1
|
Xu X, Penjweini R, Székvölgyi L, Karányi Z, Heckel AM, Gurusamy D, Varga D, Yang S, Brown AL, Cui W, Park J, Nagy D, Podszun MC, Yang S, Singh K, Ashcroft SP, Kim J, Kim MK, Tarassov I, Zhu J, Philp A, Rotman Y, Knutson JR, Entelis N, Chung JH. Endonuclease G promotes hepatic mitochondrial respiration by selectively increasing mitochondrial tRNA Thr production. Proc Natl Acad Sci U S A 2025; 122:e2411298122. [PMID: 39752519 PMCID: PMC11725929 DOI: 10.1073/pnas.2411298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known. Fat accumulation in metabolic dysfunction-associated steatotic liver disease (MASLD), which is more common in men, is caused in part by mitochondrial dysfunction. EndoG expression is reduced in MASLD liver, and EndoG deficiency causes MASLD in an obesity-independent manner but only in males. EndoG promotes mitochondrial respiration by resolving mitochondrial tRNA/DNA hybrids formed during mtDNA transcription by recruiting RNA helicase DHX30 to unwind them. EndoG also cleaves off the 3'-end of the H-strand transcript that can prevent mt-tRNAThr precursor cloverleaf-folding, and processing, which increases mt-tRNAThr production and mitochondrial translation. Using fluorescent lifetime imaging microscopy technology to visualize oxygen consumption at the individual mitochondrion level, we found that EndoG deficiency leads to the selective loss of a mitochondrial subpopulation with high-oxygen consumption. This defect was reversed with mt-tRNAThr supplementation. Thus, EndoG promotes mitochondrial respiration by selectively regulating the production of mt-tRNAThr in male mice.
Collapse
Affiliation(s)
- Xihui Xu
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Lóránt Székvölgyi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Zsolt Karányi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Devikala Gurusamy
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dóra Varga
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Alexandra L. Brown
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Wenqi Cui
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jinsung Park
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dénes Nagy
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Maren C. Podszun
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Sarah Yang
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Komudi Singh
- Bioinformatics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Stephen P. Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB152TT, United Kingdom
| | - Jeonghan Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul06591, South Korea
| | - Myung K. Kim
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jun Zhu
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Royal Prince Alfred Hospital, Sydney, NSW2050, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| |
Collapse
|
2
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
3
|
Li J, Chuljerm H, Settakorn K, Xu H, Ma Y, Korsieporn W, Paradee N, Srichairatanakool S, Koonyosying P. A novel synthetic compound, deferiprone-resveratrol hybrid (DFP-RVT), promotes hepatoprotective effects and ameliorates iron-induced oxidative stress in iron-overloaded β-thalassemic mice. Biomed Pharmacother 2024; 180:117570. [PMID: 39423750 DOI: 10.1016/j.biopha.2024.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
A high amount of iron in β-thalassemia patients can lead to oxidative stress and organ dysfunction, especially liver, the main iron accumulated organ. Iron catabolism causes the generation of reactive oxygen species (ROS), triggering liver inflammation, fibrosis, and cirrhosis. Deferiprone-resveratrol hybrid (DFP-RVT) is chemically synthesized by combining deferiprone (DFP) and resveratrol (RVT) which shows an iron-chelating property along with antioxidant activity. This study explored the hepatoprotective effect of DFP-RVT in iron overloaded β-knockout (BKO) thalassemic mice. The results revealed that DFP-RVT treatment improved liver function in iron-overloaded BKO mice by reducing liver enzymes and increasing hepcidin levels compared to iron overload control mice. Both DFP alone and DFP-RVT treatment groups demonstrated iron chelation effects by decreasing liver iron content (LIC), iron profiles, and iron deposition in the liver. Moreover, DFP-RVT powerfully showed antioxidant properties by decreasing liver and plasma thiobarbituric acid reactive substances (TBARs) and increasing reduced glutathione (GSH) and superoxide dismutase (SOD). Interestingly, transforming growth factor β1 (TGFβ1), which can contribute to chronic liver disease through liver injury, inflammation, fibrosis, and cirrhosis, is highly expressed in iron-overloaded mice. However, both DFP and DFP-RVT treatment significantly reduced TGFβ1 levels compared to the iron-overloaded group. Therefore, DFP-RVT could be a potent hepatoprotective compound through the mobilization of iron, reduction of ROS, improvement of liver enzymes, and alleviation of liver damage, potentially relieving liver dysfunction in iron-overloaded BKO mice.
Collapse
Affiliation(s)
- Jin Li
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Youjiang Medical University for Nationalities, Baise, PR China.
| | - Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental-Occupational Health Sciences and Non communicable diseases research center, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kornvipa Settakorn
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Honghong Xu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Youjiang Medical University for Nationalities, Baise, PR China.
| | - Yongmin Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, PR China.
| | - Woranontee Korsieporn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Gezer A, Ustundag H, Mendil AS, Bedir G, Duysak L. Hepatoprotective effects of resveratrol on α-amanitin-induced liver toxicity in rats. Toxicon 2024; 247:107855. [PMID: 38996975 DOI: 10.1016/j.toxicon.2024.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE The hepatoprotective effects of resveratrol against α-Amanitin (α-AMA)-induced liver toxicity were investigated in an experimental rat model, focusing on oxidative stress, inflammation, apoptosis, and liver function. METHODS Thirty-two male Sprague-Dawley rats were divided into four groups (n = 8 per group): Control, resveratrol, α-AMA, and resveratrol+α-AMA. The resveratrol group received 20 mg/kg resveratrol orally for 7 days. The α-AMA group received 3 mg/kg α-AMA intraperitoneally on the 8th day. The resveratrol+α-AMA group received 20 mg/kg resveratrol orally (7 days) followed by 3 mg/kg α-AMA intraperitoneally on the 8th day. Liver tissues and blood samples were collected 48 h after α-amanitin administration for histopathological, immunohistochemical (NFkB, LC3B), and biochemical analyses (GSH, MDA, CAT, GPx, MPO, NOS, AST, ALT). RESULTS α-AMA significantly increased AST and ALT levels, oxidative stress marker (MDA), and inflammatory marker (MPO), while reducing antioxidant levels (GSH, CAT, GPx) and NOS concentration (P < 0.001 for all parameters). Histopathological analysis showed severe liver damage with increased NFkB and LC3B expression. resveratrol treatment significantly reduced AST and ALT levels (P < 0.01 for both parameters), decreased MDA and MPO levels, and increased NOS concentration, GSH, CAT, and GPx levels (P < 0.05 for all parameters). Reduced NFkB and LC3B expression in the resveratrol+α-AMA group and showed histopathological improvements. CONCLUSION Resveratrol demonstrated substantial hepatoprotective effects against α-AMA induced liver toxicity by reducing oxidative stress, inflammation, and apoptosis, and improving liver function. These findings suggest that resveratrol could be a potential therapeutic agent for treating liver damage caused by potent hepatotoxins like α-AMA.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Türkiye; Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye.
| | - Hilal Ustundag
- Erzincan Binali Yıldırım University, Faculty of Medicine, Department of Physiology, Erzincan, Türkiye.
| | - Ali Sefa Mendil
- Erciyes University, Faculty of Veterinary Medicine, Department of Pathology, Kayseri, Türkiye
| | - Gursel Bedir
- Atatürk University, School of Medicine, Department of Histology and Embryology, Erzurum, Türkiye
| | - Lale Duysak
- Atatürk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Türkiye
| |
Collapse
|
5
|
Yang X, Wang Y, Yang Y. Impact of Pediococcus pentosaceus YF01 on the exercise capacity of mice through the regulation of oxidative stress and alteration of gut microbiota. Front Microbiol 2024; 15:1421209. [PMID: 38989023 PMCID: PMC11233450 DOI: 10.3389/fmicb.2024.1421209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Using treadmill training, this study replicated human exercise conditions and triggered exercise-induced fatigue in mice to examine the potential of Pediococcus pentosaceus YF01 in delaying this fatigue by regulating oxidative stress and its impact on the exercise capacity and gut microbiota of mice. The exercise capacity of mice was tested by conducting exhaustion tests, determining histopathological changes in mouse tissues, detecting the levels of serum biochemical markers, and evaluating the mRNA expression levels of relevant genes. YF01 prolonged the exhaustion time of mice, increased the serum levels of oxidative stress-related markers T-AOC, CAT, and GSH, as well as GLU and LA levels in the mice. YF01 decreased the levels of hepatic-related markers AST and ALT, as well as exercise-related markers LDH, BUN, UA, and CRE in the mice. YF01 upregulated the mRNA expression of MyHc I, SIRT1, and PGC in muscle tissues, as well as SOD1, SOD2, and CAT in both liver and muscle tissues. YF01 also downregulated the mRNA expression of MyHc IIa, MyHc IIb, and MyHc IIx in muscle tissues. Furthermore, YF01 increased the abundance of beneficial bacteria such as Lactobacillus and Lachnospiraceae in the gut microbiota of mice. In conclusion, P. pentosaceus YF01 may affect the exercise capacity of mice by modulating oxidative stress levels, thereby offering novel ideas for developing of sports science and human health.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, China
| | - Yeni Wang
- Ministry of Sports, Xiamen Institute of Technology, Xiamen, Fujian, China
| | - Yuhua Yang
- Department of Social Sports Management, College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
She D, Jiang S, Yuan S. Association between serum cotinine and hepatic steatosis and liver fibrosis in adolescent: a population-based study in the United States. Sci Rep 2024; 14:11424. [PMID: 38763979 PMCID: PMC11102917 DOI: 10.1038/s41598-024-61771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Tobacco exposure is known to be associated with a higher prevalence and incidence of liver diseases. Cotinine, a metabolite of nicotine, is a typical indicator of tobacco exposure. However, the relationship of serum cotinine levels with hepatic steatosis and liver fibrosis remains controversial and these relationships need more research to explored in American teenagers. Cross-sectional data included 1433 participants aged 12-19 from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020 were thoroughly used for this study. The linear relationships between serum cotinine levels and the Liver Stiffness Measurement (LSM) and Controlled Attenuation Parameter (CAP) were examined using multiple linear regression models. Subgroup analysis, interaction tests, and nonlinear interactions were also carried out. Serum cotinine levels > 2.99 ng/ml [β = 0.41 (0.07, 0.76), p = 0.018] and 0.05-2.99 ng/ml [β = 0.24 (0.00, 0.49), p = 0.048] showed a significant positive connection with LSM in multivariate linear regression analysis when compared to serum cotinine levels ≤ 0.05 ng/ml (p for trend = 0.006). Moreover, we discovered an inverted U-shaped association of log2-transformed cotinine with LSM with an inflection point of 4.53 using a two-stage linear regression model. However, according to multiple regression analysis, serum cotinine and CAP did not significantly correlate (p = 0.512). In conclusion, this study demonstrated that smoking cessation and keep away from secondhand smoking may beneficial for liver health in American teenagers.
Collapse
Affiliation(s)
- Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| |
Collapse
|
7
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
8
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
9
|
Huang C, Yong Q, Lu Y, Wang L, Zheng Y, Zhao L, Li P, Peng C, Jia W, Liu F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1. Front Pharmacol 2024; 15:1335814. [PMID: 38515850 PMCID: PMC10956515 DOI: 10.3389/fphar.2024.1335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS's anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihui Lu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Peiwu Li
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
11
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
12
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
13
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
14
|
He C, Guo Z, Zhang H, Yang G, Gao J, Mo Z. Identification and validation of methylation-CpG prognostic signature for prognosis of hepatocellular carcinoma. Aging (Albany NY) 2024; 16:1733-1749. [PMID: 38244582 PMCID: PMC10866447 DOI: 10.18632/aging.205454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Epigenetic biomarkers help predict the prognosis of cancer patients and evaluating the clinical outcome of immunization therapy. In this study, we present a personalized gene methylation-CpG signature to enhance the accuracy of survival prediction for individuals with hepatocellular carcinoma (HCC). Utilizing RNA sequencing and methylation datasets from GEO as well as TCGA, we conducted single sample GSEA (ssGSEA), WGCNA, as well as Cox regression. Through these analyses, we identified 175 oxidative stress and immune-related genes along with 4 CpG loci that are associated with the prognosis of HCC. Subsequently, we constructed a prognostic signature for HCC utilizing these 4 CpG sites, referred to as the HCC Prognostic Signature of Methylation-CpG sites (HPSM). Further investigation revealed an enrichment of immune-related signal pathways in the HPSM-low group, which demonstrated a positive correlation with better survival among HCC patients. Moreover, the methylation of the CpG sites in HPSM was found to be closely linked to drug sensitivity. In vitro experiments tentatively confirmed that promoter methylation regulated the expression of BMPER, one of the CpG sites within HPSM. The expression of BMPER was significantly correlated with cell death in the oxidative stress pathway, and overexpression of BMPER effectively inhibited HCC cell proliferation. Consequently, our findings suggest that HPSM is an independent predictive factor and holds promise for accurately predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Chunmei He
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
- Chandi Precision Medical Technology, Foshan 528000, Guangdong, China
| | - Zehao Guo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541199, Guangxi, China
| | - Hao Zhang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541199, Guangxi, China
| | - Ganqing Yang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jintao Gao
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541199, Guangxi, China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, Guangxi, China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541199, Guangxi, China
| |
Collapse
|
15
|
Ali M, Asghar E, Ali W, Mustafa G, Ansari IA, Zia S, Ansari SA, Khan S. Screening of Multitarget Compounds against Acetaminophen Hepatic Toxicity Using In Silico, In Vitro, and In Vivo Approaches. Molecules 2024; 29:428. [PMID: 38257341 PMCID: PMC10821416 DOI: 10.3390/molecules29020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Combination therapy and multitarget drugs have recently attracted much attention as promising tools to fight against many challenging diseases and, thus, represent a new research focus area. The aim of the current project was to screen multitarget compounds and to study their individual and combined effects on acetaminophen-induced liver injury. In this study, 2 of the best hepatoprotective multitargeting compounds were selected from a pool of 40 major compounds present in Curcuma longa and Cinnamomum zeylanicum by using molecular docking, ADMET profiling, and Pfizer's rule of five. The two selected compounds, quercetin and curcumin, showed a high binding affinity for the CYP2E1 enzyme, MAPK, and TLR4 receptors that contribute to liver injury. The candidates caused the decreased viability of cancer cell lines (HepG2 and Huh7) but showed no effect on a normal cell line (Vero). Examination of biochemical parameters (ALT, AST, ALP, and bilirubin) showed the hepatoprotective effect of the candidate drugs in comparison with the control group, which was confirmed by histological findings. Taken together, quercetin and curcumin not only satisfied the drug-like assessment criterion and proved to be multitargeting by preventing liver damage but also showed anticancer activities.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad (UAF), Faisalabad 38040, Pakistan; (W.A.); (S.Z.)
| | - Esha Asghar
- Department of Biotechnology, Akhuwat Faisalabad Institute of Research Science and Technology (A-FIRST), Faisalabad 38000, Pakistan;
| | - Waqas Ali
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad (UAF), Faisalabad 38040, Pakistan; (W.A.); (S.Z.)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan;
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Saadiya Zia
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad (UAF), Faisalabad 38040, Pakistan; (W.A.); (S.Z.)
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sumaiya Khan
- Department of Drug Chemistry and Technologies, University “La Sapienza”, 00185 Rome, Italy;
| |
Collapse
|
16
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
17
|
Li HJ, Wang YS, Wang YN, Liu AR, Su XH, Ma ZA, Wang LX, Zhang ZY, Lv SQ, Miao J, Cui HT. Mechanical study of alisol B 23-acetate on methionine and choline deficient diet-induced nonalcoholic steatohepatitis based on untargeted metabolomics. Biomed Chromatogr 2024; 38:e5763. [PMID: 37858975 DOI: 10.1002/bmc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.
Collapse
Affiliation(s)
- Hua-Jun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuan-Song Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ya-Nan Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ai-Ru Liu
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiu-Hai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zi-Ang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li-Xin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhong-Yong Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Huan-Tian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
18
|
Glal KAM, El-Haggar SM, Abdel-Salam SM, Mostafa TM. Allopurinol Prevents Cirrhosis-Related Complications: A Quadruple Blind Placebo-Controlled Trial. Am J Med 2024; 137:55-64. [PMID: 37832758 DOI: 10.1016/j.amjmed.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Complications associated with liver cirrhosis are various and potentially fatal. The treatment options to counteract hepatic decompensation are limited. Therefore, the study aimed to explore the use of allopurinol in preventing the recurrence of liver cirrhosis-related complications. METHODS One hundred patients with hepatic decompensation were randomized into 1:1 ratio to receive either allopurinol 300 mg or placebo tablets once daily for 6 months. The primary endpoint was the incidence of cirrhosis-related complications (overt ascites, spontaneous bacterial peritonitis, variceal bleeding, hepatorenal syndrome, and hepatic encephalopathy). RESULTS Six months following treatment, allopurinol reduced the relative risk (RR) of any first complication experienced after enrollment by 56% (hazard ratio [HR] 0.44; 95% confidence interval [CI], 0.27-0.62); P ˂ .001). Allopurinol decreased the RR of overt ascites by 67% (HR 0.33; 95% CI, 0.0098-0.94); P = .039] and reduced the RR of spontaneous bacterial peritonitis by about 75% (HR 0.25; 95% CI, 0.05-0.76; P = .01). Likewise, allopurinol was linked to an 80% reduction in the RR of developing hepatorenal syndrome (HR 0.2; 95% CI, 0.04-0.87; P = .033). CONCLUSION Allopurinol significantly decreased the recurrence of overall liver cirrhosis-related complications. Therefore, allopurinol may constitute a promising agent for patients with hepatic decompensation. These positive outcomes could be a result of its ability to reduce bacterial translocation and inflammation. CLINICALTRIALS GOV IDENTIFIER NCT005545670.
Collapse
Affiliation(s)
| | | | - Sherief M Abdel-Salam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
19
|
Kazura W, Michalczyk K, Skrzep-Poloczek B, Chełmecka E, Zalejska-Fiolka J, Michalski M, Kukla M, Jochem J, Rutkowski J, Stygar D. Liver Oxidative Status, Serum Lipids Levels after Bariatric Surgery and High-Fat, High-Sugar Diet in Animal Model of Induced Obesity. Int J Mol Sci 2023; 24:16535. [PMID: 38003721 PMCID: PMC10671458 DOI: 10.3390/ijms242216535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Nutritional status is a major determinant of hepatocyte injuries associated with changed metabolism and oxidative stress. This study aimed to determine the relations between oxidative stress, bariatric surgery, and a high-fat/high-sugar (HFS) diet in a diet-induced obesity rat model. Male rats were maintained on a control diet (CD) or high-fat/high-sugar diet (HFS) inducing obesity. After 8 weeks, the animals underwent SHAM (n = 14) or DJOS (n = 14) surgery and the diet was either changed or unchanged. Eight weeks after the surgeries, the activity of superoxide dismutase isoforms (total SOD, MnSOD, and CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and lutathione S-transferase, as well as the thiol groups (-SH) concentration, total antioxidant capacity (TAC), total oxidative stress (TOS) levels, and malondialdehyde (MDA) concentration liver tissue were assessed. The total cholesterol, triglycerides (TG), and high-density lipoprotein (HDL) concentrations were measured in the serum. The total SOD and GPX activities were higher in the SHAM-operated rats than in the DJOS-operated rats. The MnSOD activity was higher in the HFS/HFS than the CD/CD groups. Higher CuZnSOD, GST, GR activities, -SH, and MDA concentrations in the liver, and the triglyceride and cholesterol concentrations in the serum were observed in the SHAM-operated rats than in the DJOS-operated rats. The CAT activity was significantly higher in the HFS-fed rats. Lower TAC and higher TOS values were observed in the SHAM-operated rats. Unhealthy habits after bariatric surgery may be responsible for treatment failure and establishing an obesity condition with increased oxidative stress.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Bronisława Skrzep-Poloczek
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Elżbieta Chełmecka
- Department of Medical Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 31 Ostrogórska Street, 41-200 Sosnowiec, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Jakub Rutkowski
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
20
|
Ara C, Arshad M, Ali S, Shakir HA, Summer M, Khan M, Liaqat I, Arshad M. Aspartame, a Synthetic Dipeptide Mediated Biochemical and Histopathological Alterations in Hepato-nephric Tissues of Mice and Pharmaceutical Intervention by Sesame Oil. Int J Pept Res Ther 2023; 29:96. [DOI: 10.1007/s10989-023-10564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 08/04/2024]
|
21
|
Asghar MU, Haneef K, Fatima F, Asghar A, Ain NU. Investigating Oxidative Stress Levels in Pregnant Patients Infected with Hepatitis C Virus and Bacterial Vaginosis for Better Treatment Option. Oman Med J 2023; 38:e549. [PMID: 38249133 PMCID: PMC10800022 DOI: 10.5001/omj.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/19/2023] [Indexed: 01/23/2024] Open
Abstract
Objectives Hepatitis C virus (HCV) and bacterial vaginosis (BV) coinfection generate sustained inflammation with bulk production of reactive oxygen species. They have the potency to cause hepatocellular carcinoma, vaginal apoptosis, disturb pregnancy, and influence drug treatment and follow-up. This case-control study aimed to compare the redox status in HCV and BV coinfection with respect to BV mono-infection among pregnant females (PFs). Methods Blood samples and vaginal secretions were drawn from 75 PFs divided into three groups: coinfection (n = 25), monoinfection (n = 25), and control PFs (n = 25) who are presumed healthy subjects. Blood samples were analyzed for HCV detection based on conserved 5' untranslated region via real-time polymerase chain reaction and hematological parameters. Markers of oxidative stress (malondialdehyde and peroxidase) and antioxidants (catalase and superoxide dismutase) were checked in plasma as well as vaginal secretions of patients among all three groups. Results Hematological analysis reveals that hemoglobin levels, platelets, and lymphocytes decreased significantly (p < 0.050) among the coinfection followed by mono-infection group compared to the control group. Moreover, the higher isolation frequency of pathogenic bacteria (Acinetobacter spp.) and Nugent score trend was observed among the coinfection group. Antioxidant levels were significantly lower (p < 0.050) among the vaginal secretions and blood plasma of patients having coinfection with respect to the mono-infection and control groups. While oxidative stress marker was significantly highest (p < 0.050) among vaginal secretions and blood plasma of coinfection followed by mono-infection and control group. These results validate that overall redox severity was more among the coinfection compared to the mono-infection and control groups. Conclusions Redox indexes should be considered in early diagnosis and treatment of HCV and BV coinfection which may also facilitate the better treatment of hepatocellular carcinoma and vaginal apoptosis.
Collapse
Affiliation(s)
- Muhammad Umer Asghar
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore-Islamabad, Pakistan
| | - Kabeer Haneef
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Fizza Fatima
- Department of Gynecology and Obstetrics, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Aisha Asghar
- Department of Gynecology and Obstetrics, District Headquarters Hospital, Toba Tek Singh, Pakistan
| | - Noor Ul Ain
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
22
|
Domínguez-López M, de Vaca RPC, Rodríguez-Aguilera JR, Guerrero-Celis N, Velasco-Loyden G, de Sánchez VC. Liver fibrotic development is reduced through inflammation prevention by an adenosine derivative compound. Biomed Pharmacother 2023; 165:115216. [PMID: 37544282 DOI: 10.1016/j.biopha.2023.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Liver fibrosis is a global health problem, and studying its development provides important information to address its treatment. Here, we characterized the effects of an adenosine compound (IFC-305) on preventing fibrosis and liver inflammation. METHODS We studied the impact of IFC-305 on a carbon tetrachloride-induced liver fibrosis model in Wistar male rats at 4, 6, and 8 weeks. The effects were characterized by liver tissue histology, macrophages identification by flow cytometry with CD163+/CD11b/c+ antibodies, hepatic and plasmatic cytokine levels employing MILLIPLEX MAP and ELISA, Col1a1 and Il6 gene expression by RTqPCR, lipoperoxidation by TBARS reaction, and reactive oxygen species using 2'-7'dichlorofluorescin diacetate. RESULTS CCl4-induced liver fibrosis and inflammation were significantly reduced in rats treated with IFC-305 at 6 and 8 weeks. In addition, we observed diminished expression of Col1a1; a decrease in the inflammatory cytokines IL-1β, IL-6, MCP-1, TNF-α, and IL-4 a; reduction in inflammatory macrophages; inhibition of lipoperoxidation; and ROS production in Kupffer cells. CONCLUSION This study showed that IFC-305 can inhibit liver fibrosis establishment by regulating the immune response during CCl4-induced damage. The immunomodulatory action of IFC-305 supports its use as a potential therapeutic strategy for preventing liver fibrosis.
Collapse
Affiliation(s)
- Mariana Domínguez-López
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| | - Rebeca Pérez-Cabeza de Vaca
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud and The Institute for Obesity Research, Monterrey C.P 64710, Mexico
| | - Jesús Rafael Rodríguez-Aguilera
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| | - Nuria Guerrero-Celis
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| | - Gabriela Velasco-Loyden
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| | - Victoria Chagoya de Sánchez
- Instituto de Fisiología Celular, UNAM, Departamento de Biología Celular y Desarrollo, Laboratorio, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 México City, Mexico.
| |
Collapse
|
23
|
Shashkovskaya VS, Vetosheva PI, Shokhina AG, Aparin IO, Prikazchikova TA, Mikaelyan AS, Kotelevtsev YV, Belousov VV, Zatsepin TS, Abakumova TO. Delivery of Lipid Nanoparticles with ROS Probes for Improved Visualization of Hepatocellular Carcinoma. Biomedicines 2023; 11:1783. [PMID: 37509423 PMCID: PMC10376883 DOI: 10.3390/biomedicines11071783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.
Collapse
Affiliation(s)
- Vera S Shashkovskaya
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina I Vetosheva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Arina G Shokhina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Ilya O Aparin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Arsen S Mikaelyan
- Koltsov Institute of Developmental Biology of Russian Academy of Sciences, 152742 Moscow, Russia
| | - Yuri V Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vsevolod V Belousov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana O Abakumova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
24
|
Ali ES, Chakrabarty B, Ramproshad S, Mondal B, Kundu N, Sarkar C, Sharifi-Rad J, Calina D, Cho WC. TRPM2-mediated Ca 2+ signaling as a potential therapeutic target in cancer treatment: an updated review of its role in survival and proliferation of cancer cells. Cell Commun Signal 2023; 21:145. [PMID: 37337283 DOI: 10.1186/s12964-023-01149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
- Gaco Pharmaceuticals, Dhaka, 1000, Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL, 60611, USA
| | | | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
25
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
26
|
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res 2023; 192:106786. [PMID: 37146924 DOI: 10.1016/j.phrs.2023.106786] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARβ/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jing Zhang
- University International College, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Fan-Yi Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai, 200040, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
27
|
Tempol Alters Antioxidant Enzyme Function, Modulates Multiple Genes Expression, and Ameliorates Hepatic and Renal Impairment in Carbon Tetrachloride (CCl4)-Intoxicated Rats. LIVERS 2023. [DOI: 10.3390/livers3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
The purpose of this study was to determine the effect of the superoxide dismutase mimic compound “tempol” on liver and renal damage in Long Evans male rats administered with carbon tetrachloride (CCl4). Methods: The antioxidant enzyme activity and oxidative stress parameters were investigated in the liver, kidney, and plasma tissues. Histological examination of the liver and kidney sections affirmed inflammatory cell infiltration, collagen deposition, and iron deposition. RT-PCR was also employed to evaluate the expression of oxidative stress and inflammatory genes. Results: The CCl4-administered rats exhibited increased plasma activities of ALT, AST, and ALP compared to the control rats. The tempol treatment in the CCl4-administered rats significantly lowered ALT, AST, and ALP enzyme activities compared to the CCl4 group. Oxidative stress parameters, such as the MDA, NO, and APOP levels in various tissues of the CCl4-administered rats, showed increased concentrations, whereas tempol significantly lowered the level of oxidative stress. Moreover, CCl4 administration decreased the antioxidant enzyme activities, which were further significantly restored by the tempol treatment. The control rats that underwent treatment with tempol did not present with any abnormality or toxicity. Furthermore, the tempol treatment in the CCl4-administered rats increased Nrf-2-HO-1-mediated gene expression and enhanced related antioxidant enzyme gene expressions. The tempol treatment in the CCl4-administered rats also decreased anti-inflammatory gene expressions in the liver. In histological sections of the liver, CCl4 increased inflammatory cell infiltration, collagen deposition, and iron deposition, which were reduced significantly due to the tempol treatment. Conclusion: The results of this investigation revealed that tempol could protect against liver and kidney damage in CCl4-administered rats by modulating antioxidant gene expressions and restoring antioxidant defense mechanisms.
Collapse
|
28
|
Solís-Muñoz P, de la Flor-Robledo M, García-Ruíz I, Fernández-García CE, González-Rodríguez Á, Shah N, Bataller R, Heneghan M, García-Monzón C, Solís-Herruzo JA. Mitochondrial respiratory chain activity is associated with severity, corticosteroid response and prognosis of alcoholic hepatitis. Aliment Pharmacol Ther 2023; 57:1131-1142. [PMID: 36864659 DOI: 10.1111/apt.17434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND AND AIMS Little is known about the extent of mitochondrial respiratory chain (MRC) activity dysfunction in patients with alcoholic hepatitis (AH). We aimed to assess the hepatic MRC activity in AH patients and its potential impact on the severity and prognosis of this life-threatening liver disease. METHODS MRC complexes were measured in liver biopsies of 98 AH patients (non-severe, 17; severe, 81) and in 12 histologically normal livers (NL). Severity was assessed according to Maddrey's Index and MELD score. Corticosteroid response rate and cumulative mortality were also evaluated. RESULTS The activity of the five MRC complexes was markedly decreased in the liver of AH patients compared with that of NL subjects, being significantly lower in patients with severe AH than in those with non-severe AH. There was a negative correlation between the activity of all MRC complexes and the severity of AH. Interestingly, only complex I and III activities showed a significant positive correlation with the corticosteroid response rate and a significant negative correlation with the mortality rate at all-time points studied. In a multivariate regression analysis, besides the MELD score and the corticosteroid response rate, complex I activity was significantly associated with 3-month mortality (OR = 6.03; p = 0.034) and complex III activity with 6-month mortality (OR = 4.70; p = 0.041) in AH patients. CONCLUSION Our results indicate that MRC activity is markedly decreased in the liver of AH patients, and, particularly, the impairment of MRC complexes I and III activity appears to have a significant impact on the clinical outcomes of patients with AH.
Collapse
Affiliation(s)
- Pablo Solís-Muñoz
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Unidad Médica Angloamericana, Madrid, Spain.,Gastroenterology and Hepatology Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Inmaculada García-Ruíz
- Gastroenterology and Hepatology Laboratory, Research Institute, University Hospital "12 de Octubre". Universidad Complutense, Madrid, Spain
| | - Carlos E Fernández-García
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Águeda González-Rodríguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Naina Shah
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Ramón Bataller
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departamento de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Solís-Herruzo
- Gastroenterology and Hepatology Laboratory, Research Institute, University Hospital "12 de Octubre". Universidad Complutense, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 2023; 101:147-159. [PMID: 36744700 DOI: 10.1139/cjpp-2022-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant effect of caffeine, associated with its ability to upregulate the nuclear factor-E2-related factor-2 (Nrf2)-signaling pathway, was explored as a possible mechanism for the attenuation of liver damage. Nonalcoholic steatohepatitis (NASH) was induced in rats by the administration of a high-fat, high-sucrose, high-cholesterol diet (HFSCD) for 15 weeks. Liver damage was induced in rats by intraperitoneal administration of thioacetamide (TAA) for six weeks. Caffeine was administered orally at a daily dose of 50 mg/kg body weight during the period of NASH induction to evaluate its ability to prevent disease development. Meanwhile, rats received TAA for three weeks, after which 50 mg/kg caffeine was administered daily for three weeks with TAA to evaluate its capacity to interfere with the progression of hepatic injury. HFSCD administration induced hepatic steatosis, decreased Nrf2 levels, increased oxidative stress, induced the activation of nuclear factor-κB (NF-κB), and elevated proinflammatory cytokine levels, leading to hepatic damage. TAA administration produced similar effects, excluding steatosis. Caffeine increased Nrf2 levels; attenuated oxidative stress markers, including malondialdehyde and 4-hydroxynonenal; restored normal, reduced glutathione levels; and reduced NF-κB activation, inflammatory cytokine levels, and damage. Our findings suggest that caffeine may be useful in the treatment of human liver diseases.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| |
Collapse
|
30
|
Development of Prognostic Features of Hepatocellular Carcinoma Based on Metabolic Gene Classification and Immune and Oxidative Stress Characteristic Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1847700. [PMID: 36860731 PMCID: PMC9969974 DOI: 10.1155/2023/1847700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023]
Abstract
Background The molecular classification of HCC premised on metabolic genes might give assistance for diagnosis, therapy, prognosis prediction, immune infiltration, and oxidative stress in addition to supplementing the limitations of the clinical staging system. This would help to better represent the deeper features of HCC. Methods TCGA datasets combined with GSE14520 and HCCDB18 datasets were used to determine the metabolic subtype (MC) using ConsensusClusterPlus. ssGSEA method was used to calculate the IFNγ score, the oxidative stress pathway scores, and the score distribution of 22 distinct immune cells, and their differential expressions were assessed with the use of CIBERSORT. To generate a subtype classification feature index, LDA was utilized. Screening of the metabolic gene coexpression modules was done with the help of WGCNA. Results Three MCs (MC1, MC2, and MC3) were identified and showed different prognoses (MC2-poor and MC1-better). Although MC2 had a high immune microenvironment infiltration, T cell exhaustion markers were expressed at a high level in MC2 in contrast with MC1. Most oxidative stress-related pathways are inhibited in the MC2 subtype and activated in the MC1 subtype. The immunophenotyping of pan-cancer showed that the C1 and C2 subtypes with poor prognosis accounted for significantly higher proportions of MC2 and MC3 subtypes than MC1, while the better prognostic C3 subtype accounted for significantly lower proportions of MC2 than MC1. As per the findings of the TIDE analysis, MC1 had a greater likelihood of benefiting from immunotherapeutic regimens. MC2 was found to have a greater sensitivity to traditional chemotherapy drugs. Finally, 7 potential gene markers indicate HCC prognosis. Conclusion The difference (variation) in tumor microenvironment and oxidative stress among metabolic subtypes of HCC was compared from multiple angles and levels. A complete and thorough clarification of the molecular pathological properties of HCC, the exploration of reliable markers for diagnosis, the improvement of the cancer staging system, and the guiding of individualized treatment of HCC all gain benefit greatly from molecular classification associated with metabolism.
Collapse
|
31
|
Abdel-Hamid MS, Mansour AM, Hassan MH, Abdelhady R, Elsadek BEM, El-Sayed ESM, Salama SA. Estrogen Attenuates Diethylnitrosamine-Induced Hepatocellular Carcinoma in Female Rats via Modulation of Estrogen Receptor/FASN/CD36/IL-6 Axis. Biol Pharm Bull 2023; 46:1558-1568. [PMID: 37914358 DOI: 10.1248/bpb.b23-00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.
Collapse
Affiliation(s)
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Rasha Abdelhady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Fayoum University
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
32
|
Artabotrys odoratissimus Bark Extract Restores Ethanol Induced Redox Imbalance and Toxicity in Hepatocytes and In Vivo Model. Appl Biochem Biotechnol 2022; 195:3366-3383. [PMID: 36585550 DOI: 10.1007/s12010-022-04275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Alcohol-induced oxidative stress is a key player in the development of liver diseases, and herbal alternatives are important means of ameliorating the hepatotoxic effects. The study aimed to evaluate the hepatoprotective potentiality of Artabotrys odoratissimus, an important medicinal shrub from the family Annonaceae. The phenolic compounds from bark ethanol extract (BEE) were detected using RP-HPLC. The in vitro hepatoprotective activity against ethanol-induced damage was studied in HepG2 cells with cell viability assays, mitochondrial membrane potential (MMP) assay, reactive oxygen species (ROS) assay, double staining assay and western blotting. The in vivo mice model was used to evaluate the alcohol-induced stress with liver function enzymes, lipid profile and histopathology. All the thirteen phenolic compounds detected with HPLC were docked onto protein targets such as aspartate amino transferase (AST), alkaline phosphatase (ALP) and inducible nitric oxide synthase (NO). The RP-HPLC detected the presence of various phenolics including rutin, chlorogenic acid and catechin, amongst others. Co-administration of BEE with ethanol alleviated cell death, ROS and MMP in HepG2 cells compared to the negative control. The extract also modulated the MAP kinase/caspase-3 pathway, thereby showing protective effects in HepG2 cells. Also, pre-treatment for 14 days with the extract in the mice model before a single toxic dose (5 g/kg body weight) reduced the liver injury by bringing the levels of liver function enzymes, lipid profile and bilirubin to near normal. In silico analysis revealed that rutin showed the best binding affinity with all the target proteins in the study. These results provide evidence that BEE possesses significant hepatoprotective effects against ethanol-induced oxidative stress in hepatic cells and in vivo models, which is further validated with in silico analysis.
Collapse
|
33
|
Saryono, Sarmoko, Nani D, Proverawati A, Taufik A. Black solo garlic protects hepatic and renal cell function in streptozotocin-induced rats. Front Nutr 2022; 9:962993. [PMID: 36523339 PMCID: PMC9745152 DOI: 10.3389/fnut.2022.962993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2022] [Indexed: 11/03/2023] Open
Abstract
Black solo garlic (BSG) has been evaluated for its ability to reduce free radicals; however, the safety test on kidney and liver function has not been evaluated. This study aimed to examine the effect of brewed BSG on the liver (total protein, albumin, glutathione S-transferase/GST) and kidney (urea, creatinine, and β 2 -microglobulin) function in streptozotocin (STZ)-induced white rats. The experimental animals were randomly divided into six groups, each including five animals. The groups consist of the normal control group, the STZ-induced control group, the BSG treatment group with doses 6.5, 13.5, and 26 g/kg body weight, and metformin positive control. After STZ induction, the serum levels of GST, total protein, and albumin are decreased. After treatment with BSG, the serum level of GST, total protein, and albumin increased significantly (p < 0.05). The levels of urea, creatinine, and β2-microglobulin increased after STZ induction. After treatment of BSG, levels of urea, creatinine, and β2-microglobulin are decreased significantly (p < 0.05). These results suggest that BSG use is safe for the liver and kidneys of STZ-induced rats.
Collapse
Affiliation(s)
- Saryono
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Sarmoko
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
- Department of Pharmacy, Sumatera Institute of Technology, South Lampung, Indonesia
| | - Desiyani Nani
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Atikah Proverawati
- Department of Nutrition, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Agis Taufik
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| |
Collapse
|
34
|
Bae SJ, Bak SB, Kim YW. Coordination of AMPK and YAP by Spatholobi Caulis and Procyanidin B2 Provides Antioxidant Effects In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms232213730. [PMID: 36430207 PMCID: PMC9694094 DOI: 10.3390/ijms232213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
The liver is vulnerable to oxidative attacks from heavy metals, such as iron, as well as some drugs, including acetaminophen. It has been shown that enhanced oxidative stress in the liver leads to excessive ROS production and mitochondrial dysfunction, resulting in organ injury. The beneficial effects of Spatholobi Caulis (SC), a natural herbal medicine, include treating ischemic stroke, inhibiting tumor cell invasion, pro-angiogenic activities, and anti-inflammatory properties. Scientific studies on its effects against hepatotoxic reagents (e.g., iron and acetaminophen), as well as their underlying mechanisms, are insufficient. This study examined the antioxidant effects and mechanisms of SC in vitro and in vivo. In cells, the proinflammatory mediator, arachidonic acid (AA), plus iron, significantly induced an increase in ROS generation, the damage in mitochondrial membrane potential, and the resulting apoptosis, which were markedly blocked by SC. More importantly, SC affected the activation of AMP-activated protein kinase (AMPK)-related proteins, which were vital to regulating oxidative stress in cells. In addition, SC mediated the expression of Yes-associated protein (YAP)-related proteins. Among the active compounds in SC, the procyanidin B2, but not liquiritigenin, daidzein, and genistein, significantly inhibited the cytotoxicity induced by AA + iron, and activated the LKB1-AMPK pathway. In mice, the oral administration of SC alleviated the elevations of ALT and histological changes by the acetaminophen-induced liver injury. These results reveal the potential of SC and a key bioactive component, procyanidin B2, as antioxidant candidates for hepatoprotection.
Collapse
|
35
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
36
|
Oni AA, Osoh MO, Obikoya AO, Ohore OG. Oxidative stress responses as a marker of toxicity in mice exposed to polluted groundwater from an automobile junk market in South-Western Nigeria. Cell Stress Chaperones 2022; 27:685-702. [PMID: 36322346 PMCID: PMC9672174 DOI: 10.1007/s12192-022-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The global trade in used vehicles and their components generates huge financial benefits but leads to detrimental environmental consequences including groundwater pollution and potential adverse health effects mediated by free-radical processes such as lipid peroxidation. We investigated oxidative stress responses in thirty-six, female mice orally exposed (via drinking) to graded concentrations (0%, 50%, and 100%) of groundwater from a well located within a major automobile junk market in SW-Nigeria containing extremely high levels of arsenic (0.332 ± 0.089 mg/l) and seventeen PAHs, which serves as domestic water supply. Blood samples from the mice were assayed for selected biochemical parameters at intervals of 7, 14, and 28 days. A significant dose- and duration-dependent increase in malondialdehyde (MDA) and Myeloperoxidase (MPO) confirmed oxidative stress onset due to exposure to the polluted well-water, while a significant decline in nitric oxide (NO-) levels may suggest impaired endothelial smooth-muscle relaxation which may lead to the development of metabolic diseases over time. Superoxide dismutase (SOD) and reduced glutathione (GSH) showed a contrasting trend with Glutathione peroxidase (GPx), while Glutathione-S-Transferase (GST) declined significantly by the 28th day. Two clusters were identified by principal component analysis-one involving MDA, SOD, and GSH suggesting that antioxidant responses driven mainly by SOD and GSH proved insufficient in scavenging the free radicals generated by lipid peroxidation. NO- and total protein clustered together possibly due to the significant declines in both over the study period. Histological examination of liver tissue of exposed mice corroborated the above findings and highlights the need for urgent remedial action.
Collapse
Affiliation(s)
- Adeola A Oni
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria.
| | - Miracle O Osoh
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria
- Institute for Water Research, Rhodes University, Grahamstown, South Africa
| | - Adedayo O Obikoya
- Department of Zoology, University of Ibadan, Ibadan, 200284, Nigeria
| | - Obokparo G Ohore
- Department of Veterinary Pathology, University of Ibadan, Ibadan, 200284, Nigeria
| |
Collapse
|
37
|
Abdulali AA, Murad SK, Shahid RA. Clinical Study of Serum Gamma- Glutamyl Levels in Cigarette Smokers with Nonalcoholic Fatty Liver Disease, Governorate – Iraq. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:176-181. [DOI: 10.1109/ismsit56059.2022.9932771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Sarah Kadhim Murad
- College of Health and Medical Technology, Al-Ayen University,Thi-Qar,Iraq
| | - Rola Ali Shahid
- College of Health and Medical Technology, Al-Ayen University,Thi-Qar,Iraq
| |
Collapse
|
38
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
39
|
Shan S, Liu Z, Liu Z, Zhang C, Song F. MitoQ alleviates carbon tetrachloride-induced liver fibrosis in mice through regulating JNK/YAP pathway. Toxicol Res (Camb) 2022; 11:852-862. [PMID: 36337246 PMCID: PMC9618106 DOI: 10.1093/toxres/tfac062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 08/15/2023] Open
Abstract
Background Liver fibrosis is a pathological wound-healing response caused by chronic liver damage. Mitochondria regulate hepatic energy metabolism and oxidative stress. Accumulating evidence has revealed that increased mitochondrial oxidative stress contributes to the activation of fibrogenesis. However, the roles and underlying mechanisms of mitochondrial oxidative stress in liver fibrosis remain unknown. Methods and results In this study, C57BL/6 mice were used to establish a model of liver fibrosis via oral gavage with CCl4 treatment for 8 weeks. Furthermore, intervention experiments were achieved by CCl4 combined with the intraperitoneal injection of mitoquinone mesylate (mitoQ). We demonstrated that the chronic CCl4 exposure resulted in severe hepatic fibrogenesis and significantly promoted the production of reactive oxygen species (ROS) and mitochondrial abnormalities. Besides, JNK/YAP pathway was also activated. By contrast, the administration of mitoQ markedly inhibited the expression of pro-fibrogenic transforming growth factor-β as well as type I collagen. The antifibrotic effects of mitoQ were also confirmed by hematoxylin and eosin staining and Sirius red staining. Moreover, mitoQ substantially reduced CCl4-induced mitochondrial damage and the release of ROS. Further studies suggested that this protection against liver fibrosis was mechanistically related to the inhibition of phosphorylation of JNK and the nuclear translocation of YAP. Conclusion In conclusion, these findings revealed that mitoQ attenuated liver fibrosis by inhibiting ROS production and the JNK/YAP signaling pathway. Selective targeting JNK/YAP may serve as a therapeutic strategy for retarding progression of chronic liver disease.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
40
|
Huang W, Liu WY, Chen LY, Ni L, Zou XX, Ye M, Zhang ZY, Zou SQ. Flavonoid and chromone-rich extract from Euscaphis Konishii Hayata leaf attenuated alcoholic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115455. [PMID: 35697192 DOI: 10.1016/j.jep.2022.115455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euscaphis konishii Hayata is a traditional medicinal plant in China, and its leaves are usually used to make dishes for hepatic or gastrointestinal issues by Chinese She nationality. Pharmacological analysis showed that E. konishii leaves contain high levels of flavonoids and chromones with favorable anti-hepatoma effect. AIM OF THE STUDY The extract from E. konishii leaves was detected to evaluate its chemical composition, and the alcoholic liver injury mice model was adopted to elucidate its hepatoprotective effects. MATERIALS AND METHODS The total leaf extract from E. konishii was separated by polyamide column to get the flavonoid and chromone-rich extract (FCE). Single compounds from FCE was purified by gel and Sephadex LH-20 chromatography and analyzed by nuclear magnetic resonance (NMR). The chemical component of FCE was confirmed and quantified by HPLC-MS. The OH·, O2-, DPPH and ABTS + free radical assays were adopted to estimate the antioxidant activity of FCE in vitro. The alcohol-fed model mice were established to assess the hepatoprotective capacity of FCE in vivo, through biochemical determination, histopathological analysis, mitochondrial function measurement, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) detection and Western blot determination. RESULTS 8 flavonoids and 2 chromones were recognized in the FCEextract by both NMR and HPLC-MS. FCE represented strong free radicals scavenging activity in vitro. With oral administration, FCE (50, 100 and 200 mg/kg) dose-dependently decreased the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in alcohol-fed mice. FCE gradually reduced the malondialdehyde (MDA) content, increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the alcohol-treated liver tissues. FCE also alleviated the hepatic inflammation, inhibited the hepatocyte apoptosis and lessened the alcohol-induced histological alteration and lipid accumulation in the liver tissues. FCE administration inhibited the overexpression of endoplasmic reticulum (ER) chaperones signaling and unfolded protein response (UPR) pathways to defense the ER-induced apoptosis. Pretreatment with FCE also restored the mitochondrial membrane potentials andadenosine triphosphate (ATP) levels, which in turn suppressed the Cytochrome C release and mitochondria-induced apoptosis. CONCLUSIONS FCE conferred great protection against alcoholic liver injury, which might be associated with its viability through suppressing reactive oxygen species (ROS) stress and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wan-Yi Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Chen
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Ni
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Xing Zou
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Ye
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhong-Yi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Shuang-Quan Zou
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
41
|
Habas E, Farfar KL, Errayes N, Habas AM, Errayes M, Alfitori G, Rayani A, Elgara M, Al Adab AH, Elzouki A. Hepatitis Virus C-associated Nephropathy: A Review and Update. Cureus 2022; 14:e27322. [PMID: 36043014 PMCID: PMC9412079 DOI: 10.7759/cureus.27322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes hepatic and extrahepatic organ involvement. Chronic kidney disease (CKD) is a prevalent non-communicable disorder, accounting for significant morbidity and mortality worldwide. Acute kidney injury and CKD are not uncommon sequels of acute or chronic HCV infection. The pathogenesis of HCV-associated kidney injuries is not well explored. Excess cryoglobulin production occurs in HCV infection. The cryoglobulin may initiate immune complex-mediated vasculitis, inducing vascular thrombosis and inflammation due to cryoglobulin deposits. Furthermore, direct damage to nephron parts also occurs in HCV patients. Other contributory causes such as hypertension, diabetes, and genetic polymorphism enhance the risk of kidney damage in HCV-infected individuals. Implementing CKD prevention, regular evaluation, and therapy may improve the HCV burden of kidney damage and its related outcomes. Therefore, in this review, we discuss and update the possible mechanism(s) of kidney injury pathogenesis with HCV infection. We searched for related published articles in EMBASE, Google Scholar, Google, PubMed, and Scopus. We used various texts and phrases, including hepatitis virus and kidney, HCV and CKD, kidney pathology in viral hepatitis, kidney transplantation in HCV-infected patients, kidney allograft survival in viral hepatitis patients, mechanism of kidney pathology in viral hepatitis, dialysis and viral hepatitis, HCV infection and kidney injuries, and viral hepatitis and CKD progression, etc. to identify relevant articles.
Collapse
|
42
|
Peng C, Yang J, Li W, Lin D, Fei Y, Chen X, Yuan L, Li Y. Development of Probes with High Signal-to-Noise Ratios Based on the Facile Modification of Xanthene Dyes for Imaging Peroxynitrite during the Liver Ischemia/Reperfusion Process. Anal Chem 2022; 94:10773-10780. [PMID: 35867938 DOI: 10.1021/acs.analchem.2c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthene-based fluorescence probes with high signal-to-noise ratios are highly useful for bioimaging. However, current strategies for improving the signal-to-noise ratios of xanthene fluorescence probes based on the replacement of oxygen group elements and extension of conjugation always require complicated modifications or time-consuming synthesis, which unfortunately goes against the original intention owing to the alteration of the parent structure and outstanding properties. Herein, a facile strategy is presented for developing a unique class of high signal-to-noise ratio probes by modifying the 2' position of a rhodol scaffold with different substituents. Systematic studies have shown that the probe named Rhod-CN-B with a strong electron-withdrawing methylene malononitrile functional group (-CH═(CN)2) at the 2' position displayed a high signal-to-noise ratio and excellent photostability in aqueous solutions and could detect peroxynitrite (ONOO-) without interference from other biologically active species. In addition, the excellent selectivity and sensitivity of Rhod-CN-B displayed satisfactory properties in tracking the endogenous production of ONOO- in the apoptosis process of liver cells stimulated by lipopolysaccharides. Moreover, we utilized Rhod-CN-B to perform imaging of ONOO- in the course of the liver ischemia/reperfusion (I/R) process, revealing that high ONOO- levels were associated with aggravation of hepatocyte damage. All of the experimental data and results demonstrated that Rhod-CN-B could be a powerful tool for imaging ONOO- in more physiological and pathological processes.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jinfeng Yang
- Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410000, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dan Lin
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yanxia Fei
- Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410000, China
| | - Xiaolan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
43
|
Xue L, Xu J, Feng C, Zhou Z, Jin Y, Lu D, Wang G. Flurochloridone induces responses of free radical reactions and energy metabolism disorders to BRL-3A cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113647. [PMID: 35605323 DOI: 10.1016/j.ecoenv.2022.113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Flurochloridone (FLC), a wildly used herbicide, could induce hepatotoxicity after long-term exposure to male rat, in addition to its reactive oxygen species (ROS)-dependent reproductive toxicity. The hepatotoxicity effect and mechanism was investigeted using 1, 10 and 100 μmol L-1 FLC treated BRL-3A liver cell in this study. The function of mitochondrial respiration, glycolysis rate and real time ATP production rate are determined by seahorse XF analyzer, and the bio-transformers of FLC, intermediates of TCA cycle and glycolysis, and related amino acids are determined and identified by [U-13C] Glucose metabolic flux technology based on UPLC-HRMS. The mRNA expression of cytochrome P450s and the key regulatory enzymes of glucose metabolism and γ- glutamyl cycle pathway. The protein expressions of protein kinase B (AKT) and glycogen synthase kinase-3 beta (GSK-3β) were determined. The results show dechlorination and glutathione (GSH) conjugate products of FLC are predominant bio-transformmers after 24 h treatment in BRL-3A cell. FLC could enhance glycolysis function and inhibit mitochondrial aerobic respiratory, which is accompanied by the decreased total ATP level and ATP produced rate. Increased glucose-6-phosphate, fructose-6-phosphate, pyruvate and lactate levels, and elevated level of GSH and its precursor 5-glutamate-cysteine (γ-Glu-Cys) are observed in FLC treated cells, which indicates that energy metabolism dysfunction and GSH accumulation could be potentially mediated by activating γ- Glutamyl cycle pathway. Conclusively, FLC induced hepatotoxicity could be potentially related to some free radical reactions, including inhibiting mitochondrial function, glucose metabolism via glycolysis, regulating γ- glutamyl cycle pathway to promote reactive oxygen species (ROS) level, and then induced cell apoptosis by inhibiting AKT/GSK-3β signal.
Collapse
Affiliation(s)
- Liming Xue
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiale Xu
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chao Feng
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu'e Jin
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Dasheng Lu
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Guoquan Wang
- Division of Chemical Toxicity and Safety Assessment; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| |
Collapse
|
44
|
Marti-Aguado D, Clemente-Sanchez A, Bataller R. Cigarette smoking and liver diseases. J Hepatol 2022; 77:191-205. [PMID: 35131406 DOI: 10.1016/j.jhep.2022.01.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
Cigarette smoking is a preventable risk factor for premature morbidity and mortality. A history of smoking is observed in approximately 40% of patients with liver disease, while a growing number of studies are investigating the potential impact of smoking in chronic liver diseases. This review discusses the effects of smoking on liver diseases, at multiple levels, with a focus on its potential causal role. Clinical evidence indicates that cigarette smoking negatively impacts the incidence and severity of fatty liver disease, fibrosis progression, hepatocellular carcinoma development, and the outcomes of patients with advanced liver disease. The underlying mechanisms are complex and involve different pathophysiological pathways including oxidative stress and oncogenic signals. Importantly, smoking promotes cardiovascular disease and extrahepatic cancers in patients with steatohepatitis and in transplant recipients. We discuss how promoting smoking cessation could improve the rates of treatment response (in clinical trials) and fibrosis regression, while reducing the risk of hepatocellular carcinoma and improving liver transplant outcomes. Finally, we discuss current challenges such as the referral of smokers to specialised units for smoking cessation.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain; Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ana Clemente-Sanchez
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Liver Unit and Digestive Department, Hospital General Universitario Gregorio Marañon, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Bataller
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants (Basel) 2022; 11:antiox11071278. [PMID: 35883770 PMCID: PMC9311931 DOI: 10.3390/antiox11071278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
During chronic liver disease (CLD) progression, hepatic myofibroblasts (MFs) represent a unique cellular phenotype that plays a critical role in driving liver fibrogenesis and then fibrosis. Although they could originate from different cell types, MFs exhibit a rather common pattern of pro-fibrogenic phenotypic responses, which are mostly elicited or sustained both by oxidative stress and reactive oxygen species (ROS) and several mediators (including growth factors, cytokines, chemokines, and others) that often operate through the up-regulation of the intracellular generation of ROS. In the present review, we will offer an overview of the role of MFs in the fibrogenic progression of CLD from different etiologies by focusing our attention on the direct or indirect role of ROS and, more generally, oxidative stress in regulating MF-related phenotypic responses. Moreover, this review has the purpose of illustrating the real complexity of the ROS modulation during CLD progression. The reader will have to keep in mind that a number of issues are able to affect the behavior of the cells involved: a) the different concentrations of reactive species, b) the intrinsic state of the target cells, as well as c) the presence of different growth factors, cytokines, and other mediators in the extracellular microenvironment or of other cellular sources of ROS.
Collapse
|
46
|
Auth PA, da Silva GR, Amaral EC, Bortoli VF, Manzano MI, de Souza LM, Lovato ECW, Ribeiro-Paes JT, Gasparotto Junior A, Lívero FADR. Croton urucurana Baill. Ameliorates Metabolic Associated Fatty Liver Disease in Rats. Front Pharmacol 2022; 13:886122. [PMID: 35668935 PMCID: PMC9164250 DOI: 10.3389/fphar.2022.886122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Metabolic associated fatty liver disease (MAFLD) affects a quarter of the worldwide population, but no drug therapies have yet been developed. Croton urucurana Baill. (Euphorbiaceae) is a medicinal species, that is, widely distributed in Brazil. It is used in popular medicine to treat gastrointestinal, cardiovascular, and endocrine system diseases. However, its hepatoprotective and lipid-lowering effects have not yet been scientifically investigated. Aim of the study: The present study investigated the effects of an extract of C. urucurana in a rat model of MAFLD that was associated with multiple risk factors, including hypertension, smoking, and dyslipidemia. Material and Methods: The phytochemical composition of C. urucurana was evaluated by liquid chromatography-mass spectrometry. Spontaneously hypertensive rats received a 0.5% cholesterol-enriched diet and were exposed to cigarette smoke (9 cigarettes/day for 10 weeks). During the last 5 weeks, the animals were orally treated with vehicle (negative control [C-] group), C. urucurana extract (30, 100, and 300 mg/kg), or simvastatin + enalapril (two standard reference drugs that are commonly used to treat dyslipidemia and hypertension, respectively). One group of rats that were not exposed to these risk factors was also evaluated (basal group). Blood was collected for the analysis of cholesterol, triglyceride, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels. The liver and feces were collected for lipid quantification. The liver was also processed for antioxidant and histopathological analysis. Results: The main constituents of the C. urucurana extract were flavonoids, glycosides, and alkaloids. The model successfully induced MAFLD, reflected by increases in AST and ALT levels, and induced oxidative stress in the C- group. Treatment with the C. urucurana extract (300 mg/kg) and simvastatin + enalapril decreased plasma and hepatic lipid levels. In contrast to simvastatin + enalapril treatment, C. urucurana reduced AST and ALT levels. Massive lesions were observed in the liver in the C- group, which were reversed by treatment with the C. urucurana extract (300 mg/kg). Conclusion:C. urucurana extract exerted promising hepatoprotective and lipid-lowering effects in a preclinical rat model of MAFLD.
Collapse
Affiliation(s)
- Pablo Alvarez Auth
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Eduarda Carolina Amaral
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | - Victor Fajardo Bortoli
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Lauro Mera de Souza
- Institute of Research Pelé Pequeno Príncipe, Pequeno Príncipe Faculty, Curitiba, Brazil
| | - Evellyn Claudia Wietzikoski Lovato
- Laboratory of Neurosciences, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Post-Graduate in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| |
Collapse
|
47
|
Feng J, Gao H, Yang L, Xie Y, El-Kenawy AE, El-Kott AF. Renoprotective and hepatoprotective activity of Lepidium draba L. extracts on oxymetholone-induced oxidative stress in rat. J Food Biochem 2022; 46:e14250. [PMID: 35633194 DOI: 10.1111/jfbc.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Misuse and abuse of anabolic androgenic steroids (AAS) such as oxymetholone (OM) cause side effects such as male infertility, cardiovascular disorders, musculoskeletal, and hepato-renal dysfunctions in athletes. The aim of this study was to evaluate the protective effects of Lepidium draba L. (L. draba) extract on OM-induced hepato-renal toxicity. Thirty adult male Wistar rats into six groups (n = 5) were randomly divided as follows: control (normal saline), OM (5 mg/kg/day), L. draba-treated (100, 200, and 400 mg/kg/d) plus 5 mg/kg/day OM, and L. draba (400 mg/kg/d) groups. Normal saline, OM and L. draba extract were orally administered for 30 days. On day 31 of the study, hepatic and renal biochemical parameters were measured. Serum cytokines (IL-1β, IL-10, IL-6) tumor necrosis factor- α (TNF-α) and nitric oxide, levels alongside catalase, glutathione peroxidase, and superoxide dismutase activity were evaluated. Also, changes in liver and kidney histopathology were evaluated. Finally, the anti-oxidant properties of the extract were determined. The results of this study showed that in the groups treated with the L. draba extract, hepatic-renal biochemical parameters improved and also the level of nitric oxide and inflammatory cytokines decreased and the activity of anti-oxidant enzymes increased compared with the OM group. These findings revealed that L. draba, due to its high anti-oxidant properties and high content of polyphenols (especially flavonoids), can improve OM-induced hepato-renal oxidative damages. PRACTICAL APPLICATIONS: L. draba due to its remarkable anti-oxidant and anti-inflammatory properties can protects the kidney and liver injuries against oxymetholone. These features are attributed to the presence of phenolic and flavonoid components. This fidings would be helpful to desgin new therapeutic agents for treating and preventing liver/kidney injuries.
Collapse
Affiliation(s)
- Jinge Feng
- Department of Hepatobiliary Surgery, Xian Yang Central Hospital, Xianyang City, China
| | - Hongbo Gao
- Department of Gastroenterology, People's Hospital of Zhangqiu, Jinan, China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xian Yang Central Hospital, Xianyang City, China
| | - Yu Xie
- Department of Hepatobiliary Surgery, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
48
|
Alorabi M, Mohammed DS, Mostafa-Hedeab G, El-Sherbeni SA, Negm WA, Mohammed AIA, Al-kuraishy HM, Nasreldin N, Alotaibi SS, Lawal B, Batiha GES, Conte-Junior CA. Combination Treatment of Omega-3 Fatty Acids and Vitamin C Exhibited Promising Therapeutic Effect against Oxidative Impairment of the Liver in Methotrexate-Intoxicated Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4122166. [PMID: 35496049 PMCID: PMC9045995 DOI: 10.1155/2022/4122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Doha Saad Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department–Faculty of Medicine, Beni-Suef University, Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Ali Ismail A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, P.O. Box 72511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
49
|
Malakul W, Seenak P, Jumroon N, Arikit S, Kumphune S, Nernpermpisooth N. Novel Coconut Vinegar Attenuates Hepatic and Vascular Oxidative Stress in Rats Fed a High-Cholesterol Diet. Front Nutr 2022; 9:835278. [PMID: 35356733 PMCID: PMC8959456 DOI: 10.3389/fnut.2022.835278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background Hypercholesterolemia is an independent modifiable risk factor that accelerates the development of both non-alcoholic fatty liver and atherosclerosis. Coconut water contains a variety of phytochemicals that make it appealing for producing vinegar. Coconut vinegar is rapidly gaining popularity for health benefits in Southeast Asia. The purpose of this study is to evaluate the effect of daily supplementation of coconut vinegar on hepatic and vascular oxidative stress in rats fed a high-cholesterol diet (HCD). Methods Mature coconut water was fermented with coconut sap sugar using Saccharomyces cerevisiae and Acetobacter aceti vat Europeans, respectively. Bioactive compounds and antioxidant capacity of coconut vinegar were examined in vitro. Adult male Sprague-Dawley rats were randomly divided into four groups; the control group fed a standard diet (S), a group that received HCD (SC), a group that received HCD supplemented with coconut vinegar at a dose of 1 mL/kg/day (SCV), and a group that received HCD with atorvastatin at a dose of 30 mg/kg/day (SCA). After 8 weeks, serum metabolic profiles, fatty liver, hepatic, and vascular oxidative stress were determined. Results In in vitro studies, coconut vinegar was rich in phenolic compounds and organic acids. The antioxidant capacity of 30 μL of coconut vinegar was 181.55 ± 8.15 μM Trolox equivalent antioxidant capacity (TEAC). In the HCD fed rats, daily supplementation of coconut vinegar reduced weight gain, serum triglycerides, and fasting blood sugar levels without renal or liver toxicity. In the liver, coconut vinegar reduced the accumulation of both hepatic cholesterol and hepatic triglyceride, and it also reduced hepatic 4-hydroxynonenal (4-HNE) lipid peroxidation. In the aortic tissues, coconut vinegar increased nitric oxide bioavailability and reduced aortic 4-HNE lipid peroxidation. Conclusion Novel coconut vinegar is the source of antioxidants, and daily supplementation of coconut vinegar was found to attenuate dyslipidemia-induced hepatic and vascular oxidative stress by protective against cellular lipid peroxidation.
Collapse
Affiliation(s)
- Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Noppadon Jumroon
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
50
|
Li G, Qi L, Chen H, Tian G. Involvement of NF-κB/PI3K/AKT signaling pathway in the protective effect of prunetin against a diethylnitrosamine induced hepatocellular carcinogenesis in rats. J Biochem Mol Toxicol 2022; 36:e23016. [PMID: 35239232 DOI: 10.1002/jbt.23016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Prunetin (PRU) is an O-methylated flavonoid that is present in various natural plants and a primary significant compound found in isoflavone. Liver cancer creates major carcinogenic death despite recently advanced therapies. Hepatocellular carcinoma (HCC) treatment and prognosis are better in people with secure liver function. In the present study, we evaluated the action of PRU on diethylnitrosamine (DEN) alone HCC in a rat model through inflammation-mediated cell proliferative phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway analysis. Male Wistar rats were divided into four groups of six rats each. Group I, normal rats; Group II, DEN alone; Group III, DEN + PRU, and Group IV, PRU-alone. All groups of rats carried out hepatic cancer development by hypothesis antioxidant, biochemical, cell proliferative, apoptosis, cytokines protein, and gene expression status profiles. In tumor incidence DEN + PRU, 100% delayed the tumor growth disappearance of the lesion, and reversal of normal liver architecture was observed. Liver marker enzymes levels decreased when antioxidant levels (superoxidase dismutase, catalase, glutathione peroxidase, and glutathione reductase) were in Group III. Proinflammatory markers nuclear factor-κB, interleukin (IL)-6, IL-1β, and tumor necrosis factor α, were elevated in the rat's serum in Group III. Cell proliferative markers proliferating cell nuclear antigen and Cyclin-D1 protein expressions were downregulated; in contrast, Bcl-2, Bax, caspase-3, and caspase-9 gene expressions were upregulated and then it followed that protein expression of PI3K/AKT was downregulated in PRU-treated groups. PRU assisted reversal of liver damage, antioxidant enzyme restoration cytokine balance, protein, and gene expression to control levels. Taken together, PRU improves functions of the liver, and as such prevents HCC. PRU can be used together with chemopreventives for HCC.
Collapse
Affiliation(s)
- Guanghua Li
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Qi
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, China
| | - Hui Chen
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, China
| | - Gendong Tian
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|