1
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
5
|
Golpasandi H, Rahimi MR, Ahmadi S, Łubkowska B, Cięszczyk P. Effects of Vitamin D3 Supplementation and Aerobic Training on Autophagy Signaling Proteins in a Rat Model Type 2 Diabetes Induced by High-Fat Diet and Streptozotocin. Nutrients 2023; 15:4024. [PMID: 37764807 PMCID: PMC10535215 DOI: 10.3390/nu15184024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the combined effects of vitamin D3 supplementation and aerobic training on regulating the autophagy process in rats with type 2 diabetic induced by a high-fat diet and streptozotocin. A total of 40 Wistar rats were divided into five groups: normal control (NC), diabetic control (DC), diabetic + aerobic training (DAT), diabetic + vitamin D3 (DVD), and diabetic + aerobic training + vitamin D3 (DVDAT). The rats underwent eight weeks of aerobic training with an intensity of 60% maximum running speed for one hour, along with weekly subcutaneous injections of 10,000 units of vitamin D3. The protein levels of different autophagy markers were assessed in the left ventricular heart tissue. The results showed that the protein levels of AMPK, pAMPK, mTOR, and pmTOR were significantly lower in the DC group compared to the NC group. Conversely, the levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D proteins were significantly higher in the DC group. However, the interventions of aerobic training and vitamin D3 supplementation, either individually or in combination, led to increased levels of AMPK, pAMPK, mTOR, and pmTOR, and decreased levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D (p < 0.05). Additionally, the aerobic capacity in the DAT and DVDAT groups was significantly higher compared to the NC, DC, and DVD groups (p < 0.05). These findings suggest that type 2 diabetes is associated with excessive autophagy in the left ventricle. However, after eight weeks of vitamin D3 supplementation and aerobic training, a significant reduction in excessive autophagy was observed in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Hadi Golpasandi
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | | | - Slahadin Ahmadi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| | - Paweł Cięszczyk
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| |
Collapse
|
6
|
Zhao J, Feng Y, Rao Z, Li H, Xu J, Cui S, Lai L. Exercise combined with heat treatment improves insulin resistance in diet-induced obese rats. J Therm Biol 2023; 116:103651. [PMID: 37459707 DOI: 10.1016/j.jtherbio.2023.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/28/2023]
Abstract
Insulin resistance is a risk factor for various cardiovascular diseases, which seriously threaten human health. Thus, finding a safe, effective and economical strategy to treat insulin resistance is urgently needed. This study aimed to investigate the effects of exercise combined with heat treatment on the insulin sensitivity in skeletal muscle of diet-induced obese (DIO) rats. Obese rats were induced by a 10-week high-fat diet and were randomly divided into normal temperature + control (NC), normal temperature + exercise (NE), heat treatment + control (HC) and heat treatment + exercise (HE) groups for 7 weeks of incremental load endurance exercise and heat treatment (exposure to a high-temperature environment room). At the end of the 7-week intervention, we measured fasting blood glucose, serum fasting insulin, serum leptin, serum adiponectin, protein expression of HSF1/HSP27 and JAK2/STAT3 pathway in soleus (primarily composed of slow-twitch fibres) and extensor digitorum longus (primarily composed of fast-twitch fibres) muscles. The results showed that exercise combined with heat treatment can effectively improve insulin resistance by regulating HSF1/HSP27 and JAK2/STAT3 pathways in the slow-twitch muscle of DIO rats. Importantly, exercise combined with heat treatment is more effective in improving insulin resistance in DIO rats than exercise or heat treatment alone. Low-moderate intensity exercise that stimulates slow-twitch muscle, combined with heat treatment is an effective strategy to treat insulin resistance.
Collapse
Affiliation(s)
- Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.
| | - Yiwei Feng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China; Physical Education College, Shanghai Normal University, Shanghai, China
| | - Han Li
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Jincheng Xu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China; Winter Sports Management Center of the General Administration of Sport of China, Beijing, China
| | - Shuqiang Cui
- Exercise Biological Center, China Institute of Sport Science, Beijing, China; Beijing Institute of Sports Science, Beijing, China
| | - Lili Lai
- Exercise Biological Center, China Institute of Sport Science, Beijing, China; Nanchang Normal University, Jiangxi, China
| |
Collapse
|
7
|
Vogt ÉL, Von Dentz MC, Rocha DS, Model JFA, Kowalewski LS, Silveira D, de Amaral M, de Bittencourt Júnior PIH, Kucharski LC, Krause M, Vinagre AS. Acute effects of a single moderate-intensity exercise bout performed in fast or fed states on cell metabolism and signaling: Comparison between lean and obese rats. Life Sci 2023; 315:121357. [PMID: 36634864 DOI: 10.1016/j.lfs.2022.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
AIMS Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maiza Cristina Von Dentz
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jorge Felipe Argenta Model
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diane Silveira
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Carlos Kucharski
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anapaula Sommer Vinagre
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
9
|
Barbosa H, Ramadan W, Matzenbacher dos Santos J, Benite-Ribeiro SA. Effects of Physical Exercise on Mitochondrial Biogenesis of Skeletal Muscle Modulated by Histones Modifications in Type 2 Diabetes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modification in skeletal muscle induced by environmental factors seems to modulate several metabolic pathways that underlie Type 2 Diabetes Mellitus (T2DM) development. Mitochondrial biogenesis is an important process for maintaining lipid metabolism homeostasis, as well as epigenetic modifications in proteins that regulate this pathway have been observed in the skeletal muscle of T2DM subjects. Moreover, physical exercise affects several metabolic pathways attenuating metabolic deregulation observed in T2DM. The pathways that regulate mitochondrial homeostasis are one of the key components for understanding such physical exercise beneficial effects. Thus, in this study, we investigate the epigenetic mechanisms underlying mitochondrial biogenesis in the skeletal muscle in T2DM, focusing on histone modifications and the possible mechanisms by which physical exercise delay or inhibit T2DM onset. The results indicate that exercise promotes improvements in cellular metabolism through increasing enzymes of the antioxidant system, AMPK and ATP-citrate lyase activity, Acetyl-CoA concentration, and enhancing the acetylation of histones. A key mediator of mitochondrial biogenesis such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC1) seems to be upregulated by exercise in T2DM and such factor positively regulates the skeletal muscle mitochondrial biogenesis, which improves energy metabolism and glucose homeostasis inhibiting or delaying insulin resistance and further T2DM.
Collapse
|
10
|
Carbohydrate Metabolism in Diabetic Rat’s Heart – The Effects of Acetylsalicylic Acid and Heat Preconditioning as HSP70 Inducers. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The myocardium of diabetic subjects displays reduced HSP70 protein level and weak myocardial protection. However, the heart possesses an ability to produce heat shock proteins (HSPs) after exposure to sublethal heat stress. Acetylsalicylicacid (ASA) has the property of pharmacological induction of HSPs. We evaluated the common effects of single dose ASA-pretreatment, prior to heat preconditioning (HP), over carbohydrate metabolism-related enzymes and substrates in the heart of diabetic rats. Streptozotocin-diabetes caused significant decrease of HSP70 protein level, stimulation of the gluconeogenic processes and inhibition of glycolytic processes in the heart. HP-diabetic hearts have significantly higher HSP70 protein level, lower glycogen, glucose-6-phosphate content, glycogen phosphorylase and hexokinase activity, and higher glucose levels and PFK activity. ASA-pretreatment of HP-diabetic animals caused additional increase of HSP70, additional decrease of glycogen, glucose-6-phosphate, glycogen phosphorylase and hexokinase, and additional increase of glucose and PFK in the heart. In conclusion, HP is physiological inducer of HSP70 level in heart and tends to reverse carbohydrate - related disturbances in diabetic rats. ASA, given prior to HP, is a potent HSP70 co-inducer and causes additional increase of HSP70 protein level in heart. ASA, given in a combination to HP, have shown more evident protective effects against subsequent intense of stress.
Collapse
|
11
|
Sebők J, Édel Z, Dembrovszky F, Farkas N, Török Z, Balogh G, Péter M, Papp I, Balogi Z, Nusser N, Péter I, Hooper P, Geiger P, Erőss B, Wittmann I, Váncsa S, Vigh L, Hegyi P. Effect of HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED): protocol for a randomised controlled trial. BMJ Open 2022; 12:e062122. [PMID: 35820741 PMCID: PMC9277369 DOI: 10.1136/bmjopen-2022-062122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The burden of type 2 diabetes mellitus (T2DM) is increasing worldwide. Heat therapy has been found effective in improving glycaemic control. However, to date, there is a lack of randomised controlled studies investigating the efficacy of heat therapy in T2DM. Therefore, we aim to investigate whether heat therapy with natural thermal mineral water can improve glycaemic control in patients with T2DM. METHODS AND ANALYSIS The HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED) Study is a single-centre, two-arm randomised controlled trial being conducted at Harkány Thermal Rehabilitation Centre in Hungary. Patients with T2DM will be randomly assigned to group A (bath sessions in 38°C natural thermal mineral water) and group B (baths in thermoneutral water (30°C-32°C)). Both groups will complete a maximum of 5 weekly visits, averaging 50-60 visits over the 12-week study. Each session will last 30 min, with a physical check-up before the bath. At baseline, patients' T2DM status will be investigated thoroughly. Possible microvascular and macrovascular complications of T2DM will be assessed with physical and laboratory examinations. The short form-36 questionnaire will assess the quality of life. Patients will also be evaluated at weeks 4, 8 and 12. The primary endpoint will be the change of glycated haemoglobin from baseline to week 12. An estimated 65 patients will be enrolled per group, with a sample size re-estimation at the enrolment of 50% of the calculated sample size. ETHICS AND DISSEMINATION The study has been approved by the Scientific and Research Ethics Committee of the Hungarian Medical Research Council (818-2/2022/EÜIG). Written informed consent is required from all participants. We will disseminate our results to the medical community and will publish our results in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT05237219.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Institute of Bioanalysis, University of Pecs Medical School, Pécs, Hungary
| | | | | | | | | | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Nóra Nusser
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Iván Péter
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Philip Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige Geiger
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - István Wittmann
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Hooper PL. Attenuation of exercise conditioning by metformin-a consequence of HSF1 inhibition. Cell Stress Chaperones 2022; 27:307. [PMID: 35534773 PMCID: PMC9346019 DOI: 10.1007/s12192-022-01276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Philip L Hooper
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Pettit-Mee RJ, Power G, Cabral-Amador FJ, Ramirez-Perez FI, Nogueira Soares R, Sharma N, Liu Y, Christou DD, Kanaley JA, Martinez-Lemus LA, Manrique-Acevedo CM, Padilla J. Endothelial HSP72 is not reduced in type 2 diabetes nor is it a key determinant of endothelial insulin sensitivity. Am J Physiol Regul Integr Comp Physiol 2022; 323:R43-R58. [PMID: 35470695 DOI: 10.1152/ajpregu.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72(HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in T2D individuals, seven days of passive heat treatment via hot water immersion to waist-level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.
Collapse
Affiliation(s)
- Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila M Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Missouri, Columbia, MO, United States.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128:411-425. [PMID: 31746233 DOI: 10.1080/13813455.2019.1687522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (DM2) is a chronic disease characterised by variable degrees of insulin resistance and impaired insulin secretion. Besides, several pieces of evidence have shown that chronic inflammation, oxidative stress, and 70 kDa heat shock proteins (HSP70) are strongly involved in DM2 and its complications, and various pharmacological and non-pharmacological treatment alternatives act in these processes/molecules to modulate them and ameliorate the disease. Besides, uncontrolled hyperglycaemia is related to several complications as diabetic retinopathy, neuropathy and hepatic, renal and cardiac complications. In this review, we address discuss the involvement of different inflammatory and pro-oxidant pathways related to DM2, and we described molecular targets modulated by therapeutics currently available to treat DM2.
Collapse
Affiliation(s)
- Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| |
Collapse
|
15
|
Tóth ME, Sárközy M, Szűcs G, Dukay B, Hajdu P, Zvara Á, Puskás LG, Szebeni GJ, Ruppert Z, Csonka C, Kovács F, Kriston A, Horváth P, Kővári B, Cserni G, Csont T, Sántha M. Exercise training worsens cardiac performance in males but does not change ejection fraction and improves hypertrophy in females in a mouse model of metabolic syndrome. Biol Sex Differ 2022; 13:5. [PMID: 35101146 PMCID: PMC8805345 DOI: 10.1186/s13293-022-00414-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). METHODS High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. RESULTS Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. CONCLUSIONS HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.
Collapse
Affiliation(s)
- Melinda E. Tóth
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Márta Sárközy
- MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720, Hungary. .,Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720, Hungary.
| | - Gergő Szűcs
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Brigitta Dukay
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Petra Hajdu
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Ágnes Zvara
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - László G. Puskás
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Gábor J. Szebeni
- grid.418331.c0000 0001 2195 9606Laboratory of Functional Genomics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Zsófia Ruppert
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,grid.9008.10000 0001 1016 9625Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Ferenc Kovács
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary
| | - András Kriston
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Péter Horváth
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary ,Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726 Hungary ,grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Bence Kővári
- grid.9008.10000 0001 1016 9625Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720 Hungary
| | - Gábor Cserni
- grid.9008.10000 0001 1016 9625Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720 Hungary
| | - Tamás Csont
- grid.9008.10000 0001 1016 9625MEDICS Research Group, Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Dóm tér 9, Szeged, 6720 Hungary ,grid.9008.10000 0001 1016 9625Interdisciplinary Center of Excellence, University of Szeged, Dugonics tér 13, Szeged, 6720 Hungary
| | - Miklós Sántha
- grid.481814.00000 0004 0479 9817Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726 Hungary
| |
Collapse
|
16
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
17
|
Bima AIH, Elsamanoudy AZ, Albaqami WF, Khan Z, Parambath SV, Al-Rayes N, Kaipa PR, Elango R, Banaganapalli B, Shaik NA. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2310-2329. [PMID: 35240786 DOI: 10.3934/mbe.2022107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.
Collapse
Affiliation(s)
- Abdulhadi Ibrahim H Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Zaky Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa F Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Zeenath Khan
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Nuha Al-Rayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prabhakar Rao Kaipa
- Department of Genetics, College of Science, Osmania University, Hyderabad, India
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Odabasi E, Turan M. The importance of body core temperature evaluation in balneotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:25-33. [PMID: 34623501 DOI: 10.1007/s00484-021-02201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.
Collapse
Affiliation(s)
- Ersin Odabasi
- Department of Medical Ecology and Hydroclimatology, Gulhane Faculty of Medicine, University of Health Science, Gulhane EAH, 06018, Etlik, Ankara, Turkey.
| | - Mustafa Turan
- Department of Medical Education and Informatics, TOBB Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
19
|
Wu F, Liang P. Application of Metabolomics in Various Types of Diabetes. Diabetes Metab Syndr Obes 2022; 15:2051-2059. [PMID: 35860310 PMCID: PMC9289753 DOI: 10.2147/dmso.s370158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
Metabolomics is the analysis of numerous small molecules known as metabolites. Over the past few years, with the continuous development in metabolomics, it has been widely used in the detection, diagnosis, and treatment of diabetes and has demonstrated great benefits. At the same time, studies on diabetes and its complications have discovered the metabolic markers that are characteristic of diabetes. However, the pathogenesis of diabetes has yet to be clarified, as well as no complete cure. The mechanism of diabetes has not been completely elucidated, and its eradication treatment is not available. Thus, prevention of the onset of the disease and its treatment have become very important. In this review, we focused on the recent progress in the use of metabolites in diabetes and their complications, as well as understanding the impact of diabetes metabolites.
Collapse
Affiliation(s)
- Fangqin Wu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Correspondence: Pengfei Liang, Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Tel +86-13875858144, Email
| |
Collapse
|
20
|
Russell BM, Chang CR, Hill T, Cotter JD, Francois ME. Post-exercise Warm or Cold Water Immersion to Augment the Cardiometabolic Benefits of Exercise Training: A Proof of Concept Trial. Front Physiol 2021; 12:759240. [PMID: 34803740 PMCID: PMC8595200 DOI: 10.3389/fphys.2021.759240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
We investigated whether substituting the final half within 60-min bouts of exercise with passive warm or cold water immersion would provide similar or greater benefits for cardiometabolic health. Thirty healthy participants were randomized to two of three short-term training interventions in a partial crossover (12 sessions over 14–16 days, 4 week washout): (i) EXS: 60 min cycling 70% maximum heart rate (HRmax), (ii) WWI: 30 min cycling then 30 min warm water (38–40°C) immersion, and/or (iii) CWI: 30 min cycling then 30 min cold water (10–12°C) immersion. Before and after, participants completed a 20 min cycle work trial, V.O2max test, and an Oral Glucose Tolerance Test during which indirect calorimetry was used to measure substrate oxidation and metabolic flexibility (slope of fasting to post-prandial carbohydrate oxidation). Data from twenty two participants (25 ± 5 year, BMI 23 ± 3 kg/m2, Female = 11) were analyzed using a fixed-effects linear mixed model. V.O2max increased more in EXS (interaction p = 0.004) than CWI (95% CI: 1.1, 5.3 mL/kg/min, Cohen’s d = 1.35), but not WWI (CI: −0.4, 3.9 mL/kg/min, d = 0.72). Work trial distance and power increased 383 ± 223 m and 20 ± 6 W, respectively, without differences between interventions (interaction both p > 0.68). WWI lowered post-prandial glucose ∼9% (CI −1.9, −0.5 mmol/L; d = 0.63), with no difference between interventions (interaction p = 0.469). Substituting the second half of exercise with WWI provides similar cardiometabolic health benefits to time matched exercise, however, substituting with CWI does not.
Collapse
Affiliation(s)
- Brooke M Russell
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Courtney R Chang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Terry Hill
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Monique E Francois
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
21
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
22
|
Reddy VS, Pandarinath S, Archana M, Reddy GB. Impact of chronic hyperglycemia on Small Heat Shock Proteins in diabetic rat brain. Arch Biochem Biophys 2021; 701:108816. [PMID: 33631184 DOI: 10.1016/j.abb.2021.108816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a family of proteins. Some are induced in response to multiple stimuli and others are constitutively expressed. They are involved in fundamental cellular processes, including protein folding, apoptosis, and maintenance of cytoskeletal integrity. Hyperglycemia created during diabetes leads to neuronal derangements in the brain. In this study, we investigated the impact of chronic hyperglycemia on the expression of sHsps and heat shock transcription factors (HSFs), solubility and aggregation of sHsps and amyloidogenic proteins, and their role in neuronal apoptosis in a diabetic rat model. Diabetes was induced in Sprague-Dawley rats with streptozotocin and hyperglycemia was maintained for 16 weeks. Expressions of sHsps and HSFs were analyzed by qRT-PCR and immunoblotting in the cerebral cortex. Solubility of sHsps and amyloidogenic proteins, including α-synuclein and Tau, was analyzed by the detergent soluble assay. Neuronal cell death was analyzed by TUNEL staining and apoptotic markers. The interaction of sHsps with amyloidogenic proteins and Bax was assessed using co-immunoprecipitation. Hyperglycemia decreased Hsp27 and HSF1, and increased αBC, Hsp22, and HSF4 levels at transcript and protein levels. Diabetes induced the aggregation of αBC, Hsp22, α-synuclein, and pTau, as their levels were higher in the insoluble fraction. Additionally, diabetes impaired the interaction of αBC with α-synuclein and pTau. Furthermore, diabetes reduced the interaction of αBC with Bax, which may possibly contribute to neuronal apoptosis. Together, these results indicate that chronic hyperglycemia induces differential responses of sHsps by altering their expression, solubility, interaction, and roles in apoptosis.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - S Pandarinath
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - M Archana
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
23
|
Ho P, Zheng JQ, Wu CC, Hou YC, Liu WC, Lu CL, Zheng CM, Lu KC, Chao YC. Perspective Adjunctive Therapies for COVID-19: Beyond Antiviral Therapy. Int J Med Sci 2021; 18:314-324. [PMID: 33390800 PMCID: PMC7757136 DOI: 10.7150/ijms.51935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is the largest health crisis ever faced worldwide. It has resulted in great health and economic costs because no effective treatment is currently available. Since infected persons vary in presentation from healthy asymptomatic mild symptoms to those who need intensive care support and eventually succumb to the disease, this illness is considered to depend primarily on individual immunity. Demographic distribution and disease severity in several regions of the world vary; therefore, it is believed that natural inherent immunity provided through dietary sources and traditional medicines could play an important role in infection prevention and disease progression. People can boost their immunity to prevent them from infection after COVID-19 exposure and can reduce their inflammatory reactions to protect their organ deterioration in case suffering from the disease. Some drugs with in-situ immunomodulatory and anti-inflammatory activity are also identified as adjunctive therapy in the COVID-19 era. This review discusses the importance of COVID-19 interactions with immune cells and inflammatory cells; and further emphasizes the possible pathways related with traditional herbs, medications and nutritional products. We believe that such pathophysiological pathway approach treatment is rational and important for future development of new therapeutic agents for prevention or cure of COVID-19 infection.
Collapse
Affiliation(s)
- Ping Ho
- Division of General Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, 235 New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 110 Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, 110 Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - You-Chen Chao
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.,School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
24
|
Kamioka H, Mori Y, Horiuchi T, Hayashi T, Ohmura K, Yamaguchi S, Kato M. Association of Daily Home-Based Hot Water Bathing and Glycemic Control in Ambulatory Japanese Patients with Type 2 Diabetes Mellitus During the COVID-19 Pandemic: A Multicenter Cross-Sectional Study. Diabetes Metab Syndr Obes 2020; 13:5059-5069. [PMID: 33376375 PMCID: PMC7764630 DOI: 10.2147/dmso.s279270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To clarify the relationship between daily hot water bathing (HWB) at home and glycemic control in middle-aged and elderly ambulatory patients with type 2 diabetes mellitus (T2DM). METHODS We defined hemoglobin A1c (HbA1c) as the main outcome. We set 7.0% based on the mean value of the dependent variable as the cut-off point for analysis. Frequency of HWB was an explanatory variable. A two-sample t-test was used to compare between groups with continuous variables. Multiple logistic regression analysis was performed for frequency, adjusted age, sex, BMI, T2DM duration (Model 1), and other confounding factors (Model 2). Odds ratio (OR) and 95% confidence interval (95% CI) were calculated. RESULTS Among 838 patients, there was a significant difference (p<0.001) in age between males (n=528, 62.8±8.7 years) and females (n=310, 65.0±8.1 years). In Model 1, compared with participants who used HWB more than seven times a week, those with poorly controlled HbA1c were significantly associated with low frequency of HWB: four to six times a week (OR 1.32, 95% CI 0.87-1.99) and less than three times a week (OR 1.43, 95% CI 0.98-2.10); p-value for overall trend was 0.041. In Model 2, p-value for overall trend was 0.138. CONCLUSION A higher frequency of HWB was moderately associated with a decreased risk of poor glycemic control in middle-aged and elderly ambulatory patients with T2DM.
Collapse
Affiliation(s)
- Hiroharu Kamioka
- Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasunori Mori
- Mie Prefecture Health and Environment Research Institute, Yokkaichi, Mie, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Yamaguchi
- Department of Oriental Medicine, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
25
|
Hazrati-Meimaneh Z, Amini-Tehrani M, Pourabbasi A, Gharlipour Z, Rahimi F, Ranjbar-Shams P, Nasli-Esfahani E, Zamanian H. The impact of personality traits on medication adherence and self-care in patients with type 2 diabetes mellitus: The moderating role of gender and age. J Psychosom Res 2020; 136:110178. [PMID: 32623192 DOI: 10.1016/j.jpsychores.2020.110178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to investigate the role of the five-factor model of personality (FFM) and the moderating role of gender and age in predicting medication adherence (MA) and self-care behaviors (SCB) among Iranian patients with type 2 diabetes mellitus (T2DM). METHODS This study was conducted on 495 patients with T2DM (73.5% female; n = 364) from two major cities of Iran (Tehran and Qom) in 2019. Pearson's correlation coefficient, multiple regression analysis, and conditional process analysis were performed. P < .05 and P < .10 were considered significant for the relationships and moderation analysis, respectively. RESULTS Neuroticism indicated a negative association with MA and SCB. Positive associations were found between MA and personality traits, including extraversion, agreeableness, and conscientiousness, whereas extraversion showed a weak correlation with SCB. According to the covariate-adjusted regression model, neuroticism had a negative effect on MA and SCB. Agreeableness had a positive effect on MA and a negative effect on SCB. However, extraversion exerted a negative effect on MA and a positive effect on SCB. Also, the negative effect of neuroticism on MA was highlighted in women, indicating marginally significant moderation effect. The positive effects of extraversion and conscientiousness on MA were moderated by age. The effect of conscientiousness on SCB was positive in young patients and negative in old patients. No interaction effect was observed between age and gender. CONCLUSION This study indicated that neuroticism, extraversion, and agreeableness significantly contributed to MA, but not to SCB. However, the effects were conditioned by age for extraversion and conscientiousness to some extent.
Collapse
Affiliation(s)
- Zahra Hazrati-Meimaneh
- Department of Health Education and Promotion, School of Health, Qom University of Medical Sciences, Qom, Iran; South Tehran Heath Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadali Amini-Tehrani
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran; Health Psychology and Behavior Medicine Research Group, Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ata Pourabbasi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zabihollah Gharlipour
- Department of Health Education and Promotion, School of Health, Qom University of Medical Sciences, Qom, Iran.
| | - Fatemeh Rahimi
- South Tehran Heath Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Health Education and Promotion, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran..
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran..
| | - Hadi Zamanian
- Department of Health Education and Promotion, School of Health, Qom University of Medical Sciences, Qom, Iran; Health Psychology and Behavior Medicine Research Group, Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Hooper PL. COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress Chaperones 2020; 25:707-710. [PMID: 32500379 PMCID: PMC7271958 DOI: 10.1007/s12192-020-01126-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic needs therapies that are presently available and safe. We propose that subjects with metabolic syndrome, old age, and male gender have the greatest morbidity and mortality and have low stress proteins, in particular, low intracellular heme oxygenase (HO-1), making them particularly vulnerable to the disease. Additionally, COVID-19's heme reduction may contribute to even lower HO-1. Low-grade inflammation associated with these risk factors contributes to triggering a cytokine storm that spreads to multi-organ failure and near death. The high mortality of those treated with ventilator assistance may partially be explained by ventilator-induced inflammation. The cytoprotective and anti-inflammatory properties of HO-1 can limit the infection's damage. A paradox of COVID-19 hospital admissions data suggests that fewer cigarette-smokers are admitted compared with non-smokers in the general population. This unexpected observation may result from smoke induction of HO-1. Therapies with anti-viral properties that raise HO-1 include certain anesthetics (sevoflurane or isoflurane), hemin, estrogen, statins, curcumin, resveratrol, and melatonin. Controlled trials of these HO-1 inducers should be done in order to prevent or treat COVID-19 disease.
Collapse
Affiliation(s)
- Philip L Hooper
- Division of Endocrinology and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
27
|
Gerazova-Efremova K, Kjovkarovska SD, Domazetovska S, Miova B. Nicotinamide and heat preconditioning - Effects on hepatic HSP70, carbohydrate and oxidative disturbances in STZ-induced diabetic rats. J Therm Biol 2020; 91:102645. [PMID: 32716886 DOI: 10.1016/j.jtherbio.2020.102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Nicotinamide (NA) is known to have antioxidant potential and partially to protect insulin-secreting cells against diabetogenic agent STZ (streptozotocin). In a combination to heat stress (HS), NA is also known to induce heat-shock proteins (HSPs) production. Heat preconditioning (HP) and HSPs have cytoprotective effects against development of cellular injury caused by application of subsequent stressor. We aimed to determine if pretreatment with NA and HP (as HSP70 -inducers) can affect STZ-induced diabetic disturbances in rats. METHODS NA-pretreatment (250 mg/kg b.w., 7 days) and heat preconditioning (41 ± 1 °C, 45 min) of diabetic rats was performed. The changes in hepatic carbohydrate- and antioxidative-related enzymes and substrates were investigated. RESULTS NA-pretreatment, alone or in combination with HS, resulted in significant increase of HSP70 concentration in the liver of control and diabetic rats. Compared to diabetic controls, pretreatment with NA, in combination with HP, resulted in decrease of blood and liver glucose, increase of glycogen and glucose-6-phosphate level, increase of glycogenolytic/glycolytic enzymes, decrease of gluconeogenic enzymes, as well as an increase of glutathione content and glutathione peroxidase, decrease of glutathione reductase and catalase activities. CONCLUSIONS NA is a potent HSP70 coinducer, alone or in a combination with HS in the liver of both control and diabetic rats. Pretreatment with NA, accompanied by HP, has a pronounced corrective effect on STZ-induced diabetes disturbances in the key hepatic carbohydrate- and antioxidative-related parameters. It seems that this corrective effect is based on the increased production of hepatic HSP70.
Collapse
Affiliation(s)
| | - Suzana Dinevska- Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| | - Saska Domazetovska
- PHI University Clinic of Clinical Biochemistry, Clinical Center Mother Theresa Skopje, R. North Macedonia.
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| |
Collapse
|
28
|
Lakshmi PK, Kumar S, Pawar S, Kuriakose BB, Sudheesh MS, Pawar RS. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol Res 2020; 159:104925. [PMID: 32492491 DOI: 10.1016/j.phrs.2020.104925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Adaptive cellular stress response confers stress tolerance against inflammatory and metabolic disorders. In response to metabolic stress, the key mediator of cellular adaptation and tolerance is a class of molecules called the molecular chaperones (MCs). MCs are highly conserved molecules that play critical role in maintaining protein stability and functionality. Hormesis in this context is a unique adaptation mechanism where a low dose of a stressor (which is toxic at high dose) confers a stress-resistant adaptive cellular phenotype. Hormesis can be observed at different level of biological organization at various measurable endpoints. The MCs are believed to play a key role in adaptation during hormesis. Several phytochemicals are known for their hormetic response and are called phytochemical hormetins. The role of phytochemical-mediated hormesis on the adaptive cellular processes is proposed as a potential therapeutic approach to target inflammation associated with metabolic syndrome. However, the screening of phytochemical hormetins would require a paradigm shift in the methods currently used in drug discovery.
Collapse
Affiliation(s)
- P K Lakshmi
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Shweta Kumar
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Sulakshhna Pawar
- Ravi Shankar College of Pharmacy, Bypass Road, Bhanpur Square, Bhopal, MP 462010, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis, Mushayt, Saudi Arabia
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Rajesh Singh Pawar
- Truba Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal, 462038, India.
| |
Collapse
|
29
|
Heinemann NC, Tischer-Zimmermann S, Wittke TC, Eigendorf J, Kerling A, Framke T, Melk A, Heuft HG, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. High-intensity interval training in allogeneic adoptive T-cell immunotherapy - a big HIT? J Transl Med 2020; 18:148. [PMID: 32238166 PMCID: PMC7114817 DOI: 10.1186/s12967-020-02301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor’s peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach. Methods This pilot study was designed as a cross-over trial and compared the effect of a single bout (30 min) of high-intensity interval training (HIT) with that of 30 min of continuous exercise (CONT) on the frequency and function of circulating donor VSTs. To this end, we used established immunoassays to examine the donors’ cellular immune status, in particular, with respect to the frequency and specific characteristics of VSTs restricted against Cytomegalovirus (CMV)-, Epstein–Barr-Virus (EBV)- and Adenovirus (AdV)-derived antigens. T-cell function, phenotype, activation and proliferation were examined at different time points before and after exercise to identify the most suitable time for T-cell donation. The clinical applicability was determined by small-scale T-cell enrichment using interferon- (IFN-) γ cytokine secretion assay and virus-derived overlapping peptide pools. Results HIT proved to be the most effective exercise program with up to fivefold higher VST response. In general, donors with a moderate fitness level had higher starting and post-exercise frequencies of VSTs than highly fit donors, who showed significantly lower post-exercise increases in VST frequencies. Both exercise programs boosted the number of VSTs against less immunodominant antigens, specifically CMV (IE-1), EBV (EBNA-1) and AdV (Hexon, Penton), compared to VSTs against immunodominant antigens with higher memory T-cell frequencies. Conclusion This study demonstrates that exercise before T-cell donation has a beneficial effect on the donor’s cellular immunity with respect to the proportion of circulating functionally active VSTs. We conclude that a single bout of HIT exercise 24 h before T-cell donation can significantly improve manufacturing of clinically applicable VSTs. This simple and economical adjuvant treatment proved to be especially efficient in enhancing virus-specific memory T cells with low precursor frequencies.
Collapse
Affiliation(s)
- Nele Carolin Heinemann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | - Julian Eigendorf
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Arno Kerling
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Theodor Framke
- Department of Biometry, Hannover Medical School, Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Hans-Gert Heuft
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
30
|
Pharmacological Overview of the BGP-15 Chemical Agent as a New Drug Candidate for the Treatment of Symptoms of Metabolic Syndrome. Molecules 2020; 25:molecules25020429. [PMID: 31968693 PMCID: PMC7024383 DOI: 10.3390/molecules25020429] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
BGP-15 is a new insulin sensitizer drug candidate, which was developed by Hungarian researchers. In recent years, numerous research groups have studied its beneficial effects. It is effective in the treatment of insulin resistance and it has protective effects in Duchenne muscular dystrophy, diastolic dysfunction, tachycardia, heart failure, and atrial fibrillation, and it can alleviate cardiotoxicity. BGP-15 exhibits chemoprotective properties in different cytostatic therapies, and has also proven to be photoprotective. It can additionally have advantageous effects in mitochondrial-stress-related diseases. Although the precise mechanism of the effect is still unknown to us, we know that the molecule is a PARP inhibitor, chaperone co-inducer, reduces ROS production, and is able to remodel the organization of cholesterol-rich membrane domains. In the following review, our aim was to summarize the investigated molecular mechanisms and pharmacological effects of this potential API. The main objective was to present the wide pharmacological potentials of this chemical agent.
Collapse
|
31
|
Pawar R, Lakshmi PK, Kumar S, Dobriyal N, Sahi C. Ameliorative effect of Tinospora tuberculata in insulin resistance: Potential roles of oxidative stress resistance and heat shock protein 70 (Hsp 70) modulation. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_366_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Gao J, Liu J, Zhang L, Zhang Y, Guo Q, Li Y, Tong J, Wang H, Zhou J, Zhu F, Shi L, Zhao H. Heat shock transcription factor 1 regulates the fetal γ-globin expression in a stress-dependent and independent manner during erythroid differentiation. Exp Cell Res 2019; 387:111780. [PMID: 31874177 DOI: 10.1016/j.yexcr.2019.111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Heat shock transcription factor 1 (HSF1) is a highly versatile transcription factor that, in addition to protecting cells against proteotoxic stress, is also critical during diverse developmental processes. Although the functions of HSF1 have received considerable attention, its potential role in β-globin gene regulation during erythropoiesis has not been fully elucidated. Here, after comparing the transcriptomes of erythrocytes differentiated from cord blood or adult peripheral blood hematopoietic progenitor CD34+ cells in vitro, we constructed the molecular regulatory network associated with β-globin genes and identified novel and putative globin gene regulators by combining the weighted gene coexpression network analysis (WGCNA) and context likelihood of relatedness (CLR) algorithms. Further investigation revealed that one of the identified regulators, HSF1, acts as a key activator of the γ-globin gene in human primary erythroid cells in both erythroid developmental stages. While during stress, HSF1 is required for heat-induced globin gene activation, and HSF1 downregulation markedly decreases globin gene induction in K562 cells. Mechanistically, HSF1 occupies DNase I hypersensitive site 3 of the locus control region upstream of β-globin genes via its canonical binding motif. Hence, HSF1 executes stress-dependent and -independent roles in fetal γ-globin regulation during erythroid differentiation.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lingling Zhang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fan Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
33
|
Prediabetes Induced by Fructose-Enriched Diet Influences Cardiac Lipidome and Proteome and Leads to Deterioration of Cardiac Function prior to the Development of Excessive Oxidative Stress and Cell Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3218275. [PMID: 31885782 PMCID: PMC6925817 DOI: 10.1155/2019/3218275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
Prediabetes is a condition affecting more than 35% of the population. In some forms, excessive carbohydrate intake (primarily refined sugar) plays a prominent role. Prediabetes is a symptomless, mostly unrecognized disease which increases cardiovascular risk. In our work, we examined the effect of a fructose-enriched diet on cardiac function and lipidome as well as proteome of cardiac muscle. Male Wistar rats were divided into two groups. The control group received a normal diet while the fructose-fed group received 60% fructose-supplemented chow for 24 weeks. Fasting blood glucose measurement and oral glucose tolerance test (OGTT) showed slightly but significantly elevated values due to fructose feeding indicating development of a prediabetic condition. Both echocardiography and isolated working heart perfusion performed at the end of the feeding protocol demonstrated diastolic cardiac dysfunction in the fructose-fed group. Mass spectrometry-based, high-performance lipidomic and proteomic analyses were executed from cardiac tissue. The lipidomic analysis revealed complex rearrangement of the whole lipidome with special emphasis on defects in cardiolipin remodeling. The proteomic analysis showed significant changes in 75 cardiac proteins due to fructose feeding including mitochondria-, apoptosis-, and oxidative stress-related proteins. Nevertheless, just very weak or no signs of apoptosis induction and oxidative stress were detected in the hearts of fructose-fed rats. Our results suggest that fructose feeding induces marked alterations in the cardiac lipidome, especially in cardiolipin remodeling, which leads to mitochondrial dysfunction and impaired cardiac function. However, at the same time, several adaptive responses are induced at the proteome level in order to maintain a homeostatic balance. These findings demonstrate that even very early stages of prediabetes can impair cardiac function and can result in significant changes in the lipidome and proteome of the heart prior to the development of excessive oxidative stress and cell damage.
Collapse
|
34
|
Rivas E, Crandall CG, Suman OE, Moustaid-Moussa N, Ben-Ezra V. Exercise heat acclimation causes post-exercise hypotension and favorable improvements in lipid and immune profiles: A crossover randomized controlled trial. J Therm Biol 2019; 84:266-273. [PMID: 31466764 DOI: 10.1016/j.jtherbio.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Passive hyperthermic exposure causes an acute hypotensive response following the cessation of heat stress. Chronic heat stress is well documented in animal studies to instigate metabolic and lipid alterations. However, it is unknown if exercise-heat acclimation also causes favorable chronic blood pressure, lipid, and immune responses in humans. PURPOSE This project tested the hypothesis that 10-day exercise-heat acclimation (HA) would cause greater post-exercise reductions in arterial blood pressure and favorable metabolic, lipid, and immune responses compared to 10-day exercise under neutral conditions (CON). METHODS Thirteen healthy sedentary participants (8M/5F, 28 ± 6y, 78 ± 17 kg), completed a 10-day (90 min/day exercise bout) clamped hyperthermia HA (increase internal temperature 1.5 °C, in 42 °C, 28% Rh) and control (CON: 23 °C, 42% Rh) protocols in a counterbalanced design with a 2 month washout. Pre- and post-exercise HA/CON blood pressures were taken 1-h post-exercise on exercise days 1 and 10. Metabolic, lipid and immune panels were taken pre-post HA/CON. RESULTS Exercise under heat stress had greater post-exercise hypotension (systolic; -6 mmHg, diastolic; -8 mmHg; and mean arterial pressure; -7 mmHg) on both days 1 and 10 compared to exercise under neutral conditions (main effect for condition, P ≤ 0.004). Only from pre-to-post HA, total cholesterol (168 ± 19 to 157 ± 15; P < 0.03) and triglycerides (137 ± 45 to 111 ± 30; P < 0.03) were reduced, while absolute lymphocytes (-26%), monocytes (-22%), and basophils (-49%) significantly decreased (each P ≤ 0.04). Relative values of neutrophils increased (18%) and lymphocytes decreased (-20%) only after HA (P ≤ 0.04). CONCLUSION These data indicate that exercise in the heat (regardless of acclimation status) causes a profound post-exercise hypotensive response, while HA causes favorable lipid, and immune profile changes. Further examination of exercise-heat acclimation on vascular, metabolic, and immune responses will offer insight for benefits in other clinical populations with vascular, metabolic and immune dysfunction.
Collapse
Affiliation(s)
- Eric Rivas
- Exercise & Thermal Integrative Physiology Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oscar E Suman
- Department of Surgery, University of Texas Medical Branch Galveston, TX, USA
| | - Naima Moustaid-Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vic Ben-Ezra
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
35
|
He J, He Y, Pan D, Cao J, Sun Y, Zeng X. Associations of Gut Microbiota With Heat Stress-Induced Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks. Front Microbiol 2019; 10:903. [PMID: 31105682 PMCID: PMC6498187 DOI: 10.3389/fmicb.2019.00903] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2019] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence has revealed the dysbiosis of gut/fecal microbiota induced by heat stress (HS) in mammals and poultry. However, the effects of HS on microbiota communities in different intestinal segments of Cherry-Valley ducks (a widely used meat-type breed) and their potential associations with growth performances, fat deposition, intestinal morphology, and antioxidant capacity have not been well evaluated yet. In this study, room temperature (RT) of 25°C was considered as control, and RT at 32°C for 8 h per day was set as the HS treatment. After 3 weeks, the intestinal contents of jejunum, ileum, and cecum were harvested to investigate the microbiota composition variations by 16S ribosomal RNA amplicon sequencing. And the weight gain, adipose indices, intestinal morphology, and a certain number of serum biochemical parameters were also measured and analyzed. The results showed the microbial species at different levels differentially enriched in duck jejunum and cecum under HS, while no significant data were observed in ileum. HS also caused the intestinal morphological changes (villus height and the ratio of villus height to crypt depth) and the reductions of growth speed (daily gain), levels of serum triglyceride (TG) and total cholesterol, and antioxidant activity (higher malondialdehyde (MDA) content and lower total antioxidant). The higher abdominal fat content and serum glucose level were also observed in HS ducks. The Spearman correlation analysis indicated that in jejunum the phyla Firmicutes and Proteobacteria were associated with average daily gain, feed/gain, serum TG and MDA levels, and villus height/crypt depth (P < 0.05). The phylum Firmicutes and genus Acinetobacter were significantly associated with fat deposition and serum glucose level (P < 0.05). The genus Lactobacillus was positively associated with serum total antioxidant (P < 0.05), while some other microbial species were found negatively associated, including order Pseudomonadales, genera Acinetobacter, and unidentified_Mitochondria. However, no significant correlations were observed in cecum. These findings imply the potential roles of duck gut microbiota in the intestinal injuries, fat deposition, and reductions of growth speed and antioxidant capacity caused by HS, although the molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuxin He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.,Department of Food Science and Nutrition, Nanjing Normal University, Nanjing, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Maley MJ, Hunt AP, Stewart IB, Faulkner SH, Minett GM. Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis. PLoS One 2019; 14:e0214223. [PMID: 30901372 PMCID: PMC6430508 DOI: 10.1371/journal.pone.0214223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Passive heating (PH) has begun to gain research attention as an alternative therapy for cardio-metabolic diseases. Whether PH improves glycaemic control in diabetic and non-diabetic individuals is unknown. This study aims to review and conduct a meta-analysis of published literature relating to PH and glycaemic control. METHODS Electronic data sources, PubMed, Embase and Web of Science from inception to July 2018 were searched for randomised controlled trials (RCT) studying the effect of PH on glycaemic control in diabetic or non-diabetic individuals. To measure the treatment effect, standardised mean differences (SMD) with 95% confidence intervals (CI) were calculated. RESULTS Fourteen articles were included in the meta-analysis. Following a glucose load, glucose concentration was greater during PH in non-diabetic (SMD 0.75, 95% CI 1.02 to 0.48, P < 0.001) and diabetic individuals (SMD 0.27, 95% CI 0.52 to 0.02, P = 0.030). In non-diabetic individuals, glycaemic control did not differ between PH and control only (SMD 0.11, 95% CI 0.44 to -0.22, P > 0.050) and a glucose challenge given within 24 hours post-heating (SMD 0.30, 95% CI 0.62 to -0.02, P > 0.050). CONCLUSION PH preceded by a glucose load results in acute glucose intolerance in non-diabetic and diabetic individuals. However, heating a non-diabetic individual without a glucose load appears not to affect glycaemic control. Likewise, a glucose challenge given within 24 hours of a single-bout of heating does not affect glucose tolerance in non-diabetic individuals. Despite the promise PH may hold, no short-term benefit to glucose tolerance is observed in non-diabetic individuals. More research is needed to elucidate whether this alternative therapy benefits diabetic individuals.
Collapse
Affiliation(s)
- Matthew J. Maley
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Andrew P. Hunt
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ian B. Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Steve H. Faulkner
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Geoffrey M. Minett
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
37
|
Kobayashi R, Hashimoto Y, Okamoto T. Effects of acute footbath before and after glucose ingestion on arterial stiffness. J Clin Biochem Nutr 2019; 64:164-169. [PMID: 30936629 PMCID: PMC6436038 DOI: 10.3164/jcbn.18-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the acute effect of a footbath on increases in arterial stiffness after glucose ingestion in healthy young women. Nine healthy young women (aged 18.4 ± 0.2 years; mean ± SE) completed three trials in random order. They started a footbath before 75-g oral glucose ingestion, a footbath after 75-g oral glucose ingestion and no footbath (control) trials. Aortic (carotid-femoral) and leg (femoral-ankle) pulse wave velocity, the carotid augmentation index, carotid, brachial and ankle blood pressure, heart rate, blood glucose levels, insulin levels and sublingual temperature were measured before (baseline) and at 15, 30, 60 and 90 min after the 75-g oral glucose ingestion. Aortic pulse wave velocity and brachial systolic blood pressure did not change from baseline to after the 75-g oral glucose ingestion in all trials. Leg pulse wave velocity and ankle systolic blood pressure were increased from baseline to after the 75-g oral glucose ingestion in the footbath after glucose ingestion and control trials, but not in the footbath before glucose ingestion trial. These results suggest that a footbath effectively suppresses the increase in leg arterial stiffness after glucose ingestion when implemented before glucose ingestion.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Center for Fundamental Education, Teikyo University of Science, 2-2-1 Senju, Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| | - Yuto Hashimoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan
| | - Takanobu Okamoto
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan
| |
Collapse
|
38
|
Gerazova-Efremova K, Dinevska-Kjovkarovska S, Miova B. Heat-Shock Protein 70-Mediated Heat Preconditioning Attenuates Hepatic Carbohydrate and Oxidative Disturbances in Rats With Type 1 Diabetes. Can J Diabetes 2019; 43:345-353. [PMID: 30853267 DOI: 10.1016/j.jcjd.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Heat preconditioning and heat-shock protein (HSP) synthesis have significant cytoprotective effects against the development of cellular injury caused by the application of a subsequent stressor, which were found to depend on the time period between the stressors. We aimed to determine the most efficient recovery time (6 h or 24 h) following heat-stress exposure and prior application of diabetic streptozotocin (STZ) on the moderation of carbohydrate and oxidative metabolic disturbances caused by diabetes. METHODS Experiment animals (Wistar rats) were exposed to acute heat stress at 41±1°C for 45 min, followed by 6-h or 24-h recovery times at room temperature before sacrifice or STZ administration. RESULTS Our findings indicate that acute heat stress with 6-h or 24-h recovery periods results in a significant rise in the hepatic heat-shock protein 70 (HSP70) levels (even more so after 24 h), glycogen breakdown and stable glycemia, followed by reduced glycolytic and gluconeogenic activity (after 24 h) (glucose-6-phosphatase, fructose-1,6-bisphosphatase); stimulates antioxidative activity (glutathione peroxidase, glutathione reductase) (after 6 h); and decreases glutathione and catalase activity (after 24 h). Heat preconditioning (with 6-h and 24-h recovery periods) prior to STZ-induced diabetes increases HSP70 levels and causes lower serum glucose levels, higher glycogen and glucose-6-phosphate levels, lower glucose-6-phosphatase levels and glycogen phosphorylase and hexokinase levels but also elevates glutathione reductase and glutathione peroxidase activity compared to untreated STZ animals. CONCLUSIONS Based on our findings, heat preconditioning and HSP70 induction in rats with type 1 diabetes attenuates STZ-induced metabolic alterations in hepatic carbohydrate metabolism and oxidative states. These changes are more evident at 24 h recovery post-acute heat stress, based on the most evident accumulation of HSP70 in this time frame.
Collapse
Affiliation(s)
- Katerina Gerazova-Efremova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia
| | - Suzana Dinevska-Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia.
| |
Collapse
|
39
|
Coombs GB, Barak OF, Phillips AA, Mijacika T, Sarafis ZK, Lee AHX, Squair JW, Bammert TD, DeSouza NM, Gagnon D, Krassioukov AV, Dujic Z, DeSouza CA, Ainslie PN. Acute heat stress reduces biomarkers of endothelial activation but not macro- or microvascular dysfunction in cervical spinal cord injury. Am J Physiol Heart Circ Physiol 2018; 316:H722-H733. [PMID: 30575438 DOI: 10.1152/ajpheart.00693.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Tanja Mijacika
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Zoe K Sarafis
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute Research Centre, Département de pharmacologie et physiologie, Faculté de Médecine, Université de Montréal , Montreal, Quebec , Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada.,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada.,International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
40
|
Hoekstra SP, Bishop NC, Faulkner SH, Bailey SJ, Leicht CA. Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. J Appl Physiol (1985) 2018; 125:2008-2018. [DOI: 10.1152/japplphysiol.00407.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regular exercise-induced acute inflammatory responses are suggested to improve the inflammatory profile and insulin sensitivity. As body temperature elevations partly mediate this response, passive heating might be a viable tool to improve the inflammatory profile. This study investigated the acute and chronic effects of hot water immersion on inflammatory and metabolic markers. Ten sedentary, overweight men [body mass index (BMI): 31.0 ± 4.2 kg/m2, mean ± SD] were immersed in water set at 39°C for 1 h (HWI) or rested for 1 h at ambient temperature (AMB). Venous blood was obtained before the session, immediately postsession, and 2 h postsession for assessment of monocyte intracellular heat shock protein-72 (iHsp72) and plasma concentrations of extracellular Hsp72 (eHsp72), interleukin-6 (IL-6), fasting glucose, insulin, and nitrite. Thereafter, participants underwent a 2-wk intervention period, consisting of 10 hot water immersion sessions (INT). Eight BMI-matched participants (BMI: 30.0 ± 2.5 kg/m2) were included as control (CON). Plasma IL-6 and nitrite concentrations were higher immediately following HWI compared with AMB (IL-6 P < 0.001, HWI: 1.37 ± 0.94 to 2.51 ± 1.49 pg/ml; nitrite P = 0.04, HWI: 271 ± 52 to 391 ± 72 nM), whereas iHsp72 expression was unchanged ( P = 0.57). In contrast to resting iHsp72 expression ( P = 0.59), fasting glucose ( P = 0.04; INT: 4.44 ± 0.93 to 3.98 ± 0.98 mmol/l), insulin ( P = 0.04; INT: 68.1 ± 44.6 to 55.0 ± 29.9 pmol/l), and eHsp72 ( P = 0.03; INT: 17 ± 41% reduction) concentrations were lowered after INT compared with CON. HWI induced an acute inflammatory response and increased nitric oxide bioavailability. The reductions in fasting glucose and insulin concentrations following the chronic intervention suggest that hot water immersion may serve as a tool to improve glucose metabolism. NEW & NOTEWORTHY A single hot water immersion (HWI) session induces an acute increase in plasma interleukin-6 and nitrite concentrations but does not acutely elevate heat shock protein-72 expression in monocytes [intracellular Hsp72 (iHsp72)]. A chronic HWI intervention reduces fasting glucose and insulin concentrations in the absence of changes in resting iHsp72. Therefore, HWI shows potential as a strategy to combat chronic low-grade inflammation and improve glucose metabolism in individuals without the physical capacity to do so using exercise.
Collapse
Affiliation(s)
- S. P. Hoekstra
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - N. C. Bishop
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - S. H. Faulkner
- Department of Engineering, Nottingham Trent University, Nottingham, United Kingdom
| | - S. J. Bailey
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - C. A. Leicht
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
41
|
Ten Caten Martins E, Dos Santos RZ, Dos Santos AB, Fiorin PBG, Sandri YP, Frizzo MN, Ludwig MS, Heck TG, Benetti M. Detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Cell Stress Chaperones 2018; 23:1319-1327. [PMID: 30238325 PMCID: PMC6237681 DOI: 10.1007/s12192-018-0939-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023] Open
Abstract
Previous studies reported that extracellular HSP72 (eHSP72) correlates with poor prognosis, markers of vascular dysfunction, and the severity of cardiovascular diseases, associated with a systemic oxidative and inflammatory profile. On the other hand, eHSP72 may represent immune-regulatory signaling that is related to exercise benefits, but the association between physical activity levels and eHSP72 levels is not established. Thus, since regular physical activity may avoid oxidative stress and inflammation, we investigate whether detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Physical activity levels of hypertensive subjects (n = 140) were measured by tri-axial movement sensor pedometer for 24 h during 5 consecutive days. One day after, blood was collected into heparinized tubes for oxidative stress analyses (catalase-CAT and superoxide dismutase-SOD activities and malondialdehyde levels) or in disodium EDTA tubes for eHSP72 assays. Thus, hypertensive subjects were classified as physically inactive (< 10,000 footsteps/day) or active (> than 10,000 footsteps/day) and according detectable or not detectable eHSP72 levels in plasma, performing the inactive/eHSP72-, active/eHSP72-, inactive/eHSP72+, and active/eHSP72+ groups. We found that detectable levels of eHSP72 in plasma were associated with physical activity levels and low oxidative stress profile (Higher CAT and SOD activities and low malondialdehyde levels). eHSP72 levels can be used as a biomarker of the amount of physical activity necessary to improve antioxidant defense and thus cardiovascular health in hypertensive subjects.
Collapse
Affiliation(s)
- Eliara Ten Caten Martins
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Rafaella Zulianello Dos Santos
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Analu Bender Dos Santos
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Yana Picinin Sandri
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil.
| | - Magnus Benetti
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| |
Collapse
|
42
|
Kimball AL, McCue PM, Petrie MA, Shields RK. Whole body heat exposure modulates acute glucose metabolism. Int J Hyperthermia 2018; 35:644-651. [DOI: 10.1080/02656736.2018.1516303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Amy L. Kimball
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Patrick M. McCue
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
43
|
de Lemos Muller CH, Rech A, Botton CE, Schroeder HT, Bock PM, Farinha JB, Lopez P, Schöler CM, Grigolo GB, Coelho J, Kowalewski LS, Rodrigues MIL, de Azevedo MA, Quincozes-Santos A, Rodrigues-Krause J, Reischak-Oliveira A, Pinto RS, De Vito G, de Bittencourt Júnior PIH, Krause M. Heat-induced extracellular HSP72 release is blunted in elderly diabetic people compared with healthy middle-aged and older adults, but it is partially restored by resistance training. Exp Gerontol 2018; 111:180-187. [DOI: 10.1016/j.exger.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
|
44
|
Strandberg TE, Strandberg A, Pitkälä K, Benetos A. Sauna bathing, health, and quality of life among octogenarian men: the Helsinki Businessmen Study. Aging Clin Exp Res 2018; 30:1053-1057. [PMID: 29188579 DOI: 10.1007/s40520-017-0855-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Sauna-type bathing has increased worldwide, and it has been related to both harmful and beneficial effects. There are few studies of bathing in sauna in very old age. METHODS The series consists of 524 mostly home-living survivors of the Helsinki Businessmen Study (HBS, mean age 86 years, range 80-95), who in 2015 responded to a questionnaire survey about lifestyle (including sauna bathing), prevalent diseases, and health-related quality of life (HRQoL, RAND-36). RESULTS Of the men 57.6% (n = 302) reported all-year round and 17.6% (n = 92) part-year sauna bathing. Sauna was currently used mostly once a week, but 10% bathed more than twice a week. Median time in the hot room was 15 min at 80 °C. Among 45.7% of the men, the habit had decreased with ageing, and 130 (24.8%) did not attend sauna. However, 92.2% of the latter had discontinued an earlier habit, respective proportions 20.7% and 75.0% among all-year and part-year users. Overall, reasons for decreased sauna bathing were nonspecific or related to mobility problems or diverse health reasons (n = 63). The most frequent motivations for sauna were relaxation and hygienic reasons. Of the RAND-36 domains physical function, vitality, social functioning, and general health were significantly better among sauna users than non-users. These differences partly remained after adjusting for prevalent diseases and mobility-disability. CONCLUSIONS Regular sauna bathing was common among octogenarian men and was associated with better HRQoL. However, reverse causality must be taken into account in this cross-sectional study. The bathing habit seemed to be prudent and had decreased in almost half of the cohort.
Collapse
Affiliation(s)
- Timo E Strandberg
- University of Helsinki, Clinicum, and Helsinki University Hospital, Haartmaninkatu 4, PO Box 340, 00029, Helsinki, Finland.
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.
| | - Arto Strandberg
- University of Helsinki, Clinicum, and Helsinki University Hospital, Haartmaninkatu 4, PO Box 340, 00029, Helsinki, Finland
| | - Kaisu Pitkälä
- University of Helsinki, Clinicum, and Helsinki University Hospital, Haartmaninkatu 4, PO Box 340, 00029, Helsinki, Finland
| | - Athanase Benetos
- University Hospital of Nancy, Université de Lorraine, Nancy, France
| |
Collapse
|
45
|
Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F. Correlation between heat shock proteins, adiponectin, and T lymphocyte cytokine expression in type 2 diabetics. Cell Stress Chaperones 2018; 23:955-965. [PMID: 29752628 PMCID: PMC6111097 DOI: 10.1007/s12192-018-0903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 01/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) features insulin resistance, hyperglycemia, dyslipidemia, overproduction of inflammatory cytokines, and systemic oxidative stress. Here, heat shock proteins Hsp70 and Hsp 90, adiponectin, and heme oxygenase-1 (HO-1, Hsp32) are profiled in peripheral blood mononuclear cells (PBMC) and serum from 25 T2DM patients and 25 healthy control subjects. Cells cultured with phorbol 12-myristate 13-acetate/ionomycin were evaluated by three-color flow cytometry for immunophenotypic biomarkers. Plasma HO-1, Hsp, and adiponectin levels were assayed by enzyme-linked immunosorbent assay (ELISA). Relative to healthy controls, T2DM patients exhibited significantly elevated plasma Hsp70, and representation of T helper immunophenotypes activated to express inflammatory cytokines, including CD4+ IFN-γ+, CD4+ TNF-α+, CD4+ IL-6+, CD4+ IL-1β+ T cells, significantly lower representation of CD4+ IL-10+ T cells, plasma adiponectin and cell-associated HO-1 expression-with no significant differences in plasma Hsp90 between T2DM and healthy controls. Plasma HO-1 and adiponectin in T2DM patients inversely correlated with TNF-α and showed inverse correlation between serum LDL and plasma HO-1. Moreover, TNF-α and Hsp90 in T2DM patients correlated positively with fasting blood glucose (FBG). These results demonstrate correlation between potentially pathogenic T cells, HO-1, and adiponectin, additionally revealing a T helper (Th)1-related character of T2DM immunopathogenesis, suggesting potential for novel T cell-related management strategies for T2DM and related co-morbidities.
Collapse
Affiliation(s)
- Fadia F Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait.
| | - David Haines
- Department of Epidemiology and Biostatistics, The George Washington University Medical Center, Washington, DC, USA
- Advanced Immune Biotherapeutics LLP, London, UK
| | - Ali A Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Sherief El-Shazly
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Fawzia Al-Najjar
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
46
|
Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 2018; 75:2897-2916. [PMID: 29774376 PMCID: PMC11105406 DOI: 10.1007/s00018-018-2836-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.
Collapse
Affiliation(s)
- János Barna
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
47
|
Pardo M, Kuperman Y, Levin L, Rudich A, Haim Y, Schauer JJ, Chen A, Rudich Y. Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:532-543. [PMID: 29684880 DOI: 10.1016/j.envpol.2018.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Liron Levin
- Department of Life Sciences, Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer Sheva, 84103, Israel
| | - Assaf Rudich
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Yulia Haim
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
48
|
Progress in Metabonomics of Type 2 Diabetes Mellitus. Molecules 2018; 23:molecules23071834. [PMID: 30041493 PMCID: PMC6100487 DOI: 10.3390/molecules23071834] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
With the improvement of living standards and a change in lifestyle, the incidence of type 2 diabetes mellitus (T2DM) is increasing. Its etiology is too complex to be completely understand yet. Metabonomics techniques are used to study the changes of metabolites and metabolic pathways before and after the onset of diabetes and make it more possible to further understand the pathogenesis of T2DM and improve its prediction, early diagnosis, and treatment. In this review, we summarized the metabonomics study of T2DM in recent years and provided a theoretical basis for the study of pathogenesis and the effective prevention and treatment of T2DM.
Collapse
|
49
|
Tytell M, Davis AT, Giles J, Snider LC, Xiao R, Dozier SG, Presley TD, Kavanagh K. Alfalfa-derived HSP70 administered intranasally improves insulin sensitivity in mice. Cell Stress Chaperones 2018; 23:189-194. [PMID: 28822083 PMCID: PMC5823803 DOI: 10.1007/s12192-017-0835-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein (HSP) 70 is an abundant cytosolic chaperone protein that is deficient in insulin-sensitive tissues in diabetes and unhealthy aging, and is considered a longevity target. It is also protective in neurological disease models. Using HSP70 purified from alfalfa and administered as an intranasal solution, we tested in whether the administration of Hsp70 to diet-induced diabetic mice would improve insulin sensitivity. Both the 10 and 40 μg given three times per week for 26 days significantly improved the response to insulin. The HSP70 was found to pass into the olfactory bulbs within 4-6 hours of a single dose. These results suggest that a relatively inexpensive, plentiful source of HSP70 administered in a simple, non-invasive manner, has therapeutic potential in diabetes.
Collapse
Affiliation(s)
- Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jareca Giles
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Lauren C Snider
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ruoyu Xiao
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Stephen G Dozier
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Tennille D Presley
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King, Jr Drive, Winston-Salem, NC, 27110, USA
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
50
|
Chao PC, Li Y, Chang CH, Shieh JP, Cheng JT, Cheng KC. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomed Pharmacother 2018; 101:155-161. [PMID: 29486333 DOI: 10.1016/j.biopha.2018.02.084] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Animal models are widely used to develop drugs for treating diabetes mellitus (DM). Insulin resistance (IR) is one of the main problems in type-2 DM (T2DM). Streptozotocin (STZ) is used to damage pancreatic cells for induction of DM. Many rat models were applied in research as T2DM. However, the degree of IR in each model is unknown. In the present study, IR and insulin signaling were compared in four models of type 2 diabetes: rats fed a fructose-rich chow for 8 weeks, rats feed high-fat chow for 4 weeks followed by injection with streptozotocin (35 mg/kg, i.p.), rats injected with a single low dose streptozotocin (45 mg/kg, i.p.), and rats injected with a single dose of nicotinamide followed by a single high dose of streptozotocin (60 mg/kg, i.p.). Values from these determinations in diabetic rats showing the order that insulin resistance is most marked in rats received fructose-rich chow followed by high-fat diet before STZ injection induced model (HFD/STZ rats), and rats injected with low dose of STZ but it is less marked in rats induced by nicotinamide and STZ. Additionally, insulin secretion was reduced in three rat models except the rats receiving fructose-rich chow. Western blots also showed the same changes in phosphorylation of IRS-1 or Akt using soleus muscle from each model. The obtained data suggest a lack of pronounced IR in the rats with acute diabetes induced by nicotinamide and STZ while IR is markedly identified in rats fed fructose-rich chow. However, the increase of plasma glucose levels in fructose-rich chow-fed rats was not so significant as other groups. Therefore, HFD/STZ rats is an appropriate and stable animal model which is analogous to the human T2DM through a combination of high-fat diet with multiple low-dose STZ injections.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Bachelor Program of Senior Services, College of Humanities and Social Sciences, Southern Taiwan University of Science and Technology, Yong Kang, Tainan City, 71005, Taiwan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan; Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Chin-Hong Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Ja Ping Shieh
- Department of Anesthesiology, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan; Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, 71101, Taiwan.
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan.
| |
Collapse
|