating that OPZCL has a potential protective effect on male reproductive health.
Collapse
Affiliation(s)
- Zhen Lu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qianqian Huang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| |
Collapse
|
10
|
Di X, Xiang L, Jian Z, Xia Z, Luo D. Association between urinary phthalate metabolites and nephrolithiasis in adults: A cross-sectional analysis with NHANES 2007-2018. CHEMOSPHERE 2023; 337:139436. [PMID: 37422213 DOI: 10.1016/j.chemosphere.2023.139436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Nephrolithiasis is highly prevalent and brings health and economic burdens to patients. The augmentation of nephrolithiasis may be associated with exposure to phthalate metabolites. However, few studies investigated the effect of various phthalates exposure on nephrolithiasis. We analyzed data from 7139 participants aged 20 years or above from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. Serum calcium level-stratified univariate and multivariate linear regression analyses were performed to explore the relationship between urinary phthalate metabolites and nephrolithiasis. As a result, the prevalence of nephrolithiasis was approximately 9.96%. After adjusting for confounding factors, associations were found between serum calcium concentration with monoethyl phthalate (P = 0.012) and mono-isobutyl phthalate (P = 0.003) compared with tertile 1 (T1). In adjusted analysis, nephrolithiasis was positively associated with middle and high tertiles of mono benzyl phthalate (P < 0.05) compare with low tertile group. Furthermore, high-level exposure to mono-isobutyl phthalate had a similar positive association with nephrolithiasis (P = 0.028). Our findings provide evidence that exposure to certain phthalate metabolites (i.e. MiBP and MBzP) may be associated with a high risk of nephrolithiasis depending on serum calcium level.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liyuan Xiang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu, China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Shi H, Zhao X, Peng Q, Zhou X, Liu S, Sun C, Cao Q, Zhu S, Sun S. Green Tea Polyphenols Alleviate Kidney Injury Induced by Di(2-Ethylhexyl) Phthalate in Mice. Am J Nephrol 2023; 55:86-105. [PMID: 37734331 DOI: 10.1159/000534106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qin Peng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sisi Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Chuanchuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiuyu Cao
- Department of Gynecologic, Jiangmen Hospital Affiliated to Jinan University, Jiangmen, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Aydemir D, Aydogan-Ahbab M, Barlas N, Ulusu NN. Effects of the in-utero dicyclohexyl phthalate and di- n-hexyl phthalate administration on the oxidative stress-induced histopathological changes in the rat liver tissue correlated with serum biochemistry and hematological parameters. Front Endocrinol (Lausanne) 2023; 14:1128202. [PMID: 37274322 PMCID: PMC10235726 DOI: 10.3389/fendo.2023.1128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Phthalates are widely used as plasticizers in the industry and are found in cosmetics, food and drink packaging, drugs, toys, households, medical devices, pesticides, personal care products, and paints. Phthalates exert endocrine disrupting and peroxisome proliferator effects in humans and wildlife associated with the pathogenesis of various diseases, including diabetes, obesity, infertility, cardiovascular diseases, metabolic syndrome, and cancer. Since phthalates are metabolized in the liver, which regulates the body's energy metabolism, long or short-term exposure to the phthalates is associated with impaired glucose, lipid, and oxidative stress metabolisms contributing to liver toxicity. However, the impact of in-utero exposure to DHP and DCHP on liver metabolism has not been studied previously. Thus, in this study, we evaluated serum biochemistry parameters, hematological markers, histopathological changes, and oxidative and pentose phosphate pathway (PPP) metabolisms in the liver following in-utero DHP and DCHP administration, respectively, in male and female rats. We found increased relative and absolute liver weights and impaired triglyceride, alanine transaminase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels upon dicyclohexyl phthalate (DCHP) and di-n-hexyl phthalate (DHP). Histopathological changes, including congestion, sinusoidal dilatation, inflammatory cell infiltration, cells with a pyknotic nucleus, lysis of hepatocytes, and degeneration of hepatic parenchyma have been observed in the liver samples of DHP and DCHP dose groups. Moreover, increased glutathione s-transferase (GST), glucose 6-phosphate dehydrogenase (G6PD), and glutathione reductase (GR) activities have been found in the liver samples of DHP and DCHP-treated rats associated with impaired pentose phosphate pathway (PPP) and oxidative stress metabolism. First time in the literature, we showed that in-utero exposure to DHP and DCHP causes liver damage associated with impaired oxidative stress metabolism in male and female rats. Our data may guide researchers and governments to regulate and restrict phthalates in industrial products.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Mufide Aydogan-Ahbab
- University of Health Sciences Turkey, Hamidiye Vocational School of Health Services, Istanbul, Türkiye
| | - Nurhayat Barlas
- Science Faculty, Department of Biology, Hacettepe University, Ankara, Türkiye
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
13
|
Guerrelli D, Desai M, Semaan Y, Essa Y, Zurakowski D, Cendali FI, Reisz JA, D'Alessandro A, Luban NC, Posnack NG. Prevalence and Clinical Implications of Heightened Plastic Chemical Exposure in Pediatric Patients Undergoing Cardiopulmonary Bypass. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289379. [PMID: 37205364 PMCID: PMC10187441 DOI: 10.1101/2023.05.02.23289379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Importance Phthalate chemicals are used to manufacture disposable plastic medical products, including blood storage bags and components of cardiopulmonary bypass (CPB) circuits. During cardiac surgery, patients can be inadvertently exposed to phthalate chemicals that are released from these plastic products. Objective To quantify iatrogenic phthalate chemical exposure in pediatric patients undergoing cardiac surgery, and examine the link between phthalate exposure and post-operative outcomes. Design Setting and Participants The study cohort included 122 pediatric patients undergoing cardiac surgery at Children's National Hospital. For each patient, a single plasma sample was collected pre-operatively and two additional samples were collected post-operatively upon return from the operating room (post-operative day 0) and the morning after surgery (post-operative day 1). Exposures Concentrations of di(2-ethylhexyl)phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. Main Outcomes and Measures Plasma concentrations of phthalates, post-operative blood gas measurements, and post-operative complications. Results Study subjects were subdivided into three groups, according to surgical procedure: 1) cardiac surgery not requiring CPB support, 2) cardiac surgery requiring CPB with crystalloid prime, and 3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience post-operative complications, including arrhythmias, low cardiac output syndrome, and additional post-operative interventions. RBC washing was an effective strategy to reduce DEHP levels in CPB prime. Conclusions and Relevance Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure. Key Points Question: Is cardiac surgery with cardiopulmonary bypass a significant source of phthalate chemical exposure in pediatric patients?Findings: In this study of 122 pediatric cardiac surgery patients, phthalate metabolites were quantified from blood samples before and after surgery. Phthalate concentrations were highest in patients undergoing cardiopulmonary bypass with red blood cell-based prime. Heightened phthalate exposure was associated with post-operative complications.Meaning: Cardiopulmonary bypass is a significant source of phthalate chemical exposure, and patients with heightened exposure may be at greater risk for postoperative cardiovascular complications.
Collapse
|
14
|
Aydemir D, Ulusu NN. The impact of the endocrine-disrupting chemicals on the glucose-6-phosphate dehydrogenase enzyme activity. Front Pharmacol 2023; 14:1133741. [PMID: 36992836 PMCID: PMC10040789 DOI: 10.3389/fphar.2023.1133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
15
|
Baralić K, Pavić A, Javorac D, Živančević K, Božić D, Radaković N, Antonijević Miljaković E, Buha Djordjevic A, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Comprehensive investigation of hepatotoxicity of the mixture containing phthalates and bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130404. [PMID: 36455319 DOI: 10.1016/j.jhazmat.2022.130404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Connections between the mixture containing bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) and liver injury were explored through in silico investigation and 2 in vivo models. Comparative Toxicogenomics Database (CTD), ShinyGO, ToppCluster and Cytoscape were used for bioinformatic analysis. In vivo subacute study was performed on rats - five groups (n = 6): (1) Control: corn oil, (2) DEHP: 50 mg/kg b.w./day, (3) DBP: 50 mg/kg b.w./day, (4) BPA: 25 mg/kg b.w./day, (5) MIX: DEHP + DBP + BPA. Zebrafish embryos were exposed to the investigated substances in different doses, singularly and combined (binary and ternary mixtures). Liver injury was linked to 75 DEHP, DBP, and BPA genes, mostly connected to inflammation/oxidative stress. In rats, significant alterations in redox status/bioelements and pathohistology were most notable or exclusively present in MIX (probable additive effects). BPA decreased liver area (LA) index in dose-dependent manner. DEHP (< 2 µg/mL) and DBP (≤ 5 µg/mL) reduced LA values, while their higher doses increased LA index. The effect of DBP in binary mixtures led to a lethal outcome at the two highest concentrations, while the hepatotoxicity of DEHP/DBP/BPA mixture was dictated by BPA (confirmed by the benchmark dose analysis).
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Studentski trg, 3, Belgrade, Serbia
| | - Dragica Božić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nataša Radaković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
16
|
Dimethyl Fumarate Attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity Through the Nrf2/HO-1 and NF-κB Signaling Pathways. Inflammation 2023; 46:453-467. [PMID: 36195817 DOI: 10.1007/s10753-022-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to clarify the nephroprotective effect of dimethyl fumarate (DMF) against Di (2-ethylhexyl) phthalate (DEHP)-induced nephrotoxicity in both in vitro and in vivo models. The HEK-293 cells were exposed to different concentrations of DMF plus IC50 concentration of monoethylhexyl phthalate (MEHP) (the main metabolite of DEHP). Then, some of the oxidative stress parameters including ROS, MDA, and GSH, and cytotoxicity (MTT assay) were determined in treated cells. For in vivo evaluation, rats were divided into 7 groups (n = 6 per group). Corn oil group (gavage), DEHP group (200 mg/kg dissolved in corn oil, gavage), DMF (15, 30, and 60 mg/kg, gavage) plus DEHP (200 mg/kg) groups, DMF (60 mg/kg, gavage) alone, and vitamin E (20 mg/kg, intraperitoneal (IP)) plus DEHP (200 mg/kg) group. This treatment continued for 45 days. Then, BUN and creatinine were evaluated by a commercial kit based on the urease enzymatic method and the Jaffe method, respectively. Mitochondrial oxidative stress and mitochondrial dysfunction parameters were evaluated using appropriate reagents, and gene expression of the p65 nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were evaluated by real-time PCR method. High concentrations of DMF significantly increased cell viability, and GSH content and significantly decreased ROS and MDA levels compared with the MEHP group in HEK-293 cells. DMF (60 mg/kg) significantly decreased BUN and creatinine levels compared with the DEHP group. Mitochondrial function and mitochondrial swelling were significantly improved in DMF group (60 mg/kg) compared with the DEHP group. DMF (30 and 60 mg/kg) significantly improved MMP collapse compared with the DEHP group. DMF (30 and 60 mg/kg) significantly decreased ROS levels compared with the DEHP group in isolated kidney mitochondria. DMF (60 mg/kg) significantly decreased MDA levels and significantly increased GSH content compared with DEHP group in isolated kidney mitochondria. The mRNA expression levels of Nrf2 and HO-1 were significantly reduced in the DEHP group compared to the control group and were significantly increased in the DMF group compared to the DEHP group. p65NF-κB and TNFα mRNA expression levels were significantly increased in the DEHP group compared to the control group. However, DMF significantly decreased p65NF-κB and TNFα mRNA expression compared to the DEHP group. DMF can act as a nephroprotective agent against DEHP partly through modulation of oxidative stress, mitochondrial function, and inflammation.
Collapse
|
17
|
Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022; 11:cells11223569. [PMID: 36428998 PMCID: PMC9688239 DOI: 10.3390/cells11223569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. Since there are no pathognomonic tests for ALS prognoses; clinical diagnoses of the disease take time and are usually difficult. Prognostic biomarkers are urgently needed for rapid and effective ALS prognoses. Male albino rats were divided into ten groups based on age: 0 (40-45 days old), A (70-75 days old), B (90-95 days old), C (110-115 days old), and D (130-135 days old). Each group was divided into two subgroups according to its mutation status: wild type (SOD1WT) or mutated (SOD1G93A). Serum biochemistry and hematological parameters were measured in 90 rats to evaluate possible biomarkers for faster ALS diagnoses and prognoses. Weight loss, cholesterol, creatinine, glucose, total bilirubin (TBIL), blood urine nitrogen (BUN), c-peptide, glucagon, PYY, white blood cell (WBC), lymphocyte (LYM), monocyte (MID), granulocyte (GRAN), red cell distribution width with standard deviation (RDW-SD), red cell distribution width with the coefficient of variation (RDW-CV), platelet (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and procalcitonin (PCT) levels were changed in the SOD1G93A rats compared to the SOD1WT rats independently from aging. For the first time in the literature, we showed promising hematological and serum biochemistry parameters in the pre-symptomatic and symptomatic stages of ALS by eliminating the effects of aging. Our results can be used for early diagnoses and prognoses of ALS, improving the quality of life and survival time of ALS patients.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Selcuk Surucu
- Department of Anatomy, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
18
|
Vitamin C mitigates hematological and biochemical alterations caused by di(2-ethylhexyl) phthalate toxicity in female albino mice, Mus musculus. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:1005-1016. [PMID: 36247333 PMCID: PMC9540055 DOI: 10.1007/s00580-022-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is ubiquitous environmental contaminant and identified as endocrine-disrupting chemical (EDC), present in plastics as plasticizer. Due to its versatile use, human exposure level reaches to danger limit. The main focus of our study is to see the effect of vitamin C on hematological and biochemical alterations caused by Di(2-ethylhexyl) Phthalate toxicity in female albino mice, Mus musculus. It is found to cause defects of the liver, kidney, and lungs. Its anti-androgenic nature brings the main focus on its toxicity associated with reproductive and endocrine system. In this experimental study, 18 young female Swiss albino mice, Mus musculus, were used and divided into 3 groups of 6 animals each as control (corn oil vehicle), DEHP group (100 mg/kg body weight dissolved in corn oil), and DEHP + vitamin-C group (100 mg/kg body weight each, dissolved in corn oil and double distilled water, respectively) for 90 days. In this research, serum metabolites were evaluated to study the effect of DEHP on glucose, total protein, and lipid profile along with some hematological, enzymological, and oxidative stress parameters. Simultaneously, we compared the effectiveness of vitamin-C against DEHP toxicity to mitigate the serum homeostasis disturbance. In present study, we observed, in DEHP-treated animals, glucose, triglycerides, very-low-density lipoprotein (VLDL), total protein, alkaline phosphatase (ALP), acid phosphatase (ACP), and alanine aminotransferase (ALT) levels increased remarkably, whereas total cholesterol, high-density lipoproteins (HDL), aspartate aminotransferase (AST), total RBC count, total WBC count, and hemoglobin (Hb) level significantly decreased as compared to control group. In addition, we noticed there was a decrease in superoxide dismutase (SOD) and increase in levels of lipid peroxidation (MDA) and interleukin-6 (IL-6) in DEHP treatment group as compared to control group. The results indicated vitamin C had a better improving effect against DEHP toxicity on balancing metabolic abnormalities and inflammation-related comorbidities.
Collapse
|
19
|
An old mobbing story and COVID-19. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Innovative medical education greatly relies on lifelong learning with universal standards in research, for generating novel knowledge for improvement maximum patient care. The other side of innovative medical education relies on success of development of novel ideas, perspective; skill building, future career objectives. Leaders have curious roles in the research assistant education. In the current century, both technology and education raced forward in many countries. Mobbing and bullying is an important problem in all fields, every sphere of life in workplaces. Unethical behavior must not take place in universities because universities are the centers of learning, and best academic teaching in ethical standards. Bullying may damage every individual in every academic degree and effect academic performance. In this paper I will discuss a mobbing case which is done to a young academician in many years ago, which is not most frequently observed type. However, such bullying behaviors may increase due to COVID-19 pandemic. Because COVID-19 pandemic may cause various problems in social groups difficulties, anxiety, and economic challenges, problems. Nowadays everybody is experiencing worry, uncertainty, anxiety, fear of economic problems, fear of dying. COVID-19 pandemic has created some unexpected problems to everybody however, academic researchers have additional worries and fears such as; the expiration time of chemicals, problems on chemicals are not imported from abroad on time also difficulties of knockout or transgenic experimental animals cannot be imported from abroad on time, and all these problems cause fear of unsuccessful experimental results, spending extra time. All these anxieties may cause arouse increasing unstable friendships and mobbing possibilities. The COVID-19 disease takes our future and experimental plans to waste basket and change everything including friendship.
Collapse
|
20
|
Gao H, Tong J, Zhu BB, Chen Y, Ye AX, Huang K, Liang CM, Wu XY, Sheng J, Jin ZX, Zhu P, Hao JH, Tao FB. Lag associations of gestational phthalate exposure with maternal serum vitamin D levels: Repeated measure analysis. CHEMOSPHERE 2022; 299:134319. [PMID: 35301992 DOI: 10.1016/j.chemosphere.2022.134319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Few studies have investigated the relationships between gestational phthalate exposure and maternal circulating vitamin D. In the Ma'anshan birth cohort, 3265 pregnant women were included. Each woman provided up to three urine and serum samples for measurement of phthalates and 25(OH)D and calcium, respectively. Linear mixed models were performed to analyse the association between phthalate metabolites and 25(OH)D and calcium. Stratified analyses of the relationship between phthalates and 25(OH)D by urine collection season were conducted. Finally, the post hoc lag effect of phthalate exposure on 25(OH)D was determined if longitudinal associations were significant. Some phthalate metabolites were associated with increased 25(OH)D but with decreased calcium. Furthermore, the relationship of phthalate exposure with 25(OH)D varied with urine collection season. Phthalate metabolites collected in summer and autumn were associated with an increase in 25(OH)D, while monobenzyl phthalate collected in winter and spring was inversely associated with 25(OH)D. Finally, high-molecular-weight phthalates had lag associations with 25(OH)D with a 1-trimester lag period. Low-molecular-weight phthalates exhibited lag associations with 25(OH)D with a 2-trimester lag period. In conclusion, the positive cross-sectional correlation between phthalate metabolites and 25(OH)D was partly affected by urine collection season. This study suggested that gestational phthalate exposure would have a lag association with maternal 25(OH)D levels.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yao Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ao-Xing Ye
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chun-Mei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiao-Yan Wu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhong-Xiu Jin
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
21
|
EL-Desouky NA, Elyamany M, Hanon AF, Atef A, Issak M, Taha SHN, Hussein RF. Association of Phthalate Exposure with Endometriosis and Idiopathic Infertility in Egyptian Women. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Phthalates are compounds found in medical supplies, cellophane wraps, beverage containers, metal can linings, and other products. They have the potential to be significant endocrine disruptors. In experimental animals, thereby affecting their reproductive capacity. Endometriosis is a gynecological condition defined by ectopic endometrial glands and stromal development. Exposure to phthalates has been linked to the development of endometriosis in numerous studies. The dangers of phthalates to women’s reproductive health and fertility have been widely reported.
AIM: So far, the relationship between phthalates and infertility is not proven so we decided to see if there was a link between the urine phthalate metabolite levels and endometriosis or idiopathic infertility in Egyptian women.
METHODS: Our research was carried out at the infertility outpatient clinic of the Faculty of Medicine of Cairo University. It included 100 female subjects aged 18−40-years-old. Group A (idiopathic infertility; n = 40), Group B (endometriosis; n = 40), and Group C (control; n = 20) were the three age-matched groups that were studied. Using high-performance liquid chromatography (HPLC), the urine levels of mono-2-ethylhexyl phthalate (MEHP) were quantified.
RESULTS: The comparison between the study groups has revealed statistically significant differences regarding the urine MEHP levels between Groups A and B. An analysis of the urine MEHP levels in the study Groups A and B has also revealed that the significantly higher urinary MEHP levels are correlated with the use of dietary plastic containers, the use of cosmetics, and the patients’ estrogen levels. Moreover, the urinary MEHP levels of Group A were associated with a history of abortions.
CONCLUSIONS: Higher levels of urinary MEHP are positively associated with female reproductive disorders, specifically endometriosis, idiopathic infertility, and abortion.
Collapse
|
22
|
Huang YQ, Tang YX, Qiu BH, Talukder M, Li XN, Li JL. Di-2-ethylhexyl phthalate (DEHP) induced lipid metabolism disorder in liver via activating the LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathway. Food Chem Toxicol 2022; 165:113119. [PMID: 35537648 DOI: 10.1016/j.fct.2022.113119] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
23
|
Han D, Yao Y, Chen L, Miao Z, Xu S. Apigenin ameliorates di(2-ethylhexyl) phthalate-induced ferroptosis: The activation of glutathione peroxidase 4 and suppression of iron intake. Food Chem Toxicol 2022; 164:113089. [PMID: 35500696 DOI: 10.1016/j.fct.2022.113089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely artificial persistent organic pollutant, the contamination of which infiltrates daily human life from many aspects, imperceptibly causing damage to multiple organs in the body, including the liver. Apigenin (APG) is widely distributed in vegetables and fruits and can relieve or prevent the injuries caused by exogenous chemicals through various pharmacological effects, such as antioxidant effects. To investigate the mechanism of DEHP-induced liver injury and the antagonistic effects of APG, we treated AML12 cells with 1 mM DEHP and/or APG. Ultrastructural morphology analysis indicated that DEHP induced typical ferroptosis-like damage. In addition, we found that DEHP exposure induced ferroptosis by enhancing reactive oxygen species (ROS) levels, disrupting iron homeostasis and lipid peroxidation, and regulating the expression of ferroptosis-related genes. Notably, supplementation with APG significantly inhibited these abnormal changes, and molecular docking further showed evidence of the activating effects of APG ligand on glutathione peroxidase 4 (GPX4). These results demonstrated that the protective effects of APG on DEHP-induced ferroptosis were achieved by activating GPX4 and suppressing intracellular iron accumulation. This information not only adds to DEHP toxicological data but also provides a basis for the practical application of APG.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Yalçin SS, Erdal İ, Oğuz B, Duzova A. Association of urine phthalate metabolites, bisphenol A levels and serum electrolytes with 24-h blood pressure profile in adolescents. BMC Nephrol 2022; 23:141. [PMID: 35410150 PMCID: PMC9004182 DOI: 10.1186/s12882-022-02774-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among the possible causes of hypertension in adolescence, electrolyte imbalances and environmental pollutants are drawing increasing attention. We aimed to examine the relationship between bisphenol A (BPA), phthalate metabolites, and serum electrolytes and blood pressure. METHODS Eighty-six participants aged 12-15 years were included in the study. Body mass index (BMI), office blood pressure and 24-h ambulatory blood pressure measurements (ABPM), and carotid intima-media thickness were determined. Blood samples were taken for hemogram, renal function tests, and serum electrolytes. Free- and total-BPA and phthalate metabolites were analyzed from urine samples. RESULTS Of the participants, 34 were evaluated as normal blood pressure profile, 33 as white-coat hypertension (WCHT), and 19 as ABPM-hypertension. Adolescents in ABPM- hypertension groups had higher BMI-standard deviation score (SDS), leucocyte, platelet count; but lower serum chloride, compared to the normal blood pressure profile group. The percentage of adolescents with detectable urinary mono-benzyl phthalate (MBzP) was higher in ABPM-hypertension (42.1%) and WCHT groups (33.3%), compared to the normal blood pressure profile group (5.9%, p = 0.004). Associations between MBzP and ABPM- hypertension and WCHT were remained after confounding factor adjustment. Adolescents with detectable MBzP levels had also higher "albumin-corrected calcium" and lower serum phosphate and "albumin-corrected calcium x phosphate product" compared to others. Adolescents with detectable urinary MBzP levels had higher blood pressure profiles in some 24-h (mean arterial pressure-SDS, systolic blood pressure-SDS), daytime (systolic blood pressure-SDS), and night-time (mean arterial pressure-SDS, systolic blood pressure-SDS, and diastolic blood pressure-SDS) measurements, compared to others. WCHT was found to be associated negatively with monomethyl phthalate and the sum of dibutyl phthalate metabolites and ABPM-HT with MCPP. There was no significant association between blood pressure profiles and free- and total-BPA status. CONCLUSION MBzP was associated with adverse blood pressure profiles in adolescence. Additive follow-up studies are necessary for cause-effect relations.
Collapse
Affiliation(s)
- Siddika Songül Yalçin
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - İzzet Erdal
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Berna Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Duzova
- Unit of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
25
|
Fate of the face masks in the environment affect human and wildlife: tons of face masks are new source for the endocrine disrupting chemicals. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.869552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Ashari S, Karami M, Shokrzadeh M, Bagheri A, Ghandadi M, Ranaee M, Dashti A, Mohammadi H. Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway. Toxicol Res (Camb) 2022; 11:272-285. [PMID: 35510228 PMCID: PMC9052324 DOI: 10.1093/toxres/tfac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to evaluate the possible protective effects of quercetin, a natural flavonoid, against nephrotoxicity induced by Di (2-ethylhexyl) phthalate (DEHP) in kidney tissue of rats and human embryonic kidney (HEK) 293 cell line. The HEK-293 cells were treated with different concentrations of quercetin 24 h before treatment with monoethylhexyl phthalate (MEHP). Male rats were treated with 200-mg/kg DEHP, 200-mg/kg DEHP plus quercetin (50 and 100 mg/kg), and 200-mg/kg DEHP plus vitamin E (20 mg/kg) for 45 days by gavage. Quercetin treatment reduced cytotoxicity and oxidative damage inducing by MEHP in HEK-293 cells. The in vivo findings showed that 100-mg/kg quercetin significantly suppressed DEHP-induced kidney damage. For exploring the involved mechanisms, the expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) genes were determined via real-time Polymerase chain reaction (PCR) assay. High dose of quercetin significantly decreased the gene expressions of NF-κB and TNFα, whereas the alternations of Nrf2 and HO-1 gene expressions were not significant in quercetin groups in compared with DEHP group. These findings suggested that the suppression of DEHP-induced nephrotoxicity via quercetin is correlated, at least in part, with its potential to regulate NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sorour Ashari
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ranaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran,Department of Pathology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Ayat Dashti
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Corresponding author: Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sea road, Payambar Azam University Complex. PO Box- 48175/861 Sari, Iran.
| |
Collapse
|
27
|
Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022; 10:810243. [PMID: 35284425 PMCID: PMC8914018 DOI: 10.3389/fbioe.2022.810243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, and ALS incidence is increasing worldwide. Patients with ALS have respiratory failure at the disease’s end stages, leading to death; thus, the lung is one of the most affected organs during disease progression. Tissue stiffness increases in various lung diseases because of impaired extracellular matrix (ECM) homeostasis leading to tissue damage and dysfunction at the end. According to the literature, oxidative stress is the major contributor to ECM dysregulation, and mutant protein accumulation in ALS have been reported as causative to tissue damage and oxidative stress. In this study, we used SOD1G93A and SOD1WT rats and measured lung stiffness of rats by using a custom-built stretcher, where H&E staining is used to evaluate histopathological changes in the lung tissue. Oxidative stress status of lung tissues was assessed by measuring glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), catalase (CAT), and superoxide dismutase 1 (SOD1) levels. Western blot experiments were performed to evaluate the accumulation of the SOD1G93A mutated protein. As a result, increased lung stiffness, decreased antioxidant status, elevated levels of oxidative stress, impaired mineral and trace element homeostasis, and mutated SOD1G93A protein accumulation have been found in the mutated rats even at the earlier stages, which can be possible causative of increased lung stiffness and tissue damage in ALS. Since lung damage has altered at the very early stages, possible therapeutic approaches can be used to treat ALS or improve the life quality of patients with ALS.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kirac Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
28
|
Jiang FW, Yang ZY, Bian YF, Cui JG, Zhang H, Zhao Y, Li JL. The novel role of the aquaporin water channel in lycopene preventing DEHP-induced renal ionic homeostasis disturbance in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112836. [PMID: 34601266 DOI: 10.1016/j.ecoenv.2021.112836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an extensively used plasticizer, can cause environmental pollution and organ injury. Lycopene (LYC) is a natural carotene that has the potential to prevent chronic diseases. To reveal the effect of DEHP and/or LYC on the kidney, male mice were treated with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg) by gavage for 28 days. The study indicated that DEHP caused glomerular atrophy, tubular expansion, disappearance of the mitochondrial membrane, and cristae rupture. DEHP exposure can increase the expression of aquaporin (AQP) subunits and the activity of Ca2+-Mg2+-ATPase and decrease the activity of Na+-K+-ATPase, which results in ion disorder. However, LYC can relieve kidney injury by regulating the activity of ATPase, the expression of ATPase subunits, and AQP subunit expression. The results indicated that AQP was a target for LYC in antagonizing the disturbance of DEHP-induced renal damage.
Collapse
Affiliation(s)
- Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhou-Yi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Feng Bian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
29
|
Ozcan M, Aydemir D, Bacanlı M, Anlar HG, Ulusu NN, Aksoy Y. Protective Effects of Antioxidant Chlorophyllin in Chemically Induced Breast Cancer Model In vivo. Biol Trace Elem Res 2021; 199:4475-4488. [PMID: 33624221 DOI: 10.1007/s12011-021-02585-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Glutathione-related enzymes belong to the protection mechanism of the cells against harmful oxidative damage and chemicals. Glutathione S-transferase (GST) is frequently over-expressed in various cancer cells and is involved in drug resistance. Chlorophyllin is an antioxidant molecule interfering with the GST P1-1 activity. The purpose of this study is to evaluate the short- and long-term protective effects of chlorophyllin as an antioxidant molecule on DNA damage, antioxidant enzyme activities, trace elements, and minerals in chemically induced breast cancer model in vivo. In our study, N-methyl-N-nitrosourea (MNU) was used for inducing breast carcinogenesis in female Sprague-Dawley rats. A total of 36 rats were divided into groups as short term and long term. Each group was divided into four sub-groups as control group received physiological saline solution (n = 3), Chl group (n = 5) received chlorophyllin, MNU group (n = 5) was administered MNU, and Chl + MNU group (n = 5) was treated with both chlorophyllin and MNU. Results illustrated that chlorophyllin had a significant anti-genotoxic effect in the short term, and glutathione-related enzyme activities were protected by chlorophyllin treatment in MNU-induced breast cancer model. Additionally, MNU administration impaired mineral and trace element levels including Na, Mg, K, Fe, Zn, and Co in the liver, kidney, spleen, heart, and tumor tissues; however, adverse effects of MNU were recovered upon chlorophyllin treatment in the indicated tissues of the rats. In conclusion, chlorophyllin can be used as an antioxidant molecule to ameliorate adverse effects of MNU by enhancing antioxidant enzyme activities and regulating trace element and mineral balance in several organs and tumor tissue in the breast cancer model.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Sıhhiye, 06100, Ankara, Turkey
- Department of Medical Biochemistry, Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Duygu Aydemir
- Department of Medical Biochemistry, Koc University, School of Medicine, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, University of Health Sciences Gulhane Faculty of Pharmacy, Ankara, Turkey
| | - Hatice Gul Anlar
- Department of Pharmaceutical Toxicology, Bulent Ecevit University Faculty of Pharmacy, Zonguldak, Turkey
| | - N Nuray Ulusu
- Department of Medical Biochemistry, Koc University, School of Medicine, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Yasemin Aksoy
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Sıhhiye, 06100, Ankara, Turkey.
| |
Collapse
|
30
|
Baralić K, Bozic D, Živančević K, Milenković M, Javorac D, Marić Đ, Antonijević Miljaković E, Buha Djordjevic A, Vukomanović P, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Integrating in silico with in vivo approach to investigate phthalate and bisphenol A mixture-linked asthma development: Positive probiotic intervention. Food Chem Toxicol 2021; 158:112671. [PMID: 34793900 DOI: 10.1016/j.fct.2021.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to explore the mechanisms of bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) mixture-induced asthma development and test probiotic as a potential positive intervention. Comparative Toxicogenomics Database (CTD) and ToppGene Suite were used as the main tools for in silico analysis. In vivo 28-day experiment was conducted on rats - seven groups (n = 6): (1) Control: corn oil, (2) P: probiotic (8.78 * 108 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day; (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs, thymus and kidneys were extracted and prepared for redox status and essential metals analysis. By conducting additional in vitro experiment, probiotic phthalate and BPA binding ability was explored. There were 24 DEHP, DBP and BPA asthma-related genes, indicating the three most probable mechanisms - apoptosis, inflammation and oxidative stress. In vivo experiment confirmed that significant changes in redox status/essential metal parameters were either prominent, or only present in the MIX group, indicating possible additive effects. In vitro experiment confirmed the ability of the multy-strain probiotic to bind DEHP/DBP/BPA mixture, while probiotic administration ameliorated mixture-induced changes in rat tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Bozic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milan Milenković
- Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia; Institute of Public Health of Serbia Dr Milan Jovanovic Batut, dr Subotića 5, 112113, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Predrag Vukomanović
- Medical Sanitary School of Applied Sciences "Visan", 11080, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
31
|
Celebi G, Anapali M, Dagistanli FK, Akdemir AS, Aydemir D, Ulusu NN, Ulutin T, Komurcu-Bayrak E. Effect of vitamin D supplementation on OPG/RANKL signalling activities in endothelial tissue damage in diet-induced diabetic rat model. Pharmacol Rep 2021; 74:124-134. [PMID: 34657267 DOI: 10.1007/s43440-021-00332-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus is a chronic metabolic disease that causes endothelial damage and is an important risk factor for atherosclerosis. In the present study vitamin D3 supplementation in rats was used to determine the role of Osteoprotegerin (OPG)/Receptor activator kB ligand (RANKL) signalling in endothelial damage and changes in the expression levels of genes involved in this pathway. We hypothesized that vitamin D3 supplementation affects OPG and RANKL activity in the aorta. METHODS Diabetes was induced in rats via injections of 40 mg/kg of streptozotocin followed by a high fructose (10%) diet. Group 2 (healthy) and 4 (diabetic) received 170 IU/kg of vitamin D3 weekly for 5 weeks, while Group 1 (healthy) and 2 (diabetic) received sterile saline. The aortas of each group were collected to analyse mRNA expression using the real-time PCR method and also to evaluate magnesium and calcium levels using inductively coupled plasma mass spectrometry. RESULTS Opg and Il-1b expression levels were significantly associated with both diabetes and vitamin D3 supplementation in the aortas of the study groups (p ≤ 0.05). Opg mRNA expression was also found to correlate with both Icam-1 and Nos3 mRNA expression levels (r = 0.699, p = 0.001 and r = 0.622, p = 0.003, respectively). In addition, when mineral levels in the aortic tissues were compared among all groups, it was found that the interaction of diabetes and vitamin D3 supplementation significantly affected Mg levels and Mg/Ca ratios. CONCLUSIONS It is concluded that vitamin D3 supplementation has a modulatory effect on OPG/RANKL activity in the vessel wall by ameliorating endothelial damage in diabetes. This effect may contribute to the regulation of cytokine-mediated vascular homeostasis and mineral deposition in the aorta; therefore, further comprehensive studies are proposed to demonstrate this relationship.
Collapse
Affiliation(s)
- Gizem Celebi
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey. .,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey. .,Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| | - Merve Anapali
- Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Medical Biology Department, Ataturk University Medical Faculty, Erzurum, Turkey
| | - Fatma Kaya Dagistanli
- Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayse Seda Akdemir
- Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koç University, 34450, Sariyer, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koç University, 34450, Sariyer, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey
| | - Turgut Ulutin
- Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Evrim Komurcu-Bayrak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Zhao Y, Bao RK, Zhu SY, Talukder M, Cui JG, Zhang H, Li XN, Li JL. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117080. [PMID: 33965855 DOI: 10.1016/j.envpol.2021.117080] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/20/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR-Nrf2 pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
33
|
Tanoren B, Parlatan U, Parlak M, Selcuk B, Ates Alkan F, Pastaci Ozsobaci N, Albeniz G, Turker Sener L, Albeniz I, Unlu MB. Determination of modifications in rat liver due to phthalate uptake by SAM, RS, and ICP-OES. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2926-2935. [PMID: 34109334 DOI: 10.1039/d1ay00650a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of phthalates as plasticizers has been omnipresent, especially in cosmetics and food packaging, despite the proven effects on some organs of humans and animals. Therefore, alterations in living organisms due to phthalate exposure attract the attention of many scientists. Here, we demonstrate a mechanical and chemical investigation of the mentioned effects of di(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) on rat liver by utilizing scanning acoustic microscopy (SAM), Raman spectroscopy (RS) and inductively coupled plasma optical emission spectrometry (ICP-OES) for the first time in the literature, as far as we know. The combined analysis gives insights into the degree of modification in the tissue components and which chemicals lead to these modifications. Our study shows that the acoustic impedance values of tissues of DEHP and DBP delivered mother rats are higher than those of tissues of the control mother rat, while the acoustic impedance values of tissues of offspring rats of DEHP and DBP delivered mother rats do not differ significantly from those of tissues of the control offspring rats of the control mother rat. Besides, RS analysis shows how the incorporation of DEHP into liver tissues changes the configuration and conformation of lipids and fatty acids. ICP-OES results show increased element levels within the tissues of DEHP and DBP delivered rats. Therefore, we can say that phthalates cause modifications within the liver. This study is a preliminary effort to investigate tissues with a mechano-chemical probe.
Collapse
Affiliation(s)
| | - Ugur Parlatan
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | - Melita Parlak
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | - Berzem Selcuk
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | | | | | | | | | | | | |
Collapse
|
34
|
Aydemir D, Salman N, Karimzadehkhouei M, Alaca BE, Turan B, Ulusu NN. Evaluation of the Effects of Aging on the Aorta Stiffness in Relation with Mineral and Trace Element Levels: an Optimized Method via Custom-Built Stretcher Device. Biol Trace Elem Res 2021; 199:2644-2652. [PMID: 32918713 DOI: 10.1007/s12011-020-02380-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
Aortic stiffness represents the major cause of aging and tightly associated with hypertension, atherosclerosis, cardiovascular diseases, and increased mortality. Mechanical characteristics of the aorta play a vital role in the blood flow, circulation, systolic pressure, and aortic stiffness; however, the correlation of trace element and mineral levels with aortic stiffness has not been studied before. Balance in the trace elements and minerals is vital for the biological functions; however, natural aging may alter this balance. Thus, after measuring aortic stiffness of aged and young rat aortas by a custom-built stretcher device, trace element and mineral levels were evaluated via ICP-MS. Also, biomarkers of aging including blood pressure, arterial pressure glucose, insulin levels, and histochemical parameters were investigated as well. Aortic stiffness, blood glucose, plasma insulin, systolic, diastolic, and mean arterial pressure significantly increased by aging in the aorta of aged rats compared with the young ones. Also, Fe, Al, Co, Ni, Zn, Sr, Na, Mg, and K levels increased in the aged aorta samples compared with the young aorta samples of rats. Increased levels of the indicated elements may be correlated with the development and progression of aortic stiffness and vascular complications. Thus, possible mechanisms correlating aortic stiffness with the imbalance in the trace element and mineral levels should be further investigated.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koç University, Sariyer, 34450, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Naveed Salman
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Mehrdad Karimzadehkhouei
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - B Erdem Alaca
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
- Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, 06100, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koç University, Sariyer, 34450, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
35
|
Aydemir D, Ulusu NN. People with blood disorders can be more vulnerable during COVID-19 pandemic: A hypothesis paper. Transfus Apher Sci 2021; 60:103080. [PMID: 33608217 PMCID: PMC7874911 DOI: 10.1016/j.transci.2021.103080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
The world has been encountered with COVID-19 pandemic since at the beginning of 2020 and the number of infected people by COVID-19 is increasing every day. Despite various studies conducted by researchers and doctors, no treatment has been developed until now, therefore self-protection and isolation are strongly recommended to stop the spread of the virus. The elderly population and people with chronic diseases such as hypertension, cardiovascular diseases, diabetes, and cancer are categorized as risk groups, however, we suggest that people with hemoglobinopathies or porphyria can be described as risk groups as well. Current in silico studies have revealed that the COVID-19 virus can attack heme and hemoglobin metabolisms which are responsible for the oxygen transport to the tissues, iron metabolism, elevated levels of oxidative stress, and tissue damage. Data of the in silico study have been supported with the biochemistry and hemogram results of the COVID-19 patients, for instance hemoglobin levels decreased and serum ferritin and C-reactive protein levels increased. Indicated biochemistry biomarkers are tightly associated with inflammation, iron overload, and oxidative stress. In conclusion, since people with hemoglobinopathies or porphyria have already impaired heme and hemoglobin metabolism, COVID-19 infection can enhance the adverse effects of impaired hemoglobin metabolism and accelerate the progression of severe symptoms in patients with hemoglobinopathies or porphyria compared to the normal individuals. Thus those people can be considered as a risk group and extra precautions should be applied for them to protect them.
Collapse
Affiliation(s)
- Duygu Aydemir
- Koc University, School of Medicine, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Koc University, School of Medicine, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
36
|
Portable X-ray Fluorescence (p-XRF) Uncertainty Estimation for Glazed Ceramic Analysis: Case of Iznik Tiles. HERITAGE 2020. [DOI: 10.3390/heritage3040072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study is to estimate the uncertainty of a portable X-ray fluorescence (p-XRF) instrument for the (semi-quantitative) analyses of tiles with underglaze decoration. Before starting the campaign of on-site measurements, the optimum acquisition time and the most accurate calibration mode were selected. For this purpose, the elemental composition of two glass standards of NIST (SRM610 and SRM612) and a Corning A standard were measured with varied times (5–360 s) and in different calibration modes (Mining, Mining Light Elements, Soil, and Rare Earth Elements). Afterwards, a set of blue-and-white tiles that was unearthed at Iznik Tile Kilns Excavation between the dig seasons of 2015 and 2019 was examined with p-XRF by selecting ten points of measure from each layer (body, transparent glaze, and blue coloured areas). The elemental composition of different layers was evaluated by means of the intragroup and intergroup data. They were also compared to the previous studies and found that the corrosion-free, homogeneous, and non-porous surfaces decrease the relative standard deviation (RSD) by increasing the consistency of the compositional data. The major elements found in the matrix of each layer (Al and Si for the body, Pb and Sn for the glaze) have the lowest value of RSD, as expected. However, the comparison of the data with the analysis of the reference materials showed that the content of Mg and also Si, which belong to the low-Z elements group, is shifted relatively towards the higher compositional values. The impossibility of measuring the elemental composition of sodium does not hinder the classification of the samples. Although the transition metals have very low concentrations, p-XRF measurements appear rather consistent and the intrinsic scattering of the data observed for a single artefact is largely smaller than those observed for the tiles of different historical buildings. Thus, it allows the classification to be made related to the different techniques used.
Collapse
|
37
|
Jayaweera M, Perera H, Bandara N, Danushika G, Gunawardana B, Somaratne C, Manatunge J, Zoysa K, Thathsara T. Migration of phthalates from PET water bottle in events of repeated uses and associated risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39149-39163. [PMID: 32642892 DOI: 10.1007/s11356-020-09925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are widely used as a plasticizer in manufacturing polyethylene terephthalate (PET) bottles to improve softness, flexibility, durability, longevity, and workability. Phthalates are known in instigating profound human health hazards. In many developing countries, lack of proper disposal facilities established for empty PET bottles and the absence of legislation on reuse invariably persuade people to reuse them for storing potable water. An experiment was conducted with two commercial brands of PET bottles to explore the potential of phthalate migration when domestically refilled and reused in multiple times at two temperature conditions. Temperatures of ambient (27 ± 2 °C) and warm (60 ± 2 °C) were selected as the refilling temperatures because of the common practice by people. For both brands, only bis(2-ethylhexyl) phthalate (DEHP) levels were detected in refilled water in every event of reuse. For both brands, mean DEHP levels migrated to water at 60 ± 2 °C were significantly higher (p < 0.05) compared to those at 27 ± 2 °C. Risk analyses carried out on human health suggested that there exist no definite acute or chronic health risks when the refilled water is consumed continuously for 30 years for both temperatures. Still, such risks were higher for the consumption of refilled water of warm temperatures than those of ambient temperature. However, this study elucidates that DEHP migration would be at an alarming rate when the events of reuse of a single bottle increase so that regulations banning the reuse of empty PET bottles are paramount, especially for developing countries.
Collapse
Affiliation(s)
- Mahesh Jayaweera
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka.
| | - Hasini Perera
- Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Nilanthi Bandara
- Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gimhani Danushika
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | | | - Chandani Somaratne
- Division of Polymer and Chemical Engineering Technology, Institute of Technology, University of Moratuwa, Moratuwa, Sri Lanka
| | - Jagath Manatunge
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Kasun Zoysa
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Thilini Thathsara
- Division of Polymer and Chemical Engineering Technology, Institute of Technology, University of Moratuwa, Moratuwa, Sri Lanka
| |
Collapse
|
38
|
Effects of butylparaben on antioxidant enzyme activities and histopathological changes in rat tissues. Arh Hig Rada Toksikol 2020; 70:315-324. [PMID: 32623865 DOI: 10.2478/aiht-2019-70-3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Butyl p-hydroxybenzoic acid, also known as butylparaben (BP), is one of the most common parabens absorbed by the skin and gastrointestinal tract and metabolised in the liver and kidney. Recent in vivo and in vitro studies have raised concern that BP causes reproductive, development, and teratogenic toxicity. However, BP-induced oxidative stress and its relation to tissue damage has not been widely investigated before. Therefore, we aimed to investigate the effects of butyl 4-hydroxybenzoate on enzyme activities related to the pentose phosphate pathway and on glutathione-dependent enzymes such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in kidney, liver, brain, and testis tissues. Male rats were randomly divided into four groups to orally receive corn oil (control) or 200, 400, or 800 mg/kg/day of BP for 14 days. Then we measured G6PD, GR, GST, 6-PGD, and GPx enzyme activities in these tissues and studied histopathological changes. BP treatment caused imbalance in antioxidant enzyme activities and tissue damage in the liver, kidney, brain, and testis. These findings are the first to show the degenerative role of BP on the cellular level. The observed impairment of equivalent homeostasis and antioxidant defence points to oxidative stress as a mechanism behind tissue damage caused by BP.
Collapse
|
39
|
Liu X, Wang J, Zhou M, Dai Q, Wang Q, Li H, Qian X. Particulate matter exposure disturbs inflammatory cytokine homeostasis associated with changes in trace metal levels in mouse organs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138377. [PMID: 32330707 DOI: 10.1016/j.scitotenv.2020.138377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Few studies have focused on the impact of particulate matter (PM) exposure with respect to the relationship between PM-induced inflammation and the levels of trace metals in tissues and organs. In this study, C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency particulate air (HEPA) filter. In both groups, mRNA levels of pro- and anti-inflammatory cytokines were measured after 4, 8 and 12 weeks together with the trace metal contents of the lungs, heart, liver, hippocampus and blood. PM exposure resulted in a general upward trend in the levels of pro-inflammatory cytokines in lung, heart, liver and hippocampus. By contrast, IL-10 mRNA expression varied depending on the organ, with a continuous upward trend in heart and liver and an up-regulation at 8 weeks followed by a down-regulation at 12 weeks in lung and hippocampus. The disturbed homeostasis of inflammatory cytokines was accompanied by changes in trace metal levels in the mice. These alterations may have constituted a compensatory effect conferring protection from inflammatory damage. However, prolonged PM exposure finally resulted in the deficiency of several essential trace metals in the lungs and hippocampus, which may have contributed to the observed histological changes typical of an inflammatory response.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China; Huaiyin Institute of Technology, School of the Chemical Engineering, Huaian, China
| | - Jinhua Wang
- School of Environmental and Energy Engineering, Key Laboratory of Anhui Province of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, HeFei, China
| | - Mengfan Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Qian'ying Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
40
|
Baralić K, Živančević K, Javorac D, Buha Djordjevic A, Anđelković M, Jorgovanović D, Antonijević Miljaković E, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats. Food Chem Toxicol 2020; 143:111540. [PMID: 32645469 DOI: 10.1016/j.fct.2020.111540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Phthalates and bisphenol A, to which people are mainly exposed through food, interfere with the body's endocrine system, along with various other toxic effects. Literature data suggest that probiotic cultures might be able to decrease the adverse effects of toxic substances by various mechanisms. The aim of this study was to investigate if treatment with multi-strained probiotic could reduce the toxicity of phthalates and bisphenol A mixture in Wistar rats. Animals were divided into four experimental groups (n = 6): (1) Control (corn oil); (2) P (probiotic (8.78 * 108 CFU/kg/day): Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus planarum LP 6595+ Lactobacillus planarum HEAL9); (3) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA); (4) MIX + P. Animals were euthanized after 28 days of daily oral gavage treatment; blood and organs were collected for further analysis. Probiotic reduced systemic inflammation and had protective effects on liver, kidneys, spleen, lipid status and serum glucose level. It almost completely annulled the changes in biochemical, hematological and hormonal parameters and mitigated changes in relative liver size, food consumption and organ histology. These results suggest considering multi-strained probiotics as a dietary therapeutic strategy against toxicity of the investigated mixture.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
41
|
Evaluation of the biocompatibility of the GSH-coated Ag 2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep 2020; 47:4117-4129. [PMID: 32436042 DOI: 10.1007/s11033-020-05522-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared quantum dots (NIR QDs) are promising candidate for the fluorescent probes due to their better penetration depth, long-lived luminescence with size-tunable photoluminescence wavelengths. Glutathione-coated silver sulfide quantum dots (GSH-Ag2S QDs) were synthesized using AgNO3 and Na2S in the aqueous media and they can give reaction with glutathione reductase (GR) and glutathione-s transferase (GST) enzymes as acting substrate analogue in vitro. Investigation of the toxicity of the nanomaterials are necessary to use them in the medical field and biomedical applications. Thus, in this study we investigated biocompatibility of the GSH-Ag2S QDs in vitro using 293 T and CFPAC-1 cell lines. Cell viability by MTT assay, light microscopy, fluorescence microscopy, oxidative stress enzyme activities and ICP-MS analysis were performed to evaluate the cytotoxicity and internalization of the GSH-Ag2S QDs. GSH-Ag2S QDs showed great biocompatibility with both cell lines and did not cause imbalance in the oxidative stress metabolism. The ultralow solubility product constant of Ag2S QDs (Ksp = 6.3 × 10-50) prevents release of Ag ions into the biological systems that is in agreement with data obtained by ICP-MS. In conclusion, this data prove potential of GSH-Ag2S QDs as a biocompatible optical probe to be used for the detection and/or targeting of GSH impaired diseases including cancer.
Collapse
|
42
|
Ashari S, Karami M, Shokrzadeh M, Ghandadi M, Ghassemi-Barghi N, Dashti A, Ranaee M, Mohammadi H. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicol Mech Methods 2020; 30:427-437. [PMID: 32312132 DOI: 10.1080/15376516.2020.1758980] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and its main metabolite, monoethylhexyl phthalic acid (MEHP), are a serious threat to human and animals' health in the current century. However, their exact mechanism to induce nephrotoxicity is not clear. In the current study, we addressed toxic effects of MEHP and DEHP on embryonic human kidney cells (HEK-293 cell line) and kidney tissue of rats, respectively. In the HEK-293, MTT assay and oxidative stress parameters were measured after treatment with different concentrations of MEHP. For in vivo study, rats were treated with different doses of DEHP (50, 100, 200, 400 mg/kg) via gavage administration for 45 days. The renal function biomarkers (BUN and creatinine) were determined in serum of rats. Mitochondrial toxic parameters including MTT, mitochondrial membrane potential (MMP), mitochondrial swelling, and also oxidative stress parameters were measured in isolated kidney mitochondria. Histopathological effects of DEHP were also evaluated in rats' kidneys. We demonstrated that MEHP induced oxidative stress and cytotoxicity in HEK-293 cells in a concentration dependent manner. The administration of DEHP led to histopathological changes in kidney tissue, which concurred with BUN and creatinine alternations in serum of rats. The results of present study showed a significant mitochondrial dysfunction and oxidative stress confirmed by enhancement of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) and malondialdehyde (MDA), and reduction of MMP and mitochondrial glutathione (GSH). Taken together, this study showed that DEHP/MEHP resulted in mitochondrial dysfunction and oxidative damage, which suggest a vital role of mitochondria in DEHP/MEHP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sorour Ashari
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi-Barghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ranaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.,Department of Pathology, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
43
|
Aydemir D, Simsek G, Ulusu NN. Dataset of the analyzing trace elements and minerals via ICP-MS: Method validation for the mammalian tissue and serum samples. Data Brief 2020; 29:105218. [PMID: 32071990 PMCID: PMC7016227 DOI: 10.1016/j.dib.2020.105218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/30/2022] Open
Abstract
Minerals and trace elements play vital role in the biological functions for all organisms including human and other mammals. Therefore, imbalance in the mineral and/or trace element levels may cause formation of several diseases including cancer, diabetes, cardiovascular diseases, and neurological disorders. ICP-MS (inductively coupled plasma - mass spectrometry) is described as the most sensitive and accurate method. Here we reported an effective and fast protocol as method validation to evaluate trace element and minerals via ICP-MS in the mammalian tissue and serum samples. Our data showed that minimum relative standard deviation (RSD) values with the ICP-MS were observed when we used microwave digestion with the SUPRAPUR® grade nitric acid at the lower dilution rates. Our protocol validation may help researchers to measure trace elements and minerals in the mammalian samples fast, easily and accurately. EMSURE® grade HNO3 caused cross contamination in the serum and tissue samples. Our protocol validation may help researchers to measure trace elements and minerals in the mammalian samples fast, easily and accurately.
Collapse
Affiliation(s)
- Duygu Aydemir
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Gulsu Simsek
- Koç University Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| |
Collapse
|
44
|
Aydemir D, Ulusu NN. Comment on the: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes (Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5; 220:117104). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117792. [PMID: 31865110 DOI: 10.1016/j.saa.2019.117792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The paper by the authors Hau and Liu (Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5;220:117104) showed the effects of mercaptopropionic acid- CdTe quantum dots to the antioxidant enzymes catalase and superoxide dismutase molecules and then demonstrates the subsequent quantum dots toxic effects at a cellular level, and they proposed a mechanism of QD induced apoptosis and cell death involving oxidative stress, revealing their potential risk in the biomedical applications. QD concentrations were not determined according to the Cd concentrations in the QD that could be measured via ICP-MS. In conclusion, since cell viability above 80% as non-toxic based on ISO 10993-5, CdTe QDs cannot be considered as toxic. Also, according to the literature only CAT and SOD enzyme activities are not enough to claim oxidative stress formation.
Collapse
Affiliation(s)
- Duygu Aydemir
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
45
|
Amara I, Timoumi R, Annabi E, Di Rosa G, Scuto M, Najjar MF, Calabrese V, Abid-Essefi S. Di (2-ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:78-86. [PMID: 31486570 DOI: 10.1002/tox.22844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that gives flexibility to various polyvinyl chloride products. It is a pollutant easily released into the environment and can cause many adverse effects to living organisms including hepatotoxicity. The thioredoxin system is a determining factor in the redox balance maintaining in the liver, which is a vulnerable tissue of reactive oxygen species overproduction because of its high energy needs. In order to determine if the thioredoxin system is a target in the development of DEHP hepatotoxicity, Balb/c mice were administered with DEHP intraperitoneally daily for 30 days. Results demonstrated that after DEHP exposure, biochemical profile changes were observed. This phthalate causes oxidative damage through the induction of lipid peroxydation as well as the increase of superoxide dismutase and catalase activities. As new evidence provided in this study, we demonstrated that the DEHP affected the thioredoxin system by altering the expression and the activity of thioredoxin (Trx) and thioredoxin Reductase (TrxR1). The two enzyme activities of the oxidative phase of the pentose phosphate pathway: Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase were also affected by this phthalate. This leads to a decrease in the level of nicotinamide adenine dinucleotide phosphate used by the TrxR1 to maintain the regeneration of the reduced Trx. We also demonstrated that such effects can be responsible of DEHP-induced DNA damage.
Collapse
Affiliation(s)
- Ines Amara
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rim Timoumi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Emna Annabi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Mohamed F Najjar
- Laboratory of Biochemistry-Toxicology, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salwa Abid-Essefi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| |
Collapse
|
46
|
Darvishmotevalli M, Bina B, Feizi A, Ebrahimpour K, Pourzamani H, Kelishadi R. Monitoring of urinary phthalate metabolites among pregnant women in Isfahan, Iran: the PERSIAN birth cohort. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:969-978. [PMID: 32030167 PMCID: PMC6985356 DOI: 10.1007/s40201-019-00412-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
Recently, increasing evidences have shown that the exposure to phthalates can adversely affect health status of pregnant women and their newborns. However, only a limited number of studies have investigated the concentrations of these compounds in the body fluids of pregnant women. In the present study, we aimed to evaluate the concentrations of phthalate metabolites in urinary samples of pregnant women in correlation with the population characteristics and different lifestyle factors. The study was conducted in 2018-2019 and urinary samples were taken from 121 pregnant women during their first pregnancy trimester who lived in Isfahan, Iran. The concentrations of monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites in urinary samples were determined by gas chromatography mass spectrometry (GC/MS). The socio-demographic profile of the participants (maternal education, age, family income, pre-pregnancy BMI), their lifestyle information (smoking habit, food pattern, and physical activity), cleaning products use data (cosmetic and household cleaning products) were collected by the use of PERSIAN birth cohort questionnaire. MBzP, MBP, MEHP, and MEHHP were detected in 100% of participated pregnant women with the mean concentration of 342.5 ± 193.8, 308.5 ± 229.4, 126.5 ± 118.3, and 866.5 ± 307.6 μg/g creatinine, respectively. Significant correlations were observed between the mean concentration of urinary phthalate metabolites with the following variables: using plastic packaging (for bread, lemon juice, pickle, leftover, and water), lower physical activity, passive smoking exposure during pregnancy (p value<0.05). Furthermore, the pre-pregnancy BMI (r = 0.27, r = 0.3, r = 0.26, and r = 0.26), use of the household cleaning products (r = 0.2, r = 0.22, r = 0.3, and r = 0.26), utilize of the cosmetic products (r = 0.46, r = 0.48, r = 0.49, and r = 0.54), and passive smoking status (r = 0.5, r = 0.44, r = 0.44, and r = 0.26) directly correlated with the urinary concentrations of MBP, MBzP, MEHP, and MEHHP, respectively. No significant association was seen between the concentration of urinary phthalate metabolites with the maternal education level and family income. According to our findings, higher amounts of phthalate metabolites were detected in urinary samples of pregnant women who were passive smokers, or had higher pre-pregnancy BMI and lower physical activity, as well as those women who used higher amounts of cosmetic and household cleaning products, or used plastic packaging for food and non-food products.
Collapse
Affiliation(s)
- Mohammad Darvishmotevalli
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J Med Biochem 2019; 39:267-275. [PMID: 33746608 PMCID: PMC7955996 DOI: 10.2478/jomb-2019-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic syndrome, obesity and type 2 diabetes are metabolic disorders characterized by the insulin resistance and the impairment in the insulin secretion. Since impairment in the oxidative stress and adipocyte metabolism contribute to the formation of obesity and diabetes, targeting adipose tissue can be considered as an effective approach to fight against them. Rosiglitazone is used for treatment for patients with type 2 diabetes via inducing lipogenesis and transdifferentiation of white adipose tissue into brown adipose tissue. Since the development of such therapeutics is required to control the formation and function of brown fat cells, we aimed to reveal possible molecular mechanisms behind rosiglitazone induced biochemical changes in the adipose tissue. Methods Cells were expanded in the adipocyte culture medium supplemented with 5 µg/mL insulin following 2 days' induction. After those cells were treated with rosiglitazone 0, 0.13 mol/L and 10 µmol/L rosiglitazone for 48 hours and at 8th day, cells were collected and stored at -80 °C. Then the cells were used to evaluate antioxidant enzyme activities, mineral and trace element levels and fatty acid composition. Results Glucose-6-phosphate dehydrogenase and glutathione reductase significantly reduced in rosiglitazone-treated groups compared to the control. Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Cs, Ba and Pb were determined in the cell lysates via ICP-MS. Also, relative FAME content decreased in the rosiglitazone-treated groups compared to the control. Conclusions Rosiglitazone treatment at low doses showed promising results which may promote brown adipose tissue formation.
Collapse
|
48
|
Aydemir D, Karabulut G, Gok M, Barlas N, Ulusu NN. Data the DEHP induced changes on the trace element and mineral levels in the brain and testis tissues of rats. Data Brief 2019; 26:104526. [PMID: 31667289 PMCID: PMC6811911 DOI: 10.1016/j.dib.2019.104526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is used as plasticizer in the industry and belongs to the phthalate family which can induce tissue damage including kidney, liver, and testis as a result of elevated oxidative stress levels. Glutathione reductase (GR), Glucose-6-phosphate dehydrogenase (G6PD), glutathione S-transferase (GST), 6-phosphogluconate dehydrogenase (6PGD), enzyme activities, trace element and mineral levels were evaluated in the brain and testis tissue samples. Our data revealed that, antioxidant enzyme activities in the brain and testis samples were statistically insignificant in the DEHP administered groups compared to the control group except 400 mg/kg/day DEHP dose group in the testis samples. DEHP can disrupt trace element and mineral levels unlike antioxidant enzyme levels that may due to blood-brain and testis-blood barrier and/or short-term exposure to the DEHP. For more detailed information than the data presented in this article, please see the research article "Impact of the Di (2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats" [1].
Collapse
Affiliation(s)
- Duygu Aydemir
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| | - Gözde Karabulut
- Dumlupınar University, Faculty of Science, Department of Biology, Kütahya, Turkey
| | - Muslum Gok
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Nurhayat Barlas
- Hacettepe University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, Sariyer, 34450, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey
| |
Collapse
|