1
|
Sulayman Aboulqassim NS, Hazem SH, Sharawy MH, Suddek GM. Roflumilast extenuates inflammation and oxidative stress in cadmium-induced hepatic and testicular injury in rats. Int Immunopharmacol 2023; 124:111027. [PMID: 37832240 DOI: 10.1016/j.intimp.2023.111027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Roflumilast (ROF), a highly selective phosphodiesterase-4 inhibitor, has proven anti-inflammatory and immunomodulatory effects on the pulmonary system. However, the protective effects of ROF on cadmium (Cd)-induced hepatic and testicular injury has never been investigated. Adult male Sprague Dawley rats were acutely intoxicated with CdCl2 (3 mg/Kg, ip, qd, for 5 days). In treatment groups, ROF was administered in two doses (1.5 & 3 mg/Kg, po, qd, for 5 days) 2 h prior to CdCl2 intoxication. The results demonstrated that the therapeutic potential of ROF can extend beyond the pulmonary system. The histopathological manifestation of Cd in the liver and testes were evidently mitigated by ROF prophylaxis. This study unraveled the multi-faceted ROF protective mechanisms, these comprise (i) reviving normal liver and testicular architecture, (ii) lessen immune cell infiltration in injured tissues (iii) restoration of cellular oxidant status (GSH, SOD, NO and MDA), (iv) shielding pro-inflammatory signaling pathways (NF-κB, NLRP3, IL-1β axis), (v) dampening endoplasmic reticulum stress (IRE-1), (vi) mitigating apoptotic injury (caspase-3), (vii) restoring the integrity of blood testes barrier (Cathepsin-D) and (viii) promoting the regenerative potentials of injured testes (SDF-1). In conclusion, ROF is a promising anti-inflammatory and anti-oxidative candidate in Cd-induced hepatic and testicular injury.
Collapse
Affiliation(s)
- Naeimah S Sulayman Aboulqassim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology &Toxicology Faculty of Pharmacy, Derna university, Derna, Libya.
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Jadreško D, Miličević A, Jovanović IN. Reactivity of flavonoids toward superoxide radical: An electrochemical approach. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Wu Q, Gurpinar A, Roberts M, Camelliti P, Ruggieri MR, Wu C. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. BIOLOGY 2022; 11:183. [PMID: 35205049 PMCID: PMC8868587 DOI: 10.3390/biology11020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Oxidative inflammatory damage to specialised brain centres may lead to dysfunction of their associated peripheral organs, such as the bladder. However, the source of reactive oxygen species (ROS) in specific brain regions that regulate bladder function is poorly understood. Of all ROS-generating enzymes, the NADPH oxidase (Nox) family produces ROS as its sole function and offers an advantage over other enzymes as a drug-targetable molecule to selectively control excessive ROS. We investigated whether the Nox 2 subtype is expressed in the micturition regulatory periaqueductal gray (PAG) and Barrington's nucleus (pontine micturition centre, PMC) and examined Nox-derived ROS production in these structures. C57BL/6J mice were used; PAG, PMC, cardiac tissue, and aorta were isolated. Western blot determined Nox 2 expression. Lucigenin-enhanced chemiluminescence quantified real-time superoxide production. Western blot experiments demonstrated the presence of Nox 2 in PAG and PMC. There was significant NADPH-dependent superoxide production in both brain tissues, higher than that in cardiac tissue. Superoxide generation in these brain tissues was significantly suppressed by the Nox inhibitor diphenyleneiodonium (DPI) and also reduced by the Nox-2 specific inhibitor GSK2795039, comparable to aorta. These data provide the first evidence for the presence of Nox 2 and Nox-derived ROS production in micturition centres.
Collapse
Affiliation(s)
- Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Ayse Gurpinar
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Maxwell Roberts
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Michael R Ruggieri
- Department of Anatomy & Cell Biology, Temple University, Philadelphia, PA 19122, USA
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
4
|
|
5
|
Coperchini F, Croce L, Pignatti P, Ricci G, Gangemi D, Magri F, Imbriani M, Rotondi M, Chiovato L. The new generation PFAS C6O4 does not produce adverse effects on thyroid cells in vitro. J Endocrinol Invest 2021; 44:1625-1635. [PMID: 33315184 PMCID: PMC8285310 DOI: 10.1007/s40618-020-01466-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Per- and poly-fluoroalkyl-substances (PFASs) are synthetic compounds that raised concern due to their potential adverse effects on human health. Long-chain PFAS were banned by government rules in many states, and thus, new emerging PFAS were recently introduced as substitutes. Among these, Perfluoro{acetic acid, 2-[(5-methoxy-1,3-dioxolan-4-yl)oxy]}, ammonium salt (C6O4) was recently introduced to produce a range of food contact articles and literature data about this compound are scanty. The aim of this study was to evaluate the in vitro effects of exposure to C6O4, compared with PFOA and PFOS on thyroid cells. METHODS FRTL5 rat-thyroid cell lines and normal human thyroid cells (NHT) were incubated with increasing concentrations of C6O4 for 24, 48, 72, and 144 h to assess cell viability by WST-1. Cell viability was confirmed by AnnexinV/PI staining. Long-chain PFAS (PFOA and PFOS) were used at same concentrations as positive controls. The proliferation of cells exposed to C6O4, PFOA, and PFOS was measured by staining with crystal violet and evaluation of optical density after incubation with SDS. Changes in ROS production by FRTL5 and NHT after exposure to C6O4 at short (10, 20, and 30 min) and long-time points (24 h) were evaluated by cytofluorimetry. RESULTS C6O4 exposure did not modify FRTL5 and NHT cell viability at any concentration and/or time points with no induction of necrosis/apoptosis. At difference, PFOS exposure reduced cell viability of FRTL5 while and NHT, while PFOA only in FRTL5. FRTL5 and NHT cell proliferation was reduced by incubation with by PFOA and PFOS, but not with C6O4. ROS production by NHT and FRTL5 cells was not modified after C6O4 exposure, at any time/concentration tested. CONCLUSIONS The present in vitro study constitutes the first evaluation of the potential adverse effects of the new emerging PFAS C6O4 in cultured rat and human thyroid cells, suggesting its safety for thyroid cells in vitro.
Collapse
Affiliation(s)
- F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
| | - L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
- PHD Course in Experimental Medicine, University of Pavia, 27100, Pavia, Italy
| | - P Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - G Ricci
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
| | - D Gangemi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
| | - F Magri
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Zhu J, Liu K, Pei L, Hu X, Cai Y, Ding J, Li D, Han X, Wu J. The mechanisms of mitochondrial dysfunction and glucose intake decrease induced by Microcystin-LR in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111931. [PMID: 33508714 DOI: 10.1016/j.ecoenv.2021.111931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a cyclic heptapeptide; it is an intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. Previous studies have demonstrated that MC-LR induces oxidative stress in granulosa cells by damaging the mitochondria, which eventually leads to follicle atresia and female subfertility. In the present study, granulosa cells were exposed to 0, 0.01, 0.1 and 1 μM MC-LR. After 24 h, we observed changes in mitochondrial cristae morphology and dynamics by analyzing the results of mitochondrial transmission electron microscopy and detecting the expression of DRP1. We also evaluated glucose intake using biochemical assays and expression of glucose transport related proteins. MC-LR exposure resulted in mitochondrial fragmentation and glucose intake decrease in granulosa cells, as shown by increasing mitochondrial fission via dynamin-related protein 1 (DRP1) upregulation and decreasing glucose transporter 1 and 4 (GLUT1 and GLUT4). Furthermore, the expression levels of forkhead box protein M1 (FOXM1) significantly increased due to the overproduction of reactive oxygen species (ROS) after MC-LR exposure. Our results proved that MC-LR exposure causes mitochondrial fragmentation and glucose intake decrease in granulosa cells, which provides new insights to study the molecular mechanism of female reproductive toxicity induced by MC-LR.
Collapse
Affiliation(s)
- Jinling Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Kunyang Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ligang Pei
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Xinyue Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuchen Cai
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Poljsak B, Kovač V, Milisav I. Antioxidants, Food Processing and Health. Antioxidants (Basel) 2021; 10:antiox10030433. [PMID: 33799844 PMCID: PMC8001021 DOI: 10.3390/antiox10030433] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
The loss and/or modification of natural antioxidants during various food processing techniques and storage methods, like heat/thermal, UV, pulsed electric field treatment, drying, blanching and irradiation is well described. Antioxidants in their reduced form are modified mainly by oxidation, and less by pyrolysis and hydrolysis. Thus, they are chemically converted from the reduced to an oxidized form. Here we describe the neglected role of the oxidized forms of antioxidants produced during food processing and their effect on health. While natural antioxidants in their reduced forms have many well studied health-promoting characteristics, much less is known about the effects of their oxidized forms and other metabolites, which may have some health benefits as well. The oxidized forms of natural antioxidants affect cell signaling, the regulation of transcription factor activities and other determinants of gene expression. Very low doses may trigger hormesis, resulting in specific health benefits by the activation of damage repair processes and antioxidative defense systems. Functional studies determining the antioxidants’ effects on the organisms are important, especially as reduced or oxidized antioxidants and their metabolites may have additional or synergistic effects.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-543-7022; Fax: +386-1-543-7021
| |
Collapse
|
8
|
Wang R, Huang X, Ma C, Zhang H. Toxicological Effects of BPDE on Dysfunctions of Female Trophoblast Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:151-160. [PMID: 33523433 DOI: 10.1007/978-981-33-4187-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely spread persistent environmental toxicants. Its typical representative benzo[a]pyrene (BaP) is a human carcinogen. BaP can pass through the placental barrier and is finally metabolized into benzo[a]pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE). BPDE can form DNA adducts, which directly affect the female reproductive health. Based on the special physiological functions of trophoblast cells and its important effect on normal pregnancy, this chapter describes the toxicity and molecular mechanism of BPDE-induced dysfunctions of trophoblast cells. By affecting the invasion, migration, apoptosis, proliferation, inflammation, and hormone secretion of trophoblast cells, BPDE causes diseases such as choriocarcinoma, intrauterine growth restriction, eclampsia, and abortion. In the end, it is expected to provide a scientific basis and prevention approach for women's reproductive health and decision-making basis for the formulation of environmental health standards.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xinying Huang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chenglong Ma
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Caruso G, Fresta CG, Fidilio A, O'Donnell F, Musso N, Lazzarino G, Grasso M, Amorini AM, Tascedda F, Bucolo C, Drago F, Tavazzi B, Lazzarino G, Lunte SM, Caraci F. Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:E281. [PMID: 31390749 PMCID: PMC6720685 DOI: 10.3390/antiox8080281] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2-•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Fergal O'Donnell
- School of Biotechnology, Dublin City University, D09W6Y4 Dublin, Ireland
| | - Nicolò Musso
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Margherita Grasso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
10
|
Manfredi G, Colombo E, Barsotti J, Benfenati F, Lanzani G. Photochemistry of Organic Retinal Prostheses. Annu Rev Phys Chem 2019; 70:99-121. [DOI: 10.1146/annurev-physchem-042018-052445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organic devices are attracting considerable attention as prostheses for the recovery of retinal light sensitivity lost to retinal degenerative disease. The biotic/abiotic interface created when light-sensitive polymers and living tissues are placed in contact allows excitation of a response in blind laboratory rats exposed to visual stimuli. Although polymer retinal prostheses have proved to be efficient, their working mechanism is far from being fully understood. In this review article, we discuss the results of the studies conducted on these kinds of polymer devices and compare them with the data found in the literature for inorganic retinal prostheses, where the working mechanisms are better comprehended. This comparison, which tries to set some reference values and figures of merit, is intended for use as a starting point to determine the direction for further investigation.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy;,
| | - Jonathan Barsotti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy;,
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
11
|
Wang W, Wang R, Zhang Q, Mor G, Zhang H. Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:820-832. [PMID: 29144987 DOI: 10.1016/j.envpol.2017.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE) is an endocrine disrupter and ultimate carcinogenic product of benzo(a)pyrene (BaP). Numerous studies have shown that BPDE causes trophoblast-related diseases, such as preeclampsia, growth restriction or miscarriages. However, the underlying mechanism, especially the mitochondria-related BPDE-induced trophoblast dysfunction remains unknown. In this study, we examined mitochondrial functions in BPDE-induced human trophoblast cell line Swan 71. BPDE decreased cell ability, attenuated cell invasion and HCG secretion, induced cell apoptosis, decreased mitochondrial membrane potential, increased reactive oxygen species (ROS) and MDA, and decreased SOD activity in a dose-dependent manner. In the mechanism, BPDE significantly increased pro-apoptosis protein (P53 and Bak1) and decreased anti-apoptosis protein (Bcl-2). Furthermore, the protein expression levels of mitochondrial fusion genes (Mfn1, Mfn2, and OPA1) were decreased and those of fission genes (Fis1 and Drp1) were increased with increasing concentrations of BPDE and incubation time, resulting in the release of Cyt c and activation of Caspase 3, which irreversibly induced trophoblast cell apoptosis. This study reveals the mechanism of dysfunction of trophoblast cells through cell apoptosis due to the disorder of mitochondrial fission/fusion after exposure to BPDE, providing a further experimental understanding the adverse effects of BaP on trophoblast cells in early pregnancy.
Collapse
Affiliation(s)
- Weiping Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Rong Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, 333 Cedar Street LSOG 305A, New Haven, CT 06520, USA
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Tharmalingam S, Alhasawi A, Appanna VP, Lemire J, Appanna VD. Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 2017. [PMID: 28622140 DOI: 10.1515/hsz-2017-0152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrosative stress results from an increase in reactive nitrogen species (RNS) within the cell. Though the RNS - nitric oxide (·NO) and peroxynitrite (ONOO-) - play pivotal physiological roles, at elevated concentrations, these moieties can be poisonous to both prokaryotic and eukaryotic cells alike due to their capacity to disrupt a variety of essential biological processes. Numerous microbes are known to adapt to nitrosative stress by elaborating intricate strategies aimed at neutralizing RNS. In this review, we will discuss both the enzymatic systems dedicated to the elimination of RNS as well as the metabolic networks that are tailored to generate RNS-detoxifying metabolites - α-keto-acids. The latter has been demonstrated to nullify RNS via non-enzymatic decarboxylation resulting in the production of a carboxylic acid, many of which are potent signaling molecules. Furthermore, as aerobic energy production is severely impeded during nitrosative stress, alternative ATP-generating modules will be explored. To that end, a holistic understanding of the molecular adaptation to nitrosative stress, reinforces the notion that neutralization of toxicants necessitates significant metabolic reconfiguration to facilitate cell survival. As the alarming rise in antimicrobial resistant pathogens continues unabated, this review will also discuss the potential for developing therapies that target the alternative ATP-generating machinery of bacteria.
Collapse
|
13
|
Napierala M, Merritt TA, Mazela J, Jablecka K, Miechowicz I, Marszalek A, Florek E. The effect of tobacco smoke on oxytocin concentrations and selected oxidative stress parameters in plasma during pregnancy and post-partum - an experimental model. Hum Exp Toxicol 2017; 36:135-145. [PMID: 27009111 DOI: 10.1177/0960327116639363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
BACKGROUND Tobacco smoking is a serious threat to life and health of society. Among the most vulnerable to the toxic effects of tobacco smoke are foetuses and newborns. The objective of the research was to assess the impact of tobacco smoke exposure on oxytocin levels and biochemical oxidative stress parameters during pregnancy and after birth in an experimental model. METHODS In the experiment, exposure to tobacco smoke of gravid and non-gravid rats was monitored. A reliable biomarker of exposure - cotinine - was used in the process and it was determined by means of high-performance liquid chromatography with diode array detection, which ensured high analytical accuracy and precision. Determination of oxytocin was performed by means of enzyme-linked immunosorbent assay. The levels of selected oxidative stress parameters: total protein concentration, uric acid, trolox equivalent antioxidant capacity, protein S-nitrosylation and lipid peroxidation (thiobarbituric acid reactive substances) were measured by spectrophotometric methods. RESULTS AND CONCLUSIONS The effect of prenatal and postnatal exposure to tobacco smoke was a lower medium body mass of rat foetuses and pups. Oxidative stress during pregnancy, additionally intensified by tobacco smoke exposure, led to adaptive changes in properties of plasmatic antioxidant barriers. Moreover, the disturbance of oxidoreductive balance by tobacco smoke affects oxytocin fluctuations, what was observed in this study during lactation period. Therefore, women who smoke may breastfeed their children less frequently and for a shorter period.
Collapse
Affiliation(s)
- M Napierala
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - T A Merritt
- 2 School of Medicine, Children's Hospital, Loma Linda University, Loma Linda, California, USA
| | - J Mazela
- 3 Department of Neonatal Infection, Poznan University of Medical Sciences, Poznan, Poland
| | - K Jablecka
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - I Miechowicz
- 4 Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - A Marszalek
- 5 Department of Clinical Pathology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- 6 Department of Oncologic Pathology and Epidemiology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - E Florek
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway. BIOMED RESEARCH INTERNATIONAL 2016. [PMID: 28018916 DOI: 10.1155/2016/9014364.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.
Collapse
|
15
|
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9014364. [PMID: 28018916 PMCID: PMC5149606 DOI: 10.1155/2016/9014364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.
Collapse
|
16
|
Jøraholmen MW, Škalko-Basnet N, Acharya G, Basnet P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci 2015; 79:112-21. [PMID: 26360840 DOI: 10.1016/j.ejps.2015.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Abstract
Resveratrol (RES), chemically known as 3,5,4'-trihydroxy-trans-stilbene, is a promising multi-targeted anti-oxidative and anti-inflammatory natural polyphenol. Preclinical studies showed its biological activities against the pathogens of sexually transmitted diseases causing vaginal inflammation and infections. Due to its low solubility and poor bioavailability, the optimal therapeutic uses are limited. Therefore, a clinically acceptable topical vaginal formulation of RES exhibiting optimal therapeutic effects is highly desirable. For this purpose, we prepared and optimized chitosan-coated liposomes with RES. The coated vesicles (mean diameter 200nm) entrapped up to 77% of RES, a sufficient load to assure required therapeutic outcome. In vitro drug release study showed the ability of liposomes to provide sustained release of RES. In vitro anti-oxidative activities of RES, namely DPPH and ABTS(•+) radicals scavenging assays, confirmed RES to be as potent as standard anti-oxidants, vitamins C and E. The anti-oxidative activities of RES and its corresponding liposomal formulation were also compared by measuring enhanced superoxide dismutase (SOD) activities in lipopolysaccharide (LPS)-induced J774A.1 cells. In vitro anti-inflammatory activities were compared by measuring nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in LPS-induced J774A.1 cells. Liposomal RES was found to exhibit stronger anti-oxidative and anti-inflammatory activities than RES solution.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Tromsø, Norway.
| | - Ganesh Acharya
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway; Women's Health and Perinatology Research Group, Department of Clinical Medicine, Tromsø, Norway.
| | - Purusotam Basnet
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway; Women's Health and Perinatology Research Group, Department of Clinical Medicine, Tromsø, Norway.
| |
Collapse
|
17
|
Yan W, Ji X, Shi J, Li G, Sang N. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. ENVIRONMENTAL RESEARCH 2015; 138:416-424. [PMID: 25791864 DOI: 10.1016/j.envres.2015.02.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Recent epidemiological literatures imply that NO2 is a potential risk factor of neurological disorders. Whereas, the pathogenesis of various neurological diseases has been confirmed correlate to mitochondrial dysfunction, and mitochondria play the crucial roles in energy metabolism, free radicals production and apoptosis triggering in response to neuronal injury. Therefore, to clarify the possible mechanisms for NO2-induced neurotoxicity, in the present study, we investigated the possible effects of acute NO2 inhalation (5, 10 and 20mg/m(3) with 5h/day for 7 days) on energy metabolism and biogenesis in rat cortex, mainly including mitochondrial ultrastructure, mitochondrial membrane potential, cytochrome c oxidase activity, cytochrome c oxidase (CO) and ATP synthase subunits, ATP content, and transcription factors. The results showed that NO2 exposure induced mitochondrial morphological changes in rat cortex, and the alteration was coupled with the abnormality of mitochondrial energy metabolism, including decreased respiratory complexes, reduced ATP production and increased production of ROS. Also, increased ROS in turn caused mitochondrial membrane damage, energy production defect and mitochondrial biogenesis inhibition. It suggests the significantly damaged mitochondrial energy metabolism and impaired biogenesis in rat brain after NO2 exposure, and provides a new understanding of the pathophysiological mechanisms of NO2-induced neurological disorders.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jing Shi
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
18
|
Ratz-Łyko A, Arct J, Majewski S, Pytkowska K. Influence of Polyphenols on the Physiological Processes in the Skin. Phytother Res 2015; 29:509-17. [DOI: 10.1002/ptr.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Ratz-Łyko
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| | - Jacek Arct
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| | - Sławomir Majewski
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
- Department of Dermatology and Venereology; Medical University of Warsaw; Koszykowa 82 A 02-008 Warsaw Poland
| | - Katarzyna Pytkowska
- Faculty of Cosmetology, Department of Cosmetic Chemistry; Academy of Cosmetics and Health Care; Podwale 13, Warsaw 00-252 Poland
| |
Collapse
|
19
|
Si F, Liu Y, Yan K, Zhong W. A mitochondrion targeting fluorescent probe for imaging of intracellular superoxide radicals. Chem Commun (Camb) 2015; 51:7931-4. [DOI: 10.1039/c5cc01075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fluorogenic probe with mitochondria targeting capability was prepared for detection of superoxide radical generation inside mitochondria in living cells.
Collapse
Affiliation(s)
- Fang Si
- College of Chemistry
- Chemical and Biological Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Yang Liu
- Environmental Toxicology Program
- University of California
- Riverside 92521
- USA
| | - Kelu Yan
- College of Chemistry
- Chemical and Biological Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Wenwan Zhong
- Department of Chemistry
- University of California
- Riverside 92521
- USA
- Environmental Toxicology Program
| |
Collapse
|
20
|
|
21
|
Jia M, Wang M, Yang Y, Chen Y, Liu D, Wang X, Song L, Wu J, Yang Y. rAAV/ABAD-DP-6His attenuates oxidative stress-induced injury of PC12 cells. Neural Regen Res 2014; 9:481-8. [PMID: 25206842 PMCID: PMC4153500 DOI: 10.4103/1673-5374.130065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/04/2022] Open
Abstract
Our previous studies have revealed that amyloid β (Aβ)-binding alcohol dehydrogenase (ABAD) decoy peptide antagonizes Aβ42-induced neurotoxicity. However, whether it improves oxidative stress injury remains unclear. In this study, a recombinant adenovirus constitutively secreting and expressing Aβ-ABAD decoy peptide (rAAV/ABAD-DP-6His) was successfully constructed. Our results showed that rAAV/ABAD-DP-6His increased superoxide dismutase activity in hydrogen peroxide-induced oxidative stress-mediated injury of PC12 cells. Moreover, rAAV/ABAD-DP-6His decreased malondialdehyde content, intracellular Ca(2+) concentration, and the level of reactive oxygen species. rAAV/ABAD-DP-6His maintained the stability of the mitochondrial membrane potential. In addition, the ATP level remained constant, and apoptosis was reduced. Overall, the results indicate that rAAV/ABAD-DP-6His generates the fusion peptide, Aβ-ABAD decoy peptide, which effectively protects PC12 cells from oxidative stress injury induced by hydrogen peroxide, thus exerting neuroprotective effects.
Collapse
Affiliation(s)
- Mingyue Jia
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingyu Wang
- Department of Neurology, People's Hospital of Jilin Province, Changchun, Jilin Province, China
| | - Yi Yang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yixin Chen
- Radioactive Medicine Specialty, College of Public Health in Jilin University, Changchun, Jilin Province, China
| | - Dujuan Liu
- Department of Burn and Plastic Surgery, the General Hospital of CNPC in Jilin, Jilin, Jilin Province, China
| | - Xu Wang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Song
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiang Wu
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Yang
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
22
|
Sureda A, Batle JM, Capó X, Martorell M, Córdova A, Tur JA, Pons A. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol Genomics 2014; 46:647-54. [PMID: 25005793 DOI: 10.1152/physiolgenomics.00028.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Scuba diving, characterized by hyperoxia and hyperbaria, could increase reactive oxygen species production which acts as signaling molecules to induce adaptation against oxidative stress. The aim was to study the effects of scuba diving immersion on neutrophil inflammatory response, the induction of oxidative damage, and the NO synthesis. DESIGN Nine male divers performed a dive at 50 m depth for a total time of 35 min. Blood samples were obtained at rest before the dive, after the dive, and 3 h after the diving session. MEASUREMENTS Markers of oxidative and nitrosative damage, nitrite, and the gene expression of genes related with the synthesis of nitric oxide and lipid mediators, cytokine synthesis, and inflammation were determined in neutrophils. RESULTS The mRNA levels of genes related with the inflammatory and immune response of neutrophils, except TNF-α, myeloperoxidase, and toll-like receptor (TLR) 2, significantly increased after the recovery period respect to predive and postdive levels. NF-κB, IL-6, and TLR4 gene expression reported significant differences immediately after diving respect to the predive values. Protein nitrotyrosine levels significantly rose after diving and remained high during recovery, whereas no significant differences were reported in malondialdehyde. Neutrophil nitrite levels as indicative of inducible nitric oxide synthase (iNOS) activity progressively increased after diving and recovery. The iNOS protein levels maintained the basal values in all situations. CONCLUSION Scuba diving which combines hyperoxia, hyperbaria, and acute exercise induces nitrosative damage with increased nitrotyrosine levels and an inflammatory response in neutrophils.
Collapse
Affiliation(s)
- Antoni Sureda
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Juan M Batle
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Xavier Capó
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Miquel Martorell
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Alfredo Córdova
- Department of Biochemistry and Physiology, School of Physical Therapy, University of Valladolid, Soria, Spain
| | - Josep A Tur
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Antoni Pons
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| |
Collapse
|
23
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
24
|
Chiou SS, Tsao CJ, Tsai SM, Wu YR, Liao YM, Lin PC, Tsai LY. Metabolic pathways related to oxidative stress in patients with hemoglobin h disease and iron overload. J Clin Lab Anal 2014; 28:261-8. [PMID: 24577940 DOI: 10.1002/jcla.21676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/14/2013] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Iron overload is a major complication in patients with hemoglobin H (Hb H) disease and causes damage of tissues. METHODS We investigated 26 Hb H patients and 75 controls to evaluate their oxidative stress and antioxidant statuses. RESULTS There were significantly increased levels of superoxide anion in leucocytes, nitrite (NO2-), and malondialdehyde (MDA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx) and oxidized glutathione (GSSG) in erythrocytes, decreased levels of nitrate (NO3-) and vitamin C in plasma, and reduced glutathione (GSH) in erythrocytes, in addition to the abnormal iron status in the patients when compared with those in the controls. Meanwhile, levels of serum ferritin were positively correlated with serum iron, plasma MDA, and erythrocyte SOD in the patients. In addition, the activities of SOD were positively correlated with those of GPx and GRx, and the levels of GSSG and MDA, but negatively correlated with those of GSH. Furthermore, the levels of MDA were negatively correlated those of vitamin C. CONCLUSIONS These results demonstrate the presence of oxidative stress and decreased levels of antioxidants; moreover, the related metabolic antioxidant pathway is active in Hb H patients with iron overload.
Collapse
Affiliation(s)
- Shyh-Shin Chiou
- Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Afanas’ev I. New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis 2014; 5:52-62. [PMID: 24490117 PMCID: PMC3901614 DOI: 10.14336/ad.2014.050052] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022] Open
Abstract
It has been shown that ROS (reactive oxygen species, superoxide and hydrogen peroxide) regulate major epigenetic processes, DNA methylation and histone acetylation, although the mechanism of ROS action (ROS signaling) is still unknown. Both DNA methylation and histone acetylation are nucleophilic processes and therefore ROS signaling through typical free radical processes, for example hydrogen atom abstraction is impossible. However, being "super-nucleophile" superoxide can participate in these reactions. Now we propose new nucleophilic mechanisms of DNA methylation and histone modification. During DNA methylation superoxide can deprotonate the cytosine molecule at C-5 position and by this accelerate the reaction of DNA with the positive-charged intermediate S-adenosyl-L-methionine (SAM). Superoxide can also deprotonate histone N-terminal tail lysines and accelerate the formation of their complexes with acetyl-coenzyme A (AcCoA), the supplier of acetyl groups. In cancer cells ROS enhance DNA methylation causing the silencing of tumor suppressor and antioxidant genes and enhancing the proliferation of cancer cells under condition of oxidative stress. ROS signaling in senescent cells probably causes DNA hypomethylation although there are insufficient data for such proposal.
Collapse
Affiliation(s)
- Igor Afanas’ev
- Correspondence should be addressed to: Dr. Igor Afanas’ev, Rua Vitorino Nemesio 48, 6.1, 2050-638, Porto, Portugal.
| |
Collapse
|
26
|
Karki R, Igwe OJ. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress. PLoS One 2013; 8:e73840. [PMID: 24058497 PMCID: PMC3776800 DOI: 10.1371/journal.pone.0073840] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| | - Orisa J. Igwe
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| |
Collapse
|
27
|
Campolo M, Ahmad A, Crupi R, Impellizzeri D, Morabito R, Esposito E, Cuzzocrea S. Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J Endocrinol 2013; 217:291-301. [PMID: 23532863 DOI: 10.1530/joe-13-0022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by a significant blood-brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether combination therapy with melatonin and dexamethasone (DEX) might improve functional recovery, a controlled cortical impact (CCI) was performed in adult mice, acting as a model of TBI. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The therapy with melatonin (10 mg/kg) and DEX (0.025 mg/kg) is able to reduce edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across the brain sections. Melatonin- and DEX-mediated improvements in tissue histology shown by the reduction in lesion size and an improvement in apoptosis level further support the efficacy of combination therapy. The combination therapy also blocked the infiltration of astrocytes and reduced CCI-mediated oxidative stress. In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated neurological scores. Taken together, our results clearly indicate that combination therapy with melatonin and DEX presents beneficial synergistic effects, and we consider it an avenue for further development of novel combination therapeutic agents in the treatment of TBI that are more effective than a single effector molecule.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Biological and Environmental Sciences, University of Messina, Torre Biologica, Policlinico Universitario Via C Valeria, Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
29
|
Protective effect of arabinose and sugar beet pulp against high glucose-induced oxidative stress in LLC-PK1 cells. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | | | |
Collapse
|
31
|
|
32
|
Kelsen S, He X, Chade AR. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney. Am J Physiol Renal Physiol 2012; 303:F576-83. [PMID: 22622460 DOI: 10.1152/ajprenal.00154.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.
Collapse
Affiliation(s)
- Silvia Kelsen
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
33
|
Zhao G, Zhao Y, Wang X, Xu Y. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons. Neurochem Int 2012; 61:146-55. [PMID: 22580330 DOI: 10.1016/j.neuint.2012.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/13/2012] [Accepted: 05/01/2012] [Indexed: 12/19/2022]
Abstract
NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Cardiovascular Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, PR China
| | | | | | | |
Collapse
|
34
|
Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012; 7:e34504. [PMID: 22485176 PMCID: PMC3317633 DOI: 10.1371/journal.pone.0034504] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Background Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2−), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. Methodology/Principal Findings The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O2− induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. Conclusions/Significance As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Melissa D. Laird
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Dong Han
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Khoi Nguyen
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Erin Scott
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yan Dong
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Darrell W. Brann
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chenevier-Gobeaux C, Simonneau C, Lemarechal H, Bonnefont-Rousselot D, Poiraudeau S, Rannou F, Anract P, Borderie D. Hypoxia induces nitric oxide synthase in rheumatoid synoviocytes: consequences on NADPH oxidase regulation. Free Radic Res 2012; 46:628-36. [DOI: 10.3109/10715762.2012.662276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Carreras A, Mateos-Martín ML, Velázquez-Palenzuela A, Brillas E, Sánchez-Tena S, Cascante M, Juliá L, Torres JL. Punicalagin and catechins contain polyphenolic substructures that influence cell viability and can be monitored by radical chemosensors sensitive to electron transfer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1659-1665. [PMID: 22280119 DOI: 10.1021/jf204059x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.
Collapse
Affiliation(s)
- Anna Carreras
- Department of Biological Chemistry and Molecular Modelling, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Villanueva C, Kross RD. Antioxidant-induced stress. Int J Mol Sci 2012; 13:2091-2109. [PMID: 22408440 PMCID: PMC3292009 DOI: 10.3390/ijms13022091] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/30/2012] [Accepted: 02/13/2012] [Indexed: 12/31/2022] Open
Abstract
Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these "drugs". The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that "antioxidant-induced stress" results when antioxidants overwhelm the body's free radicals.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina del IPN, Posgrado e Investigacion, Plan de San Luis y Salvador Diaz Miron S/N, Colonia Casco de Santo Tomas, Mexico, DF. 11340, Mexico
| | | |
Collapse
|
38
|
Affiliation(s)
- Sukru Oter
- Department of Physiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - H J Damien Dorman
- Division of Pharmacognosy, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
39
|
|
40
|
Lam YT, Aung-Htut MT, Lim YL, Yang H, Dawes IW. Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic Biol Med 2011; 50:963-70. [PMID: 21255640 DOI: 10.1016/j.freeradbiomed.2011.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Increased reactive oxygen species (ROS) are a feature of aging cells, but little is known about when ROS generation begins as cells age. Here we show how ROS change in Saccharomyces cerevisiae cells throughout their early replicative life span using the fluorescent ROS indicator dihydroethidium (DHE), which has some specificity for the superoxide anion. Cells in a particular age range were heterogeneous with respect to their ROS burden. Surprisingly, some cells as young as 5-7 generations acquired a greatly increased level of ROS detected by DHE relative to virgin cells. By 12 generations 50% of cells had a substantial ROS burden despite being only halfway through their life span. In contrast to the wild type, cells of a sir2 mutant had lower levels of ROS reacting with DHE. Daughters from older mothers had low ROS levels, and this asymmetric distribution of ROS was SIR2-independent. Mitochondrial fragmentation also began to occur in cells after 4 generations and increased markedly as cells aged. Daughter cells regenerated normal tubular mitochondria despite the fragmentation of mitochondria in the mother cells, whereas daughters of the sir2 mutant had fragmented mitochondria at all ages.
Collapse
Affiliation(s)
- Yuen T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
41
|
Zhang Y, Zhang HM, Shi Y, Lustgarten M, Li Y, Qi W, Zhang BX, Van Remmen H. Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts. Free Radic Biol Med 2010; 49:1255-62. [PMID: 20638473 PMCID: PMC3418666 DOI: 10.1016/j.freeradbiomed.2010.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/18/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
Manganese superoxide dismutase (MnSOD) in the mitochondria plays an important role in cellular defense against oxidative damage. Homozygous MnSOD knockout (Sod2(-/-)) mice are neonatal lethal, indicating the essential role of MnSOD in early development. To investigate the potential cellular abnormalities underlying the aborted development of Sod2(-/-) mice, we examined the growth of isolated mouse embryonic fibroblasts (MEFs) from Sod2(-/-) mice. We found that the proliferation of Sod2(-/-) MEFs was significantly decreased compared with wild-type MEFs despite the absence of morphological differences. The Sod2(-/-) MEFs produced less cellular ATP, had lower O(2) consumption, generated more superoxide, and expressed less Prdx3 protein. Furthermore, the loss of MnSOD dramatically altered several markers involved in cell proliferation and growth, including decreased growth stimulatory function of mTOR signaling and enhanced growth inhibitory function of GSK-3β signaling. Interestingly, the G-protein-coupled receptor-mediated intracellular Ca(2+) signal transduction was also severely suppressed in Sod2(-/-) MEFs. Finally, the ratio of microtubule-associated protein light chain 3 (LC3)-II/LC3-I, an index of autophagic activity, was increased in Sod2(-/-) MEFs, consistent with a reduction in mTOR signal transduction. These data demonstrate that MnSOD deficiency results in alterations in several key signaling pathways, which may contribute to the lethal phenotype of Sod2(-/-) mice.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Hong-Mei Zhang
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yun Shi
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Michael Lustgarten
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yan Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Wenbo Qi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Bin-Xian Zhang
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Holly Van Remmen
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
42
|
Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S401-12. [PMID: 20463393 DOI: 10.3233/jad-2010-100666] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles. Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Al-Azemi M, Refaat B, Amer S, Ola B, Chapman N, Ledger W. The expression of inducible nitric oxide synthase in the human fallopian tube during the menstrual cycle and in ectopic pregnancy. Fertil Steril 2010; 94:833-40. [DOI: 10.1016/j.fertnstert.2009.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 02/25/2009] [Accepted: 04/08/2009] [Indexed: 01/22/2023]
|
44
|
Ahmad A, Banerjee S, Wang Z, Kong D, Majumdar APN, Sarkar FH. Aging and inflammation: etiological culprits of cancer. Curr Aging Sci 2010; 2:174-86. [PMID: 19997527 DOI: 10.2174/1874609810902030174] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biochemical phenomenon of aging, as universal as it is, still remains poorly understood. A number of diseases are associated with aging either as a cause or consequence of the aging process. The incidence of human cancers increases exponentially with age and therefore cancer stands out as a disease that is intricately connected to the process of aging. Emerging evidence clearly suggests that there is a symbiotic relationship between aging, inflammation and chronic diseases such as cancer; however, it is not clear whether aging leads to the induction of inflammatory processes thereby resulting in the development and maintenance of chronic diseases or whether inflammation is the causative factor for inducing both aging and chronic diseases such as cancer. Moreover, the development of chronic diseases especially cancer could also lead to the induction of inflammatory processes and may cause premature aging, suggesting that longitudinal research strategies must be employed for dissecting the interrelationships between aging, inflammation and cancer. Here, we have described our current understanding on the importance of inflammation, activation of NF-kappaB and various cytokines and chemokines in the processes of aging and in the development of chronic diseases especially cancer. We have also reviewed the prevailing theories of aging and provided succinct evidence in support of novel theories such as those involving cancer stem cells, the molecular understanding of which would likely hold a great promise towards unraveling the complex relationships between aging, inflammation and cancer.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
45
|
Shaw JLV, Dey SK, Critchley HOD, Horne AW. Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum Reprod Update 2010; 16:432-44. [PMID: 20071358 DOI: 10.1093/humupd/dmp057] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An ectopic pregnancy is a pregnancy which occurs outside of the uterine cavity, and over 98% implant in the Fallopian tube. Tubal ectopic pregnancy remains the most common cause of maternal mortality in the first trimester of pregnancy. The epidemiological risk factors for tubal ectopic pregnancy are well established and include: tubal damage as a result of surgery or infection (particularly Chlamydia trachomatis), smoking and in vitro fertilization. This review appraises the data to date researching the aetiology of tubal ectopic pregnancy. METHODS Scientific literature was searched for studies investigating the underlying aetiology of tubal ectopic pregnancy. RESULTS Existing data addressing the underlying cause of tubal ectopic pregnancy are mostly descriptive. There are currently few good animal models of tubal ectopic pregnancy. There are limited data explaining the link between risk factors and tubal implantation. CONCLUSIONS Current evidence supports the hypothesis that tubal ectopic pregnancy is caused by a combination of retention of the embryo within the Fallopian tube due to impaired embryo-tubal transport and alterations in the tubal environment allowing early implantation to occur. Future studies are needed that address the functional consequences of infection and smoking on Fallopian tube physiology. A greater understanding of the aetiology of tubal ectopic pregnancy is critical for the development of improved preventative measures, the advancement of diagnostic screening methods and the development of novel treatments.
Collapse
Affiliation(s)
- J L V Shaw
- Centre for Reproductive Biology, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
46
|
Abstract
The significance of reactive oxygen species (ROS) as aggravating or primary factors in numerous pathologies is widely recognized, with mitochondria being considered the major intracellular source of ROS. It is not yet possible to routinely measure mitochondrial ROS in animals or cultured cells with a reasonable degree of certainty. However, at the level of isolated mitochondria, one can easily monitor and quantify the rate of ROS production, identify major sites of ROS production, and compare the rates of ROS production in mitochondria isolated from normal and diseased tissue. In this chapter, we describe in detail the most recent and reliable method to measure mitochondrial ROS as the rate of H2O2 emission. This method may be employed with minimal modifications to measure H2O2 production by mitochondria isolated from various tissues and under a wide variety of experimental conditions.
Collapse
|
47
|
Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:29-44. [PMID: 19733240 DOI: 10.1016/j.bbadis.2009.08.013] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/21/2022]
Abstract
Mitochondria are highly dynamic organelles which fulfill a plethora of functions. In addition to their prominent role in energy metabolism, mitochondria are intimately involved in various key cellular processes, such as the regulation of calcium homeostasis, stress response and cell death pathways. Thus, it is not surprising that an impairment of mitochondrial function results in cellular damage and is linked to aging and neurodegeneration. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD), starting in the early 1980s with the observation that an inhibitor of complex I of the electron transport chain can induce parkinsonism. Remarkably, recent research indicated that several PD-associated genes interface with pathways regulating mitochondrial function, morphology, and dynamics. In fact, sporadic and familial PD seem to converge at the level of mitochondrial integrity.
Collapse
|
48
|
Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 2009; 1147:37-52. [PMID: 19076429 DOI: 10.1196/annals.1427.015] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative stress is considered a major contributor to the etiology of both "normal" senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is "dissected" into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS-producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS-dependent intracellular signaling is discussed.
Collapse
|
49
|
Chen XJ, West AC, Cropek DM, Banta S. Detection of the Superoxide Radical Anion Using Various Alkanethiol Monolayers and Immobilized Cytochrome c. Anal Chem 2008; 80:9622-9. [DOI: 10.1021/ac800796b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaojun J. Chen
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Donald M. Cropek
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| |
Collapse
|
50
|
Salerno JC. Neuronal nitric oxide synthase: prototype for pulsed enzymology. FEBS Lett 2008; 582:1395-9. [PMID: 18396171 DOI: 10.1016/j.febslet.2008.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
The established paradigm in understanding and describing enzyme activity uses formalisms based on steady-state assumptions, including Michaelis-Menten and King-Altman approaches. These are appropriate for enzymes operating under steady-state conditions. Signal generating enzymes transfer information, rather than material. Because the information capacity of a signal channel depends on frequency, steady-state descriptions may not be appropriate. Recently, Stuehr and coworkers described a novel product inhibition mechanism for NO synthases. Simulations presented here suggest that at physiological temperatures neuronal nitric oxide synthase produces sharp pulses of NO, consistent with its signaling function. These temporal pulses greatly restrict the effective spatial range of NO signaling.
Collapse
Affiliation(s)
- John C Salerno
- Biology Department, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144, USA.
| |
Collapse
|