1
|
Levassort H, Boucquemont J, Lambert O, Liabeuf S, Laville SM, Teillet L, Tabcheh AH, Frimat L, Combe C, Fouque D, Laville M, Jacquelinet C, Helmer C, Alencar de Pinho N, Pépin M, Massy ZA. Urea Level and Depression in Patients with Chronic Kidney Disease. Toxins (Basel) 2024; 16:326. [PMID: 39057966 PMCID: PMC11281192 DOI: 10.3390/toxins16070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is common in patients with chronic kidney disease (CKD). Experimental studies suggest the role of urea toxicity in depression. We assessed both the incidence of antidepressant prescriptions and depressive symptoms (measured by CESD (Center for Epidemiologic Depression) scale) in 2505 patients with CKD (Stage 3-4) followed up over 5 years in the Chronic Kidney Disease Renal Epidemiology and Information Network (CKD-REIN) cohort. We used a joint model to assess the association between the serum urea level and incident antidepressant prescriptions, and mixed models for the association between the baseline serum urea level and CESD score over the 5-year follow-up. Among the 2505 patients, 2331 were not taking antidepressants at baseline. Of the latter, 87 started taking one during a median follow-up of 4.6 years. After adjustment for confounding factors, the hazard ratio for incident antidepressant prescription associated with the serum urea level (1.28 [95%CI, 0.94,1.73] per 5 mmol/L increment) was not significant. After adjustment, the serum urea level was associated with the mean change in the CESD score (β = 0.26, [95%CI, 0.11,0.41] per 5 mmol/L increment). Depressive symptoms burden was associated with serum urea level unlike depression events. Further studies are needed to draw firm conclusions and better understand the mechanisms of depression in CKD.
Collapse
Affiliation(s)
- Hélène Levassort
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Julie Boucquemont
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Oriane Lambert
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, F-80054 Amiens, France (S.M.L.)
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Solene M. Laville
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, F-80054 Amiens, France (S.M.L.)
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Laurent Teillet
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Abdel-Hay Tabcheh
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Luc Frimat
- Service de Néphrologie, CHRU de Nancy, F-54000 Vandoeuvre-lès-Nancy, France;
- Université de Lorraine, APEMAC, F-54000 Nancy, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France;
- Inserm U1026, Université Bordeaux Segalen, F-33076 Bordeaux, France
| | - Denis Fouque
- Service de Néphrologie, Centre Hospitalier Lyon Sud, Université de Lyon, Carmen, F-69495 Pierre-Bénite, France;
| | - Maurice Laville
- Université Claude Bernard Lyon 1, Carmen INSERM U1060, F-69495 Pierre-Bénite, France
| | - Christian Jacquelinet
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
- Agence de la Biomédecine, F-93212 Saint-Denis La Plaine, France
| | - Catherine Helmer
- Bordeaux Population Health Center, INSERM U1219, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Natalia Alencar de Pinho
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Marion Pépin
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Ziad A. Massy
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
- Association Pour L’Utilisation du Rein Artificiel dans la Région Parisienne (AURA), 185a rue Raymond Losserand, F-75014 Paris, France
- Ambroise Paré University Hospital, APHP, Department of Nephrology, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
2
|
Feng Q, Yang S, Ye S, Wan C, Wang H, You J. Mediation of depressive symptoms in the association between blood urea nitrogen to creatinine ratio and cognition among middle-aged and elderly adults: evidence from a national longitudinal cohort study. BMC Psychiatry 2024; 24:515. [PMID: 39030588 PMCID: PMC11264492 DOI: 10.1186/s12888-024-05941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The relationships between BUNCr (blood urea nitrogen and creatinine ratio) and cognitive function, as well as depressive symptoms, remain unclear. We aim to investigate the association between BUNCr and cognition, as well as depressive symptoms, and to identify the mechanisms underlying these relationships. METHODS We utilized data from the China Health and Retirement Longitudinal Study (CHARLS) from 2015 to 2020. Cognitive function was assessed using the Telephone Interview of Cognitive Status (TICS) scale, while depressive symptoms were assessed using the 10-item Center for Epidemiologic Studies Depression Scale (CES-D-10). We employed multivariate linear regression models to examine the association between BUNCr and cognitive function, as well as depressive symptoms. Additionally, causal mediation analysis was conducted to identify potential mediation effects of depressive symptoms between BUNCr and cognition. RESULTS We observed a negative association between BUNCr and cognitive function (coefficient: -0.192; 95% confidence interval [CI]: -0.326 ∼ -0.059) and a positive relationship between BUNCr and depressive symptoms (coefficient: 0.145; 95% CI: 0.006 ∼ 0.285). In addition, the causal mediation analysis revealed that depressive symptoms (proportion mediated: 7.0%) significantly mediated the association between BUNCr and cognition. CONCLUSION Our study has unveiled that BUNCr is inversely associated with cognitive function and positively linked to depressive symptoms. Moreover, we found that depressive symptoms significantly mediated the association between BUNCr and cognition. These findings provide new evidence and insights for the prevention and management of cognitive function and dementia.
Collapse
Affiliation(s)
- Qiaoduan Feng
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Shaokun Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shaohua Ye
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinsong You
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Pinki F, Costello DA, Stewart G. Regional investigation of UT-B urea transporters in the rat brain. Biochem Biophys Rep 2023; 36:101563. [PMID: 37929290 PMCID: PMC10624589 DOI: 10.1016/j.bbrep.2023.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies have reported increased levels of urea in the aging brain and various neurological disorders. Additionally, these diseased tissues also have increased expression of the UT-B transporter that regulates urea transport in the brain. However, little is known regarding the actual UT-B protein distribution across the brain in either normal or diseased states. This current study investigated UT-B protein abundance across three regions of the rat brain - anterior, posterior and cerebellum. Endpoint RT-PCR experiments showed that there were no regional differences in UT-B RNA expression (NS, N = 3, ANOVA), whilst Western blotting confirmed no difference in the abundance of a 35 kDa UT-B protein (NS, N = 3-4, ANOVA). In contrast, there was a significant variation in a non-UT-B 100 kDa protein (P < 0.001, N = 3-4, ANOVA), which was also detected by anti-UT-B antibodies. Using the C6 rat astrocyte cell line, Western blot analysis showed that 48-h incubation in either 5 mM or 10 mM significantly increased a 30-45 kDa UT-B protein signal (P < 0.05, N = 3, ANOVA). Furthermore, investigation of compartmentalized C6 protein samples showed the 30-45 kDa signal in the membrane fraction, whilst the 100 kDa non-UT-B signal was predominantly in the cytosolic fraction. Finally, immunolocalization studies gave surprisingly weak detection of rat UT-B, except for strong staining of red blood cells in the cerebellum. In conclusion, this study confirmed that RNA expression and protein abundance of UT-B were equal across all regions of the rat brain, suggesting that urea levels were also similar. However, it also highlighted some of the technical challenges of studying urea transporters at the protein level.
Collapse
Affiliation(s)
- Farhana Pinki
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Derek A Costello
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Gavin Stewart
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
5
|
Huang B, Huang Z, Wang H, Zhu G, Liao H, Wang Z, Yang B, Ran J. High urea induces anxiety disorders associated with chronic kidney disease by promoting abnormal proliferation of OPC in amygdala. Eur J Pharmacol 2023; 957:175905. [PMID: 37640220 DOI: 10.1016/j.ejphar.2023.175905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023]
Abstract
Chronic kidney disease (CKD) with anxiety disorder is of a great concern due to its high morbidity and mortality. Urea, as an important toxin in CKD, is not only a pathological factor for complications in patients with CKD, but also is accumulated in the brain of aging and neurodegenerative diseases. However, the pathological role and underlying regulatory mechanism of urea in CKD related mood disorders have not been well established. We previously reported a depression phenotype in mice with abnormal urea metabolism. Since patients with depression are more likely to suffer from anxiety, we speculate that high urea may be an important factor causing anxiety in CKD patients. In adenine-induced CKD mouse model and UT-B-/- mouse model, multiple behavioral studies confirmed that high urea induces anxiety-like behavior. Single-cell transcriptome revealed that down-regulation of Egr1 induced compensatory proliferation of oligodendrocyte progenitor cells (OPC). Myelin-related signaling pathways of oligodendrocytes (OL) were change significant in the urea accumulation amygdala. The study showed that high urea downregulated Egr1 with subsequent upregulation of ERK pathways in OPCs. These data indicate that the pathological role and molecular mechanism of high urea in CKD-related anxiety, and provide objective serological indicator and a potential new drug target for the prevention and treatment of anxiety in CKD patients.
Collapse
Affiliation(s)
- Boyue Huang
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China; Department of Pharmacology, School of Basic Medical Sciences, And State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhizhen Huang
- Department of Pharmacology, School of Basic Medical Sciences, And State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongkai Wang
- Laboratory of Regenerative Rehabilitation, Shirley Ryan Ability Lab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine 2 Northwestern University Interdepartmental Neuroscience Program, USA
| | - Guoqi Zhu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hui Liao
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Zhiwen Wang
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, And State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jianhua Ran
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Philbert SA, Xu J, Scholefield M, Patassini S, Church SJ, Unwin RD, Roncaroli F, Cooper GJS. Extensive multiregional urea elevations in a case-control study of vascular dementia point toward a novel shared mechanism of disease amongst the age-related dementias. Front Mol Neurosci 2023; 16:1215637. [PMID: 37520429 PMCID: PMC10372345 DOI: 10.3389/fnmol.2023.1215637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Vascular dementia (VaD) is one of the most common causes of dementia among the elderly. Despite this, the molecular basis of VaD remains poorly characterized when compared to other age-related dementias. Pervasive cerebral elevations of urea have recently been reported in several dementias; however, a similar analysis was not yet available for VaD. Methods Here, we utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to measure urea levels from seven brain regions in post-mortem tissue from cases of VaD (n = 10) and controls (n = 8/9). Brain-urea measurements from our previous investigations of several dementias were also used to generate comparisons with VaD. Results Elevated urea levels ranging from 2.2- to 2.4-fold-change in VaD cases were identified in six out of the seven regions analysed, which are similar in magnitude to those observed in uremic encephalopathy. Fold-elevation of urea was highest in the basal ganglia and hippocampus (2.4-fold-change), consistent with the observation that these regions are severely affected in VaD. Discussion Taken together, these data not only describe a multiregional elevation of brain-urea levels in VaD but also imply the existence of a common urea-mediated disease mechanism that is now known to be present in at least four of the main age-related dementias.
Collapse
Affiliation(s)
- Sasha A. Philbert
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jingshu Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Melissa Scholefield
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stefano Patassini
- Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Stephanie J. Church
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richard D. Unwin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biology, Geoffrey Jefferson Brain Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Garth J. S. Cooper
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Advanced Discovery and Experimental Therapeutics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Dong Y, Zou Z, Deng P, Fan X, Li C. Circulating metabolites and depression: a bidirectional Mendelian randomization. Front Neurosci 2023; 17:1146613. [PMID: 37152596 PMCID: PMC10160621 DOI: 10.3389/fnins.2023.1146613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Studies have shown an association between depression and circulating metabolites, but the causal relationship between them has not been elucidated. The purpose of this study was to elucidate the causal relationship between circulating metabolites and depression and to explore the role of circulating metabolites in depression. Methods In this study, the top single-nucleotide polymorphisms (SNPs) associated with circulating metabolites (n = 24,925) and depression (n = 322,580) were obtained based on the publicly available genome-wide association study using two-sample Mendelian randomization (MR). SNP estimates were summarized through inverse variance weighted, MR Egger, weighted median, MR pleiotropy residual sum and outlier, and "leave-one-out" methods. Results Apolipoprotein A-I (OR 0.990, 95% CI 981-0.999) and glutamine (OR 0.985, 95% CI 0.972-0.997) had protective causal effects on depression, whereas acetoacetate (OR 1.021, 95% CI 1.009-1.034), glycoproteins (OR 1.005, 95% CI 1.000-1.009), isoleucine (OR 1.013, 95% CI 1.002-1.024), and urea (OR 1.020, 95% CI 1.000-1.039) had an anti-protective effect on depression. Reversed MR showed no effect of depression on the seven circulating metabolites. Conclusion In this study, MR analysis showed that apolipoprotein A-I and glutamine had a protective effect on depression, and acetoacetate, glycoprotein, isoleucine, glucose, and urea may be risk factors for depression. Therefore, further research must be conducted to translate the findings into practice.
Collapse
Affiliation(s)
- Yankai Dong
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zengxiao Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Pin Deng
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Xiaoping Fan
| | - Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Chunlin Li
| |
Collapse
|
8
|
Mao Y, Li X, Zhu S, Ma J, Geng Y, Zhao Y. Associations between urea nitrogen and risk of depression among subjects with and without type 2 diabetes: A nationwide population-based study. Front Endocrinol (Lausanne) 2022; 13:985167. [PMID: 36387890 PMCID: PMC9646599 DOI: 10.3389/fendo.2022.985167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Depression and type 2 diabetes (T2D) are serious public health problems with irreversible health consequences and a significant economic burden on the healthcare system. Previous studies have suggested that blood urea nitrogen (BUN) was inversely longitudinally associated with incidence of diabetes and depression in adults, but few well-designed studies have examined the effects of status of T2D on the full range of relationship between BUN and depression. Methods The analysis sample consisted of adults aged≥20 years from the 2007-2014 National Health and Nutrition Examination Survey (NHANES) who completed the Patient Health Questionnaire-9 (PHQ-9), involving 19,005 participants. By stratifying participants according to T2D status, we further assessed the difference between BUN and risk of depression in participants with and without T2D using multivariate logistic regression (interaction test). Results In this cross-sectional study, the association between BUN and depression prevalence appeared to differ between the T2D and non-T2D groups (OR: 1.00, 95% Cl: 0.95-1.05 vs. OR: 0.89, 95% Cl: 0.85-0.93). In addition, there was evidence of an interaction between BUN levels and T2D status in reducing the risk of depression (P value for interaction = 0.032.) The relationship between BUN and depressive symptoms was significant in non-T2D subjects (P < 0.001), but not in T2D (P = 0.940). Conclusions Our findings suggest that there is a significant relationship between BUN and depression, and T2D status may influence the association between BUN and the risk of depression. Such findings require further prospective studies to provide more evidence.
Collapse
Affiliation(s)
- Yafei Mao
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Li
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shumin Zhu
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Ma
- Department of Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yulan Geng
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhao
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Jones AC, Pinki F, Stewart GS, Costello DA. Inhibition of Urea Transporter (UT)-B Modulates LPS-Induced Inflammatory Responses in BV2 Microglia and N2a Neuroblastoma Cells. Neurochem Res 2021; 46:1322-1329. [PMID: 33675462 DOI: 10.1007/s11064-021-03283-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Urea is the major nitrogen-containing product of protein metabolism, and the urea cycle is intrinsically linked to nitric oxide (NO) production via the common substrate L-arginine. Urea accumulates in the brain in neurodegenerative states, including Alzheimer's and Huntington's disease. Urea transporter B (UT-B, SLC14A1) is the primary transport protein for urea in the CNS, identified most abundantly in astrocytes. Moreover, enhanced expression of the Slc14a1 gene has been reported under neurodegenerative conditions. While the role of UT-B in disease pathology remains unclear, UT-B-deficient mice display behavioural impairment coupled with urea accumulation, NO disruption and neuronal loss. Recognising the role of inflammation in neurodegenerative disease pathology, the current short study evaluates the role of UT-B in regulating inflammatory responses. Using the specific inhibitor UTBinh-14, we investigated the impact of UT-B inhibition on LPS-induced changes in BV2 microglia and N2a neuroblastoma cells. We found that UTBinh-14 significantly attenuated LPS-induced production of TNFα and IL-6 from BV2 cells, accompanied by reduced release of NO. While we observed a similar reduction in supernatant concentration of IL-6 from N2a cells, the LPS-stimulated NO release was further augmented by UTBinh-14. These changes were accompanied by a small, but significant downregulation in UT-B expression in both cell types following incubation with LPS, which was not restored by UTBinh-14. Taken together, the current evidence implicates UT-B in regulation of inflammatory responses in microglia and neuronal-like cells. Moreover, our findings offer support for the further investigation of UT-B as a novel therapeutic target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Aimée C Jones
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Farhana Pinki
- UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Gavin S Stewart
- UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Derek A Costello
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland.
- UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
10
|
Huang B, Wang H, Zhong D, Meng J, Li M, Yang B, Ran J. Expression of Urea Transporter B in Normal and Injured Brain. Front Neuroanat 2021; 15:591726. [PMID: 34122018 PMCID: PMC8194276 DOI: 10.3389/fnana.2021.591726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Urea transporter B (UT-B) is a membrane channel protein widely distributed in mammals, and plays a significant physiological role by regulating urea and water transportation in different tissues. More and more studies have found that UT-B is related to neurological diseases, including myelinopathy and depression. When urea accumulates in the brains of UT-B knockout mice, the synaptic plasticity of neurons is reduced, and the morphology and function of glial cells are also changed. However, the distribution and expression change of UT-B remain unclear. The purpose of this study is to determine the expression characteristics of UT-B in the brain. Through single-cell RNA sequencing, UT-B was found to express universally and substantially throughout the various cells in the central nervous system except for endothelial and smooth muscle cells. UT-B was detected in the third cerebral ventricular wall, granule cell layer of the dentate gyrus, and other parts of the hippocampal, cerebral cortex, substantia nigra, habenular, and lateral hypothalamic nucleus by immunohistochemistry. Compared with the membrane expression of UT-B in glial cells, the subcellular localization of UT-B is in the Golgi apparatus of neurons. Further, the expression of UT-B was regulated by osmotic pressure in vitro. In the experimental traumatic brain injury model (TBI), the number of UT-B positive neurons near the ipsilateral cerebral cortex increased first and then decreased over time, peaking at the 24 h. We inferred that change in UT-B expression after the TBI was an adaptation to changed urea levels. The experimental data suggest that the UT-B may be a potential target for the treatment of TBI and white matter edema.
Collapse
Affiliation(s)
- Boyue Huang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Hongkai Wang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jia Meng
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Guo Z, Niu X, Fu G, Yang B, Chen G, Sun S. SLC14A1 (UT-B) gene rearrangement in urothelial carcinoma of the bladder: a case report. Diagn Pathol 2020; 15:94. [PMID: 32703295 PMCID: PMC7376696 DOI: 10.1186/s13000-020-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common and deadly disease. Over the past decade, a number of genetic alterations have been reported in BC. Bladder urothelium expresses abundant urea transporter UT-B encoded by Slc14a1 gene at 18q12.3 locus, which plays an important role in preventing high concentrated urea-caused cell injury. Early genome-wide association studies (GWAS) showed that UT-B gene mutations are genetically linked to the urothelial bladder carcinoma (UBC). In this study, we examined whether Slc14a1 gene has been changed in UBC, which has never been reported. CASE PRESENTATION A 59-year-old male was admitted to a hospital with the complaint of gross hematuria for 6 days. Ultrasonography revealed a size of 2.8 × 1.7 cm mass lesion located on the rear wall and dome of the bladder. In cystoscopic examination, papillary tumoral lesions 3.0-cm in total diameter were seen on the left wall of the bladder and 2 cm to the left ureteric orifice. Transurethral resection of bladder tumor (TURBT) was performed. Histology showed high-grade non-muscle invasive UBC. Immunostaining was negative for Syn, CK7, CK20, Villin, and positive for HER2, BRCA1, GATA3. Using a fluorescence in situ hybridization (FISH), Slc14a1 gene rearrangement was identified by a pair of break-apart DNA probes. CONCLUSIONS We for the first time report a patient diagnosed with urothelial carcinoma accompanied with split Slc14a1 gene abnormality, a crucial gene in bladder.
Collapse
Affiliation(s)
- Zhongying Guo
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Xiaobing Niu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Guangbo Fu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Su'an Sun
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
12
|
Geng X, Zhang S, He J, Ma A, Li Y, Li M, Zhou H, Chen G, Yang B. The urea transporter UT-A1 plays a predominant role in a urea-dependent urine-concentrating mechanism. J Biol Chem 2020; 295:9893-9900. [PMID: 32461256 PMCID: PMC7380188 DOI: 10.1074/jbc.ra120.013628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Urea transporters are a family of urea-selective channel proteins expressed in multiple tissues that play an important role in the urine-concentrating mechanism of the mammalian kidney. Previous studies have shown that knockout of urea transporter (UT)-B, UT-A1/A3, or all UTs leads to urea-selective diuresis, indicating that urea transporters have important roles in urine concentration. Here, we sought to determine the role of UT-A1 in the urine-concentrating mechanism in a newly developed UT-A1-knockout mouse model. Phenotypically, daily urine output in UT-A1-knockout mice was nearly 3-fold that of WT mice and 82% of all-UT-knockout mice, and the UT-A1-knockout mice had significantly lower urine osmolality than WT mice. After 24-h water restriction, acute urea loading, or high-protein (40%) intake, UT-A1-knockout mice were unable to increase urine-concentrating ability. Compared with all-UT-knockout mice, the UT-A1-knockout mice exhibited similarly elevated daily urine output and decreased urine osmolality, indicating impaired urea-selective urine concentration. Our experimental findings reveal that UT-A1 has a predominant role in urea-dependent urine-concentrating mechanisms, suggesting that UT-A1 represents a promising diuretic target.
Collapse
Affiliation(s)
- Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Yu L, Liu T, Fu S, Li L, Meng X, Su X, Xie Z, Ren J, Meng Y, Lv X, Du Y. Physiological functions of urea transporter B. Pflugers Arch 2019; 471:1359-1368. [PMID: 31734718 PMCID: PMC6882768 DOI: 10.1007/s00424-019-02323-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/04/2022]
Abstract
Urea transporters (UTs) are membrane proteins in the urea transporter protein A (UT-A) and urea transporter protein B (UT-B) families. UT-B is mainly expressed in endothelial cell membrane of the renal medulla and in other tissues, including the brain, heart, pancreas, colon, bladder, bone marrow, and cochlea. UT-B is responsible for the maintenance of urea concentration, male reproductive function, blood pressure, bone metabolism, and brain astrocyte and cardiac functions. Its deficiency and dysfunction contribute to the pathogenesis of many diseases. Actually, UT-B deficiency increases the sensitivity of bladder epithelial cells to apoptosis triggers in mice and UT-B-null mice develop II-III atrioventricular block and depression. The expression of UT-B in the rumen of cow and sheep may participate in digestive function. However, there is no systemic review to discuss the UT-B functions. Here, we update research approaches to understanding the functions of UT-B.
Collapse
Affiliation(s)
- Lanying Yu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Tiantian Liu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Shuang Fu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Li Li
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Xiaoping Meng
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Zhanfeng Xie
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Jiayan Ren
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Yan Meng
- Department of Pathophysiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Xuejiao Lv
- Department of Respiratory Medicine, the Second Affiliated Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China.
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China.
| |
Collapse
|
14
|
Farrell A, Stewart G. Osmotic regulation of UT-B urea transporters in the RT4 human urothelial cell line. Physiol Rep 2019; 7:e14314. [PMID: 31872572 PMCID: PMC6928247 DOI: 10.14814/phy2.14314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 01/23/2023] Open
Abstract
Facilitative UT-B urea transporters play important physiological roles in numerous tissues, including the urino-genital tract. Previous studies have shown that urothelial UT-B transporters are crucial to bladder function in a variety of mammalian species. Using the RT4 bladder urothelial cell line, this study investigated the potential osmotic regulation of human UT-B transporters. Initial end-point PCR experiments confirmed expression of both UT-B1 and UT-B2 transcripts in RT4 cells. Western blotting analysis revealed glycosylated UT-B protein to be highly abundant and immunolocalization experiments showed it was predominantly located on the plasma membrane. Further PCR experiments suggested that a 48 hr, NaCl-induced raise in external osmolality increased expression of UT-B transcripts. Importantly, these NaCl-induced changes also significantly increased UT-B protein abundance (p < .01, n = 7, ANOVA), whereas mannitol-induced changes in external osmolality had no effect (NS, n = 4, ANOVA). Finally, similar increases in both UT-B RNA expression and protein abundance were observed with urea-induced changes to external osmolality (p < .05, n = 4, ANOVA). In conclusion, these findings strongly suggest that increases in external osmolality, via either NaCl or urea, can regulate human urothelial UT-B transporters.
Collapse
Affiliation(s)
- Alan Farrell
- School of Biology & Environmental ScienceScience Centre WestUniversity College DublinDublin 4Ireland
| | - Gavin Stewart
- School of Biology & Environmental ScienceScience Centre WestUniversity College DublinDublin 4Ireland
| |
Collapse
|
15
|
Wang H, Huang B, Wang W, Li J, Chen Y, Flynn T, Zhao M, Zhou Z, Lin X, Zhang Y, Xu M, Li K, Tian K, Yuan D, Zhou P, Hu L, Zhong D, Zhu S, Li J, Chen D, Wang K, Liang J, He Q, Sun J, Shi J, Yan L, Sands JM, Xie Z, Lian X, Xu D, Ran J, Yang B. High urea induces depression and LTP impairment through mTOR signalling suppression caused by carbamylation. EBioMedicine 2019; 48:478-490. [PMID: 31628020 PMCID: PMC6838447 DOI: 10.1016/j.ebiom.2019.09.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models. METHODS A meta-analysis was used to identify the relationship between depression and chronic diseases. Functional Magnetic Resonance Imaging (fMRI) brain scans and common biochemical indexes were compared between the patients and healthy controls. We used behavioural tests, electrophysiology, and molecular profiling techniques to investigate the functional role and molecular basis in mouse models. FINDINGS After performing a meta-analysis, we targeted the relevance between chronic kidney disease (CKD) and depression. In a CKD mouse model and a patient cohort, depression was induced by impairing the medial prefrontal cortex. The enlarged cohort suggested that urea was responsible for depression. In mice, urea was sufficient to induce depression, interrupt long-term potentiation (LTP) and cause loss of synapses in several models. The mTORC1-S6K pathway inhibition was necessary for the effect of urea. Lastly, we identified that the hydrolysate of urea, cyanate, was also involved in this pathophysiology. INTERPRETATION These data indicate that urea accumulation in brain is an independent factor causing depression, bypassing the psychosocial stress. Urea or cyanate carbamylates mTOR to inhibit the mTORC1-S6K dependent dendritic protein synthesis, inducing impairment of synaptic plasticity in mPFC and depression-like behaviour. CKD patients may be able to attenuate depression only by strict management of blood urea.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Weiling Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jinfang Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Trevor Flynn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Meng Zhao
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhou
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yinan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Mengmeng Xu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Keqiong Li
- Chongqing Cancer Research Institute, Chongqing, China
| | - Kuan Tian
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dezhi Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhou
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ling Hu
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jing Li
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dilong Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China; Chongqing Three Gorges Medical College, Chongqing, China
| | - Kejian Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jianhui Liang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Jianbin Sun
- Clinical Laboratory, Peking University Third Hospital, Beijing, China
| | - Jie Shi
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Li Yan
- Ion Channel Explorer Bioscience INC., Beijing, China
| | - Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xuemei Lian
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
16
|
Tian JS, Meng Y, Wu YF, Zhao L, Xiang H, Jia JP, Qin XM. A novel insight into the underlying mechanism of Baihe Dihuang Tang improving the state of psychological suboptimal health subjects obtained from plasma metabolic profiles and network analysis. J Pharm Biomed Anal 2019; 169:99-110. [DOI: 10.1016/j.jpba.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
|
17
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
18
|
Hou R, Kong X, Yang B, Xie Y, Chen G. SLC14A1: a novel target for human urothelial cancer. Clin Transl Oncol 2017; 19:1438-1446. [PMID: 28589430 PMCID: PMC5700210 DOI: 10.1007/s12094-017-1693-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Urinary bladder cancer is the second commonly diagnosed genitourinary malignancy. Previously, bio-molecular alterations have been observed within certain locations such as chromosome 9, retinoblastoma gene and fibroblast growth factor receptor-3. Solute carrier family 14 member 1 (SLC14A1) gene encodes the type-B urea transporter (UT-B) which facilitates the passive movement of urea across cell membrane, and has recently been related with human malignancies, especially for bladder cancer. Herein, we discussed the SLC14A1 gene and UT-B protein properties, aiming to elucidate the expression behavior of SLC14A1 in human bladder cancer. Furthermore, by reviewing some well-established theories regarding the carcinogenesis of bladder cancer, including several genome wide association researches, we have bridged the mechanisms of cancer development with the aberrant expression of SLC14A1. In conclusion, the altered expression of SLC14A1 gene in human urothelial cancer may implicate its significance as a novel target for research.
Collapse
Affiliation(s)
- R Hou
- Department of Urology, China Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - X Kong
- Department of Urology, China Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - B Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Y Xie
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - G Chen
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Physiology, Emory University School of Medicine, Whitehead Research Building Room 615, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
20
|
Hou R, Alemozaffar M, Yang B, Sands JM, Kong X, Chen G. Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer. Front Physiol 2017; 8:245. [PMID: 28503151 PMCID: PMC5409228 DOI: 10.3389/fphys.2017.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 02/01/2023] Open
Abstract
The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesis. In this study, we examined UT-B expression in bladder cancer with human primary bladder cancer tissues and cancer derived cell lines. Human UT-B has two isoforms. We found that normal bladder expresses long form of UT-B2 but was lost in 8 of 24 (33%) or significantly downregulated in 16 of 24 (67%) of primary bladder cancer patients. In contrast, the short form of UT-B1 lacking exon 3 was detected in 20 bladder cancer samples. Surprisingly, a 24-nt in-frame deletion in exon 4 in UT-B1 (UT-B1Δ24) was identified in 11 of 20 (55%) bladder tumors. This deletion caused a functional defect of UT-B1. Immunohistochemistry revealed that UT-B protein levels were significantly decreased in bladder cancers. Western blot analysis showed a weak UT-B band of 40 kDa in some tumors, consistent with UT-B1 gene expression detected by RT-PCR. Interestingly, bladder cancer associate UT-B1Δ24 was barely sialylated, reflecting impaired glycosylation of UT-B1 in bladder tumors. In conclusion, SLC14A1 gene and UT-B protein expression are significantly changed in bladder cancers. The aberrant UT-B expression may promote bladder cancer development or facilitate carcinogenesis induced by other carcinogens.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Urology, China-Japan Union Hospital, Jilin UniversityChangchun, China.,Department of Physiology, Emory University School of MedicineAtlanta, GA, USA
| | | | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking UniversityBeijing, China
| | - Jeff M Sands
- Department of Physiology, Emory University School of MedicineAtlanta, GA, USA.,Renal Division Department of Medicine, Emory University School of MedicineAtlanta, GA, USA
| | - Xiangbo Kong
- Department of Urology, China-Japan Union Hospital, Jilin UniversityChangchun, China
| | - Guangping Chen
- Department of Physiology, Emory University School of MedicineAtlanta, GA, USA.,Renal Division Department of Medicine, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
21
|
Abdelkader NF, Saad MA, Abdelsalam RM. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J Neurochem 2017; 141:449-460. [DOI: 10.1111/jnc.13978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Muhammed A. Saad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
22
|
Jiang T, Li Y, Layton AT, Wang W, Sun Y, Li M, Zhou H, Yang B. Generation and phenotypic analysis of mice lacking all urea transporters. Kidney Int 2017; 91:338-351. [PMID: 27914708 PMCID: PMC5423716 DOI: 10.1016/j.kint.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 01/22/2023]
Abstract
Urea transporters (UT) are a family of transmembrane urea-selective channel proteins expressed in multiple tissues and play an important role in the urine concentrating mechanism of the mammalian kidney. UT inhibitors have diuretic activity and could be developed as novel diuretics. To determine if functional deficiency of all UTs in all tissues causes physiological abnormality, we established a novel mouse model in which all UTs were knocked out by deleting an 87 kb of DNA fragment containing most parts of Slc14a1 and Slc14a2 genes. Western blot analysis and immunofluorescence confirmed that there is no expression of urea transporter in these all-UT-knockout mice. Daily urine output was nearly 3.5-fold higher, with significantly lower urine osmolality in all-UT-knockout mice than that in wild-type mice. All-UT-knockout mice were not able to increase urinary urea concentration and osmolality after water deprivation, acute urea loading, or high protein intake. A computational model that simulated UT-knockout mouse models identified the individual contribution of each UT in urine concentrating mechanism. Knocking out all UTs also decreased the blood pressure and promoted the maturation of the male reproductive system. Thus, functional deficiency of all UTs caused a urea-selective urine-concentrating defect with little physiological abnormality in extrarenal organs.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Abstract
The urea transporter UT-B is expressed in multiple tissues including erythrocytes, kidney, brain, heart, liver, colon, bone marrow, spleen, lung, skeletal muscle, bladder, prostate, and testis in mammals. Phenotype analysis of UT-B-null mice has confirmed that UT-B deletion results in a urea-selective urine-concentrating defect (see Chap. 9 ). The functional significance of UT-B in extrarenal tissues studied in the UT-B-null mouse is discussed in this chapter. UT-B-null mice present depression-like behavior with urea accumulation and nitric oxide reduction in the hippocampus. UT-B deletion causes a cardiac conduction defect, and TNNT2 and ANP expression changes in the aged UT-B-null heart. UT-B also plays a very important role in protecting bladder urothelium from DNA damage and apoptosis by regulating the urea concentration in urothelial cells. UT-B functional deficiency results in urea accumulation in the testis and early maturation of the male reproductive system. These results show that UT-B is an indispensable transporter involved in maintaining physiological functions in different tissues.
Collapse
|
24
|
Esteva-Font C, Anderson MO, Verkman AS. Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 2015; 11:113-23. [PMID: 25488859 PMCID: PMC4743986 DOI: 10.1038/nrneph.2014.219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Dong Z, Ran J, Zhou H, Chen J, Lei T, Wang W, Sun Y, Lin G, Bankir L, Yang B. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS One 2013; 8:e76952. [PMID: 24204711 PMCID: PMC3804579 DOI: 10.1371/journal.pone.0076952] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/28/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. METHODOLOGY/PRINCIPAL FINDINGS Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. CONCLUSIONS/SIGNIFICANCE UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.
Collapse
Affiliation(s)
- Zixun Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Neuroscience Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jihui Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianluo Lei
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guiting Lin
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
| | - Lise Bankir
- INSERM Unit 872, Centre de Recherche des Cordeliers, Paris, France
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Shayakul C, Clémençon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med 2013; 34:313-22. [PMID: 23506873 DOI: 10.1016/j.mam.2012.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 12/12/2012] [Indexed: 11/27/2022]
Abstract
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Collapse
Affiliation(s)
- Chairat Shayakul
- Renal Unit, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | |
Collapse
|
27
|
Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol 2012; 23:1210-20. [PMID: 22491419 PMCID: PMC3380644 DOI: 10.1681/asn.2011070751] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 11/03/2022] Open
Abstract
Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTB(inh)-14, fully and reversibly inhibited urea transport with IC(50) values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTB(inh)-14 competed with urea binding at an intracellular site on the UT-B protein. UTB(inh)-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTB(inh)-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H(2)O lower in UTB(inh)-14-treated mice than vehicle-treated mice. UTB(inh)-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTB(inh)-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport.
Collapse
Affiliation(s)
- Chenjuan Yao
- Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
28
|
Anderson MO, Zhang J, Liu Y, Yao C, Phuan PW, Verkman AS. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J Med Chem 2012; 55:5942-50. [PMID: 22694147 PMCID: PMC3590912 DOI: 10.1021/jm300491y] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urea transporters, which include UT-B in kidney microvessels, are potential targets for development of drugs with a novel diuretic ('urearetic') mechanism. We recently identified, by high-throughput screening, a triazolothienopyrimidine UT-B inhibitor, 1, that selectively and reversibly inhibited urea transport with IC(50) = 25.1 nM and reduced urinary concentration in mice ( Yao et al. J. Am. Soc. Nephrol. , in press ). Here, we analyzed 273 commercially available analogues of 1 to establish a structure-activity series and synthesized a targeted library of 11 analogues to identify potent, metabolically stable UT-B inhibitors. The best compound, {3-[4-(1,1-difluoroethyl)benzenesulfonyl]thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-yl}thiophen-2-ylmethylamine, 3k, had IC(50) of 23 and 15 nM for inhibition of urea transport by mouse and human UT-B, respectively, and ∼40-fold improved in vitro metabolic stability compared to 1. In mice, 3k accumulated in kidney and urine and reduced maximum urinary concentration. Triazolothienopyrimidines may be useful for therapy of diuretic-refractory edema in heart and liver failure.
Collapse
Affiliation(s)
- Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132-4136, United States.
| | | | | | | | | | | |
Collapse
|
29
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|