1
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
2
|
Sliwowska JH, Woods NE, Alzahrani AR, Paspali E, Tate RJ, Ferro VA. Kisspeptin a potential therapeutic target in treatment of both metabolic and reproductive dysfunction. J Diabetes 2024; 16:e13541. [PMID: 38599822 PMCID: PMC11006622 DOI: 10.1111/1753-0407.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/21/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Kisspeptins (KPs) are proteins that were first recognized to have antimetastatic action. Later, the critical role of this peptide in the regulation of reproduction was proved. In recent years, evidence has been accumulated supporting a role for KPs in regulating metabolic processes in a sexual dimorphic manner. It has been proposed that KPs regulate metabolism both indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, brown adipose tissue, and pancreas. The aim of the review is to provide both experimental and clinical evidence indicating that KPs are peptides linking metabolism and reproduction. We propose that KPs could be used as a potential target to treat both metabolic and reproductive abnormalities. Thus, we focus on the consequences of disruptions in KPs and their receptors in metabolic conditions such as diabetes, undernutrition, obesity, and reproductive disorders (hypogonadotropic hypogonadism and polycystic ovary syndrome). Data from both animal models and human subjects indicate that alterations in KPs in the case of metabolic imbalance lead also to disruptions in reproductive functions. Changes both in the hypothalamic and peripheral KP systems in animal models of the aforementioned disorders are discussed. Finally, an overview of current clinical studies involving KP in fertility and metabolism show fewer studies on metabolism (15%) and only one to date on both. Presented data indicate a dynamic and emerging field of KP studies as possible therapeutic targets in treatments of both reproductive and metabolic dysfunctions.
Collapse
Affiliation(s)
- Joanna Helena Sliwowska
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Neurobiology, Poznan University of Life Sciences, Poznan, Poland
| | - Nicola Elizabeth Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Abdullah Rzgallah Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elpiniki Paspali
- Department of Chemical Engineering, University of Strathclyde, Glasgow, UK
| | - Rothwelle Joseph Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Valerie Anne Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Wang C, Smith J, Lu D, Noble P, Wang K. Airway-associated adipose tissue accumulation is increased in a kisspeptin receptor knockout mouse model. Clin Sci (Lond) 2023; 137:1547-1562. [PMID: 37732890 PMCID: PMC10550770 DOI: 10.1042/cs20230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Airway-associated adipose tissue increases with body mass index and is a local source of pro-inflammatory adipokines that may contribute to airway pathology in asthma co-existing with obesity. Genetic susceptibility to airway adiposity was considered in the present study through kisspeptin/kisspeptin receptor signalling, known to modulate systemic adiposity and potentially drive airway remodelling. Therefore, the aim of the study was to determine the effects of kisspeptin/kisspeptin receptor signalling in the lung, focusing on airway-associated adipose tissue deposition and impact on airway structure-function. Wild-type, heterozygous and kisspeptin receptor knockout mice were studied at 6 or 8 weeks of age. Lung mechanics were assessed before and after methacholine challenge and were subsequently fixed for airway morphometry. A separate group of mice underwent glucose tolerance testing and bronchoalveolar lavage. At 6 weeks of age, kisspeptin/kisspeptin receptor signalling did not affect body adiposity, airway inflammation, wall structure or function. Despite no differences in body adiposity, there was a greater accumulation of airway-associated adipose tissue in knockout mice. By 8 weeks of age, female knockout mice displayed a non-diabetic phenotype with increased body adiposity but not males. Airway-associated adipose tissue area was also increased in both knockout females and males at 8 weeks of age, but again no other respiratory abnormality was apparent. In summary, airway-associated adipose tissue is decoupled from body adiposity in prepubescent mice which supports a genetic susceptibility to fatty deposits localised to the airway wall. There was no evidence that airway-associated adipose tissue drives pathology or respiratory impairment in the absence of other environmental exposures.
Collapse
Affiliation(s)
- Carolyn J. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jeremy T. Smith
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - David Lu
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B. Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kimberley C.W. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Di Giorgio NP, Bizzozzero-Hiriart M, Surkin PN, Repetto E, Bonaventura MM, Tabares FN, Bourguignon NS, Converti A, Gomez JMR, Bettler B, Lux-Lantos V. Deletion of GABAB receptors from Kiss1 cells affects glucose homeostasis without altering reproduction in male mice. Am J Physiol Endocrinol Metab 2023; 324:E314-E329. [PMID: 36652400 DOI: 10.1152/ajpendo.00129.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Pablo N Surkin
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Esteban Repetto
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María M Bonaventura
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia N Tabares
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ayelén Converti
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Juan M Riaño Gomez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Sahin Z, Ozcan M, Ozkaya A, Canpolat S, Kutlu S, Kelestimur H. Percentages of serum, liver and adipose tissue fatty acids and body weight are affected in female rats by long-term Central kisspeptin treatments. Arch Physiol Biochem 2023; 129:307-315. [PMID: 32951481 DOI: 10.1080/13813455.2020.1819339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to determine the possible effects of long-term exogenous kisspeptin and its antagonist P234 on serum, liver and adipose tissue fatty acids (FA) profiles, as well as body weight, in female rats. Kisspeptin (50 pmol) and P234 (1 nmol) were administrated to the weaned Sprague-Dawley female rats by an intracerebroventricular injection from the 26th postnatal day to the 60th postnatal day. Percentages of the serum total saturated FA (∑SFA) and total monounsaturated FA (∑MUFA) were lower in the kisspeptin group. In the adipose tissue, ∑SFA was lower and total unsaturated FA higher in the P234 group. Moreover, long-term central kisspeptin injection caused a decrease in the body weight. When compared to the kisspeptin group, the final body weights were higher in the P234 and kisspeptin + P234 groups. According to our results, we suggest that kisspeptin has a regulatory role in FA metabolism and regulation of body weight.
Collapse
Affiliation(s)
- Zafer Sahin
- Faculty of Medicine, Department of Physiology, Karadeniz Technical University, Trabzon, Turkey
| | - Mete Ozcan
- Faculty of Medicine, Department of Biophysics, Firat University, Elazig, Turkey
| | - Ahmet Ozkaya
- Faculty of Science, Department of Chemistry, Adiyaman University, Adiyaman, Turkey
| | - Sinan Canpolat
- Faculty of Medicine, Department of Physiology, Fırat University, Elazig, Turkey
| | - Selim Kutlu
- Meram Medical Faculty, Department of Physiology, Necmettin Erbakan University, Konya, Turkey
| | - Haluk Kelestimur
- Faculty of Medicine, Department of Physiology, Fırat University, Elazig, Turkey
| |
Collapse
|
6
|
Gomes VCL, Beckers KF, Crissman KR, Landry CA, Flanagan JP, Awad RM, Piero FD, Liu CC, Sones JL. Sexually dimorphic pubertal development and adipose tissue kisspeptin dysregulation in the obese and preeclamptic-like BPH/5 mouse model offspring. Front Physiol 2023; 14:1070426. [PMID: 37035685 PMCID: PMC10076539 DOI: 10.3389/fphys.2023.1070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Preeclampsia (PE) is a devastating hypertensive disorder of pregnancy closely linked to obesity. Long-term adverse outcomes may occur in offspring from preeclamptic pregnancies. Accordingly, sex-specific changes in pubertal development have been described in children from preeclamptic women, but the underlying mechanisms remain vastly unexplored. Features of PE are spontaneously recapitulated by the blood pressure high subline 5 (BPH/5) mouse model, including obesity and dyslipidemia in females before and throughout pregnancy, superimposed hypertension from late gestation to parturition and fetal growth restriction. A sexually dimorphic cardiometabolic phenotype has been described in BPH/5 offspring: while females are hyperphagic, hyperleptinemic, and overweight, with increased reproductive white adipose tissue (rWAT), males have similar food intake, serum leptin concentration, body weight and rWAT mass as controls. Herein, pubertal development and adiposity were further investigated in BPH/5 progeny. Precocious onset of puberty occurs in BPH/5 females, but not in male offspring. When reaching adulthood, the obese BPH/5 females display hypoestrogenism and hyperandrogenism. Kisspeptins, a family of peptides closely linked to reproduction and metabolism, have been previously shown to induce lipolysis and inhibit adipogenesis. Interestingly, expression of kisspeptins (Kiss1) and their cognate receptor (Kiss1r) in the adipose tissue seem to be modulated by the sex steroid hormone milieu. To further understand the metabolic-reproductive crosstalk in the BPH/5 offspring, Kiss1/Kiss1r expression in male and female rWAT were investigated. Downregulation of Kiss1/Kiss1r occurs in BPH/5 females when compared to males. Interestingly, dietary weight loss attenuated circulating testosterone concentration and rWAT Kiss1 downregulation in BPH/5 females. Altogether, the studies demonstrate reproductive abnormalities in offspring gestated in a PE-like uterus, which appear to be closely associated to the sexually dimorphic metabolic phenotype of the BPH/5 mouse model.
Collapse
Affiliation(s)
- Viviane C. L. Gomes
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kalie F. Beckers
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kassandra R. Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Camille A. Landry
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juliet P. Flanagan
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Reham M. Awad
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Fabio Del Piero
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jenny L. Sones
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Socs3 ablation in kisspeptin cells partially prevents lipopolysaccharide-induced body weight loss. Cytokine 2022; 158:155999. [PMID: 35985175 DOI: 10.1016/j.cyto.2022.155999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Many cytokines have been proposed to regulate reproduction due to their actions on hypothalamic kisspeptin cells, the main modulators of gonadotropin-releasing hormone (GnRH) neurons. Hormones such as leptin, prolactin and growth hormone are good examples of cytokines that lead to Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway activation, consequently exerting effects in kisspeptin neurons. Different studies have investigated how specific components of the JAK/STAT signaling pathway affect the functions of kisspeptin cells, but the role of the suppressor of cytokine signaling 3 (SOCS3) in mediating cytokine actions in kisspeptin cells remains unknown. Cre-Loxp technology was used in the present study to ablate Socs3 expression in kisspeptin cells (Kiss1/Socs3-KO). Then, male and female control and Kiss1/Socs3-KO mice were evaluated for sexual maturation, energy homeostasis features, and fertility. It was found that hypothalamic Kiss1 mRNA expression is significantly downregulated in Kiss1/Socs3-KO mice. Despite reduced hypothalamic Kiss1 mRNA content, these mice did not present any sexual maturation or fertility impairments. Additionally, body weight gain, leptin sensitivity and glucose homeostasis were similar to control mice. Interestingly, Kiss1/Socs3-KO mice were partially protected against lipopolysaccharide (LPS)-induced body weight loss. Our results suggest that Socs3 ablation in kisspeptin cells partially prevents the sickness behavior induced by LPS, suggesting that kisspeptin cells can modulate energy metabolism in mice in certain situations.
Collapse
|
8
|
Hudson AD, Kauffman AS. Metabolic actions of kisspeptin signaling: Effects on body weight, energy expenditure, and feeding. Pharmacol Ther 2022; 231:107974. [PMID: 34530008 PMCID: PMC8884343 DOI: 10.1016/j.pharmthera.2021.107974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Kisspeptin (encoded by the Kiss1 gene) and its receptor, KISS1R (encoded by the Kiss1r gene), have well-established roles in stimulating reproduction via central actions on reproductive neural circuits, but recent evidence suggests that kisspeptin signaling also influences metabolism and energy balance. Indeed, both Kiss1 and Kiss1r are expressed in many metabolically-relevant peripheral tissues, including both white and brown adipose tissue, the liver, and the pancreas, suggesting possible actions on these tissues or involvement in their physiology. In addition, there may be central actions of kisspeptin signaling, or factors co-released from kisspeptin neurons, that modulate metabolic, feeding, or thermoregulatory processes. Accumulating data from animal models suggests that kisspeptin signaling regulates a wide variety of metabolic parameters, including body weight and energy expenditure, adiposity and adipose tissue function, food intake, glucose metabolism, respiratory rates, locomotor activity, and thermoregulation. Herein, the current evidence for the involvement of kisspeptin signaling in each of these physiological parameters is reviewed, gaps in knowledge identified, and future avenues of important research highlighted. Collectively, the discussed findings highlight emerging non-reproductive actions of kisspeptin signaling in metabolism and energy balance, in addition to previously documented roles in reproductive control, but also emphasize the need for more research to resolve current controversies and uncover underlying molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Alexandra D Hudson
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander S Kauffman
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
9
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Kirsch P, Kunadia J, Shah S, Agrawal N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front Endocrinol (Lausanne) 2022; 13:1002320. [PMID: 36246929 PMCID: PMC9562454 DOI: 10.3389/fendo.2022.1002320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin is a polypeptide hormone that is well known for its role in reproductive physiology. Recent studies highlight its role in neurohormonal appetite regulation and metabolism. Elevated prolactin levels are widely associated with worsening metabolic disease, but it appears that low prolactin levels could also be metabolically unfavorable. This review discusses the pathophysiology of prolactin related metabolic changes, and the less commonly recognized effects of prolactin on adipose tissue, pancreas, liver, and small bowel. Furthermore, the effect of dopamine agonists on the metabolic profiles of patients with hyperprolactinemia are discussed as well.
Collapse
Affiliation(s)
- Polly Kirsch
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Jessica Kunadia
- Department of Medicine, NYU Langone Health, New York, NY, United States
| | - Shruti Shah
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Nidhi Agrawal
- Department of Medicine, NYU Langone Health, New York, NY, United States
- *Correspondence: Nidhi Agrawal,
| |
Collapse
|
11
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
12
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
13
|
Pruszyńska-Oszmałek E, Wojciechowska M, Sassek M, Krauss H, Leciejewska N, Szczepankiewicz D, Ślósarz P, Nogowski L, Kołodziejski PA. The Long-Term Effects of High-Fat and High-Protein Diets on the Metabolic and Endocrine Activity of Adipocytes in Rats. BIOLOGY 2021; 10:biology10040339. [PMID: 33920712 PMCID: PMC8073757 DOI: 10.3390/biology10040339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The increasing prevalence of worldwide obesity and growing awareness of its negative consequences are forcing scientists to take a new view of nutrition and search for new diets. Therefore, to find some new relationships between diet and metabolism, we analyzed the effects of the long-term (60 and 120 days) use of a high-protein diet (HPD) and of a high-fat diet (HFD) on the metabolic and endocrine functions of fat tissue and on biochemical indices in rat blood in the present study. This research helped us to understand the roles of diet in the metabolic and endocrine functioning of adipocytes. Our study indicated that an HFD has a negative effect on fat tissue function, whereas the HPD showed positive results, such as increased insulin sensitivity and improved glucose and lipid metabolism in isolated adipocytes in vitro. Abstract The increasing prevalence of overweight and obesity and the rising awareness of their negative consequences are forcing researchers to take a new view of nutrition and its consequences for the metabolism of whole organisms as well as the metabolism of their individual systems and cells. Despite studies on nutrition having been carried out for a few decades, not many of them have focused on the impacts of these diets on changes in the metabolism and endocrine functions of isolated adipocytes. Therefore, we decided to investigate the effects of the long-term use (60 and 120 days) of a high-fat diet (HFD) and of a high-protein diet (HPD) on basic metabolic processes in fat cells—lipogenesis, lipolysis, and glucose uptake—and endocrine function, which was determined according to the secretion of adipokines into the incubation medium. Our results proved that the HPD diet improved insulin sensitivity, increased the intracellular uptake of glucose (p < 0.01) and its incorporation into lipids (p < 0.01) and modulated the endocrine function of these cells (decreasing leptin secretion; p < 0.01). The levels of biochemical parameters in the serum blood also changed in the HPD-fed rats. The effects of the HFD were inverse, as expected. We observed a decrease in adiponectin secretion and a diminished rate of lipogenesis (p < 0.01). Simultaneously, the secretion of leptin and resistin (p < 0.01) from isolated adipocytes increased. In conclusion, we noted that the long-term use of HPD and HFD diets modulates the metabolism and endocrine functions of isolated rat adipocytes. We summarize that an HFD had a negative effect on fat tissue functioning, whereas an HPD had positive results, such as increased insulin sensitivity and an improved metabolism of glucose and lipids in fat tissue. Moreover, we noticed that negative metabolic changes are reflected more rapidly in isolated cells than in the metabolism of the whole organism.
Collapse
Affiliation(s)
- Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
- Correspondence: or (E.P.-O.); or (P.A.K.); Tel.: +48-618-486-084 (E.P.-O.); +48-511-468-396 (P.A.K.)
| | - Małgorzata Wojciechowska
- Department of Mother and Child Health, Poznan University of Medical Sciences, ul. Polna 33, 60-535 Poznań, Poland;
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Hanna Krauss
- Department of Medicine, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Nowy Świat 4, 62-800 Kalisz, Poland;
| | - Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Piotr Ślósarz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Sloneczna 1, 62-002 Zlotniki, Poland;
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
- Correspondence: or (E.P.-O.); or (P.A.K.); Tel.: +48-618-486-084 (E.P.-O.); +48-511-468-396 (P.A.K.)
| |
Collapse
|
14
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
15
|
Sitticharoon C, Mutirangura P, Chinachoti T, Iamaroon A, Triyasunant N, Churintaraphan M, Keadkraichaiwat I, Maikaew P, Sririwichitchai R. Associations of serum kisspeptin levels with metabolic and reproductive parameters in men. Peptides 2021; 135:170433. [PMID: 33129892 DOI: 10.1016/j.peptides.2020.170433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Central kisspeptin action is well known in reproductive regulation; however, its peripheral action is not well understood. This study aimed to 1) compare serum or cerebrospinal fluid (CSF) kisspeptin levels between different body mass index (BMI) groups 2) compare the levels of kisspeptin between serum and CSF, and 3) determine correlations between serum or CSF kisspeptin levels with clinical, metabolic, and reproductive parameters. There were 40 male subjects undergoing operations with lumbar puncture anesthesia. Subgroup analysis was performed to compare between the normal (n = 12), overweight (n = 10), and obese groups (n = 17). One lean subject was recruited for correlation analysis. Serum kisspeptin levels were significantly higher in the obese group when compared to the normal weight and overweight groups even after adjusting for age or diastolic blood pressure (DBP) (p < 0.05 all). Serum leptin levels were significantly higher in the obese group when compared to the normal weight and overweight groups (p < 0.05 all). CSF kisspeptin levels were below the minimum detectable concentration for the assay (<0.06 ng/mL). Serum kisspeptin was positively correlated with body weight, BMI, plasma insulin, the homeostatic model assessment for insulin resistance (HOMA-IR), and serum leptin but was negatively correlated with plasma LH (p < 0.05 all). In conclusion, serum kisspeptin was related to obesity, leptin, insulin, and insulin resistance, while CSF kisspeptin was below the limits of detection. Thus, peripheral kisspeptin might have a role in metabolic regulation.
Collapse
Affiliation(s)
- Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pornthira Mutirangura
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thitima Chinachoti
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arissara Iamaroon
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namtip Triyasunant
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
17
|
Anthocyanin-Enriched Riceberry Rice Extract Inhibits Cell Proliferation and Adipogenesis in 3T3-L1 Preadipocytes by Downregulating Adipogenic Transcription Factors and Their Targeting Genes. Nutrients 2020; 12:nu12082480. [PMID: 32824545 PMCID: PMC7469062 DOI: 10.3390/nu12082480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Riceberry rice (Oryza sativa L.) is a new pigmented variety of rice from Thailand. Despite its high anthocyanin content, its effect on adipogenesis and adipocyte function remains unexplored. We investigated whether Riceberry rice extract (RBE) impacted cell proliferation by examining viability and cell cycle, using preadipocyte 3T3-L1 cells. To test RBE's effect on adipocyte formation, cells were cultured in adipogenic medium supplemented with extract and adipocyte number and triglyceride levels were quantified. Furthermore, Akt1 phosphorylation along with RT-qPCR and intracellular calcium imaging were performed to obtain an insight into its mechanism of action. The effect of RBE on adipocyte function was investigated using glucose uptake and lipolysis assays. Treatment of cells with RBE decreased preadipocyte number without cytotoxicity despite inducing cell cycle arrest (p < 0.05). During adipogenic differentiation, RBE supplementation reduced adipocyte number and triglyceride accumulation by downregulating transcription factors (e.g., PPARγ, C/EBPα, and C/EBPβ) and their target genes (p < 0.05). The Akt1 phosphorylation was decreased by RBE but insignificance, however, the extract failed to increase intracellular calcium signals. Finally, the treatment of adipocytes with RBE reduced glucose uptake by downregulating Glut4 mRNA expression and enhanced isoproterenol-induced lipolysis (p < 0.05). These findings suggest that RBE could potentially be used in the treatment of obesity by inhibiting adipocyte formation and proliferation.
Collapse
|
18
|
Zhu N, Zhao M, Song Y, Ding L, Ni Y. The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes Dis 2020; 9:28-40. [PMID: 35005105 PMCID: PMC8720660 DOI: 10.1016/j.gendis.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
KiSS-1, first identified as an anti-metastasis gene in melanoma, encodes C-terminally amidated peptide products, including kisspeptin-145, kisspeptin-54, kisspeptin-14, kisspeptin-13 and kisspeptin-10. These products are endogenous ligands coupled to G protein-coupled receptor 54 (GPR54)/hOT7T175/AXOR12. To date, the regulatory activities of the KiSS-1/GPR54 system, such as puberty initiation, antitumor metastasis, fertility in adulthood, hypothalamic-pituitary-gonadal axis (HPG axis) feedback, and trophoblast invasion, have been investigated intensively. Accumulating evidence has demonstrated that KiSS-1 played a key role in reproduction and served as a promising biomarker relative to the diagnosis, identification of therapeutic targets and prognosis in various carcinomas, while few studies have systematically summarized its subjective factors and concluded the functions of KiSS-1/GPR54 signaling in physiology homeostasis and cancer biology. In this review, we retrospectively summarized the regulators of the KiSS-1/GPR54 system in different animal models and reviewed its functions according to physiological homeostasis regulations and above all, cancer biology, which provided us with a profound understanding of applying the KiSS-1/GPR54 system into medical applications.
Collapse
Affiliation(s)
- Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| |
Collapse
|
19
|
Ulasov IV, Borovjagin AV, Timashev P, Cristofanili M, Welch DR. KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev 2020; 38:493-506. [PMID: 31705228 DOI: 10.1007/s10555-019-09814-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor suppressors are cellular proteins typically expressed in normal (non-cancer) cells that not only regulate such cellular functions as proliferation, migration and adhesion, but can also be secreted into extracellular space and serve as biomarkers for pathological conditions or tumor progression. KISS1, a precursor for several shorter peptides, known as metastin (Kisspeptin-54), Kisspeptin-14, Kisspeptin-13 and Kisspeptin-10, is one of those metastasis suppressor proteins, whose expression is commonly downregulated in the metastatic tumors of various origins. The commonly accepted role of KISS1 in metastatic tumor progression mechanism is the ability of this protein to suppress colonization of disseminated cancer cells in distant organs critical for the formation of the secondary tumor foci. Besides, recent evidence suggests involvement of KISS1 in the mechanisms of tumor angiogenesis, autophagy and apoptosis regulation, suggesting a possible role in both restricting and promoting cancer cell invasion. Here, we discuss the role of KISS1 in regulating metastases, the link between KISS1 expression and the autophagy-related biology of cancer cells and the perspectives of using KISS1 as a potential diagnostic marker for cancer progression as well as a new anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Anton V Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Massimo Cristofanili
- Department of Medicine, Division of Hematology-Oncology, Northwestern University, Chicago, 60611, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
20
|
Tolson KP, Marooki N, Wolfe A, Smith JT, Kauffman AS. Cre/lox generation of a novel whole-body Kiss1r KO mouse line recapitulates a hypogonadal, obese, and metabolically-impaired phenotype. Mol Cell Endocrinol 2019; 498:110559. [PMID: 31442544 PMCID: PMC6814569 DOI: 10.1016/j.mce.2019.110559] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Kisspeptin and its receptor, Kiss1r, act centrally to stimulate reproduction. Recent evidence indicates that kisspeptin is also important for body weight and metabolism, as whole-body Kiss1r KO mice, developed with gene trap technology, display obesity and reduced metabolism. Kiss1r is expressed in brain and multiple peripheral tissues, but it is unknown which is responsible for the metabolic phenotype. Here, we sought to confirm that 1) the metabolic phenotype of the gene trap Kiss1r KOs is due to disruption of kisspeptin signaling and not off-target effects of viral mutagenesis, and 2) the Kiss1r flox line is suitable for creating conditional KOs to study the metabolic phenotype. We used Cre/lox technology (Zp3-Cre/Kiss1r flox) to develop a new global Kiss1r KO ("Kiss1r gKO") to compare with the original gene trap KO phenotype. We confirmed that deleting exon 2 of Kiss1r from the entire body induces hypogonadism in both sexes. Moreover, global deletion of Kiss1r induced obesity in females, but not males, along with increased adiposity and impaired glucose tolerance, similar to the gene trap Kiss1r KOs. Likewise, Kiss1r gKO females had decreased VO2 and VCO2, likely underlying their obesity. These findings support that our previous results in gene trap Kiss1r KOs are due to disrupted kisspeptin signaling, and further highlight a role for Kiss1r signaling in energy expenditure and metabolism besides controlling reproduction. Moreover, given Kiss1r expression in multiple cell-types, our findings indicate that the Kiss1r flox line is viable for future investigations to isolate specific target cells of kisspeptin's metabolic effects.
Collapse
Affiliation(s)
- Kristen P Tolson
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nuha Marooki
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Wolfe
- Department of Pediatrics and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy T Smith
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Tolson KP, Marooki N, De Bond JAP, Walenta E, Stephens SBZ, Liaw RB, Savur R, Wolfe A, Oh DY, Smith JT, Kauffman AS. Conditional knockout of kisspeptin signaling in brown adipose tissue increases metabolic rate and body temperature and lowers body weight. FASEB J 2019; 34:107-121. [PMID: 31914628 DOI: 10.1096/fj.201901600r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
The peptide kisspeptin and its receptor, Kiss1r, act centrally to stimulate reproduction. Evidence indicates that kisspeptin signaling is also important for body weight (BW) and metabolism. We recently reported that Kiss1r KO mice develop obesity, along with reduced metabolism and energy expenditure, independent of estradiol levels. Outside the brain, Kiss1r is expressed in several metabolic tissues, including brown adipose tissue (BAT), but it is unknown which specific tissue is responsible for the metabolic phenotype in Kiss1r KOs. We first determined that global Kiss1r KO mice have significant alterations in body temperature and BAT thermogenic gene expression, perhaps contributing to their obesity. Next, to test whether kisspeptin signaling specifically in BAT influences BW, metabolism, or body temperature, we used Cre/lox technology to generate conditional Kiss1r knockout exclusively in BAT (BAT-Kiss1r KO). Unlike global Kiss1r KOs, BAT-Kiss1r KOs (lacking Kiss1r in just BAT) were not hypogonadal, as expected. Surprisingly, however, BAT-Kiss1r KOs of both sexes displayed significantly lower BW and adiposity than controls. This novel BAT-Kiss1r KO phenotype was of greater magnitude in females and was associated with improved glucose tolerance, increased metabolism, energy expenditure, and locomotor activity, along with increased body temperature and BAT gene expression, specifically Cox8b. Our findings suggest that the previously observed obesity and decreased metabolism in global Kiss1r KOs reflect impaired kisspeptin signaling in non-BAT tissues. However, the novel finding of increased metabolism and body temperature and lower BW in BAT-Kiss1r KOs reveal a previously unidentified role for endogenous kisspeptin signaling in BAT in modulating metabolic and thermogenic physiology.
Collapse
Affiliation(s)
- Kristen P Tolson
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Nuha Marooki
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Julie-Ann P De Bond
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Evelyn Walenta
- Department of Medicine, University of California, San Diego, CA, USA
| | - Shannon B Z Stephens
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Reanna B Liaw
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Rishi Savur
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Andrew Wolfe
- Department of Pediatrics and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Da Young Oh
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jeremy T Smith
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Abou Khalil NS, Mahmoud GB. Reproductive, antioxidant and metabolic responses of Ossimi rams to kisspeptin. Theriogenology 2019; 142:414-420. [PMID: 31711707 DOI: 10.1016/j.theriogenology.2019.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the potential reproductive, antioxidant and metabolic effects of kisspeptin-10 (KP-10) on Ossimi rams. Twelve Ossimi rams (1.5-2 years old) were divided randomly into two groups (six per group). The first one served as a control group, while the second one served as a treated group. Rams of the treated group were injected once weekly with KP-10 (5 μg/kg body weight) for one month. There were no significant differences in all measured parameters between rams of control group at pre-treatment period and those at post-treatment period. However, most examined parameters in the same rams in the treated group were affected by injection of KP-10 when comparing pre-treatment values in treated group with its post-treatment values. At the pre-treatment period, there were no significant differences between the treated and control groups regarding semen pH, mass motility, sperm concentration/mL, live and dead spermatozoa, total sperm abnormality, testosterone and oxidative stress and metabolic parameters. However, all semen characteristics were significantly improved in the treated group compared with the control group at the post-treatment period and in the treated group at the post-treatment period compared with that at the pre-treatment period. In addition, scrotal circumference, ejaculate volume and total sperm concentration/ejaculate showed higher significant improvements when comparing the treated group with the control one at the post-treatment period than when comparing the two groups at the pre-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. Serum testosterone, total antioxidant capacity, lipid peroxides, nitric oxide, total protein, albumin, glucose and high density lipoprotein-cholesterol levels significantly increased when comparing the treated group with the control one at the post-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. In conclusion, KP-10 led to potential improvement in the reproductive efficacy and metabolic capacity of Ossimi ram.
Collapse
Affiliation(s)
- Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Gamal B Mahmoud
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
23
|
Dudek M, Ziarniak K, Cateau ML, Dufourny L, Sliwowska JH. Diabetes Type 2 and Kisspeptin: Central and Peripheral Sex-Specific Actions. Trends Endocrinol Metab 2019; 30:833-843. [PMID: 31699240 DOI: 10.1016/j.tem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/23/2023]
Abstract
Kisspeptin (KP) plays a major role in the regulation of reproduction governed by the hypothalamic-pituitary-gonadal (HPG) axis. However, recent findings suggest that the KP system is present not only centrally (at the level of the hypothalamus), but also in the peripheral organs crucial for the control of metabolism. The KP system is sexually differentiated in the hypothalamus, and it is of particular interest to study whether sex-specific responses to type 2 diabetes (DM2) exist centrally and peripherally. As collection of data is limited in humans, animal models of DM2 are useful to understand crosstalk between metabolism and reproduction. Sex-specific variations in the KP system reported in animals suggest a need for the development of gender specific therapeutic strategies to treat DM2.
Collapse
Affiliation(s)
- Monika Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Marie-Line Cateau
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Laurence Dufourny
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Joanna Helena Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| |
Collapse
|
24
|
Asare-Anane H, Ofori EK, Kwao-Zigah G, Ateko RO, Annan BDRT, Adjei AB, Quansah M. Lower circulating kisspeptin and primary hypogonadism in men with type 2 diabetes. ENDOCRINOLOGY DIABETES & METABOLISM 2019; 2:e00070. [PMID: 34505408 PMCID: PMC8565652 DOI: 10.1002/edm2.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/30/2022]
Abstract
Introduction Kisspeptin influence on male androgens is partially understood. We aimed to evaluate serum concentrations of kisspeptin among Ghanaian men with type 2 diabetes and to identify related factors that may contribute to altering circulating kisspeptin. Methods A cross‐sectional, observational study. Sixty persons with type 2 diabetes and 60 nondiabetic controls were included in this study. Blood pressure, body mass index (BMI), kisspeptin, luteinizing hormone (LH), follicle‐stimulating hormone (FSH), total testosterone (T), glucose (FBG), glycated haemoglobin (HbA1c) and lipid levels were assessed. Results Type 2 diabetic men had lower kisspeptin and T concentrations than controls (P = 0.001 for both). Levels of LH and FSH were, respectively, higher in diabetic men compared with their control counterparts (P = 0.003; P = 0.017). There were negative associations within the diabetic group for kisspeptin vs age (r = −0.590, P = 0.0001) and kisspeptin vs BMI (r = −0.389, P = 0.002). Positive associations were also found within the diabetic group for kisspeptin vs T (r = 0.531, P = 0.001), kisspeptin vs LH (r = 0.423, P = 0.001) and kisspeptin vs FSH (r = 0.366, P = 0.004). Lower T (OR = 1.473, P = 0.003) and advancing age (OR = 0.890, P = 0.004) contributed to decreased kisspeptin levels among Ghanaian males with type 2 diabetes. Conclusion Our data demonstrate that circulating kisspeptin and T concentrations are lower among men with type 2 diabetes and highlight the importance of considering kisspeptin concentrations in the management of hypogonadism and type 2 diabetes.
Collapse
Affiliation(s)
- Henry Asare-Anane
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Kwaku Ofori
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Genevieve Kwao-Zigah
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Richmond O Ateko
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Benjamin D R T Annan
- Department of Obstetrics and Gynecology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Afua B Adjei
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Quansah
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
25
|
Rashad NM, Al-Sayed RM, Yousef MS, Saraya YS. Kisspeptin and body weight homeostasis in relation to phenotypic features of polycystic ovary syndrome; metabolic regulation of reproduction. Diabetes Metab Syndr 2019; 13:2086-2092. [PMID: 31235141 DOI: 10.1016/j.dsx.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by a diverse collection of reproductive and metabolic abnormalities. kisspeptin (KISS) is novel peptides associated with regulation of metabolism, food intake, puberty and reproduction. The aim of the present study was to estimate KISS level in patients with PCOS, and to evaluate the possible relationship between KISS level with anthropometric measures as well as clinic-morphological features of PCOS. MATERIALS AND METHODS cross section control study enrolled 90 control group and 105 patients with PCOS and they were stratified according to their body mass index (BMI) to; underweight (n = 9, BMI ˂19), normal weight (n = 25, BMI = 19.1-25), over weight (n = 34,BMI = 25.1-30), obese grade I (n = 12, BMI = 30.1-35) , obese grade II (n = 13, BMI 35.1-40) and obese grade III (n = 12, BMI˃40).Circulating KISS levels were measured using ELISA. RESULTS Our results revealed that, KISS levels were higher in PCOS patients compared to controls. Among PCOS group, there were significant lower level of KISS levels in underweight, overweight and obese compared to normal weight group. Even more importantly, KISS levels decreased with increasing of BMI as the following, grade I, grade II and grade III. Moreover, it was negatively correlated to anthropometric measures, glycemic, lipid profile and positively correlated the phenotype characteristics of PCOS. Linear regression test observed that hirsutism score, HOMA-IR and LH were the main predictors of KISS levels in PCOS. CONCLUSION circulating KISS is an important regulator of body weight and reproduction especially in PCOS women.
Collapse
Affiliation(s)
- Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Radwa M Al-Sayed
- Physiology Department, Faculty of Medicine-Zagazig University, Egypt
| | - Mohammed S Yousef
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasser S Saraya
- Obstetrics and Gynecology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
27
|
Shamas S, Rani S, Afsheen S, Shahab M, Ejaz R, Sadia H, Khan L, Rehman TU, Roshan S, Mayo A. CHANGES IN IRISIN RELEASE IN RESPONSE TO PERIPHERAL KISSPEPTIN-10 ADMINISTRATION IN HEALTHY AND OBESE ADULT MEN. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:283-288. [PMID: 32010344 DOI: 10.4183/aeb.2019.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context Kisspeptin role in metabolism has been implicated recently. However, the nature of the signals that may connect body fat/muscle tissues with the central nervous system governing energy homeostasis remains to be elucidated. Objective The present study was designed to investigate the effects of peripheral kisspeptin-10 administration on irisin release in human males. Subjects and methods Kisspeptin-10 was administered to normal weight (n=8) and obese (n=8) men. Sequential blood sampling was performed for 30 minutes pre and 210 minutes post kisspeptin injection at 30 minutes interval. ELISA kit was used to detect plasma irisin levels. Results There is a significant (P<0.0001) effect of Kisspeptin-10 administration on irisin release in both normal weight and obese participants. Mean irisin levels (96.24 ± 1.351 ng/mL) at 210 minutes were significantly (P<0.0001) enhanced as compared to pre-kisspeptin (59.18 ± 4.815 ng/mL) in normal weight subjects. In obese subjects mean irisin levels (75.76 ± 4.06 ng/mL) were significantly (P<0.0001) elevated at 180 minutes post-kisspeptin when compared with pre-kisspeptin irisin levels (41.28 ± 2.89 ng/mL). Conclusion Our findings suggest that kisspeptin may have a novel therapeutic potential to induce irisin release in humans which may have anti-obesity effects.
Collapse
Affiliation(s)
- S Shamas
- University of Gujrat - Hafiz Hayat Campus - Department of Zoology, Gujrat, Pakistan
| | - S Rani
- University of Gujrat - Hafiz Hayat Campus - Department of Zoology, Gujrat, Pakistan
| | - S Afsheen
- University of Gujrat - Hafiz Hayat Campus - Department of Zoology, Gujrat, Pakistan
| | - M Shahab
- Quaid-i-Azam University - Animal Sciences, Islamabad, Pakistan
| | - R Ejaz
- Shaheed Benazir Bhutto Women University - Department of Zoology, Peshawar, Pakistan
| | - H Sadia
- Balochistan University of Information Technology and Management Sciences - Department of Biotechnology, Quetta, Pakistan
| | - L Khan
- University of Buner Khyber Pakhtunkhwa, Pakistan - Department of Zoology, Buner, Pakistan
| | - T U Rehman
- Zhejiang University, School of Medicine, Hangzhou - Department of Pathology and Pathophysiology, Zhejiang, China
| | - S Roshan
- University of Gujrat - Hafiz Hayat Campus - Department of Zoology, Gujrat, Pakistan
| | - A Mayo
- Quaid-i-Azam University - Animal Sciences, Islamabad, Pakistan
| |
Collapse
|
28
|
Orlando G, Leone S, Ferrante C, Chiavaroli A, Mollica A, Stefanucci A, Macedonio G, Dimmito MP, Leporini L, Menghini L, Brunetti L, Recinella L. Effects of Kisspeptin-10 on Hypothalamic Neuropeptides and Neurotransmitters Involved in Appetite Control. Molecules 2018; 23:molecules23123071. [PMID: 30477219 PMCID: PMC6321454 DOI: 10.3390/molecules23123071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Giorgia Macedonio
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Marilisa Pia Dimmito
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lidia Leporini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
29
|
Zhai L, Zhao J, Zhu Y, Liu Q, Niu W, Liu C, Wang Y. Downregulation of leptin receptor and kisspeptin/GPR54 in the murine hypothalamus contributes to male hypogonadism caused by high-fat diet-induced obesity. Endocrine 2018; 62:195-206. [PMID: 29948931 DOI: 10.1007/s12020-018-1646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Obesity may lead to male hypogonadism, the underlying mechanism of which remains unclear. In the present study, we established a murine model of male hypogonadism caused by high-fat diet-induced obesity to verify the following hypotheses: 1) an increased leptin level may be related to decreased secretion of GnRH in obese males, and 2) repression of kisspeptin/GPR54 in the hypothalamus, which is associated with increased leptin levels, may account for the decreased secretion of GnRH and be involved in secondary hypogonadism (SH) in obese males. METHODS Male mice were fed high-fat diet for 19 weeks and divided by body weight gain into diet-induced obesity (DIO) and diet-induced obesity resistant (DIO-R) group. The effect of obesity on the reproductive organs in male mice was observed by measuring sperm count and spermatozoid motility, relative to testis and epididymis weight, testosterone levels, and pathologic changes. Leptin, testosterone, estrogen, and LH in serum were detected by ELISA method. Leptin receptor (Ob-R), Kiss1, GPR54, and GnRH mRNA were measured by real-time PCR in the hypothalamus. Expression of kisspeptin and Ob-R protein was determined by Western blotting. Expression of GnRH and GPR54 protein was determined by immunohistochemical analysis. RESULTS We found that diet-induced obesity decreased spermatozoid motility, testis and epididymis relative coefficients, and plasma testosterone and luteinizing hormone levels. An increased number and volume of lipid droplets in Leydig cells were observed in the DIO group compared to the control group. Significantly, higher serum leptin levels were found in the DIO and DIO-R groups. The DIO and DIO-R groups showed significant downregulation of the GnRH, Kiss1, GPR54, and Ob-R genes. We also found decreased levels of GnRH, kisspeptin, GPR54, and Ob-R protein in the DIO and DIO-R groups. CONCLUSIONS These lines of evidence suggest that downregulation of Ob-R and kisspeptin/GPR54 in the murine hypothalamus may contribute to male hypogonadism caused by high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Lingling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yiming Zhu
- Seven-Year-program Clinical Medicine Students (100K71B), China Medical University, Shenyang, Liaoning, China
| | - Qiannan Liu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Wenhua Niu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Chengyin Liu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yi Wang
- Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
30
|
Spexin: A novel regulator of adipogenesis and fat tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1228-1236. [DOI: 10.1016/j.bbalip.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023]
|
31
|
Wolfe A, Hussain MA. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front Endocrinol (Lausanne) 2018; 9:184. [PMID: 29740399 PMCID: PMC5928256 DOI: 10.3389/fendo.2018.00184] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary-gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin's diverse array of functions will be highlighted.
Collapse
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Mehboob A. Hussain
- Department of Internal Medicine Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, United States
| |
Collapse
|
32
|
Dudek M, Ziarniak K, Sliwowska JH. Kisspeptin and Metabolism: The Brain and Beyond. Front Endocrinol (Lausanne) 2018; 9:145. [PMID: 29713310 PMCID: PMC5911457 DOI: 10.3389/fendo.2018.00145] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Apart from the well-established role of kisspeptin (Kp) in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC) of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.
Collapse
|