1
|
Chen Y, Feng S, Zhang M, Li S, Zhang N, Han J, Liu Z, Liu M, Wang Q. Cetirizine platinum(IV) complexes with antihistamine properties inhibit tumor metastasis by suppressing angiogenesis and boosting immunity. J Inorg Biochem 2025; 262:112766. [PMID: 39476503 DOI: 10.1016/j.jinorgbio.2024.112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
The histamine (HA) in tumors plays critical roles in promoting metastasis. Herein, a series of cetirizine (CTZ) platinum(IV) complexes with antihistamine properties were developed as antimetastatic agents. Dual CTZ platinum(IV) complex with cisplatin core was screened out as a candidate displaying potent antiproliferative activities. More importantly, it exerted promising antimetastatic properties both in vitro and in vivo. Investigation of the mechanism revealed that serious DNA damage was induced, which further led to the upregulation of histone H2AX (γ-H2AX) and P53. The mitochondria-mediated apoptosis was ignited through the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax)/caspase3 pathway. Moreover, the HA-histamine receptor H1 (HRH1) axis was inhibited, then the key signaling phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) was suppressed. Subsequently, the angiogenesis in tumors was restrained by suppressing the inflammatory and hypoxic microenvironment. Then, the antitumor immunity was reinforced by increasing the CD3+ and CD8+ T cells and promoting the polarization of macrophages from M2- to M1-type, which was associated with the blockade of programmed cell death ligand-1 (PD-L1) expression in tumors.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Sağlam-Çifci E, Güleç İ, Şengelen A, Karagöz-Güzey F, Eren B, Paşaoğlu HE, Önay-Uçar E. The H 4R antagonist, JNJ-7777120 treatments ameliorate mild traumatic brain injury by reducing oxidative damage, inflammatory and apoptotic responses through blockage of the ERK1/2/NF-κB pathway in a rat model. Exp Neurol 2024; 385:115133. [PMID: 39732275 DOI: 10.1016/j.expneurol.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (H4R) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma. Herein, we investigated the neuroprotective effects of JNJ-7777120 (shortly JNJ) in a mild traumatic brain injury (mTBI). mTBI setup was performed using a weight-drop model in adult male Sprague-Dawley rats. JNJ (1 mg/kg, twice/day for 7 days) was intraperitoneally administered following mTBI. Modified neurological severity score and beam-walking test used to assess motor, sensory, reflex, and balance functions (post-TBI days-1/3/7) showed that JNJ had significantly improved these functions. HE-staining revealed reduced neurodegenerative cells after JNJ-treatments compared to vehicle (2.85 % DMSO) treated group. JNJ also decreased the injury-induced apoptosis (Bax/Bcl-2, cleaved-Cas-3, cleaved-PARP1), oxidative (4HNE, MDA), and inflammatory (IBA1, TNF-α, IL-1β, IL-6, and IL-10) responses. Furthermore, blocking the activation of the ERK1/2/NF-κB pathway was determined to be involved in its therapeutic mechanism. The network pharmacology analyses for JNJ-7777120 and TBI confirmed the importance of targeting neurotransmitter receptor activity, signaling receptor activity, and kinase activation. Our results provide the first proof of the efficacy of an H4R antagonist in a mild TBI rat model and suggest that H4R targeting by JNJ-treatment might be a promising therapeutic approach to clinically halt the progression of brain injury.
Collapse
Affiliation(s)
- Ece Sağlam-Çifci
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - İlker Güleç
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Feyza Karagöz-Güzey
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Burak Eren
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| |
Collapse
|
3
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2024; 134:1256-1281. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
5
|
Hassanen EI, Mansour HA, Issa MY, Ibrahim MA, Mohamed WA, Mahmoud MA. Epigallocatechin gallate-rich fraction alleviates histamine-induced neurotoxicity in rats via inactivating caspase-3/JNK signaling pathways. Food Chem Toxicol 2024; 193:115021. [PMID: 39322001 DOI: 10.1016/j.fct.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100-200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
6
|
Pehar M, Hewitt M, Wagner A, Sandhu JK, Khalili A, Wang X, Cho JY, Sim VL, Kulka M. Histamine stimulates human microglia to alter cellular prion protein expression via the HRH2 histamine receptor. Sci Rep 2024; 14:25519. [PMID: 39462031 PMCID: PMC11513956 DOI: 10.1038/s41598-024-75982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Although the cellular prion protein (PrPC) has been evolutionarily conserved, the role of this protein remains elusive. Recent evidence indicates that PrPC may be involved in neuroinflammation and the immune response in the brain, and its expression may be modified via various mechanisms. Histamine is a proinflammatory mediator and neurotransmitter that stimulates numerous cells via interactions with histamine receptors 1-4 (HRH1-4). Since microglia are the innate immune cells of the central nervous system, we hypothesized that histamine-induced stimulation regulates the expression of PrPC in human-derived microglia. The human microglial clone 3 (HMC3) cell line was treated with histamine, and intracellular calcium levels were measured via a calcium flux assay. Cytokine production was monitored by enzyme-linked immunosorbent assay (ELISA). Western blotting and quantitative reverse transcription-polymerase chain reaction were used to determine protein and gene expression of HRH1-4. Flow cytometry and western blotting were used to measure PrPC expression levels. Fluorescence microscopy was used to examine Iba-1 and PrPC localization. HMC3 cells stimulated by histamine exhibited increased intracellular calcium levels and increased release of IL-6 and IL-8, while also modifying PrPC localization. HMC3 stimulated with histamine for 6 and 24 hours exhibited increased surface PrPC expression. Specifically, we found that stimulation of the HRH2 receptor was responsible for changes in surface PrPC. Histamine-induced increases in surface PrPC were attenuated following inhibition of the HRH2 receptor via the HRH2 antagonist ranitidine. These changes were unique to HRH2 activation, as stimulation of HRH1, HRH3, or HRH4 did not alter surface PrPC. Prolonged stimulation of HMC3 decreased PrPC expression following 48 and 72 hours of histamine stimulation. HMC3 cells can be stimulated by histamine to undergo intracellular calcium influx. Surface expression levels of PrPC on HMC3 cells are altered by histamine exposure, primarily mediated by HRH2. While histamine exposure also increases release of IL-6 and IL-8 in these cells, this cytokine release is not fully dependent on PrPC levels, as IL-6 release is only partially reduced and IL-8 release is unchanged under the conditions of HRH2 blockade that prevent PrPC changes. Overall, this suggests that PrPC may play a role in modulating microglial responses.
Collapse
Affiliation(s)
- Marcus Pehar
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Ashley Wagner
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aria Khalili
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Valerie L Sim
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Neelotpol S, Rezwan R, Singh T, Mayesha II, Saba S, Jamiruddin MR. Pharmacological intervention of behavioural traits and brain histopathology of prenatal valproic acid-induced mouse model of autism. PLoS One 2024; 19:e0308632. [PMID: 39316620 PMCID: PMC11421774 DOI: 10.1371/journal.pone.0308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/27/2024] [Indexed: 09/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is one of the leading causes of distorted social communication, impaired speech, hyperactivity, anxiety, and stereotyped repetitive behaviour. The aetiology of ASD is complex; therefore, multiple drugs have been suggested to manage the symptoms. Studies with histamine H3 receptor (H3R) blockers and acetylcholinesterase (AchE) blockers are considered potential therapeutic agents for the management of various cognitive impairments. Therefore, the aim of this study was to evaluate the neuro-behavioural effects of Betahistine, an H3R antagonist, and Donepezil, an acetylcholinesterase inhibitor on Swiss albino mouse model of autism. The mice were intraperitoneally injected with valproic acid (VPA) on the embryonic 12.5th day to induce autism-like symptoms in their offspring. This induced autism-like symptoms persists throughout the life. After administration of different experimental doses, various locomotor tests: Open Field, Hole-Board, Hole Cross and behavioural tests by Y-Maze Spontaneous Alternation and histopathology of brain were performed and compared with the control and negative control (NC1) groups of mice. The behavioural Y-Maze test exhibits significant improvement (p <0.01) on the short term memory of the test subjects upon administration of lower dose of Betahistine along with MAO-B inhibitor Rasagiline once compared with the NC1 group (VPA-exposed mice). Furthermore, the tests showed significant reduction in locomotion in line crossing (p <0.05), rearing (p <0.001) of the Open Field Test, and the Hole Cross Test (p <0.01) with administration of higher dose of Betahistine. Both of these effects were observed upon administration of acetylcholinesterase inhibitor, Donepezil. Brain-histopathology showed lower neuronal loss and degeneration in the treated groups of mice in comparison with the NC1 VPA-exposed mice. Administration of Betahistine and Rasagiline ameliorates symptoms like memory deficit and hyperactivity, proving their therapeutic effects. The effects found are dose dependent. The findings suggest that H3R might be a viable target for the treatment of ASD.
Collapse
Affiliation(s)
| | - Rifat Rezwan
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Timothy Singh
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | | | - Sayedatus Saba
- Department of Clinical Pathology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
9
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Park JE, Yun JH, Lee W, Lee JS. C-ter100 peptide derived from Vibrio vEP-45 protease acts as a pathogen-associated molecular pattern to induce inflammation and innate immunity. PLoS Pathog 2024; 20:e1012474. [PMID: 39186780 PMCID: PMC11379387 DOI: 10.1371/journal.ppat.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/06/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1β secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
13
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
14
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
15
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
16
|
Zhou Z, An Q, Zhang W, Li Y, Zhang Q, Yan H. Histamine and receptors in neuroinflammation: Their roles on neurodegenerative diseases. Behav Brain Res 2024; 465:114964. [PMID: 38522596 DOI: 10.1016/j.bbr.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Histamine, an auto-reactive substance and mediator of inflammation, is synthesized from histidine through the action of histidine decarboxylase (HDC). It primarily acts on histamine receptors in the central nervous system (CNS). Increasing evidence suggests that histamine and its receptors play a crucial role in neuroinflammation, thereby modulating the pathology of neurodegenerative diseases. Recent studies have demonstrated that histamine regulates the phenotypic switching of microglia and astrocytes, inhibits the production of pro-inflammatory cytokines, and alleviates inflammatory responses. In the CNS, our research group has also found that histamine and its receptors are involved in regulating inflammatory responses and play a central role in ameliorating chronic neuroinflammation in neurodegenerative diseases. In this review, we will discuss the role of histamine and its receptors in neuroinflammation associated with neurodegenerative diseases, potentially providing a novel therapeutic target for the treatment of chronic neuroinflammation-related neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qi An
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Wanying Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qihang Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
17
|
Hernández-Rodríguez M, Mera Jiménez E, Nicolás-Vázquez MI, Miranda-Ruvalcaba R. Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model. Int J Mol Sci 2024; 25:3710. [PMID: 38612521 PMCID: PMC11012231 DOI: 10.3390/ijms25073710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (M.I.N.-V.); (R.M.-R.)
| | - Rene Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (M.I.N.-V.); (R.M.-R.)
| |
Collapse
|
18
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
19
|
Mohamed WA, Hassanen EI, Mansour HA, Ibrahim MA, Azouz RA, Mahmoud MA. Novel insights on the probable mechanism associated with histamine oral model-inducing neuropathological and behavioral toxicity in rats. J Biochem Mol Toxicol 2024; 38:e23653. [PMID: 38348711 DOI: 10.1002/jbt.23653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Histamine (HIS) is an important chemical mediator that causes vasodilation and contributes to anaphylactic reactions. Recently, HIS is an understudied neurotransmitter in the central nervous system, and its potential role in neuroinflammation and neurodegeneration is a critical area of research. So, the study's goal is to investigate the consequences of repeated oral intake of HIS on the rat's brain and explore the mechanistic way of its neurotoxicity. Thirty male rats were divided into three groups (n = 10). The following treatments were administered orally to all rats every day for 14 days. Group (1) was given distilled water, whereas groups (2 & 3) were given HIS at dosage levels 250 and 500 mg/kg body weight (BWT), respectively. Brain tissue samples were collected at 7- and 14-days from the beginning of the experiment. Our results revealed that continuous oral administration of HIS at both doses for 14 days significantly reduced the BWT and induced severe neurobehavioral changes, including depression, dullness, lethargy, tremors, abnormal walking, and loss of spatial learning and memory in rats. In all HIS receiving groups, HPLC data showed a considerable raise in the HIS contents of the brain. Additionally, the daily consumption of HIS causes oxidative stress that is dose- and time-dependent which is characterized by elevation of malondialdehyde levels along with reduction of catalase activity and reduced glutathione levels. The neuropathological lesions were commonly observed in the cerebrum, striatum, and cerebellum and confirmed by the immunohistochemistry staining that demonstrating moderate to strong caspase-3 and inducible nitric oxide synthase expressions in all HIS receiving groups, mainly those receiving 500 mg/kg HIS. NF-κB, TNF-α, and IL-1β gene levels were also upregulated at 7- and 14-days in all HIS groups, particularly in those getting 500 mg/kg. We concluded that ROS-induced apoptosis and inflammation was the essential mechanism involved in HIS-mediated neurobehavioral toxicity and histopathology.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab A Azouz
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
21
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
22
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Bhuiyan P, Sun Z, Chen Y, Qian Y. Peripheral surgery triggers mast cells activation: Focusing on neuroinflammation. Behav Brain Res 2023; 452:114593. [PMID: 37499912 DOI: 10.1016/j.bbr.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Peripheral surgery can lead to a systemic aseptic inflammatory response comprising several mediators aiming at restoring tissue homeostasis. It induces inflammatory mechanisms through neuroimmune interaction between the periphery and to brain which also plays a critical role in causing cognitive impairments. Accumulating scientific evidence revealed that acute neuroinflammation of the brain triggered by peripheral surgery that causes peripheral inflammation leads to transmitting signals into the brain through immune cells. Mast cells (MCs) play an important role in the acute neuroinflammation induced by peripheral surgical trauma. After peripheral surgery, brain-resident MCs can be rapidly activated followed by releasing histamine, tryptase, and other inflammatory mediators. These mediators then interact with other immune cells in the peripheral and amplify the signal into the brain by disrupting BBB and activating principle innate immune cells of brain including microglia, astrocytes, and vascular endothelial cells, which release abundant inflammatory mediators and in turn accelerate the activation of brain MCs, amplify the cascade effect of neuroinflammatory response. Surgical stress may induce HPA axis activation by releasing corticotropin-releasing hormone (CRH) subsequently influence the activation of brain MCs, thus resulting in impaired synaptic plasticity. Herein, we discuss the better understating of MCs mediated neuroinflammation mechanisms after peripheral surgery and potential therapeutic targets for controlling inflammatory cascades.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Khayer N, Motamed N, Marashi SA, Goshadrou F. RT-DOb, a switch gene for the gene pair {Csf1r, Milr1}, can influence the onset of Alzheimer's disease by regulating communication between mast cell and microglia. PLoS One 2023; 18:e0288134. [PMID: 37410787 DOI: 10.1371/journal.pone.0288134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Olejarz-Maciej A, Mogilski S, Karcz T, Werner T, Kamińska K, Kupczyk J, Honkisz-Orzechowska E, Latacz G, Stark H, Kieć-Kononowicz K, Łażewska D. Trisubstituted 1,3,5-Triazines as Histamine H 4 Receptor Antagonists with Promising Activity In Vivo. Molecules 2023; 28:molecules28104199. [PMID: 37241939 DOI: 10.3390/molecules28104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.
Collapse
Affiliation(s)
- Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kamińska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jarosław Kupczyk
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
26
|
Chen J, Song J, Plaisance-Bonstaff K, Mu S, Post SR, Dai L, Qin Z. Role of Histamine and Related Signaling in Kaposi's Sarcoma-Associated Herpesvirus Pathogenesis and Oncogenesis. Viruses 2023; 15:1011. [PMID: 37112991 PMCID: PMC10142667 DOI: 10.3390/v15041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Although Kaposi's sarcoma-associated herpesvirus (KSHV) has been reported to cause several human cancers including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), the mechanisms of KSHV-induced tumorigenesis, especially virus-host interaction network, are still not completely understood, which therefore hinders the development of effective therapies. Histamine, together with its receptors, plays an important role in various allergic diseases by regulating different inflammation and immune responses. Our previous data showed that antagonists targeting histamine receptors effectively repressed KSHV lytic replication. In the current study, we determined that histamine treatment increased cell proliferation and anchorage-independent growth abilities of KSHV-infected cells. Furthermore, histamine treatment affected the expression of some inflammatory factors from KSHV-infected cells. For clinical relevance, several histamine receptors were highly expressed in AIDS-KS tissues when compared to normal skin tissues. We determined that histamine treatment promoted KSHV-infected lymphoma progression in immunocompromised mice models. Therefore, besides viral replication, our data indicate that the histamine and related signaling are also involved in other functions of KSHV pathogenesis and oncogenesis.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jiao Song
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Shengyu Mu
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Selvaraj DB, Vergil Andrews JF, Anusuyadevi M, Kandasamy M. Ranitidine Alleviates Anxiety-like Behaviors and Improves the Density of Pyramidal Neurons upon Deactivation of Microglia in the CA3 Region of the Hippocampus in a Cysteamine HCl-Induced Mouse Model of Gastrointestinal Disorder. Brain Sci 2023; 13:266. [PMID: 36831809 PMCID: PMC9953842 DOI: 10.3390/brainsci13020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Elevated levels of histamine cause over-secretion of gastric hydrochloric acid (HCl), leading to gastrointestinal (GI) disorders and anxiety. Ranitidine is an antihistamine drug widely used in the management of GI disorders, as it works by blocking the histamine−2 receptors in parietal cells, thereby reducing the production of HCl in the stomach. While some reports indicate the neuroprotective effects of ranitidine, its role against GI disorder-related anxiety remains unclear. Therefore, we investigated the effect of ranitidine against anxiety-related behaviors in association with changes in neuronal density in the hippocampal cornu ammonis (CA)–3 region of cysteamine hydrochloride-induced mouse model of GI disorder. Results obtained from the open field test (OFT), light and dark box test (LDBT), and elevated plus maze (EPM) test revealed that ranitidine treatment reduces anxiety-like behaviors in experimental animals. Nissl staining and immunohistochemical assessment of ionized calcium-binding adapter molecule (Iba)-1 positive microglia in cryosectioned brains indicated enhanced density of pyramidal neurons and reduced activation of microglia in the hippocampal CA–3 region of brains of ranitidine-treated experimental mice. Therefore, this study suggests that ranitidine mediates anxiolytic effects, which can be translated to establish a pharmacological regime to ameliorate anxiety-related symptoms in humans.
Collapse
Affiliation(s)
- Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
28
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Hassanen EI, Kamel S, Mohamed WA, Mansour HA, Mahmoud MA. The potential mechanism of histamine-inducing cardiopulmonary inflammation and apoptosis in a novel oral model of rat intoxication. Toxicology 2023; 484:153410. [PMID: 36565801 DOI: 10.1016/j.tox.2022.153410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Histamine (HIS) is a potent vasodilator that contributes to anaphylactic reactions. Our investigation aims to study the possible toxic impact of repeated oral administration of histamine on the target organs of HIS poisoning (lung & heart) in rats as a model of scombroid poisoning. We used 15 rats that were separated into three groups with 5 rats in each. All rats received the treatments orally for 14 days as follows; (1): distilled water, (2) HIS at a dosage level of 250 mg/kg BWT daily and (3) HIS at a dosage level of 1750 mg/kg BWT weekly. Our results revealed that the consumption of HIS either daily or weekly could cause marked cardiopulmonary toxicity in rats. HIS can trigger inflammatory reactions in the cardiopulmonary tissues and induce oxidative stress damage along with apoptosis of such organs. HIS was markedly increase the MDA levels and decrease the CAT and GSH activity in both lung and heart tissues. The main pathological lesion observed is inflammation which was confirmed by immunohistochemistry and demonstrated strong iNOS and TNF-α protein expressions. Cardiac muscles showed extensive degeneration and necrosis and displayed strong casp-3 protein expression. Additionally, all HIS receiving groups noticed marked elevation of the pulmonary transcription levels of Cox2, TNF-α, and IL1β along with substantial elevation of casp-3 and bax genes and downregulation of Bcl2 gene in the cardiac tissue. We concluded that the oral administration of HIS either daily or weekly can induce cardiopulmonary toxicity via the upregulation of proinflammatory cytokines resulting in ROS overgeneration and inducing both oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
30
|
Yue J, Tan Y, Huan R, Guo J, Yang S, Deng M, Xiong Y, Han G, Liu L, Liu J, Cheng Y, Zha Y, Zhang J. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway. Front Immunol 2023; 14:1090288. [PMID: 36817492 PMCID: PMC9929573 DOI: 10.3389/fimmu.2023.1090288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response to infection; however, its pathophysiology remains unclear. Sepsis-induced neuroinflammation and blood-brain barrier (BBB) disruption are crucial factors in brain function disturbance in SAE. Mast cells (MCs) activation plays an important role in several neuroinflammation models; however, its role in SAE has not been comprehensively investigated. Methods We first established a SAE model by cecal ligation puncture (CLP) surgery and checked the activation of MCs. MCs activation was checked using immumohistochemical staining and Toluidine Blue staining. We administrated cromolyn (10mg/ml), a MC stabilizer, to rescue the septic mice. Brain cytokines levels were measured using biochemical assays. BBB disruption was assessed by measuring levels of key tight-junction (TJ) proteins. Cognitive function of mice was analyzed by Y maze and open field test. Transwell cultures of brain microvascular endothelial cells (BMVECs) co-cultured with MCs were used to assess the interaction of BMVECs and MCs. Results Results showed that MCs were overactivated in the hippocampus of CLP-induced SAE mice. Cromolyn intracerebroventricular (i.c.v) injection substantially inhibited the MCs activation and neuroinflammation responses, ameliorated BBB impairment, improved the survival rate and alleviated cognitive dysfunction in septic mice. In vitro experiments, we revealed that MCs activation increased the sensitivity of BMVECs against to lipopolysaccharide (LPS) challenge. Furthermore, we found that the histamine/histamine 1 receptor (H1R) mediated the interaction between MCs and BMVECs, and amplifies the LPS-induced inflammatory responses in BMVECs by modulating the TLR2/4-MAPK signaling pathway. Conclusions MCs activation could mediate BBB impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway.
Collapse
Affiliation(s)
- Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Guo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
31
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Acute restraint stress impairs histamine type 2 receptor ability to increase the excitability of medium spiny neurons in the nucleus accumbens. Neurobiol Dis 2022; 175:105932. [DOI: 10.1016/j.nbd.2022.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
|
33
|
Berk BA, Ottka C, Hong Law T, Packer RMA, Wessmann A, Bathen-Nöthen A, Jokinen TS, Knebel A, Tipold A, Lohi H, Volk HA. Metabolic fingerprinting of dogs with idiopathic epilepsy receiving a ketogenic medium-chain triglyceride (MCT) oil. Front Vet Sci 2022; 9:935430. [PMID: 36277072 PMCID: PMC9584307 DOI: 10.3389/fvets.2022.935430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. β-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.
Collapse
Affiliation(s)
- Benjamin Andreas Berk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom,BrainCheck.Pet, Tierärztliche Praxis für Epilepsie, Mannheim, Germany
| | - Claudia Ottka
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland,PetBiomics Ltd., Helsinki, Finland
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Rowena Mary Anne Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Pride Veterinary Centre, Neurology/Neurosurgery Service, Derby, United Kingdom
| | | | - Tarja Susanna Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Helsinki, Finland
| | - Anna Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Hannes Lohi
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland,PetBiomics Ltd., Helsinki, Finland
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom,Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany,*Correspondence: Holger Andreas Volk
| |
Collapse
|
34
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
35
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
36
|
Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z, Yan H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol 2022; 110:109045. [DOI: 10.1016/j.intimp.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
|
37
|
Ashraf H, Solla P, Sechi LA. Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15091077. [PMID: 36145298 PMCID: PMC9504155 DOI: 10.3390/ph15091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dramatic advancement has been made in recent decades to understand the basis of autoimmunity-mediated neurological diseases. These diseases create a strong influence on the central nervous system (CNS) and the peripheral nervous system (PNS), leading to various clinical manifestations and numerous symptoms. Multiple sclerosis (MS) is the most prevalent autoimmune neurological disease while NMO spectrum disorder (NMOSD) is less common. Furthermore, evidence supports the presence of autoimmune mechanisms contributing to the pathogenesis of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by the progressive death of motor neurons. Additionally, autoimmunity is believed to be involved in the basis of Alzheimer’s and Parkinson’s diseases. In recent years, the prevalence of autoimmune-based neurological disorders has been elevated and current findings strongly suggest the role of pharmacotherapies in controlling the progression of autoimmune diseases. Therefore, this review focused on the current advancement of immunomodulatory drugs as novel approaches in the management of autoimmune neurological diseases and their future outlook.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leonardo Atonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbology and Virology, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
38
|
Tran Q, Pham TL, Shin HJ, Shin J, Shin N, Kwon HH, Park H, Kim SI, Choi SG, Wu J, Ngo VTH, Park JB, Kim DW. Targeting spinal microglia with fexofenadine-loaded nanoparticles prolongs pain relief in a rat model of neuropathic pain. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102576. [PMID: 35714922 DOI: 10.1016/j.nano.2022.102576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Targeting microglial activation is emerging as a clinically promising drug target for neuropathic pain treatment. Fexofenadine, a histamine receptor 1 antagonist, is a clinical drug for the management of allergic reactions as well as pain and inflammation. However, the effect of fexofenadine on microglial activation and pain behaviors remains elucidated. Here, we investigated nanomedicinal approach that targets more preferentially microglia and long-term analgesics. Fexofenadine significantly abolished histamine-induced microglial activation. The fexofenadine-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Fexo NPs) injection reduced the pain sensitivity of spinal nerve ligation rats in a dose-dependent manner. This alleviation was sustained for 4 days, whereas the effective period by direct fexofenadine injection was 3 h. Moreover, Fexo NPs inhibited microglial activation, inflammatory signaling, cytokine release, and a macrophage phenotype shift towards the alternative activated state in the spinal cord. These results show that Fexo NPs exhibit drug repositioning promise as a long-term treatment modality for neuropathic pain.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Molecular Biology Laboratory, Department of Medical Laboratories, Hai Phong International Hospital, Hai Phong City #18000, Viet Nam
| | - Thuy Linh Pham
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Viet Nam
| | - Hyo Jung Shin
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Seoung Gyu Choi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Junhua Wu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Van T H Ngo
- Graduate Department of Healthcare Science, Dainam University, Viet Nam
| | - Jin Bong Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Physiology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
39
|
Xu L, Zhang C, Zhong M, Che F, Guan C, Zheng X, Liu S. Role of histidine decarboxylase gene in the pathogenesis of Tourette syndrome. Brain Behav 2022; 12:e2511. [PMID: 35114079 PMCID: PMC8933785 DOI: 10.1002/brb3.2511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Tourette syndrome (TS) is caused by complex genetic and environmental factors and is characterized by tics. Histidine decarboxylase (HDC) mutation is a rare genetic cause with high penetrance in patients with TS. HDC-knockout (KO) mice have similar behavioral and neurochemical abnormalities as patients with TS. Therefore, HDC-KO mice are considered a valuable TS pathophysiological model as it reveals the underlying pathological mechanisms that cannot be obtained from patients with TS, thus advancing the development of treatment strategies for TS and other tic disorders. This review summarizes some of the recent research hotspots and progress in HDC-KO mice, aiming to deepen our understanding of brain mechanisms relevant to TS. Furthermore, we encapsulate the possible brain nerve cell changes in HDC-KO mice and their potential roles in TS to provide multiple directions for the future research on tics.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Chengcheng Guan
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
40
|
Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12010075. [PMID: 35053818 PMCID: PMC8773743 DOI: 10.3390/brainsci12010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The human brain maintains billions of neurons functional across the lifespan of the individual. The glial, supportive cells of the brain are indispensable to neuron elasticity. They undergo various states (active, reactive, macrophage, primed, resting) and carefully impose either quick repair or the cleaning of injured neurons to avoid damage extension. Identifying the failure of these interactions involving the relation of the input of glial cells to the inception and/or progression of chronic neurodegenerative diseases (ND) is crucial in identifying therapeutic options, given the well-built neuro-immune module of these diseases. In the present review, we scrutinize different interactions and important factors including direct cell–cell contact, intervention by the CD200 system, various receptors present on their surfaces, CXC3RI and TREM2, and chemokines and cytokines with special reference to Alzheimer’s disease (AD). The present review of the available literature will elucidate the contribution of microglia and astrocytes to the pathophysiology of AD, thus evidencing glial cells as obligatory transducers of pathology and superlative targets for interference.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Dreamzz IVF Center and Women’s Care Hospital, Ahmedabad 382350, Gujarat, India;
| | - Kavita Singh
- Centre for Translational Research, Jiwaji University, Gwalior 474011, Madhya Pradesh, India;
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.M.); (A.K.M.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (M.M.); (A.K.M.)
| |
Collapse
|
41
|
Qian H, Shu C, Xiao L, Wang G. Histamine and histamine receptors: Roles in major depressive disorder. Front Psychiatry 2022; 13:825591. [PMID: 36213905 PMCID: PMC9537353 DOI: 10.3389/fpsyt.2022.825591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the incidence of major depressive disorder (MDD) is high and its social impact is great, we still know very little about the pathophysiology of depression. The monoamine hypothesis of depression suggests that 5-HT, NE, and DA synergistically affect mood, which is the basis of current drug therapy for depression. However, histamine as a monoamine transmitter is rarely studied. Our review is the first time to illustrate the effect of histaminergic system on depression in order to find the way for the development of new antidepressant drugs. The brain neurotransmitter histamine is involved in MDD, and the brain histaminergic system operates through four receptors. Histamine and its receptors can also regulate the immune response to improve symptoms of depression. In addition, H3R can interact with other depression-related transmitters (including 5-HT, DA, GLU, and MCH); thus, histamine may participate in the occurrence of depression through other neural circuits. Notably, in rodent studies, several H3R and H1R antagonists were found to be safe and effective in alleviating depression-like behavior. To highlight the complex functions of histamine in depression, and reveals that histamine receptors can be used as new targets for antidepressant therapy.
Collapse
Affiliation(s)
- Hong Qian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Abstract
Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
43
|
Kouraki A, Doherty M, Fernandes GS, Zhang W, Walsh DA, Kelly A, Valdes AM. Different genes may be involved in distal and local sensitisation: a genome-wide gene-based association study and meta-analysis. Eur J Pain 2021; 26:740-753. [PMID: 34958702 PMCID: PMC9303629 DOI: 10.1002/ejp.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/25/2021] [Indexed: 11/22/2022]
Abstract
Background Neuropathic pain symptoms and signs of increased pain sensitization in osteoarthritis (OA) patients may explain persistent pain after total joint replacement (TJR). Therefore, identifying genetic markers associated with pain sensitization and neuropathic‐like pain phenotypes could be clinically important in identifying targets for early intervention. Methods We performed a genome‐wide gene‐based association study (GWGAS) using pressure pain detection thresholds (PPTs) from distal pain‐free sites (anterior tibia), a measure of distal sensitization, and from proximal pain‐affected sites (lateral joint line), a measure of local sensitization, in 320 knee OA participants from the Knee Pain and related health in the Community (KPIC) cohort. We next performed gene‐based fixed‐effects meta‐analysis of PPTs and a neuropathic‐like pain phenotype using genome‐wide association study (GWAS) data from KPIC and from an independent cohort of 613 post‐TJR participants, respectively. Results The most significant genes associated with distal and local sensitization were OR5B3 and BRDT, respectively. We also found previously identified neuropathic pain‐associated genes—KCNA1, MTOR, ADORA1 and SCN3B—associated with PPT at the anterior tibia and an inflammatory pain gene—PTAFR—associated with PPT at the lateral joint line. Meta‐analysis results of anterior tibia and neuropathic‐like pain phenotypes revealed genes associated with bone morphogenesis, neuro‐inflammation, obesity, type 2 diabetes, cardiovascular disease and cognitive function. Conclusions Overall, our results suggest that different biological processes might be involved in distal and local sensitization, and common genetic mechanisms might be implicated in distal sensitization and neuropathic‐like pain. Future studies are needed to replicate these findings. Significance To the best of our knowledge, this is the first GWAS for pain sensitization and the first gene‐based meta‐analysis of pain sensitization and neuropathic‐like pain. Higher pain sensitization and neuropathic pain symptoms are associated with persistent pain after surgery hence, identifying genetic biomarkers and molecular pathways associated with these traits is clinically relevant.
Collapse
Affiliation(s)
- A Kouraki
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| | - M Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,Pain Centre Versus Arthritis, University of Nottingham, Nottingham, NG5 1PB, United Kingdom.,Versus Arthritis Centre for Sports, Exercise and Osteoarthritis, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| | - G S Fernandes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 6EH, United Kingdom
| | - W Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,Pain Centre Versus Arthritis, University of Nottingham, Nottingham, NG5 1PB, United Kingdom.,Versus Arthritis Centre for Sports, Exercise and Osteoarthritis, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| | - D A Walsh
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,Pain Centre Versus Arthritis, University of Nottingham, Nottingham, NG5 1PB, United Kingdom.,Versus Arthritis Centre for Sports, Exercise and Osteoarthritis, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| | - A Kelly
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| | - A M Valdes
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, United Kingdom.,Pain Centre Versus Arthritis, University of Nottingham, Nottingham, NG5 1PB, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, United Kingdom
| |
Collapse
|
44
|
Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Curr Top Behav Neurosci 2021; 59:261-288. [PMID: 34432259 DOI: 10.1007/7854_2021_235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histamine is a biogenic amine playing a central role in allergy and peripheral inflammatory reactions and acts as a neurotransmitter and neuromodulator in the brain. In the adult, histamine is produced mainly by mast cells and hypothalamic neurons, which project their axons throughout the brain. Thus, histamine exerts a range of functions, including wakefulness control, learning and memory, neurogenesis, and regulation of glial activity. Histamine is also known to modulate innate immune responses induced by brain-resident microglia cells and peripheral circulating monocytes, and monocyte-derived cells (macrophages and dendritic cells). In physiological conditions, histamine per se causes mainly a pro-inflammatory phenotype while counteracting lipopolysaccharide-induced inflammation both in microglia, monocytes, and monocyte-derived cells. In turn, the activation of the innate immune system can profoundly affect neuronal survival and function, which plays a critical role in the onset and development of brain disorders. Therefore, the dual role of histamine/antihistamines in microglia and monocytes/macrophages is relevant for identifying novel putative therapeutic strategies for brain diseases. This review focuses on the effects of histamine in innate immune responses and the impact on neuronal survival, function, and differentiation/maturation, both in physiological and acute (ischemic stroke) and chronic neurodegenerative conditions (Parkinson's disease).
Collapse
|
45
|
Shan L, Martens GJM, Swaab DF. Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Curr Top Behav Neurosci 2021; 59:131-145. [PMID: 34432256 DOI: 10.1007/7854_2021_237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Nijmegen, GA, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
47
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer's disease mediated by gut microbiota. Ageing Res Rev 2021; 68:101317. [PMID: 33711509 DOI: 10.1016/j.arr.2021.101317] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have demonstrated the close relationship between gut microbiota and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal microbiota transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Xuan Song
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
49
|
Gut microbial involvement in Alzheimer's disease pathogenesis. Aging (Albany NY) 2021; 13:13359-13371. [PMID: 33971619 PMCID: PMC8148443 DOI: 10.18632/aging.202994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disease characterized by memory loss, inability to carry out everyday daily life, and noticeable behavioral changes. The essential neuropathologic criteria for an AD diagnosis are extracellular β-amyloid deposition and intracellular accumulation of hyperphosphorylated tau. However, the exact pathogenic mechanisms underlying AD remain elusive, and current treatment options show only limited success. New research indicates that the gut microbiota contributes to AD development and progression by accelerating neuroinflammation, promoting senile plaque formation, and modifying neurotransmitter production. This review highlights laboratory and clinical evidence for the pathogenic role of gut dysbiosis on AD and provides potential cues for improved AD diagnostic criteria and therapeutic interventions based on the gut microbiota.
Collapse
|
50
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|