1
|
Pennisi G, Infantino G, Celsa C, Di Maria G, Enea M, Vaccaro M, Cannella R, Ciccioli C, La Mantia C, Mantovani A, Mercurio F, Tilg H, Targher G, Di Marco V, Cammà C, Petta S. Clinical outcomes of MAFLD versus NAFLD: A meta-analysis of observational studies. Liver Int 2024; 44:2939-2949. [PMID: 39157862 DOI: 10.1111/liv.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
IMPORTANCE The recent change in terminology from nonalcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) highlights the link between hepatic steatosis and metabolic dysfunction, taking out the stigmata of alcohol. OBJECTIVE We compared the effects of NAFLD and MAFLD definitions on the risk of overall and cardiovascular (CV) mortality, liver-related events (LRE), nonfatal CV events (CVE), chronic kidney disease (CKD), and extra-hepatic cancers (EHC). DATA SOURCES AND STUDY SELECTION We systematically searched four large electronic databases for cohort studies (published through August 2023) that simultaneously used NAFLD and MAFLD definitions for examining the risk of mortality and adverse CV, renal, or oncological outcomes associated with both definitions. In total, 21 eligible cohort studies were identified. Meta-analysis was performed using random-effects modelling. RESULTS Compared with those with NAFLD, individuals with MAFLD had significantly higher rates of overall mortality (random-effect OR 1.12, 95% CI 1.04-1.21, p = .004) and CV mortality (random-effect OR 1.15, 95% CI 1.04-1.26, p = .004), and a marginal trend towards higher rates of developing CKD (random-effect OR 1.06, 95% CI 1.00-1.12, p = .058) and EHC events (random-effect OR 1.11, 95% CI 1.00-1.23, p = .052). We found no significant differences in the risk LREs and nonfatal CVE between MAFLD and NAFLD. Meta-regression analyses identified male sex and metabolic comorbidities as the strongest risk factors related to the risk of adverse clinical outcomes in MAFLD compared to NAFLD. CONCLUSIONS AND RELEVANCE Individuals with MAFLD have higher rates of overall and CV mortality and higher rates of developing CKD and EHC events than those with NAFLD, possibly due to the dysmetabolic risk profile related to MAFLD.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Marco Enea
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Marco Vaccaro
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Francesco Mercurio
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Álvares-da-Silva MR, Vargas MDS, Rabie SMS, Jonko G, Riedel PG, Longo L, Gonçalves MR, Luft VC, Joveleviths D. FLI and FIB-4 in diagnosing metabolic dysfunction-associated steatotic liver disease in primary care: High prevalence and risk of significant disease. Ann Hepatol 2024:101584. [PMID: 39395769 DOI: 10.1016/j.aohep.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION AND OBJECTIVES Public health policies in metabolic dysfunction-associated steatotic liver disease (MASLD) are still lacking. This study aims to estimate the prevalence and severity of MASLD in primary health care (PHC) through non-invasive markers. PATIENTS AND METHODS Two-phase study, including a retrospective (RETR) and a prospective (PROS) one, was carried out in PHC in Brazil. In RETR, metabolic and hepatic profiles of 12,054 patients, including FIB-4, were evaluated. In PROS, 350 patients were randomly selected and submitted to a clinical and nutritional assessment. RESULTS RETR (65.4 % women, mean age 55.3 years old): dyslipidemia, hypertension, and type 2 diabetes mellitus (T2DM) present in 40.8 %, 34.3 %, and 12.2 % of the electronic health records, respectively. Fasting glucose >100 mg/dL in 34.5 %, and glycated hemoglobin higher than 5.7 % in 51.5 %, total cholesterol >200 mg/dL and triglycerides >150 mg/dL in 40.8 % and 32.1 %, respectively. Median FIB-4 was of 1.33, 5 % >2.67. No one had MASLD as a diagnostic hypothesis; PROS(71.8 % women, mean age 58 years old): body mass index (BMI) ≥30 kg/m² in 31.8 %. MASLD prevalence (FLI≥ 30 + cardiometabolic features) of 62.1 %; 39.4 % of patients had FLI ≥60, with higher BMI, waist circumference, fasting glucose, triglycerides, AST, ALT and GGT, as well as lower HDL-cholesterol (p < 0.001). FIB-4>1.3 in 40 % and NAFLD Fibrosis Score (NFS)>-1.45 in 59.2 % of steatotic patients. CONCLUSIONS There is a high prevalence of MASLD in PHC, with a significant risk of liver fibrosis. These findings reinforce we need to develop public policies to defeat MASLD epidemics.
Collapse
Affiliation(s)
- Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Experimental Laboratory in Hepatology and Gastroenterology, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Gastroenterology and Hepatology Unit, HCPA, Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Department of Internal Medicine, UFRGS, Porto Alegre, 91501-970, Rio Grande do Sul, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq Researcher, Brasília 71.605-001, Distrito Federal, Brazil.
| | - Márcia da Silva Vargas
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Nutrition Unit, HCPA, Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Soheyla Mohd Souza Rabie
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Nutrition Unit, HCPA, Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Gabriella Jonko
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Patricia Gabriela Riedel
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Experimental Laboratory in Hepatology and Gastroenterology, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Marcelo Rodrigues Gonçalves
- Department of Social Medicine, UFRGS, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil; Department of Nutrition, School of Medicine, UFRGS, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil; Graduate Program in Food, Nutrition and Health, School of Medicine, UFRGS, Porto Alegre, 90035-007, Rio Grande do Sul, Brazil
| | - Vivian Cristine Luft
- Department of Social Medicine, UFRGS, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil; Department of Nutrition, School of Medicine, UFRGS, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil; Graduate Program in Epidemiology, School of Medicine, UFRGS, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Dvora Joveleviths
- Graduate Program in Gastroenterology and Hepatology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Experimental Laboratory in Hepatology and Gastroenterology, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, 90035-007, Rio Grande do Sul, Brazil; Department of Social Medicine, UFRGS, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024:S0002-9629(24)01323-5. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
4
|
Suffredini G, Gao WD, Dodd-O JM. Ultrasound Shear Wave Elastography Evaluation of the Liver and Implications for Perioperative Medicine. J Clin Med 2024; 13:3633. [PMID: 38999199 PMCID: PMC11242192 DOI: 10.3390/jcm13133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Ultrasound shear wave elastography (SWE) is a non-invasive, low risk technology allowing the assessment of tissue stiffness. Used clinically for nearly two decades to diagnose and stage liver fibrosis and cirrhosis, it has recently been appreciated for its ability to differentiate between more subtle forms of liver dysfunction. In this review, we will discuss the principle of ultrasound shear wave elastography, its traditional utilization in grading liver cirrhosis, as well as its evolving role in identifying more subtle degrees of liver injury. Finally, we will show how this capacity to distinguish nuanced changes may provide an opportunity for its use in perioperative risk stratification.
Collapse
Affiliation(s)
- Giancarlo Suffredini
- Department of Anesthesiology and Critical Care Medicine, Division of Cardiac Anesthesia, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Division of Cardiac Anesthesia, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Division of Cardiac Anesthesia, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Longo L, Bartikoski BJ, de Souza VEG, Salvati F, Uribe‐Cruz C, Lenz G, Xavier RM, Álvares‐da‐Silva MR, Filippi‐Chiela EC. Muscle fibre morphometric analysis (MusMA) correlates with muscle function and cardiovascular risk prognosis. Int J Exp Pathol 2024; 105:100-113. [PMID: 38722178 PMCID: PMC11129960 DOI: 10.1111/iep.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
Morphometry of striated muscle fibres is critical for monitoring muscle health and function. Here, we evaluated functional parameters of skeletal and cardiac striated muscle in two experimental models using the Morphometric Analysis of Muscle Fibre tool (MusMA). The collagen-induced arthritis model was used to evaluate the function of skeletal striated muscle and the non-alcoholic fatty liver disease model was used for cardiac striated muscle analysis. After euthanasia, we used haeamatoxylin and eosin stained sections of skeletal and cardiac muscle to perform muscle fibre segmentation and morphometric analysis. Morphometric analysis classified muscle fibres into six subpopulations: normal, regular hypertrophic, irregular hypertrophic, irregular, irregular atrophic and regular atrophic. The percentage of atrophic fibres was associated with lower walking speed (p = 0.009) and lower body weight (p = 0.026), respectively. Fibres categorized as normal were associated with maximum grip strength (p < 0.001) and higher march speed (p < 0.001). In the evaluation of cardiac striated muscle fibres, the percentage of normal cardiomyocytes negatively correlated with cardiovascular risk markers such as the presence of abdominal adipose tissue (p = .003), miR-33a expression (p = .001) and the expression of miR-126 (p = .042) Furthermore, the percentage of atrophic cardiomyocytes correlated significantly with the Castelli risk index II (p = .014). MusMA is a simple and objective tool that allows the screening of striated muscle fibre morphometry, which can complement the diagnosis of muscle diseases while providing functional and prognostic information in basic and clinical research.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Bárbara Jonson Bartikoski
- Autoimmune Diseases Laboratory, Rheumatology ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Fernando Salvati
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Carolina Uribe‐Cruz
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Universidad Católica de las MisionesPosadasArgentina
| | - Guido Lenz
- Department of Biophysics and Biotechnology CenterUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Ricardo Machado Xavier
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Graduate Program in Medical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Mário Reis Álvares‐da‐Silva
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Division of GastroenterologyHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Eduardo Cremonese Filippi‐Chiela
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Department of Morphological SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Research ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| |
Collapse
|
6
|
He Y, Yao N, Tian F, Liu L, Lin X, Chen X, Duan H, Jiang Y, Yu G, Song C, Wang D, Ma Q, Liu L, Wan H, Shen J. Prevalence and risk factors of MAFLD and its metabolic comorbidities in community-based adults in China: A cross-sectional study. Diabetes Metab Syndr 2024; 18:102973. [PMID: 38493648 DOI: 10.1016/j.dsx.2024.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
AIMS There is a growing interest in the co-management of metabolic dysfunction-associated fatty liver disease (MAFLD) and its metabolic comorbidities. However, there is insufficient epidemiological data regarding MAFLD and its metabolic comorbidities in China. This study aims to investigate the prevalence and risk factors of MAFLD and its metabolic comorbidities. METHODS 9171 participants were recruited in this cross-sectional study, utilizing a multistage, stratified sampling method. All participants underwent a comprehensive assessment. The diagnosis of MAFLD was based on vibration-controlled transient elastography (VCTE). The prevalence of MAFLD and its metabolic comorbidities was calculated. Binary and ordinary logistic regressions were conducted. RESULTS The overall weighted prevalence of MAFLD was 21.18%. Of the 2081 adults with MAFLD, 1866 (89.67%) had more than one metabolic comorbidity, and only 215 (10.33%) did not have comorbidity. Among the population with MAFLD, the prevalence of dyslipidemia, hypertension, hyperuricemia, and diabetes was 67.47%, 43.73%, 39.10%, and 33.88%, respectively. Advanced age, male gender, overweight/obesity, excessive alcohol consumption, and elevated HOMA-IR levels were positively correlated with the number of MAFLD-related metabolic comorbidities. CONCLUSIONS A significant proportion of individuals diagnosed with MAFLD presented with metabolic comorbidities. Therefore, engaging in the co-management of MAFLD and its metabolic comorbidities is imperative.
Collapse
Affiliation(s)
- Yajun He
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China; School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Nanfang Yao
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China; School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Lingling Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Dongmei Wang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Qintao Ma
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Lan Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China.
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China.
| |
Collapse
|
7
|
Ramírez-Mejía MM, Qi X, Abenavoli L, Romero-Gómez M, Eslam M, Méndez-Sánchez N. Metabolic dysfunction: The silenced connection with fatty liver disease. Ann Hepatol 2023; 28:101138. [PMID: 37468095 DOI: 10.1016/j.aohep.2023.101138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global public health burden. Despite the increase in its prevalence, the disease has not received sufficient attention compared to the associated diseases such as diabetes mellitus and obesity. In 2020 it was proposed to rename NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in order to recognize the metabolic risk factors and the complex pathophysiological mechanisms associated with its development. Furthermore, along with the implementation of the proposed diagnostic criteria, the aim is to address the whole clinical spectrum of the disease, regardless of BMI and the presence of other hepatic comorbidities. As would it be expected with such a paradigm shift, differing viewpoints have emerged regarding the benefits and disadvantages of renaming fatty liver disease. The following review aims to describe the way to the MAFLD from a historical, pathophysiological and clinical perspective in order to highlight why MAFLD is the approach to follow.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Liaoning Province, China
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
8
|
Virk GS, Vajje J, Virk NK, Mannam R, Rehman W, Ghobriel NG, Mian IUD, Usama M. Comparison of Outcomes Between Metabolic Dysfunction-Associated Fatty Liver Disease and Non-alcoholic Fatty Liver Disease: A Meta-Analysis. Cureus 2023; 15:e44413. [PMID: 37791219 PMCID: PMC10543410 DOI: 10.7759/cureus.44413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a range of conditions, from fatty liver to cirrhosis. In response to evolving research and to better reflect the complex metabolic underpinnings, the term metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. The aim of this meta-analysis was to compare cardiovascular events and all-cause mortality between NAFLD and MAFLD patients. The present study was conducted following the Preferred Reporting of Systematic Review and Meta-analysis (PRISMA) guidelines. We systematically searched PubMed, EMBASE, and the Web of Science to identify studies that compared cardiovascular outcomes in MAFLD and NAFLD from inception to July 31, 2023. Outcomes assessed in this meta-analysis included all-cause mortality, cardiovascular mortality, and cardiovascular events. A total of 11 studies were included in this meta-analysis. The risk of cardiovascular mortality was significantly higher in patients with MAFLD patients compared to NAFLD patients (risk ratio (RR): 1.48, 95% confidence interval (CI): 1.11 to 1.98). The risk of all-cause mortality was higher in MAFLD patients compared to NAFLD, and the difference was statistically significant (RR: 2.80, 95% CI: 2.39 to 3.28). The risk of cardiovascular events was significantly higher in MAFLD patients compared to NAFLD (RR: 1.18, 95% CI: 0.86 to 1.61). The key findings underscore that individuals diagnosed with MAFLD face a notably higher risk of all-cause mortality, cardiovascular mortality, and cardiovascular events when compared to those with NAFLD.
Collapse
Affiliation(s)
- Ghazala S Virk
- Internal Medicine, Avalon University School of Medicine, Youngstown, USA
| | - Jaahnavi Vajje
- Internal Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | - Nausheen K Virk
- Internal Medicine, Ross University School of Medicine, Miramar, USA
| | - Raam Mannam
- General Surgery, Narayana Medical College, Nellore, IND
| | - Wajeeh Rehman
- Internal Medicine, United Health Services Hospitals, Johnson City, USA
- Internal Medicine, State University of New York Upstate Medical University, Binghamton, USA
| | | | - Irfan-Ud-Din Mian
- Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Muhammad Usama
- Neurology, Sheikh Zayed Medical College and Hospital, Rahim Yar Khan, PAK
| |
Collapse
|
9
|
Yeoh A, Cheung R, Ahmed A, Chitnis AS, Do A, Wong RJ. Cardiovascular Disease Risk and Statin Use Among Adults with Metabolic Dysfunction Associated Fatty Liver Disease. Am J Med 2023; 136:669-676.e1. [PMID: 37001720 DOI: 10.1016/j.amjmed.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND A leading cause of mortality in fatty liver disease is cardiovascular disease. Metabolic dysfunction-associated fatty liver disease (MAFLD) is new terminology that classifies fatty liver due to metabolic dysfunction attributable to obesity and associated complications. We evaluated atherosclerotic cardiovascular disease (ASCVD) risk and statin use in adults with MAFLD. METHODS This was a retrospective study of the 2011-2018 National Health and Nutrition Examination Survey. Adults with MAFLD were identified using established criteria: presence of hepatic steatosis (US Fatty Liver Index>30) plus ≥1 of the following: 1) body mass index >25 kg/m2 in non-Asians or >23 kg/m2 in Asians, 2) diabetes mellitus, and 3) ≥2 metabolic risk factors. Cardiovascular disease risk was estimated using the validated 10-year ASCVD risk score. Statin use was assessed in intermediate and high 10-year ASCVD risk groups. RESULTS Prevalence of MAFLD was 34.8% (95% confidence interval [CI], 33.9%-35.8%), comprising 54.4% males, 27.9% aged 65 years and older, and 38.2% non-Hispanic white. Among adults with MAFLD, 23.3% and 23.0% had intermediate and high 10-year ASCVD risk, respectively. Compared with females, males were more likely to have high 10-year ASCVD risk (28.7% vs 16.1%, adjusted odds ratio 5.24, 95% CI, 3.87-7.10, P < .01). In intermediate and high ASCVD risk groups, overall statin use was 48.3% (95% CI, 46.1-51.3). CONCLUSIONS Over 46% of adults with MAFLD had intermediate or high 10-year ASCVD risk. Statin use was underutilized at 48.3% in those meeting statin criteria. These findings are alarming given the high cardiovascular disease risk and low statin use in this cohort.
Collapse
Affiliation(s)
- Aaron Yeoh
- Division of Gastroenterology, Department of Medicine, Stanford, Calif.
| | - Ramsey Cheung
- Division of Gastroenterology, Department of Medicine, Stanford, Calif; Gastroenterology Section, Veterans Affairs Palo Alto Health Care System, Calif
| | - Aijaz Ahmed
- Division of Gastroenterology, Department of Medicine, Stanford, Calif
| | - Amit S Chitnis
- Tuberculosis Control Section, Division of Communicable Disease Control and Prevention, Alameda County Public Health Department, San Leandro, Calif
| | - Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, Conn
| | - Robert J Wong
- Division of Gastroenterology, Department of Medicine, Stanford, Calif; Gastroenterology Section, Veterans Affairs Palo Alto Health Care System, Calif
| |
Collapse
|
10
|
Crane H, Eslick GD, George J. Letter: for improved prognostic value, use MAFLD. Aliment Pharmacol Ther 2023; 58:147-148. [PMID: 37307558 DOI: 10.1111/apt.17558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Harry Crane
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | - Guy D Eslick
- NHMRC Centre for Research Excellence in Digestive Diseases, Hunter Medical Research Institute (HMRI), The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Song Q, Guo JX, Ma YX, Ou T, Zhang J, Li HZ, Mi SQ, Zhang YZ, Oda H, Chen W. Taurine alleviated hepatic steatosis in oleic acid-treated-HepG2 cells and rats fed a high-fat diet. Heliyon 2023; 9:e16401. [PMID: 37274675 PMCID: PMC10238701 DOI: 10.1016/j.heliyon.2023.e16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Taurine has been proven in many trials to alleviate the symptoms of metabolic associated fatty liver disease. Here its protective effect for hepatic steatosis and modulation of AMP-activated protein kinase and insulin signaling pathway were investigated. Steatotic HepG2 cell established with oleic acid (0.05 mmol/L), treated with taurine (5 mmol/L), dorsomorphin (10 μmol/L) for 24 h. Sprague Dawley rats were divided into regular and high-fat diet (HFD) groups, and their corresponding taurine (70 or 350 mg/kg BW/d) groups, fed for 8 weeks. In steatotic cell, taurine reduced the TG concentration and SREBP-1c, PPARγ, FAS, ACC, SCD1 protein levels, decreased phosphorylation of mTOR, IRS1 (Ser302), increased phosphorylation of AMPKα, LKB1, PI3K, Akt, ACC. While dorsomorphin eliminated taurine's TG-lowering effect. In HFD-fed rats, taurine reduced liver TG, serum TG, ALT, AST, IL-1β, IL-4, TNF-α. The effects of taurine on the main factors of fatty acid synthesis were mostly consistent with cell experiments, and the reduction of microRNAs (451, 33, 291b) was aligned with the improvement in LKB1 and AMPK expression in HFD rats. Taurine alleviated steatosis-induced inhibition of IRS1-PI3K-Akt pathway, but suppressed its positively regulated downstream factor mTOR. In parallel, taurine reduced steatosis by activating LKB1-AMPKα pathway via phosphorylation and no-phosphorylation manner, then inhibiting SREBP-1c directly or by suppressing mTOR phosphorylation.
Collapse
Affiliation(s)
- Qi Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, 464-8601, Japan
| | - Jun Xia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Yu Xun Ma
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Tong Ou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Hui Zi Li
- Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Sheng Quan Mi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Yan Zhen Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, 464-8601, Japan
| | - Wen Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| |
Collapse
|
12
|
Portincasa P. NAFLD, MAFLD, and beyond: one or several acronyms for better comprehension and patient care. Intern Emerg Med 2023; 18:993-1006. [PMID: 36807050 PMCID: PMC10326150 DOI: 10.1007/s11739-023-03203-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common type of chronic liver disease. NAFLD points to excessive hepatic fat storage and no evidence of secondary hepatic fat accumulation in patients with "no or little alcohol consumption". Both the etiology and pathogenesis of NAFLD are largely unknown, and a definitive therapy is lacking. Since NAFLD is very often and closely associated with metabolic dysfunctions, a consensus process is ongoing to shift the acronym NAFLD to MAFLD, i.e., metabolic-associated fatty liver disease. The change in terminology is likely to improve the classification of affected individuals, the disease awareness, the comprehension of the terminology and pathophysiological aspects involved, and the choice of more personalized therapeutic approaches while avoiding the intrinsic stigmatization due to the term "non-alcoholic". Even more recently, other sub-classifications have been proposed to concentrate the heterogeneous causes of fatty liver disease under one umbrella. While awaiting additional validation studies in this field, we discuss the main reasons underlying this important shift of paradigm.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
13
|
Chang M, Shao Z, Shen G. Association between triglyceride glucose-related markers and the risk of metabolic-associated fatty liver disease: a cross-sectional study in healthy Chinese participants. BMJ Open 2023; 13:e070189. [PMID: 37130686 PMCID: PMC10163481 DOI: 10.1136/bmjopen-2022-070189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the performance of the triglyceride glucose (TyG) index and its related markers in predicting metabolic-associated fatty liver disease (MAFLD) in healthy Chinese participants. DESIGN This was a cross-sectional study. SETTING The study was conducted at Health Management Department of the Affiliated Hospital of Xuzhou Medical University. PARTICIPANTS A total of 20 922 asymptomatic Chinese participants (56% men) were enrolled. OUTCOME MEASURES Hepatic ultrasonography was performed to diagnose MAFLD based on the latest diagnostic criteria. The TyG, TyG-body mass (TyG-BMI) and TyG-waist circumference indices were calculated and analysed. RESULTS Compared with the lowest quartile of the TyG-BMI, the adjusted ORs and 95% CIs for MAFLD were 20.76 (14.54 to 29.65), 92.33 (64.61 to 131.95) and 380.87 (263.25 to 551.05) in the second, third and fourth quartiles, respectively. According to the subgroup analysis, the TyG-BMI in the female and the lean groups (BMI<23 kg/m2) showed the strongest predictive value, with optimal cut-off values for MAFLD of 162.05 and 156.31, respectively. The areas under the receiver operating characteristic curves in female and lean groups were 0.933 (95% CI 0.927 to 0.938) and 0.928 (95% CI 0.914 to 0.943), respectively, with 90.7% sensitivity and 81.2% specificity in female participants with MAFLD and 87.2% sensitivity and 87.1% specificity in lean participants with MAFLD. The TyG-BMI index demonstrated superior predictive ability for MAFLD compared with other markers. CONCLUSIONS The TyG-BMI is an effective, simple and promising tool for predicting MAFLD, especially in lean and female participants.
Collapse
Affiliation(s)
- Mingxing Chang
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhihao Shao
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guifang Shen
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Yoo TK, Lee MY, Kim SH, Zheng MH, Targher G, Byrne CD, Sung KC. Comparison of cardiovascular mortality between MAFLD and NAFLD: A cohort study. Nutr Metab Cardiovasc Dis 2023; 33:947-955. [PMID: 36746687 DOI: 10.1016/j.numecd.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS A new diagnostic criterion of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. However, only few studies have shown that MAFLD predicts cardiovascular disease (CVD) mortality better than non-alcoholic fatty liver disease (NAFLD). Therefore, a cohort study was conducted to assess this relationship. METHODS AND RESULTS Health examination data from health care centers in South Korea were assessed after excluding participants with missing covariates and cancer history (n = 701,664). Liver ultrasonography reports, laboratory and anthropometric data were extracted. Diagnoses of NAFLD and MAFLD were performed according to standard definitions. Participants were categorized based on the presence of NAFLD and MAFLD. In addition, participants were classified into five categories: no fatty liver disease (no FLD), NAFLD-only, MAFLD-only, both FLDs, and alcoholic FLD (AFLD) and non-MAFLD. Multivariable regression modeling was performed. The median follow-up duration was 8.77 years, and 52.56% of participants were men. After stratifying the cohort into no-MAFLD and MAFLD groups, MAFLD was associated with increased CVD mortality (adjusted HR 1.14, 95% CI 1.02-1.28). When participants were divided into no-NAFLD and NAFLD groups, there was a non-significant trend towards an increase in CVD mortality in NAFLD group (adjusted HR 1.07, 95% CI 0.95-1.21). When participants were divided into five categories, MAFLD-only group showed increased CVD mortality (adjusted HR 1.35, 95% CI 1.07-1.70) while NAFLD-only group showed no significant association with CVD mortality (adjusted HR 0.67, 95% CI 0.38-1.19). CONCLUSIONS In conclusion, MAFLD is associated with increased CVD mortality in a relatively young Korean population.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hwan Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of Hepatology, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; Southampton National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, UK
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Alomari M, Rashid MU, Chadalavada P, Ragheb J, Zafar H, Suarez ZK, Khazaaleh S, Gonzalez AJ, Castro FJ. Comparison between metabolic-associated fatty liver disease and nonalcoholic fatty liver disease: From nomenclature to clinical outcomes. World J Hepatol 2023; 15:477-496. [PMID: 37206648 PMCID: PMC10190689 DOI: 10.4254/wjh.v15.i4.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
As a result of the obesity epidemic, Nonalcoholic fatty liver disease (NAFLD) and its complications have increased among millions of people. Consequently, a group of experts recommended changing the term NAFLD to an inclusive terminology more reflective of the underlying pathogenesis; metabolic-associated fatty liver disease (MAFLD). This new term of MAFLD has its own disease epidemiology and clinical outcomes prompting efforts in studying its differences from NAFLD. This article discusses the rationale behind the nomenclature change, the main differences, and its clinical implications.
Collapse
Affiliation(s)
- Mohammad Alomari
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Mamoon Ur Rashid
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Pravallika Chadalavada
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Jonathan Ragheb
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Hammad Zafar
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Zoilo Karim Suarez
- Department of Internal Medicine, Florida Atlantic University Charles E Schmidt College of Medicine, Boca Raton, FL 33431, United States
| | - Shrouq Khazaaleh
- Department of Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44126, United States
| | - Adalberto Jose Gonzalez
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Fernando J Castro
- Department of Gastroenterology and Hepatology, Cleveland Clinic Florida, Weston, FL 33331, United States
| |
Collapse
|
16
|
Lim GEH, Tang A, Ng CH, Chin YH, Lim WH, Tan DJH, Yong JN, Xiao J, Lee CWM, Chan M, Chew NW, Xuan Tan EX, Siddiqui MS, Huang D, Noureddin M, Sanyal AJ, Muthiah MD. An Observational Data Meta-analysis on the Differences in Prevalence and Risk Factors Between MAFLD vs NAFLD. Clin Gastroenterol Hepatol 2023; 21:619-629.e7. [PMID: 34871813 DOI: 10.1016/j.cgh.2021.11.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The shift to redefine nonalcoholic fatty liver disease (NAFLD) as metabolic associated fatty liver disease (MAFLD) can profoundly affect patient care, health care professionals, and progress within the field. To date, there remains no consensus on the characterization of NAFLD vs MAFLD. Thus, this study sought to compare the differences between the natural history of NAFLD and MAFLD. METHODS Medline and Embase databases were searched to include articles on prevalence, risk factors, or outcomes of patients with MAFLD or NAFLD. Meta-analysis of proportions was conducted using the generalized linear mix model. Risk factors and outcomes were evaluated in conventional pairwise meta-analysis. RESULTS Twenty-two articles involving 379,801 patients were included. Pooled prevalence of MAFLD was 39.22% (95% confidence interval [CI], 30.96%-48.15%) with the highest prevalence in Europe and Asia, followed by North America. The current MAFLD Definition only accounted for 81.59% (95% CI, 66.51%-90.82%) of NAFLD diagnoses. Patients had increased odds of being diagnosed with MAFLD compared with NAFLD (odds ratio, 1.37; 95% CI, 1.16-1.63; P < .001). Imaging modality resulted in a significantly higher odds of being diagnosed with MAFLD compared with NAFLD, but not biopsy. MAFLD was significantly associated with males, higher body mass index, hypertension, diabetes, lipids, transaminitis, and greater fibrosis scores compared with NAFLD. CONCLUSIONS There were stark differences in the prevalence and risk factors between MAFLD and NAFLD. However, in the use of the MAFLD Definition, a greater emphasis on the management of concomitant metabolic diseases and a collaborative effort is required to explore the complex pathophysiologic mechanisms underlying the disease.
Collapse
Affiliation(s)
- Grace En Hui Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ansel Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chloe Wen-Min Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Eunice Xiang Xuan Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore.
| |
Collapse
|
17
|
Jung HN, Jung CH. Comparing the Mortality Risk between Metabolic Dysfunction-Associated Fatty Liver Disease and Non-Alcoholic Fatty Liver Disease. Diabetes Metab J 2023; 47:198-200. [PMID: 36944452 PMCID: PMC10040625 DOI: 10.4093/dmj.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Affiliation(s)
- Han Na Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
- Corresponding author: Chang Hee Jung https://orcid.org/0000-0003-4043-2396 Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea E-mail:
| |
Collapse
|
18
|
Gofton C, Upendran Y, Zheng MH, George J. MAFLD: How is it different from NAFLD? Clin Mol Hepatol 2023; 29:S17-S31. [PMID: 36443926 PMCID: PMC10029949 DOI: 10.3350/cmh.2022.0367] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
"Metabolic dysfunction-associated fatty liver disease (MAFLD)" is the term suggested in 2020 to refer to fatty liver disease related to systemic metabolic dysregulation. The name change from nonalcoholic fatty liver disease (NAFLD) to MAFLD comes with a simple set of criteria to enable easy diagnosis at the bedside for the general medical community, including primary care physicians. Since the introduction of the term, there have been key areas in which the superiority of MAFLD over the traditional NAFLD terminology has been demonstrated, including for the risk of liver and extrahepatic mortality, disease associations, and for identifying high-risk individuals. Additionally, MAFLD has been adopted by a number of leading pan-national and national societies due to its concise diagnostic criterion, removal of the requirement to exclude concomitant liver diseases, and reduction in the stigma associated with this condition. The current article explores the differences between MAFLD and NAFLD diagnosis, areas of benefit, some potential limitations, and how the MAFLD terminology has opened up new fields of research.
Collapse
Affiliation(s)
- Cameron Gofton
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Gastroenterology and Hepatology, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
- Department of Gastroenterology and Hepatology, University of New South Wales, Sydney, NSW, Australia
| | - Yadhavan Upendran
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Hepatology, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
19
|
Kwon SY, Park J, Park SH, Lee YB, Kim G, Hur KY, Koh J, Jee JH, Kim JH, Kang M, Jin SM. MAFLD and NAFLD in the prediction of incident chronic kidney disease. Sci Rep 2023; 13:1796. [PMID: 36720976 PMCID: PMC9889784 DOI: 10.1038/s41598-023-27762-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Whether metabolic dysfunction-associated fatty liver disease (MAFLD) can replace nonalcoholic fatty liver disease (NAFLD) is under debate. This study evaluated which definition better predicted incident chronic kidney disease (CKD). This was a 5.3-year (range, 2.8-8.3) retrospective cohort study of 21,713 adults who underwent at least two serial health examinations. Cox analyses were used to compare the risk of incident CKD among non-fatty liver disease (FLD) without metabolic dysregulation (MD; reference), non-FLD with MD, MAFLD-only, NAFLD-only, or both-FLD groups. Non-FLD with MD group (hazard ratio [HR] 1.23, 95% confidence interval [CI] 1.00-1.53), both-FLD group (HR 1.50, 95% CI 1.19-1.89), and MAFLD-only group (HR 1.97, 95% CI 1.49-2.60), but not NAFLD-only group (HR 1.06, 95% CI 0.63-1.79) demonstrated an increased risk of CKD. The increased risk of CKD was significant in MAFLD subgroups with overweight/obesity (HR 2.94, 95% CI 1.91-4.55), diabetes (HR 2.20, 95% CI 1.67-2.90), MD only (HR 1.50, 95% CI 1.19-1.89), excessive alcohol consumption (HR 2.71, 95% CI 2.11-3.47), and viral hepatitis (HR 2.38, 95% CI 1.48-3.84). The switch from NAFLD to MAFLD criteria may identify a greater number of individuals at CKD risk. The association was also significant in MAFLD patients with excessive alcohol consumption or viral hepatitis.
Collapse
Affiliation(s)
- So Yoon Kwon
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - Jiyun Park
- Division of Endocrine and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 14396, Republic of Korea
| | - So Hee Park
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - Janghyun Koh
- Department of Health Promotion Center, Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jae Hwan Jee
- Department of Health Promotion Center, Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea
| | - Mira Kang
- Department of Health Promotion Center, Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon‑ro, Gangnam‑gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
20
|
Barcelos STA, Silva-Sperb AS, Moraes HA, Longo L, de Moura BC, Michalczuk MT, Uribe-Cruz C, Cerski CTS, da Silveira TR, Dall'Alba V, Álvares-da-Silva MR. Oral 24-week probiotics supplementation did not decrease cardiovascular risk markers in patients with biopsy proven NASH: A double-blind placebo-controlled randomized study. Ann Hepatol 2023; 28:100769. [PMID: 36216309 DOI: 10.1016/j.aohep.2022.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION AND OBJECTIVES Cardiovascular disease (CVD) is the major cause of death in non-alcoholic fatty liver disease (NAFLD), a clinical condition without any approved pharmacological therapy. Probiotics are often indicated for the disease, but their results are controversial in part due to the poor quality of studies. Thus, we investigated the impact of 24-week probiotics supplementation on cardiovascular risk (CVR) in biopsy-proven non-alcoholic steatohepatitis (NASH) patients. PATIENTS AND METHODS Double-blind, placebo-controlled, single-center study (NCT03467282), adult NASH, randomized for 24 weeks daily sachets of probiotic mix (109CFU of Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus paracasei and Bifidobacterium lactis) or placebo. Clinical scores (atherogenic indexes, atherosclerotic cardiovascular disease-ASCVD and systematic coronary risk evaluation-SCORE), biochemistry, miR-122, miR-33a, plasminogen activator inhibitor-1 (PAI-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), were determined before and after the intervention. RESULTS Forty-six patients were enrolled (23 received probiotics and 23 placebo), with a mean age of 51.7 years, most of them females and whites. Clinical and demographic features were similar between the groups at the baseline. The Median NAFLD activity score was 4.13 in both groups. Fibrosis was mild in most patients (15.2% and 65.2% F0 and F1, respectively). Treatment did not promote any clinically significant changes in body mass index or laboratory, including lipid and glucose profile. High CVR patients through atherogenic indexes decreased from baseline in both groups, as well as PAI-1 and miR-122 levels, although there was no difference between probiotics and placebo. CONCLUSIONS A 24-week probiotic mix administration was not superior to placebo in reducing CVR markers in patients with NASH.
Collapse
Affiliation(s)
- Samantha Thifani Alrutz Barcelos
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Amanda Souza Silva-Sperb
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Helena Abadie Moraes
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Bruna Concheski de Moura
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Matheus Truccolo Michalczuk
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Division of Gastroenterology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Unit of Surgical Pathology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Valesca Dall'Alba
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Division of Nutrition, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Division of Gastroenterology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Ornithine Aspartate and Vitamin-E Combination Has Beneficial Effects on Cardiovascular Risk Factors in an Animal Model of Nonalcoholic Fatty Liver Disease in Rats. Biomolecules 2022; 12:biom12121773. [PMID: 36551202 PMCID: PMC9775092 DOI: 10.3390/biom12121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular (CV) disease is the main cause of death in nonalcoholic fatty liver disease (NAFLD), a clinical condition without any approved pharmacological therapy. Thus, we investigated the effects of ornithine aspartate (LOLA) and/or Vitamin E (VitE) on CV parameters in a steatohepatitis experimental model. Adult Sprague Dawley rats were randomly assigned (10 animals each) and treated from 16 to 28 weeks with gavage as follows: controls (standard diet plus distilled water (DW)), NAFLD (high-fat choline-deficient diet (HFCD) plus DW), NAFLD+LOLA (HFCD plus LOLA (200 mg/kg/day)), NAFLD+VitE (HFCD plus VitE (150 mg twice a week)) or NAFLD+LOLA+VitE in the same doses. Atherogenic ratios were higher in NAFLD when compared with NAFLD+LOLA+VitE and controls (p < 0.05). Serum concentration of IL-1β, IL-6, TNF-α, MCP-1, e-selectin, ICAM-1, and PAI-1 were not different in intervention groups and controls (p > 0.05). NAFLD+LOLA decreased miR-122, miR-33a, and miR-186 (p < 0.05, for all) in relation to NAFLD. NAFLD+LOLA+VitE decreased miR-122, miR-33a and miR-186, and increased miR-126 (p < 0.05, for all) in comparison to NAFLD and NAFLD+VitE. NAFLD+LOLA and NAFLD+LOLA+VitE prevented liver collagen deposition (p = 0.006) in comparison to NAFLD. Normal cardiac fibers (size and shape) were lower in NAFLD in relation to the others; and the inverse was reported for the percentage of regular hypertrophic cardiomyocytes. NAFLD+LOLA+VitE promoted a significant improvement in atherogenic dyslipidemia, liver fibrosis, and paracrine signaling of lipid metabolism and endothelial dysfunction. This association should be further explored in the treatment of NAFLD-associated CV risk factors.
Collapse
|
22
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
23
|
Su W, Chen M, Xiao L, Du S, Xue L, Feng R, Ye W. Association of metabolic dysfunction-associated fatty liver disease, type 2 diabetes mellitus, and metabolic goal achievement with risk of chronic kidney disease. Front Public Health 2022; 10:1047794. [PMID: 36420005 PMCID: PMC9676964 DOI: 10.3389/fpubh.2022.1047794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background Although type 2 diabetes mellitus (T2DM) plays a significant role in the association between metabolic dysfunction-associated fatty liver disease (MAFLD) and chronic kidney disease (CKD), how T2DM development and glycemic deterioration affect CKD and its renal function indicators, estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), remains unknown. We aimed to assess the association between MAFLD, along with T2DM, and risk of CKD, and then evaluate the effect of metabolic goal achievement in MAFLD on the risk of CKD. Methods In this cross-sectional study, 5,594 participants were included. Multivariate logistic regression and linear regression were used to examine the association between MAFLD with its T2DM status and metabolic goal achievement and risk of CKD, as well as eGFR and UACR. Results The MAFLD group had a higher prevalence of CKD (16.2 vs. 7.6%, P < 0.001) than the non-MAFLD group. MAFLD was independently associated with an increased risk of CKD (odds ratio [OR]: 1.35, 95% CI: 1.09-1.67) and increased eGFR and UACR. Among the three MAFLD subtypes, only the T2DM subtype exhibited significant associations with increased risk of CKD (OR: 2.85, 95% CI: 2.24-3.63), as well as increased eGFR and UACR. Glycemic deterioration in MAFLD was dose-dependently associated with an increased risk of CKD (P-trend < 0.001). Achieved metabolic goals in MAFLD decreased the risk of CKD, eGFR, and UACR; MAFLD with 2 or 3 achieved metabolic goals was not significantly associated with the risk of CKD (OR: 0.81, 95% CI: 0.59-1.12) and albuminuria. Conclusion MAFLD was independently associated with an increased risk of CKD, as well as increased eGFR and UACR. This association is strongly driven by T2DM status. Glycemic deterioration in MAFLD was dose-dependently associated with an increased risk of CKD. Achieved metabolic goals in MAFLD decreased the risk of CKD by reducing the risk of albuminuria.
Collapse
Affiliation(s)
- Weitao Su
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Minhui Chen
- Department of Ultrasonography, Fuqing Hospital, Fuqing, China
| | - Ling Xiao
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shanshan Du
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lihua Xue
- Department of Ultrasonography, Fuqing Hospital, Fuqing, China
| | - Ruimei Feng
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Weimin Ye
- School of Public Health, Fujian Medical University, Fuzhou, China,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Weimin Ye
| |
Collapse
|
24
|
Perdomo CM, Núñez-Córdoba JM, Ezponda A, Mendoza FJ, Ampuero J, Bastarrika G, Frühbeck G, Escalada J. Cardiometabolic characterization in metabolic dysfunction–associated fatty liver disease. Front Med (Lausanne) 2022; 9:1023583. [PMID: 36341262 PMCID: PMC9632176 DOI: 10.3389/fmed.2022.1023583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background To better understand the patient's heterogeneity in fatty liver disease (FLD), metabolic dysfunction–associated fatty liver disease (MAFLD) was proposed by international experts as a new nomenclature for nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the cardiovascular risk, assessed through coronary artery calcium (CAC) and epicardial adipose tissue (EAT), of patients without FLD and patients with FLD and its different subtypes. Methods Cross sectional study of 370 patients. Patients with FLD were divided into 4 groups: FLD without metabolic dysfunction (non-MD FLD), MAFLD and the presence of overweight/obesity (MAFLD-OW), MAFLD and the presence of two metabolic abnormalities (MAFLD-MD) and MAFLD and the presence of T2D (MAFLD-T2D). MAFLD-OW included two subgroups: metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). The patients without FLD were divided into 2 groups: patients without FLD and without MD (non-FLD nor MD; reference group) and patients without FLD but with MD (non-FLD with MD). EAT and CAC (measured through the Agatston Score) were determined by computed tomography. Results Compared with the reference group (non-FLD nor MD), regarding EAT, patients with MAFLD-T2D and MAFLD-MUHO had the highest risk for CVD (OR 15.87, 95% CI 4.26-59.12 and OR 17.60, 95% CI 6.71-46.20, respectively), patients with MAFLD-MHO were also at risk for CVD (OR 3.62, 95% CI 1.83-7.16), and patients with non-MD FLD did not have a significantly increased risk (OR 1.77; 95% CI 0.67-4.73). Regarding CAC, patients with MAFLD-T2D had an increased risk for CVD (OR 6.56, 95% CI 2.18-19.76). Patients with MAFLD-MUHO, MAFLD-MHO and non-MD FLD did not have a significantly increased risk compared with the reference group (OR 2.54, 95% CI 0.90-7.13; OR 1.84, 95% CI 0.67-5.00 and OR 2.11, 95% CI 0.46-9.74, respectively). Conclusion MAFLD–T2D and MAFLD–OW phenotypes had a significant risk for CVD. MAFLD new criteria reinforced the importance of identifying metabolic phenotypes in populations as it may help to identify patients with higher CVD risk and offer a personalized therapeutic management in a primary prevention setting.
Collapse
Affiliation(s)
- Carolina M. Perdomo
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- *Correspondence: Carolina M. Perdomo
| | - Jorge M. Núñez-Córdoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Ezponda
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Javier Ampuero
- Department of Gastroenterology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Escalada
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Byrne CD. Banting memorial lecture 2022: 'Type 2 diabetes and nonalcoholic fatty liver disease: Partners in crime'. Diabet Med 2022; 39:e14912. [PMID: 35790023 PMCID: PMC9546361 DOI: 10.1111/dme.14912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) was first described in the 1980s, but in the 21st century, NAFLD has become a very common condition. The explanation for this relatively recent problem is in large part due to the recent epidemic of obesity and type 2 diabetes (T2DM) increasing the risk of NAFLD. NAFLD is a silent condition that may not become manifest until severe liver damage (fibrosis or cirrhosis) has occurred. Consequently, NAFLD and its complications often remain undiagnosed. Research evidence shows that NAFLD is extremely common and some estimates suggest that it occurs in up to 70% of people with T2DM. In the last 5 years, it has become evident that NAFLD not only increases the risk of cirrhosis, primary liver cancer and end-stage liver disease, but NAFLD is also an important multisystem disease that has major implications beyond the liver. NAFLD increases the risk of incident T2DM, cardiovascular disease, chronic kidney disease and certain extra-hepatic cancers, and NAFLD and T2DM form part of a vicious spiral of worsening diseases, where one condition affects the other and vice versa. Diabetes markedly increases the risk of liver fibrosis and liver fibrosis is the most important risk factor for hepatocellular carcinoma. It is now possible to diagnose liver fibrosis with non-invasive tools and therefore it is important to have clear care pathways for the management of NAFLD in patients with T2DM. This review summarises key recent research that was discussed as part of the Banting lecture at the annual scientific conference in 2022.
Collapse
Affiliation(s)
- Christopher D. Byrne
- Division of Endocrinology & MetabolismUniversity Hospital Southampton and University of SouthamptonSouthamptonUK
| |
Collapse
|
26
|
Chan KE, Koh TJL, Tang ASP, Quek J, Yong JN, Tay P, Tan DJH, Lim WH, Lin SY, Huang D, Chan M, Khoo CM, Chew NWS, Kaewdech A, Chamroonkul N, Dan YY, Noureddin M, Muthiah M, Eslam M, Ng CH. Global Prevalence and Clinical Characteristics of Metabolic-associated Fatty Liver Disease: A Meta-Analysis and Systematic Review of 10 739 607 Individuals. J Clin Endocrinol Metab 2022; 107:2691-2700. [PMID: 35587339 DOI: 10.1210/clinem/dgac321] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Metabolic-associated fatty liver disease (MAFLD) was proposed as a better definition of nonalcoholic fatty liver disease (NAFLD) to encompass the metabolic dysregulation associated with NAFLD. This redefinition challenges our understanding of the disease. Hence, this study sought to conduct an updated analysis of the prevalence, clinical characteristics, and associated factors of MAFLD, with a further sensitivity analysis done based on lean and nonobese MAFLD individuals. METHODS Medline and Embase databases were searched to include articles on MAFLD. Meta-analysis of proportions was conducted using the generalized linear mix model. Associating factors were evaluated in conventional pairwise meta-analysis with sensitivity analysis on lean and nonobese MAFLD. RESULTS From pooled analysis involving 3 320 108 individuals, the overall prevalence of MAFLD was 38.77% (95% CI 32.94% to 44.95%); 5.37% (95% CI 4.36% to 6.59%) and 29.78% (95% CI 26.06% to 33.79%) of lean and nonobese individuals, respectively, had MAFLD. Metabolic complications such as hypertension [odds ratio (OR) 2.63, 95% CI 1.85 to 3.74, P < 0.0001 and OR 2.03; 95% CI 1.74 to 2.38, P < 0.0001, respectively] and diabetes (OR 3.80, 95% CI 2.65 to 5.43, P < 0.0001 and OR 3.46, 95% CI 2.81 to 4.27, P < 0.0001, respectively) were found as significant associating factors associated with lean and nonobese MAFLD. CONCLUSIONS This meta-analysis supports previous studies in reporting MAFLD to affect more than a third of the global population. While exploration of the pathogenic basis of fatty liver disease without metabolic dysregulation is required, the emphasis on management of concomitant metabolic disease in MAFLD can improve multidisciplinary efforts in managing the complex disease.
Collapse
Affiliation(s)
- Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tiffany Jia Ling Koh
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Ansel Shao Pin Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phoebe Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Snow Yunni Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Chin Meng Khoo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Apichat Kaewdech
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Naichaya Chamroonkul
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, CA,USA
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
27
|
Kawaguchi T, Tsutsumi T, Nakano D, Torimura T. MAFLD: Renovation of clinical practice and disease awareness of fatty liver. Hepatol Res 2022; 52:422-432. [PMID: 34472683 DOI: 10.1111/hepr.13706] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
Recently, international expert panels have proposed a new definition of fatty liver: metabolic dysfunction-associated fatty liver disease (MAFLD). MAFLD is not just a simple renaming of non-alcoholic fatty liver disease (NAFLD). The unique feature of MAFLD is the inclusion of metabolic dysfunctions, which are high-risk factors for events. In addition, MAFLD is independent of alcohol intake and the co-existing causes of liver disease. This new concept of MAFLD may have a widespread impact on patients, medical doctors, medical staff, and various stakeholders regarding fatty liver. Thus, MAFLD may renovate clinical practice and disease awareness of fatty liver. In this review, we introduce the definition of and rationale for MAFLD. We further describe representative cases showing how the diagnostic processes differ between MAFLD and NAFLD. We also summarize recent studies comparing MAFLD with NAFLD and discuss the impact of MAFLD on clinical trials, Japanese populations, and disease awareness.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
28
|
Sumida Y. Renaming from nonalcoholic fatty liver disease to metabolism dysfunction associated fatty liver disease: Pros and cons. Hepatol Res 2022; 52:415-416. [PMID: 35591814 DOI: 10.1111/hepr.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
29
|
Chen SD, Zhang H, Rios RS, Li YY, Zhu PW, Jin Y, Ma HL, Tang LJ, Li G, Huang OY, Zheng KI, Byrne CD, Targher G, Zheng MH. J-shaped relationship between serum zinc levels and the severity of hepatic necro-inflammation in patients with MAFLD. Nutr Metab Cardiovasc Dis 2022; 32:1259-1265. [PMID: 35260312 DOI: 10.1016/j.numecd.2022.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Zinc is an essential trace element that plays an important role in maintaining health, and affecting gene expression, signal transduction and regulation of apoptosis. It is uncertain whether serum zinc levels are altered in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). We aimed to investigate the association between serum zinc levels and the severity of hepatic necro-inflammation (HN) in patients with MAFLD. METHODS AND RESULTS Liver disease severity was graded histologically using the NAFLD activity score. HN was defined as the sum of ballooning and lobular inflammation. We used a smooth function regression model to analyze the relationship between serum zinc levels and HN. A total of 561 (76.5% men) patients with biopsy-confirmed MAFLD were enrolled. They had a mean age of 41.3 years, and a mean serum zinc level of 17.0 ± 4.1 μmol/L. Compared to those with mild hepatic necro-inflammation (MHN, grades 0-2; n = 286), patients with severe hepatic necro-inflammation (SHN, grades 3-5; n = 275) had lower serum zinc concentrations (16.3 ± 4.2 vs. 17.6 ± 4.0 μmol/L; p < 0.001). However, a threshold saturation effect analysis showed that there was an inflection in serum zinc levels at 24 μmol/L. After adjustment for potential confounders, serum zinc levels <24 μmol/L were inversely associated with SHN (adjusted-odds ratio 0.88, 95%CI 0.83-0.93; p < 0.001), whereas serum zinc levels >24 μmol/L were positively associated with SHN (adjusted-odds ratio 1.42, 95%CI: 1.03-1.97; p = 0.035). CONCLUSIONS There is a J-shaped relationship between serum zinc levels and the severity of hepatic necro-inflammation in patients with biopsy-proven MAFLD.
Collapse
Affiliation(s)
- Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huai Zhang
- Department of Biostatistics and Medical Record, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Yang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Jin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
30
|
Alharthi J, Gastaldelli A, Cua IH, Ghazinian H, Eslam M. Metabolic dysfunction-associated fatty liver disease: a year in review. Curr Opin Gastroenterol 2022; 38:251-260. [PMID: 35143431 DOI: 10.1097/mog.0000000000000823] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In 2020, a novel comprehensive redefinition of fatty liver disease was proposed by an international panel of experts. This review aims to explore current evidence regarding the impact of this new definition on the current understanding of the epidemiology, pathogenesis, diagnosis, and clinical trials for fatty liver disease. RECENT FINDINGS The effectiveness of metabolic dysfunction-associated fatty liver disease (MAFLD) was compared to the existing criteria for nonalcoholic fatty liver disease (NAFLD). Recent data robustly suggest the superior utility of MAFLD in identifying patients at high risk for metabolic dysfunction, the hepatic and extra-hepatic complications, as well as those who would benefit from genetic testing, including patients with concomitant liver diseases. This change in name and criteria also appears to have improved disease awareness among patients and physicians. SUMMARY The transformation in name and definition from NAFLD to MAFLD represents an important milestone, which indicates significant tangible progress towards a more inclusive, equitable, and patient-centred approach to addressing the profound challenges of this disease. Growing evidence has illustrated the broader and specific contexts that have tremendous potential for positively influencing the diagnosis and treatment. In addition, the momentum accompanying this name change has included widespread public attention to the unique burden of this previously underappreciated disease.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | | | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Hasmik Ghazinian
- Hepatology Department, National Centre of Infectious Diseases, Yerevan, Armenia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
31
|
Kaya E, Yilmaz Y. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver. J Clin Transl Hepatol 2022; 10:329-338. [PMID: 35528971 PMCID: PMC9039705 DOI: 10.14218/jcth.2021.00178] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multisystemic clinical condition that presents with a wide spectrum of extrahepatic manifestations, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, chronic kidney disease, extrahepatic malignancies, cognitive disorders, and polycystic ovarian syndrome. Among NAFLD patients, the most common mortality etiology is cardiovascular disorders, followed by extrahepatic malignancies, diabetes mellitus, and liver-related complications. Furthermore, the severity of extrahepatic diseases is parallel to the severity of NAFLD. In clinical practice, awareness of the associations of concomitant diseases is of major importance for initiating prompt and timely screening and multidisciplinary management of the disease spectrum. In 2020, a consensus from 22 countries redefined the disease as metabolic (dysfunction)-associated fatty liver disease (MAFLD), which resulted in the redefinition of the corresponding population. Although the patients diagnosed with MAFLD and NAFLD mostly overlap, the MAFLD and NAFLD populations are not identical. In this review, we compared the associations of key extrahepatic diseases between NAFLD and MAFLD.
Collapse
Affiliation(s)
- Eda Kaya
- Department of Internal Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| |
Collapse
|
32
|
Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol 2022; 18:259-268. [PMID: 35013596 DOI: 10.1038/s41581-021-00519-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in more than 5% of hepatocytes in the absence of excessive alcohol consumption and other secondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dysfunction)-associated fatty liver disease (MAFLD) - defined by broader diagnostic criteria - was proposed to replace the term NAFLD. The new terminology and revised definition better emphasize the pathogenic role of metabolic dysfunction and uses a set of definitive, inclusive criteria for diagnosis. Diagnosis of MAFLD is based on evidence of hepatic steatosis (as assessed by liver biopsy, imaging techniques or blood biomarkers and scores) in persons who are overweight or obese and have type 2 diabetes mellitus or metabolic dysregulation, regardless of the coexistence of other liver diseases or excessive alcohol consumption. The known association between NAFLD and chronic kidney disease (CKD) and our understanding that CKD can occur as a consequence of metabolic dysfunction suggests that individuals with MAFLD - who by definition have fatty liver and metabolic comorbidities - are at increased risk of CKD. In this Perspective article, we discuss the clinical associations between MAFLD and CKD, the pathophysiological mechanisms by which MAFLD may increase the risk of CKD and the potential drug treatments that may benefit both conditions.
Collapse
|
33
|
Ayada I, van Kleef LA, Alferink LJM, Li P, de Knegt RJ, Pan Q. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: Focusing on the non-overlap groups. Liver Int 2022; 42:277-287. [PMID: 34953098 DOI: 10.1111/liv.15139] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The applicability of the novel metabolic dysfunction associated fatty liver disease (MAFLD) definition has been studied in numerous cohorts and compared to non-alcoholic fatty liver disease (NAFLD). No consensus has been reached on which definition is preferred. Therefore, this meta-analysis aims to compare the epidemiological and clinical features of NAFLD and MAFLD in the general and non-general population. METHODS We searched Medline, Embase and Web of Science for studies comparing MAFLD to NAFLD. Based on MAFLD and NAFLD status, the following subgroups were investigated for liver health: overlap fatty liver disease (FLD), NAFLD-only and MAFLD-only. Data were pooled using random-effects models. RESULTS We included 17 studies comprising 9 808 677 individuals. In the general population, MAFLD was present in 33.0% (95% CI 29.7%-36.5%) and NAFLD in 29.1% (95% CI 27.1%-31.1%). Among those with FLD, 4.0% (95% CI 2.4%-6.4%) did not meet the MAFLD criteria but had NAFLD (NAFLD-only) and 15.1% (95% CI 11.5%-19.5%) was exclusively captured by the novel MAFLD definition (MAFLD-only). Notably, this MAFLD-only group was at significantly increased risk for fibrosis (RR 4.2; 95% CI 1.3-12.9) and had higher alanine aminotransferase (mean difference: 8.0 U/L, 95% CI 2.6-13.5) and aspartate aminotransferase (mean difference: 6.4 U/L, 95% CI 3.0-9.7), compared to NAFLD-only. Similar results were obtained among the non-general population. CONCLUSIONS Metabolic dysfunction associated fatty liver disease and NAFLD are highly prevalent in the general population, with considerable overlap between them. However, compared to NAFLD, significantly more individuals were additionally identified by MAFLD than were missed. Importantly, by using the MAFLD criteria, more individuals with liver damage were identified. Therefore, the novel MAFLD definition is superior to NAFLD on a population level.
Collapse
Affiliation(s)
- Ibrahim Ayada
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laurens A van Kleef
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Louise J M Alferink
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Byrne CD, Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes Metab 2022; 24 Suppl 2:28-43. [PMID: 34324263 DOI: 10.1111/dom.14484] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Non-alcoholic fatty liver disease (NAFLD) affects approximately 25% of the global adult population. The aim of this narrative review is to describe the associations between NAFLD and cardiovascular disease (CVD), arrhythmias, cardiac conduction defects, myocardial remodelling and heart failure. We also discuss the potential mechanisms that mediate or attenuate the strength of these associations, and briefly summarize the effect of treatments that both ameliorate NAFLD and decrease risk of CVD. METHODS Searches of PubMed were performed by the two authors using the terms listed in Appendix. We limited the timeframe to the last decade due to the vast amount of research in the field (up to April 2021) for meta-analyses, reviews and original papers. Only articles published in English were considered. RESULTS NAFLD is associated with an increased risk of fatal/non-fatal CVD events and other cardiac and arrhythmic complications (left ventricular hypertrophy, aortic-valve sclerosis and certain arrhythmias), independently of common CVD risk factors. There are probably several underlying mechanisms, including hepatic/systemic insulin resistance, atherogenic dyslipidaemia, hypertension and pro-atherogenic, pro-coagulant and pro-inflammatory mediators released from the steatotic/inflamed liver that may be involved. Some genetic polymorphisms, such as PNPLA3 (rs738409 C>G) and TM6SF2 (rs58542926 C>T), may worsen the liver disease, but also attenuate the strength of the association between NAFLD and CVD, possibly via their effects on lipoprotein metabolism. Of the currently tested drugs for treating NAFLD that also benefit the vasculature, pioglitazone and GLP-1 receptor agonists are the most promising. CONCLUSIONS The complex interplay between the liver and cardiometabolic risk factors contributes to CVD, arrhythmias and cardiac disease in NAFLD. There is an urgent need for a multidisciplinary approach to manage both liver disease and cardiometabolic risk, and to test the cardiovascular and cardiac effects of new drugs for NAFLD.
Collapse
Affiliation(s)
- Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
35
|
Devi J, Raees A, Butt AS. Redefining non-alcoholic fatty liver disease to metabolic associated fatty liver disease: Is this plausible? World J Hepatol 2022; 14:158-167. [PMID: 35126845 PMCID: PMC8790389 DOI: 10.4254/wjh.v14.i1.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/17/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, a single letter change has taken the world by storm. A group of experts have developed a consensus to upgrade the term non-alcoholic fatty liver disease (NAFLD) to metabolic associated fatty liver disease (MAFLD), suggesting that MAFLD would more accurately reflect not only the disease pathogenesis but would also help in patient stratification for management with NAFLD. However, the difference of opinion exists, which has made the NAFLD vs MAFLD debate the current talk of the town. This review will focus on the plausibility and implications of redefining NAFLD as MAFLD.
Collapse
Affiliation(s)
- Jalpa Devi
- Department of Gastroenterology, Liaquat University of Medical and Health Sciences, Jamshoro 74800, Pakistan
| | - Aimun Raees
- Department of Gastroenterology, Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Amna Subhan Butt
- Department of Gastroenterology, Aga Khan University Hospital, Karachi 74800, Pakistan.
| |
Collapse
|
36
|
Chen X, Zhou J, Wu L, Zhu X, Deng H. MAFLD is Associated with the Risk of Liver Fibrosis and Inflammatory Activity in HBeAg-Negative CHB Patients. Diabetes Metab Syndr Obes 2022; 15:673-683. [PMID: 35256849 PMCID: PMC8898022 DOI: 10.2147/dmso.s351492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 04/10/2023] Open
Abstract
PURPOSE Chronic hepatitis B (CHB) and metabolic associated fatty liver disease (MAFLD) are both important public health problems. The effect of concomitant MAFLD on patients with CHB is still unclear. This study aimed to explore the influence of MAFLD on liver fibrosis and inflammation in CHB patients with different hepatitis B e antigen (HBeAg) status. PATIENTS AND METHODS We retrospectively collected the clinical data of 399 treatment-naïve CHB patients who underwent liver biopsy. All patients were divided into two groups (HBeAg± group). Logistic regression analysis was used to identify factors associated with liver inflammatory activity and significant fibrosis in patients with CHB. Multivariable logistic regressions were repeated in subgroups stratified by HBeAg status. RESULTS In patients with CHB, MAFLD was independently associated with a risk of moderate-to-severe liver activity and significant fibrosis (P <0.05). In the HBeAg-negative group, patients with MAFLD had significantly higher levels of alanine aminotransferase (ALT) (P <0.05) and more severe liver inflammatory activity and fibrosis (P <0.05) compared to those without MAFLD. MAFLD was independently associated with a risk of moderate-to-severe liver activity (A ≥3: OR 3.97, 95% CI 1.71-9.22, P =0.001) and significant fibrosis (F ≥2: OR 2.02, 95% CI 1.09-3.73, P =0.026). In the HBeAg-positive group, MAFLD was found to be independently associated with moderate-to-severe liver activity (OR 2.44, 95% CI 1.03-5.79, P =0.044) but not fibrosis (P =0.618). CONCLUSION MAFLD is associated with the risk of liver fibrosis and inflammatory activity in HBeAg-negative CHB patients. Sufficient attention should be paid to the prevention and treatment of MAFLD in patients with CHB, especially in HBeAg-negative patients.
Collapse
Affiliation(s)
- Xiaoman Chen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jing Zhou
- Department of Pathology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lili Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Hong Deng; Xiang Zhu, Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, People’s Republic of China, Tel +86-2085252506, Fax +86-2085252063, Email ;
| |
Collapse
|
37
|
Kaya E, Yilmaz Y. Epidemiology, natural history, and diagnosis of metabolic dysfunction-associated fatty liver disease: a comparative review with nonalcoholic fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221139650. [PMID: 36533185 PMCID: PMC9747887 DOI: 10.1177/20420188221139650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide - with an estimated global prevalence of 37%. Different from nonalcoholic fatty liver disease (NAFLD), which is an exclusion diagnosis, MAFLD is defined by a set of positive criteria. This recent change in terminology is challenging because MAFLD and NAFLD denote two similar, albeit not identical, clinical populations. When the diagnostic criteria for MAFLD are applied, liver histology appears more severe and clinical outcomes are less favorable. However, the clinical management of MAFLD and NAFLD remains similar. While liver biopsy is still the reference standard for achieving a final diagnosis, noninvasive imaging- or biomarker-based diagnostic modalities are currently gaining momentum. However, liver biopsy should be recommended when diagnostic challenges exist. In this review, we compared the epidemiology, natural history, and diagnosis of MAFLD with respect to the traditional NAFLD definition.
Collapse
Affiliation(s)
- Eda Kaya
- Section of Gastroenterology and Hepatology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
38
|
Wen W, Li H, Wang C, Chen C, Tang J, Zhou M, Hong X, Cheng Y, Wu Q, Zhang X, Feng Z, Wang M. Metabolic dysfunction-associated fatty liver disease and cardiovascular disease: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:934225. [PMID: 36187109 PMCID: PMC9523252 DOI: 10.3389/fendo.2022.934225] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease [MAFLD, formerly known as nonalcoholic fatty liver disease (NAFLD)] is one of the most important causes of liver disease worldwide, while cardiovascular disease (CVD) is still one of the main causes of morbidity and mortality worldwide, and the two are closely related. This study aimed to investigate the risk of CVD incidence or CVD-related mortality (CVD mortality) in patients diagnosed with MAFLD under new concepts and new diagnostic criteria. METHODS We searched English databases PubMed, Web of Science, Embase, and Cochrane Library for relevant literature. The language was restricted to English. RESULTS By 22 January 2022, 556 published studies were obtained through preliminary retrieval, and 10 cohort studies were included in this study. All statistical analyses were performed using Review Manager 5.2 software. Compared with the control group, patients in the MAFLD group had a significantly higher relative risk of CVD incidence or CVD mortality during the follow-up, with an RR rate of 1.95 (95% CI 1.76-2.17, p < 0.01). The incidence of CVD in the MAFLD group was more than twice that in the control group (RR 2.26, 95% CI 2.00-2.54, p < 0.01). The mortality rate of CVD was 1.57 times higher than that in the control group (RR 1.57, 95% CI 1.42-1.72, p < 0.01). CONCLUSIONS Patients diagnosed with MAFLD alone had higher cardiovascular mortality than those diagnosed with NAFLD alone based on the available data.
Collapse
Affiliation(s)
- Wen Wen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- Department of Liver Diseases, Ma’anshan Fourth People’s Hospital, Ma’anshan, China
| | - Chunyi Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Chen Chen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jiake Tang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Nagano, Japan
| | - Xuwei Hong
- Department of Liver Diseases, Ma’anshan Fourth People’s Hospital, Ma’anshan, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qi Wu
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Zhanhui Feng, ; Mingwei Wang,
| | - Mingwei Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Zhanhui Feng, ; Mingwei Wang,
| |
Collapse
|
39
|
Lin H, Zhang X, Li G, Wong GLH, Wong VWS. Epidemiology and Clinical Outcomes of Metabolic (Dysfunction)-associated Fatty Liver Disease. J Clin Transl Hepatol 2021; 9:972-982. [PMID: 34966660 PMCID: PMC8666360 DOI: 10.14218/jcth.2021.00201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease and affects at least a quarter of the global adult population. It has rapidly become one of the leading causes of hepatocellular carcinoma and cirrhosis in Western countries. In this review, we discuss the nomenclature and definition of MAFLD as well as its prevalence and incidence in different geographical regions. Although cardiovascular disease remains the leading cause of death in MAFLD patients, the proportion of patients dying from hepatic complications increases sharply as the disease progresses to advanced liver fibrosis and cirrhosis. In addition, patients with MAFLD are at increased risk of various extrahepatic cancers. Although a causal relationship between MAFLD and extrahepatic cancers has not been established, clinicians should recognize the association and consider cancer screening (e.g., for colorectal cancer) as appropriate.
Collapse
Affiliation(s)
| | | | | | | | - Vincent Wai-Sun Wong
- Correspondence to: Vincent Wai-Sun Wong, Department of Medicine and Therapeutics, 9/F, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong, China. ORCID: https://orcid.org/0000-0003-2215-9410. Tel: 852-3505-1205, Fax: 852-2637-3852, E-mail:
| |
Collapse
|
40
|
Yoshio S. Metabolic dysfunction-associated fatty liver disease and nonalcoholic fatty liver disease: Which can better identify the populations with a high risk of cardiovascular disease? Hepatol Res 2021; 51:1097-1099. [PMID: 34724294 DOI: 10.1111/hepr.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
41
|
Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222111629. [PMID: 34769060 PMCID: PMC8583943 DOI: 10.3390/ijms222111629] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is now a worldwide epidemic ensuing an increase in comorbidities’ prevalence, such as insulin resistance, type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease (CVD), autoimmune diseases, and some cancers, CVD being one of the main causes of death in the world. Several studies provide evidence for an association between MAFLD and atherosclerosis and cardio-metabolic disorders, including CVDs such as coronary heart disease and stroke. Therefore, the combination of MAFLD/NASH is associated with vascular risk and CVD progression, but the underlying mechanisms linking MAFLD/NASH and CVD are still under investigation. Several underlying mechanisms may probably be involved, including hepatic/systemic insulin resistance, atherogenic dyslipidemia, hypertension, as well as pro-atherogenic, pro-coagulant, and pro-inflammatory mediators released from the steatotic/inflamed liver. MAFLD is strongly associated with insulin resistance, which is involved in its pathogenesis and progression to NASH. Insulin resistance is a major cardiovascular risk factor in subjects without diabetes. However, T2D has been considered the most common link between MAFLD/NASH and CVD. This review summarizes the evidence linking obesity with MAFLD, NASH, and CVD, considering the pathophysiological molecular mechanisms involved in these diseases. We also discuss the association of MAFLD and NASH with the development and progression of CVD, including structural and functional cardiac alterations, and pharmacological strategies to treat MAFLD/NASH and cardiovascular prevention.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (J.G.-C.); (J.A.-B.); Tel.: +52-331-062-2083 (J.G.-C.); +52-333-677-8741 (J.A.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico;
- Correspondence: (J.G.-C.); (J.A.-B.); Tel.: +52-331-062-2083 (J.G.-C.); +52-333-677-8741 (J.A.-B.)
| |
Collapse
|
42
|
Liu HH, Cao YX, Jin JL, Guo YL, Zhu CG, Wu NQ, Gao Y, Xu RX, Dong Q, Zheng MH, Li JJ. Metabolic-associated fatty liver disease and major adverse cardiac events in patients with chronic coronary syndrome: a matched case-control study. Hepatol Int 2021; 15:1337-1346. [PMID: 34626331 DOI: 10.1007/s12072-021-10252-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS A consensus of experts suggests that nonalcoholic fatty liver disease (NAFLD) does not appropriately reflect current knowledge and metabolic-associated fatty liver disease (MAFLD) is supposed to be a more suitable overarching concept. However, the association of MAFLD with cardiovascular outcomes in patients with coronary artery disease has not been examined yet. Thus, this study aimed to assess the impact of MAFLD on major adverse cardiac events (MACEs) in patients with chronic coronary syndrome (CCS). METHODS This study included 3306 patients with CCS who were diagnosed with MAFLD. Controls without MAFLD were matched (1:1) to cases by age and gender. All participants were followed up for the occurrence of MACEs. Finally, the association between MAFLD and the risk of MACEs was assessed. RESULTS During an average of 55.09 ± 19.92 months follow-up, 376 and 248 MACEs were observed in MAFLD and control groups, respectively. When compared with controls, Kaplan-Meier analysis showed that patients with MAFLD had significantly lower event-free survival rate and multivariate Cox regression analysis further revealed that MAFLD group had significantly increased MACEs risk (both p < 0.05). Stratification analysis suggested that patients with MAFLD overlapped with NAFLD or MAFLD-only had 1.33-fold and 2.32-fold higher risk of MACEs respectively compared with controls (both p < 0.05). CONCLUSION This study firstly showed that MAFLD was significantly associated with the risk of MACEs in patients with CCS. Moreover, this relationship remained unchanged irrespective of whether satisfying the NAFLD criteria, providing novel evidence for the good utility of MAFLD criteria in clinical practice.
Collapse
Affiliation(s)
- Hui-Hui Liu
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Ye-Xuan Cao
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Jing-Lu Jin
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Yuan-Lin Guo
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Cheng-Gang Zhu
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Na-Qiong Wu
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Ying Gao
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Rui-Xia Xu
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Qian Dong
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, People's Republic of China.
| |
Collapse
|
43
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Ming Yang,
| |
Collapse
|
44
|
Risk of cardiovascular disease in patients with fatty liver disease as defined from the metabolic dysfunction associated fatty liver disease or nonalcoholic fatty liver disease point of view: a retrospective nationwide claims database study in Japan. J Gastroenterol 2021; 56:1022-1032. [PMID: 34601620 PMCID: PMC8531127 DOI: 10.1007/s00535-021-01828-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction associated fatty liver disease (MAFLD) have important associations with cardiovascular disease (CVD). The main objective of this study was to compare the frequency of incidence rate of CVD in the NAFLD or MAFLD patients utilizing a large claims database. METHODS Using the JMDC database from April 2013 to March 2019, we retrospectively analyzed data for 1,542,688 and 2,452,949 people to estimate the relationship between CVD and NAFLD, MAFLD, respectively. RESULTS The incidence rates of CVD were 0.97 (95% CI 0.94-1.01) and 2.82 (95% CI 2.64-3.01) per 1000 person-years in the non-NAFLD and NAFLD groups, respectively, and 1.01 (95% CI 0.98-1.03) and 2.69 (95% CI 2.55-2.83) per 1000 person-years in the non-MAFLD and MAFLD groups, respectively. The overall prevalence of hypertriglyceridemia and diabetes mellitus (DM) was 13.1, and 4.2%, respectively, in the non-NAFLD group and 63.6, and 20.2%, respectively, in the NAFLD group. The overall prevalenceof hypertriglyceridemia and DM was 13.6 and 4.3%, respectively, in the non-MAFLD group and 64.1, and 20.6%, respectively, in the MAFLD group. HRs for CVD increased with hypertriglyceridemia and DM. CONCLUSIONS Results indicated that incident rate of CVD increased with NAFLD/MAFLD; the complication rate of DM and hypertriglyceridemia among NAFLD/MAFLD patients is high and may affect the development of CVD.
Collapse
|