1
|
Baldari S, Antonini A, Di Rocco G, Toietta G. Expression pattern and prognostic significance of aldehyde dehydrogenase 2 in lung adenocarcinoma as a potential predictor of immunotherapy efficacy. CANCER INNOVATION 2025; 4:e149. [PMID: 39640071 PMCID: PMC11620833 DOI: 10.1002/cai2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 12/07/2024]
Abstract
Background The incidence of alcohol-associated cancers is higher within Asian populations having an increased prevalence of an inactivating mutation in aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme required for the clearance of acetaldehyde, a cytotoxic metabolite of ethanol. The role of alcohol consumption in promoting lung cancer is controversial, and little attention has been paid to the association between alcohol drinking and pulmonary ALDH2 expression. Methods We performed a comprehensive bioinformatic analysis of multi-omics data available in public databases to elucidate the role of ALDH2 in lung adenocarcinoma (LUAD). Results Transcriptional and proteomic data indicate a substantial pulmonary expression of ALDH2, which is functional for the metabolism of alcohol diffused from the bronchial circulation. ALDH2 expression is higher in healthy lung tissue than in LUAD and inhibits cell cycle, apoptosis, and epithelial-mesenchymal transition pathways. Moreover, low ALDH2 mRNA levels predict poor prognosis and low overall survival in LUAD patients. Interestingly, ALDH2 expression correlates with immune infiltration in LUAD. Conclusions A better understanding of the role of ALDH2 in lung tumor progression and immune infiltration might support its potential use as a prognostic marker and therapeutic target for improving immunotherapeutic response.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Annalisa Antonini
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic TargetsIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
2
|
Chen AL, Lin ZJ, Chang HY, Wang TSA. Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo. J Am Chem Soc 2025; 147:1518-1528. [PMID: 39730301 PMCID: PMC11744745 DOI: 10.1021/jacs.4c09727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization. We first designed native (light) and deuterated (heavy) probes to facilitate RCS metabolomic identification through distinct MS isotope patterns. This approach allowed us to capture and relatively quantify several endogenous RCS related to advanced lipoxidation/glycation end products (ALEs/AGEs). Second, we demonstrated that various endogenous RCS can trigger the in situ generation of acrylamide warheads of targeted covalent inhibitors (TCIs) with different substituents. These structural variations influence their protein binding profiles and consequently alter their cytotoxicity, which is beneficial for the development of inhibitor cocktails.
Collapse
Affiliation(s)
- Ai-Lin Chen
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Zih-Jheng Lin
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Hsiao-Yu Chang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Jardanowska-Kotuniak M, Dramiński M, Własnowolski M, Łapiński M, Sengupta K, Agarwal A, Filip A, Ghosh N, Pancaldi V, Grynberg M, Saha I, Plewczynski D, Dąbrowski MJ. Unveiling epigenetic regulatory elements associated with breast cancer development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623187. [PMID: 39605637 PMCID: PMC11601335 DOI: 10.1101/2024.11.12.623187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Breast cancer is the most common cancer in women and the 2nd most common cancer worldwide, yearly impacting over 2 million females and causing 650 thousand deaths. It has been widely studied, but its epigenetic variation is not entirely unveiled. We aimed to identify epigenetic mechanisms impacting the expression of breast cancer related genes to detect new potential biomarkers and therapeutic targets. We considered The Cancer Genome Atlas database with over 800 samples and several omics datasets such as mRNA, miRNA, DNA methylation, which we used to select 2701 features that were statistically significant to differ between cancer and control samples using the Monte Carlo Feature Selection and Interdependency Discovery algorithm, from an initial total of 417,486. Their biological impact on cancerogenesis was confirmed using: statistical analysis, natural language processing, linear and machine learning models as well as: transcription factors identification, drugs and 3D chromatin structure analyses. Classification of cancer vs control samples on the selected features returned high classification weighted Accuracy from 0.91 to 0.98 depending on feature-type: mRNA, miRNA, DNA methylation, and classification algorithm. In general, cancer samples showed lower expression of differentially expressed genes and increased β-values of differentially methylated sites. We identified mRNAs whose expression is well explained by miRNA expression and differentially methylated sites β-values. We recognized differentially methylated sites possibly affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study successfully points out numerous possible regulatory dependencies.
Collapse
Affiliation(s)
- Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Własnowolski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Łapiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Adam Filip
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata 700106, India
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał J. Dąbrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
5
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
6
|
Kijowska J, Grzegorczyk J, Gliwa K, Jędras A, Sitarz M. Epidemiology, Diagnostics, and Therapy of Oral Cancer-Update Review. Cancers (Basel) 2024; 16:3156. [PMID: 39335128 PMCID: PMC11430737 DOI: 10.3390/cancers16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Oral cavity and lip cancers are the 16th most common cancer in the world. It is widely known that a lack of public knowledge about precancerous lesions, oral cancer symptoms, and risk factors leads to diagnostic delay and therefore a lower survival rate. Risk factors, which include drinking alcohol, smoking, HPV infection, a pro-inflammatory factor-rich diet, and poor oral hygiene, must be known and avoided by the general population. Regular clinical oral examinations should be enriched in an oral cancer search protocol for the most common symptoms, which are summarized in this review. Moreover, new diagnostic methods, some of which are already available (vital tissue staining, optical imaging, oral cytology, salivary biomarkers, artificial intelligence, colposcopy, and spectroscopy), and newly researched techniques increase the likelihood of stopping the pathological process at a precancerous stage. Well-established oral cancer treatments (surgery, radiotherapy, chemotherapy, and immunotherapy) are continuously being developed using novel technologies, increasing their success rate. Additionally, new techniques are being researched. This review presents a novel glance at oral cancer-its current classification and epidemiology-and will provide new insights into the development of new diagnostic methods and therapies.
Collapse
Affiliation(s)
- Julia Kijowska
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Julia Grzegorczyk
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Katarzyna Gliwa
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Aleksandra Jędras
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Rao KN, Mehta R, Dange P, Nagarkar NM. Alcohol-Containing Mouthwash and the Risk of Oral Cancer: Exploring the Association. Indian J Surg Oncol 2024; 15:553-556. [PMID: 39239449 PMCID: PMC11371988 DOI: 10.1007/s13193-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/01/2024] [Indexed: 09/07/2024] Open
Abstract
Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both. Mouthwashes are liquid antiseptic solutions that decrease the microbial load in the oral cavity. Alcohol is often used in mouthwashes for its antiseptic functions and as a carrier for some active ingredients, including menthol or thymol, helping them penetrate the plaque. There is some evidence for alcohol-containing mouthwash use which is associated with the potential risk of developing carcinoma of oral cavity. The results are inconclusive, as actual mouthwash use patterns may be inconsistent and cannot be easily quantified. Based on the available data, there is no sufficient evidence to accept the proposition that the use of mouthwashes containing alcohol can influence the development of oral cancer.
Collapse
Affiliation(s)
- Karthik Nagaraja Rao
- Department of Head and Neck Oncology, Sri Shankara Cancer Hospital and Research Center, Bangalore, India
| | - Rupa Mehta
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Raipur, India
| | - Prajwal Dange
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Raipur, India
| | | |
Collapse
|
8
|
Pallozzi M, De Gaetano V, Di Tommaso N, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Role of Gut Microbial Metabolites in the Pathogenesis of Primary Liver Cancers. Nutrients 2024; 16:2372. [PMID: 39064815 PMCID: PMC11280141 DOI: 10.3390/nu16142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In this context, the gut-liver axis and gut microbiota have demonstrated a critical role in the pathogenesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation, leading to chronic liver inflammation and tumorigenesis through several pathways. A few data exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association. In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary cancer management.
Collapse
Affiliation(s)
- Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Natalia Di Tommaso
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Lee TA, Peng J, Walia D, Gonzales R, Hutter T. Experimental and numerical investigation of microdialysis probes for ethanol metabolism studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4322-4332. [PMID: 38888243 PMCID: PMC11223630 DOI: 10.1039/d4ay00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.
Collapse
Affiliation(s)
- Tse-Ang Lee
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jessie Peng
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Divjot Walia
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Rueben Gonzales
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya Hutter
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Tenney L, Pham VN, Brewer TF, Chang CJ. A mitochondrial-targeted activity-based sensing probe for ratiometric imaging of formaldehyde reveals key regulators of the mitochondrial one-carbon pool. Chem Sci 2024; 15:8080-8088. [PMID: 38817555 PMCID: PMC11134394 DOI: 10.1039/d4sc01183j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Formaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution. Here we report a mitochondrial-targeted, activity-based sensing probe for ratiometric FA detection, MitoRFAP-2, and apply this reagent to monitor endogenous mitochondrial sources and sinks of this 1C unit. We establish the utility of subcellular localization by showing that MitoRFAP-2 is sensitive enough to detect changes in mitochondrial FA pools with genetic and pharmacological modulation of enzymes involved in 1C and amino acid metabolism, including the pervasive, less active genetic mutant aldehyde dehydrogenase 2*2 (ALDH2*2), where previous, non-targeted versions of FA sensors are not. Finally, we used MitoRFAP-2 to comparatively profile basal levels of FA across a panel of breast cancer cell lines, finding that FA-dependent fluorescence correlates with expression levels of enzymes involved in 1C metabolism. By showcasing the ability of MitoRFAP-2 to identify new information on mitochondrial FA homeostasis, this work provides a starting point for the design of a broader range of chemical probes for detecting physiologically important aldehydes with subcellular resolution and a useful reagent for further studies of 1C biology.
Collapse
Affiliation(s)
- Logan Tenney
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Vanha N Pham
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Thomas F Brewer
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
11
|
Kumai T, Shinomiya H, Shibata H, Takahashi H, Kishikawa T, Okada R, Fujieda S, Sakashita M. Translational research in head and neck cancer: Molecular and immunological updates. Auris Nasus Larynx 2024; 51:391-400. [PMID: 37640594 DOI: 10.1016/j.anl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Each year, approximately 880,000 patients are newly diagnosed with HNSCC worldwide, and 450,000 patients with HNSCC die. Risk factors for developing HNSCC have been identified, with cigarette smoking, alcohol consumption, and viral infections being the major factors. Owing to the prevalence of human papillomavirus infection, the number of HNSCC cases is increasing considerably. Surgery and chemoradiotherapy are the primary treatments for HNSCC. With advancements in tumor biology, patients are eligible for novel treatment modalities, namely targeted therapies, immunotherapy, and photoimmunotherapy. Because this area of research has rapidly progressed, clinicians should understand the basic biology of HNSCC to choose an appropriate therapy in the upcoming era of personalized medicine. This review summarized recent developments in tumor biology, focusing on epidemiology, genetic/epigenetic factors, the tumor microenvironment, microbiota, immunity, and photoimmunotherapy in HNSCC, as well as how these findings can be translated into clinical settings.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
12
|
Yu Y, Liu Y. LncRNA LINC01339 Hinders the Development of Wilms' Tumor via MiR-135b-3p/ADH1C Axis. Horm Metab Res 2024; 56:244-254. [PMID: 37890508 DOI: 10.1055/a-2184-8945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Wilms' tumor is a malignant renal cancer that arises within the pediatric urinary system. This study intended to investigate how a novel long non-coding RNA LINC01339 functions in the pathogenesis of Wilms' tumor. An elevated miR-135b-3p expression as well as reduced levels of LINC01339 and ADH1C were observed in Wilms' tumor. LINC01339 mediated ADH1C expression by directly binding to miR-135b-3p. The enforced LINC01339 or ADH1C markedly hindered cell growth and migration in Wilms' tumor. The LINC01339 overexpression also repressed the growth of Wilms' tumors in vivo, whereas miR-135b-3p overexpression exerted the opposite effects on Wilms' tumor cells in vitro. Additionally, upregulating miR-135b-3p reversed LINC01339's effects on the cellular processes of Wilms' tumor cells, whereas ADH1C overexpression offset the cancer-promoting influence of miR-135b-3p upregulation on Wilms' tumor progression. Therefore, LINC01339 prevents Wilms' tumor progression by modulating the miR-135b-3p/ADH1C axis. Our findings substantiate that the LINC01339/miR-135 b-3p/ADH1C regulatory axis has potential to be a target for the treatment of Wilms' tumor.
Collapse
Affiliation(s)
- Yang Yu
- Department of Nephrology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yanfei Liu
- Department of Oncology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Hsu MF, LeBleu G, Flores L, Parkhurst A, Nagy LE, Haj FG. Hepatic protein tyrosine phosphatase Shp2 disruption mitigates the adverse effects of ethanol in the liver by modulating oxidative stress and ERK signaling. Life Sci 2024; 340:122451. [PMID: 38253311 DOI: 10.1016/j.lfs.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| | - Grace LeBleu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Lizbeth Flores
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Amy Parkhurst
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Ashrafi S, Amini AA, Karimi P, Bagherian M, Adibzadeh Sereshgi MM, Asgarhalvaei F, Ahmadi K, Yazdi MH, Jahantigh HR, Mahdavi M, Sarrami Forooshani R. Candidiasis in breast cancer: Tumor progression or not? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1346-1356. [PMID: 39386227 PMCID: PMC11459349 DOI: 10.22038/ijbms.2024.75408.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 10/12/2024]
Abstract
Candida albicans is an "opportunistic fungal agent" in cancer patients that can become colonized in both mucosal and deep tissues and cause severe infections. Most evidence has shown that C. albicans can enhance the progress of different cancers by several mechanisms such as generating virulence factors, participation in endogenous production of pro-inflammatory mediators, and stimulating a wide range of immune cells in the host. The main idea of this review is to describe a range of Candida-used mechanisms that are important in candidiasis-associated malignant processes and cancer development, particularly breast cancer. This review intends to provide a detailed discussion on different regulatory mechanisms of C. albicans that undoubtedly help to open new therapeutic horizons of cancer therapy in patients with fungal infection. The current therapeutic approach is not fully effective in immunocompromised and cancer patients, and further studies are required to find new products with effective antifungal properties and minimal side effects to increase the susceptibility of opportunistic fungal infections to conventional antifungal agents. So, in this situation, a special therapy should be considered to control the infection and simultaneously have the most therapeutic index on tumor patients.
Collapse
Affiliation(s)
- Somayeh Ashrafi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
- These authors contributed eqully to this work
| | - Abbas Ali Amini
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pegah Karimi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- These authors contributed eqully to this work
| | - Maryam Bagherian
- Department of Hematology and Oncology and Stem Cell Transplantation, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Asgarhalvaei
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Hossein Yazdi
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Jahantigh
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
16
|
Cartus AT, Lachenmeier DW, Guth S, Roth A, Baum M, Diel P, Eisenbrand G, Engeli B, Hellwig M, Humpf HU, Joost HG, Kulling SE, Lampen A, Marko D, Steinberg P, Wätjen W, Hengstler JG, Mally A. Acetaldehyde as a Food Flavoring Substance: Aspects of Risk Assessment. Mol Nutr Food Res 2023; 67:e2200661. [PMID: 37840378 DOI: 10.1002/mnfr.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Indexed: 10/17/2023]
Abstract
The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.
Collapse
Affiliation(s)
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, Bern, 3003, Switzerland
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| |
Collapse
|
17
|
Li Z, Fang X, Wang S. Omentum provides a special cell microenvironment for ovarian cancer. Cancer Rep (Hoboken) 2023; 6:e1858. [PMID: 37605299 PMCID: PMC10598246 DOI: 10.1002/cnr2.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Ovarian cancer seriously threatens women's health because of its poor prognosis and high mortality. Due to the lack of efficient early detection and screening methods, when patients seek doctors' help with complaints of abdominal distension, back pain and other nonspecific signs, the clinical results always hint at the widespread metastasis of disease. When referring to the metastasis of this disease, the omentum always takes precedence. RECENT FINDINGS The distinguishing feature of the omentum is adipose tissue, which satisfies the energy demand of cancer cells and supplies a more aggressive environment for ovarian cancer cells. In this review, we mainly focus on three important cell types: adipocytes, macrophages, and mesenchymal stem cells. Besides, several mechanisms underlying cancer-associated adipocytes (CAA)-facilitated ovarian cancer cell development have been revealed, including their capacities for storing lipids and endocrine function, and the release of hormones, growth factors, and adipokines. Blocking the reciprocity among cancer cells and various cells located on the omentum might contribute to ovarian cancer therapy. The inhibition of hormones, growth factors and adipokines produced by adipocytes will be a novel therapeutic strategy. However, a sufficient number of trials has not been performed. In spite of this, the therapeutic potential of metformin and the roles of exercise in ovarian cancer will be worth mentioning. CONCLUSION It is almost impossible to overcome completely ovarian cancer at the moment. What we can do is trying our best to improve these patients' prognoses. In this process, adipocytes may bring promising future for the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Zeying Li
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaoling Fang
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Sixue Wang
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
18
|
Letafati A, Sakhavarz T, Khosravinia MM, Ardekani OS, Sadeghifar S, Norouzi M, Naseri M, Ghaziasadi A, Jazayeri SM. Exploring the correlation between progression of human papillomavirus infection towards carcinogenesis and nutrition. Microb Pathog 2023; 183:106302. [PMID: 37567326 DOI: 10.1016/j.micpath.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Human papillomavirus (HPV) is a common sexually transmitted virus that can lead to the development of various types of cancer. While there are vaccines available to prevent HPV infection, there is also growing interest in the role of nutrition in reducing the risk of HPV-related cancers in HPV positive patients. Diet and nutrition play a critical role in maintaining overall health and preventing various diseases. A healthy diet can strengthen the immune system, which is essential for fighting off infections, including HPV infections, and preventing the growth and spread of cancer cells. Therefore, following a healthy diet and maintaining a healthy weight are important components of HPV and cancer prevention. This article explores the current scientific evidence on the relationship between nutrition and HPV, including the impact of specific nutrients, dietary patterns, and supplements on HPV infection toward cancer progression.
Collapse
Affiliation(s)
- Arash Letafati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tannaz Sakhavarz
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Mahdi Khosravinia
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Samira Sadeghifar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mehdi Norouzi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mona Naseri
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Seyed Mohammad Jazayeri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
19
|
Rajendran NK, Liu W, Cahill PA, Redmond EM. Alcohol and vascular endothelial function: Biphasic effect highlights the importance of dose. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1467-1477. [PMID: 37369447 PMCID: PMC10751391 DOI: 10.1111/acer.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Alcohol (ethanol) consumption has different influences on arterial disease, being protective or harmful depending on the amount and pattern of consumption. The mechanisms mediating these biphasic effects are unknown. Whereas endothelial cells play a critical role in maintaining arterial health, this study compared the effects of moderate and high alcohol concentrations on endothelial cell function. METHODS Human coronary artery endothelial cells (HCAEC) were treated with levels of ethanol associated with either low-risk/moderate drinking (i.e., 25 mM) or high-risk/heavy drinking (i.e., 50 mM) after which endothelial function was assessed. The effect of ethanol's primary metabolite acetaldehyde (10 and 25 μM) was also determined. RESULTS Moderate ethanol exposure (25 mM) improved HCAEC barrier integrity as determined by increased transendothelial electrical resistance (TEER), inhibited cell adhesion molecule (CAM) mRNA expression, decreased inflammatory cytokine (interferon-γ and interleukin 6) production, inhibited monocyte chemotactic protein-1 (MCP-1) expression and monocyte adhesion, and increased homeostatic Notch signaling. In contrast, exposure to high-level ethanol (50 mM) decreased TEER, increased CAM expression and inflammatory cytokine production, and stimulated MCP-1 and monocyte adhesion, with no effect on Notch signaling. Reactive oxygen species (ROS) generation and endothelial nitric oxide synthase activity were increased by both alcohol treatments, and to a greater extent in the 50 mM ethanol group. Acetaldehyde-elicited responses were generally the same as those of the high-level ethanol group. CONCLUSIONS Ethanol has biphasic effects on several endothelial functions such that a moderate level maintains the endothelium in a nonactivated state, whereas high-level ethanol causes endothelial dysfunction, as does acetaldehyde. These data show the importance of dose when considering ethanol's effects on arterial endothelium, and could explain, in part, the J-shaped relationship between alcohol concentration and atherosclerosis reported in some epidemiologic studies.
Collapse
Affiliation(s)
- Naresh K Rajendran
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
20
|
Vijayraghavan S, Saini N. Aldehyde-Associated Mutagenesis─Current State of Knowledge. Chem Res Toxicol 2023. [PMID: 37363863 DOI: 10.1021/acs.chemrestox.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aldehydes are widespread in the environment, with multiple sources such as food and beverages, industrial effluents, cigarette smoke, and additives. The toxic effects of exposure to several aldehydes have been observed in numerous studies. At the molecular level, aldehydes damage DNA, cross-link DNA and proteins, lead to lipid peroxidation, and are associated with increased disease risk including cancer. People genetically predisposed to aldehyde sensitivity exhibit severe health outcomes. In various diseases such as Fanconi's anemia and Cockayne syndrome, loss of aldehyde-metabolizing pathways in conjunction with defects in DNA repair leads to widespread DNA damage. Importantly, aldehyde-associated mutagenicity is being explored in a growing number of studies, which could offer key insights into how they potentially contribute to tumorigenesis. Here, we review the genotoxic effects of various aldehydes, focusing particularly on the DNA adducts underlying the mutagenicity of environmentally derived aldehydes. We summarize the chemical structures of the aldehydes and their predominant DNA adducts, discuss various methodologies, in vitro and in vivo, commonly used in measuring aldehyde-associated mutagenesis, and highlight some recent studies looking at aldehyde-associated mutation signatures and spectra. We conclude the Review with a discussion on the challenges and future perspectives of investigating aldehyde-associated mutagenesis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
21
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
22
|
Chung E, Russo DP, Ciallella HL, Wang YT, Wu M, Aleksunes LM, Zhu H. Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6573-6588. [PMID: 37040559 PMCID: PMC10134506 DOI: 10.1021/acs.est.3c00648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.
Collapse
Affiliation(s)
- Elena Chung
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Heather L. Ciallella
- Department
of Toxicology, Cuyahoga County Medical Examiner’s
Office, 11001 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Yu-Tang Wang
- Institute
of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture, Beijing 100193, China
| | - Min Wu
- School
of Life Science and Technology, China Pharmaceutical
University, No. 24, Tong Jia Xiang, Nanjing 210009, China
| | - Lauren M. Aleksunes
- Department
of Pharmacology and Toxicology, Rutgers
University, Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
23
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Lee NK, Lee JW, Woo JH, Choi YS, Choi JH. Upregulation of SPI1 in Ectopic Endometrium Contributes to an Invasive Phenotype. Arch Med Res 2023; 54:86-94. [PMID: 36702668 DOI: 10.1016/j.arcmed.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUD AND AIM Endometriosis is one of the most common gynecological diseases associated with chronic pelvic pain, infertility, and cancer. However, its molecular pathogenesis remains unclear. This study aimed to identify key genes involved in the pathogenesis of endometriosis. METHODS Bioinformatic analyses were perfomed to identify key differentially expressed genes (DEGs), transcription factors (TFs), and functionally enriched pathways. Effect of SPI1 on migration, invasion, expression of ADH1B, MYH11, and PLN were analyzed in human endometriotic cells. RESULTS By screening three transcriptome datasets from the GEO for overlapping DEGs between eutopic and ectopic endometria in patients with endometriosis, we found that the expression of ADH1B, MYH11, and PLN was markedly upregulated in the ectopic endometrium. Knockdown of ADH1B, MYH11, and PLN significantly inhibited the migration and invasion of human endometriotic 12Z cells. Additionally, gene set enrichment analysis revealed that epithelial-mesenchymal transition gene signature was positively correlated with ADH1B, MYH11, and PLN expression. Notably, the TF SPI1 was found to regulate the expression of these three genes in the endometriotic tissues and 12TZ cells. Moreover, SPI1 expression was associated with the invasion of endometriotic cells and was increased in the ectopic endometrium of patients with endometriosis. CONCLUSION These data suggest that SPI1 plays a key role in the progression of endometriosis by regulating ADH1B, MYH11, and PLN expression and may therefore serve as a potential prognostic and therapeutic factor for endometriosis.
Collapse
Affiliation(s)
- Na-Kyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Jae-Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
25
|
Starek-Świechowicz B, Budziszewska B, Starek A. Alcohol and breast cancer. Pharmacol Rep 2023; 75:69-84. [PMID: 36310188 PMCID: PMC9889462 DOI: 10.1007/s43440-022-00426-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of the main causes of death in women worldwide. In women, breast cancer includes over half of all tumours caused by alcohol. This paper discusses both ethanol metabolism and the mechanisms of mammary tumourigenesis caused by alcohol. Numerous signalling pathways in neoplastic transformation following alcohol consumption in women have been presented. In addition, primary and secondary prevention, phytochemicals, synthetic chemicals, specific inhibitors of enzymes and selective receptor modulators have been described.
Collapse
Affiliation(s)
- Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Andrzej Starek
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
26
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Blood Vessels as a Key Mediator for Ethanol Toxicity: Implication for Neuronal Damage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111882. [PMID: 36431016 PMCID: PMC9696276 DOI: 10.3390/life12111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive intake of ethanol is associated with severe brain dysfunction, and the subsequent neurological and behavioral abnormalities are well-established social risks. Many research studies have addressed how ethanol induces neurological toxicity. However, the underlying mechanisms with which ethanol induces neurological toxicity are still obscure, perhaps due to the variety and complexity of these mechanisms. Epithelial cells are in direct contact with blood and can thus mediate ethanol neurotoxicity. Ethanol activates the endothelial cells of blood vessels, as well as lymphatic vessels, in a concentration-dependent manner. Among various signaling mediators, nitric oxide plays important roles in response to ethanol. Endothelial and inducible nitric oxide synthases (eNOS and iNOS) are upregulated and activated by ethanol and enhance neuroinflammation. On the other hand, angiogenesis and blood vessel remodeling are both affected by ethanol intake, altering blood supply and releasing angiocrine factors to regulate neuronal functions. Thus, ethanol directly acts on endothelial cells, yet the molecular target(s) on endothelial cells remain unknown. Previous studies on neurons and glial cells have validated the potential contribution of membrane lipids and some specific proteins as ethanol targets, which may also be the case in endothelial cells. Future studies, based on current knowledge, will allow for a greater understanding of the contribution and underlying mechanisms of endothelial cells in ethanol-induced neurological toxicity, protecting neurological health against ethanol toxicity.
Collapse
|
28
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
29
|
Chabeli MS, Wang X, Yinghao L, Chen C, Yang C, Shou Y, Wang S, Chen K. Similarities between wound re-epithelialization and Metastasis in ESCC and the crucial involvement of macrophages: A review. Cancer Treat Res Commun 2022; 32:100621. [PMID: 36007473 DOI: 10.1016/j.ctarc.2022.100621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In cancer, tumor-associated macrophages (TAMs) possess crucial functions in facilitating epithelial-mesenchymal transition (EMT). EMT is a crucial process in tumor metastasis. Tumor metastasis is one of the hallmarks of cancer and leads to patient mortality. Cancer cells often find ways to evade being detected and attacked by the immune system. This is achieved by cross-talk between cancer cells and the altered microenvironment. The accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) creates an immunosuppressive and tumor-supportive environment. Circulating monocytes and macrophages which are recruited into tumors are defined as tumor-associated macrophages once in the TME. Based on the activated stimuli and function, macrophages can be divided into M1 macrophages and M2 macrophages. M1 macrophages, also known as classically activated macrophages, exhibit pro-inflammatory and antitumor activities. M2 macrophages, also known as alternatively activated macrophages, exhibit anti-inflammatory, pro-tumorigenic, and wound healing activities. TAMs are considered to be of the M2 phenotype. The TME polarizes recruited macrophages into M2 macrophages as they provide an immunosuppressive pro-tumoral environment. Accumulating studies show that the presence of TAMs in esophageal squamous cell carcinoma (ESCC) leads to tumor progression. In this review, we discuss how EMT can be used by TAMs to cause tumor migration and metastasis in ESCC. We also discuss the potential therapies targeting TAMs.
Collapse
Affiliation(s)
- Maletsooa Story Chabeli
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China,.
| | - Xiaoqian Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Yinghao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Chen
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Chenbo Yang
- Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Yuwei Shou
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Shuaiyuan Wang
- Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China
| | - Kuisheng Chen
- Academy of medical sciences, Department of Pathology, Zhengzhou University, Zhengzhou, Henan, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan, China; Provincial Key Laboratory of Tumor Pathology, Zhengzhou, 450052, China,.
| |
Collapse
|
30
|
Stellungnahme zu Acetaldehyd als Aromastoff: Aspekte der Risikobewertung. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOpinion on acetaldehyde as a flavouring substance: considerations for risk assessmentAcetaldehyde occurs naturally in many foods and is also used as a flavouring due to its fruity aroma. The International Agency for Research on Cancer (IARC) classified acetaldehyde as possibly carcinogenic to humans and, in combination with oral intake via alcoholic beverages, as carcinogenic to humans. Therefore, the question arises whether the use of acetaldehyde as a flavouring agent is still justifiable. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the scientific basis for health risk assessment of the use of acetaldehyde as a flavouring substance and adopted an opinion. Based on the available data, it is at present not possible to conclude if acetaldehyde is genotoxic and mutagenic in vivo after oral exposure. There is also uncertainty regarding the contribution of acetaldehyde as a flavouring substance to the overall exposure to acetaldehyde. Therefore, a science-based assessment on health risk related to the use of acetaldehyde as a flavouring is not possible at present. Considering the genotoxic potential as well as numerous data gaps that need to be closed for a full risk assessment, the SKLM is concerned about the safety of acetaldehyde as a flavouring substance. For reasons of precautionary consumer protection, the SKLM considers that the use of acetaldehyde as a food additive should be re-evaluated.
Collapse
|
31
|
Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency. Cancer Gene Ther 2022; 29:889-896. [PMID: 34799722 PMCID: PMC9117562 DOI: 10.1038/s41417-021-00399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Approximately 8% of the world population and 35-45% of East Asians are carriers of the hereditary disorder aldehyde dehydrogenase 2 (ALDH2) deficiency. ALDH2 plays a central role in the liver to metabolize ethanol. With the common E487K variant, there is a deficiency of ALDH2 function; when ethanol is consumed, there is a systemic accumulation of acetaldehyde, an intermediate product in ethanol metabolism. In ALDH2-deficient individuals, ethanol consumption acutely causes the "Alcohol Flushing Syndrome" with facial flushing, tachycardia, nausea, and headaches. With chronic alcohol consumption, ALDH2 deficiency is associated with a variety of disorders, including a remarkably high risk for aerodigestive tract cancers. Acetaldehyde is a known carcinogen. The epidemiologic data relating to the association of ALDH2 deficiency and cancer risk are striking: ALDH2 homozygotes who are moderate-to-heavy consumers of ethanol have a 7-12-fold increased risk for esophageal cancer, making ALDH2 deficiency the most common hereditary disorder associated with an increased cancer risk. In this review, we summarize the genetics and biochemistry of ALDH2, the epidemiology of cancer risk associated with ALDH2 deficiency, the metabolic consequences of ethanol consumption associated with ALDH2 deficiency, and gene therapy strategies to correct ALDH2 deficiency and its associated cancer risk. With the goal of reducing the risk of aerodigestive tract cancers, in the context that ALDH2 is a hereditary disorder and ALDH2 functions primarily in the liver, ALDH2 deficiency is an ideal target for the application of adeno-associated virus-mediated liver-directed gene therapy to prevent cancer.
Collapse
|
32
|
Mechanisms of chronic alcohol exposure-induced aggressiveness in cellular model of HCC and recovery after alcohol withdrawal. Cell Mol Life Sci 2022; 79:366. [PMID: 35713728 PMCID: PMC9205837 DOI: 10.1007/s00018-022-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Alcohol-related liver disease is the most prevalent chronic liver disease worldwide, accounting for 30% of hepatocellular carcinoma (HCC) cases and HCC-specific deaths. However, the knowledge on mechanisms by which alcohol consumption leads to cancer progression and its aggressiveness is limited. Better understanding of the clinical features and the mechanisms of alcohol-induced HCC are of critical importance for prevention and the development of novel treatments. Early stage Huh-7 and advanced SNU449 liver cancer cell lines were subjected to chronic alcohol exposure (CAE), at different doses for 6 months followed by 1-month alcohol withdrawal period. ADH activity and ALDH expression were much lower in SNU449 compared with Huh-7 cells and at the 270 mM dose, CAE decreased cell viability by about 50% and 80%, respectively, in Huh-7 and SNU449 cells but induced mortality only in Huh-7 cells. Thus, Huh-7 may be more vulnerable to ethanol toxicity because of the higher levels of acetaldehyde. CAE induced a dose-dependent increase in cell migration and invasion and also in the expression of cancer stem cells markers (CD133, CD44, CD90). CAE in Huh-7 cells selectively activated ERK1/2 and inhibited GSK3β signaling pathways. Most of the changes induced by CAE were reversed after alcohol withdrawal. Interestingly, we confirmed the increase in CD133 mRNA levels in the tumoral tissue of patients with ethanol-related HCC compared to other HCC etiologies. Our results may explain the benefits observed in epidemiological studies showing a significant increase of overall survival in abstinent compared with non-abstinent patients.
Collapse
|
33
|
Lu HJ, Chuang CY, Chen MK, Su CW, Yang WE, Yeh CM, Lai KM, Tang CH, Lin CW, Yang SF. The impact of ALDH7A1 variants in oral cancer development and prognosis. Aging (Albany NY) 2022; 14:4556-4571. [PMID: 35613852 PMCID: PMC9186774 DOI: 10.18632/aging.204099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
The gene encoding aldehyde dehydrogenase 7 family member A1 (ALDH7A1) has been associated with the development and prognosis in multiple cancers; however, the role of ALDH7A1 polymorphisms in oral cancer remains unknown. For this purpose, the influences of ALDH7A1 rs13182402 and rs12659017 on oral cancer development and prognosis were analyzed. Our resulted showed that ALDH7A1 rs13182402 genotype had less pathologic nodal metastasis among betel quid chewer. ALDH7A1 rs13182402 also corresponded to higher expressions in upper aerodigestive mucosa, whole blood, the musculoskeletal system and oral cancer tissues than did the ALDH7A1 wild type. Furthermore, ALDH7A1 overexpression in oral cancer cells increased in vitro migration, whereas its silencing reduced cell migration. Conversely, ALDH7A1 expression in tumor tissues and in patients with advanced disease was lower than that in normal tissues and in patients with early-stage disease. When the patients were classified into ALDH7A1-high and -low-expression groups, the high-ALDH7A1 group had superior outcomes in progression-free survival than the low-ALDH7A1 group (5-year survival of 58.7% vs. 48.0%, P = 0.048) did. In conclusion, patients with high ALDH7A1 expression might, however, have more favorable prognoses than those with low ALDH7A1 expression have.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Yeh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Ming Lai
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
34
|
Cai M, Kandalai S, Tang X, Zheng Q. Contributions of Human-Associated Archaeal Metabolites to Tumor Microenvironment and Carcinogenesis. Microbiol Spectr 2022; 10:e0236721. [PMID: 35225671 PMCID: PMC9045267 DOI: 10.1128/spectrum.02367-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
There is increasing awareness that archaea are interrelated with human diseases (including cancer). Archaea utilize unique metabolic pathways to produce a variety of metabolites that serve as a direct link to host-microbe interactions. However, knowledge on the diversity of human-associated archaea is still extremely limited, and less is known about the pathological effects of their metabolites to the tumor microenvironment and carcinogenesis. In the present study, we performed a large-scale analysis of archaea and their cancer-related metabolites across different body sites using >44,000 contigs with length >1,000 bp. Taxonomy annotation revealed that the occurrence and diversity of archaea are higher in two body sites, the gut and the oral cavity. Unlike other human-associated microbes, the nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis of variance (PERMANOVA) analyses have shown no difference of archaeal compositions between Easterners and Westerners. Likewise, protein annotation suggests that genes encoding cancer-related metabolites (e.g., short-chain fatty acids and polyamines) are more prevalent and diverse in gut and oral samples. Archaea carrying these metabolites are restricted to Euryarchaeota and the TACK superphylum (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota), especially methanogenic archaea, such as Methanobacteria. IMPORTANCE More evidence suggests that archaea are associated with human disease, including cancer. Here, we present the first framework of the diversity and distribution of human-associated archaea across human body sites, such as gut and oral cavity, using long contigs. Furthermore, we unveiled the potential archaeal metabolites linking to different lineages that might influence the tumor microenvironment and carcinogenesis. These results could open a new door to the guidance of diagnosing cancer and developing new treatment strategies.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Park YS, Kang SH, Park EC, Jang SY. Association between changes in facial flushing and hypertension across drinking behavior patterns in South Korean adults. J Clin Hypertens (Greenwich) 2022; 24:611-620. [PMID: 35437944 PMCID: PMC9106078 DOI: 10.1111/jch.14475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
Heavy alcohol drinking has been reported to be associated with hypertension. Moreover, when drinking alcohol, individuals may experience symptoms such as facial flushing. Therefore, this study aimed to examine the association between changes in facial flushing and hypertension across different drinking behavior patterns in South Korean adults. Data from the Korea Community Health Survey conducted in 2019 were used, and 118 129 (51 047 men and 67 082 women) participants were included. The participants were divided into five groups based on the change in facial flushing (non-drinking, non-flushing to non-flushing, flushing to flushing, non-flushing to flushing, flushing to non-flushing). The risk of hypertension in each facial flushing group was analyzed by multiple logistic regression. Men in the non-flushing to flushing group had a significantly higher association with hypertension than other groups (men: odds ratio (OR) 1.42, confidence interval (CI) 1.14-1.76). According to the level of alcohol use disorder, the non-flushing to flushing group showed a significantly increased odds of hypertension compared to all levels of drinking (men: mild drinking: OR 1.95, CI 1.40-2.71; moderate drinking: OR 2.02, CI 1.41-2.90; women: moderate drinking: OR 1.71, CI 1.16-2.52; heavy drinking: OR 1.90, CI 1.19-3.04). This study found a significant association between changes in facial flushing and hypertension among adults in South Korea. In particular, individuals who changed from non-flushing to flushing reactions had an increased association with hypertension than the other groups. Compared to people at the same drinking level, people with non-flushing to flushing reactions were highly associated with hypertension at moderate drinking level.
Collapse
Affiliation(s)
- Yu Shin Park
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea.,Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Soo Hyun Kang
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea.,Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk-Yong Jang
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea.,Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
37
|
Azees PAA, Natarajan S, Amaechi BT, Thajuddin N, Raghavendra VB, Brindhadevi K, Pugazhendhi A. An empirical review on the risk factors, therapeutic strategies and materials at nanoscale for the treatment of oral malignancies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Liu Y, Sun J, Han D, Cui S, Yan X. Identification of Potential Biomarkers and Small Molecule Drugs for Cutaneous Melanoma Using Integrated Bioinformatic Analysis. Front Cell Dev Biol 2022; 10:858633. [PMID: 35433681 PMCID: PMC9006169 DOI: 10.3389/fcell.2022.858633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cutaneous melanoma (CM) is a type of skin cancer with a high fatality rate, and its pathogenesis has not yet been fully elucidated. Methods: We obtained the gene expression datasets of CM through the Gene Expression Omnibus (GEO) database. Subsequently, robust rank aggregation (RRA) method was used to identify differentially expressed genes (DEGs) between CM cases and normal skin controls. Gene functional annotation was performed to explore the potential function of the DEGs. We built the protein–protein interaction (PPI) network by the Interactive Gene database retrieval tool (STRING) and selected hub modules by Molecular Complexity Detection (MCODE). We furthered and validated our results using the TCGA-GTEX dataset. Finally, potential small molecule drugs were predicted by CMap database and verified by molecular docking method. Results: A total of 135 DEGs were obtained by RRA synthesis analysis. GMPR, EMP3, SLC45A2, PDZD2, NPY1R, DLG5 and ADH1B were screened as potential targets for CM. Furazolidone was screened as a potential small molecule drug for the treatment of CM, and its mechanism may be related to the inhibition of CM cell proliferation by acting on GMPR. Conclusion: We identified seven prognostic therapeutic targets associated with CM and furazolidone could be used as a potential drug for CM treatment, providing new prognostic markers, potential therapeutic targets and small molecule drugs for the treatment and prevention of CM.
Collapse
Affiliation(s)
- Yong Liu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jiayi Sun
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Dongran Han
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Shengnan Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Shengnan Cui, ; Xiaoning Yan,
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Shengnan Cui, ; Xiaoning Yan,
| |
Collapse
|
39
|
The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel) 2022; 13:genes13040594. [PMID: 35456400 PMCID: PMC9027895 DOI: 10.3390/genes13040594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, with a reported 5-year survival rate of around 50% after treatment. Epigenetic modifications are considered to have a key role in oral carcinogenesis due to histone modifications, aberrant DNA methylation, and altered expression of miRNAs. MicroRNAs (miRNAs) are small non-coding RNAs that have a key role in cancer development by regulating signaling pathways involved in carcinogenesis. MiRNA deregulation identified in oral cancer has led to the idea of using them as potential biomarkers for early diagnosis, prognosis, and the development of novel therapeutic strategies. In recent years, a key role has been observed for risk factors in preventing and treating this malignancy. The purpose of this review is to summarize the recent knowledge about the altered mechanisms of oral cancer due to risk factors and the role of miRNAs in these mechanisms.
Collapse
|
40
|
Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, Guo J. Identification of Down-Regulated ADH1C is Associated With Poor Prognosis in Colorectal Cancer Using Bioinformatics Analysis. Front Mol Biosci 2022; 9:791249. [PMID: 35300114 PMCID: PMC8921497 DOI: 10.3389/fmolb.2022.791249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer in the whole world, with the underlying mechanisms largely indistinct. Therefore, we aimed to identify significant pathways and genes involved in the initiation, formation and poor prognosis of CRC using bioinformatics methods. In this study, we compared gene expression profiles of CRC cases with those from normal colorectal tissues from three chip datasets (GSE33113, GSE23878 and GSE41328) to identify 105 differentially expressed genes (DEGs) that were common to the three datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the highest proportion of up-regulated DEGs was involved in extracellular region and cytokine-cytokine receptor interaction pathways. Integral components of membrane and bile secretion pathways were identified as containing down-regulated DEGs. 13 hub DEGs were chosen and their expression were further validated by GEPIA. Only four DEGs (ADH1C, CLCA4, CXCL8 and GUCA2A) were associated with a significantly lower overall survival after the prognosis analysis. Lower ADH1C protein level and higher CXCL8 protein level were verified by immunohistochemical staining and western blot in clinical CRC and normal colorectal tissues. In conclusion, our study indicated that the extracellular tumor microenvironment and bile metabolism pathways play critical roles in the formation and progression of CRC. Furthermore, we confirmed ADH1C being down-regulated in CRC and reported ADH1C as a prognostic predictor for the first time.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Ziming Liu
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Jia Song
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Tian Wang
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| |
Collapse
|
41
|
Huang HY, Lau HC, Ji MY, Hsueh CY, Zhang M. Association Between Alcohol Dehydrogenase Polymorphisms and the Recurrence of Laryngeal Carcinoma. Laryngoscope 2022; 132:2169-2176. [PMID: 35218021 DOI: 10.1002/lary.30083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Alcohol consumption is closely associated with prognosis for laryngeal squamous cell carcinoma (LSCC) patients. As key enzymes in ethanol metabolism, proteins in the alcohol dehydrogenase (ADH) family make for valuable targets to establish a novel predictive nomogram model. This study attempts to do so by focusing on the single nucleotide polymorphisms (SNPs) of ADH1B and ADH1C in LSCC. METHODS Sixty eight LSCC patients that were followed up for more than 10 years were retrospectively analyzed. Endpoints of the current study included disease-free survival and overall survival. Survival analyses were performed using the Kaplan-Meier method and evaluated by log-rank test. The prognostic value of eight ADH1B SNPs and three ADH1C SNPs were evaluated using univariate and multivariate Cox regression analyses. A nomogram model for disease-free survival was established and evaluated using the receiver operating characteristic curve, the C-index, and a calibration plot. RESULTS Significant association was exhibited between rs17033 (p < 0.001) and rs1229984 (p = 0.002) with an increase in LSCC recurrence rate on Kaplan-Meier curves. Multivariate logistic regression analysis revealed that the rs17033 polymorphism of ADH1B was independently associated with an increased risk of LSCC recurrence (HR = 3.325, 95% CI = 1.684-6.566, p = 0.001). Based on these findings, a prognostic nomogram of LSCC patients involving ADH1B rs17033 was constructed. CONCLUSION This study has demonstrated an independent association between ADH1B gene variants and the recurrence of LSCC. A nomogram model based on rs17033 of ADH1B, age, T, and N stages were successfully developed for the first time to predict the probability of recurrence in LSCC patients. LEVEL OF EVIDENCE III Retrospective cohort study Laryngoscope, 2022.
Collapse
Affiliation(s)
- Hui-Ying Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hui-Ching Lau
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Meng-You Ji
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Grootveld M. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front Nutr 2022; 8:711640. [PMID: 35071288 PMCID: PMC8769064 DOI: 10.3389/fnut.2021.711640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are "safe" to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
43
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
44
|
Tverdal A, Høiseth G, Magnus P, Næss Ø, Selmer R, Knudsen GP, Mørland J. Alcohol Consumption, HDL-Cholesterol and Incidence of Colon and Rectal Cancer: A Prospective Cohort Study Including 250,010 Participants. Alcohol Alcohol 2021; 56:718-725. [PMID: 33604595 PMCID: PMC8557640 DOI: 10.1093/alcalc/agab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
Aims Alcohol consumption has been linked to colorectal cancer (CRC) and also to the high-density lipoprotein cholesterol level (HDL-C). HDL-C has been associated with the incidence of CRC. The aim of this study was to investigate the association between self-reported alcohol consumption, HDL-C and incidence of CRC, separately for the two sites. Methods Altogether, 250,010 participants in Norwegian surveys have been followed-up for an average of 18 years with respect to a first-time outcome of colon or rectal cancer. During follow-up, 3023 and 1439 colon and rectal cancers were registered. Results For men, the HR per 1 drink per day was 1.05 with 95% confidence interval (0.98–1.12) for colon and 1.08 (1.02–1.15) for rectal cancer. The corresponding figures for women were 1.03 (0.97–1.10) and 1.05 (1.00–1.10). There was a positive association between alcohol consumption and HDL-C. HDL-C was inversely associated with colon cancer in men (0.74 (0.62–0.89) per 1 mmol/l) and positively associated with rectal cancer, although not statistically significant (1.15 (0.92–1.44). A robust regression that assigned weights to each observation and exclusion of weights ≤ 0.1 increased the HRs per 1 drink per day and decreased the HR per 1 mmol/l for colon cancer. The associations with rectal cancer remained unchanged. Conclusion Our results support a positive association between alcohol consumption and colon and rectal cancer, most pronounced for rectal cancer. Considering the positive relation between alcohol consumption and HDL-C, the inverse association between HDL-C and colon cancer in men remains unsettled.
Collapse
Affiliation(s)
- Aage Tverdal
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gudrun Høiseth
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Department of Forensic Sciences, Oslo University Hospital, Pb 4950 Nydalen, 0424 Oslo.,Center for Psychopharmacology, Diakonhjemmet Hospital, Forskningsveien 13, 0373 Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Øyvind Næss
- Institute of Health and Society, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway
| | - Randi Selmer
- Norwegian Institute of Public Health, Division of Chronic Diseases and Aging, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gun Peggy Knudsen
- Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Jørg Mørland
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
45
|
Caprio GG, Picascia D, Dallio M, Vitiello PP, Giunta EF, De Falco V, Abenavoli L, Procopio AC, Famiglietti V, Martinelli E, Gravina AG, Federico A, Ciardiello F, Loguercio C, Ciardiello D. Light Alcohol Drinking and the Risk of Cancer Development: A Controversial Relationship. Rev Recent Clin Trials 2021; 15:164-177. [PMID: 32598271 DOI: 10.2174/1574887115666200628143015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In accordance with the scientific literature heavy alcohol consumption (>50g per day) represents a risk factor for several diseases development, including cancer. However, the oncogenic role of light alcohol drinking (<12.5g per day) is still unknown. OBJECTIVE To assess the scientific knowledge about light alcohol consumption and the risk of malignancy onset. METHODS To collect the scientific evidences regarding this topic the keywords "light alcohol drinking", "light alcohol consumption" and "cancer", were used. Papers published during the last 15 years were analyzed, in order to select the most recent evidence. Meta-analyses with well-defined levels of alcohol intake were included in the present review. Other studies that focused on biochemical, molecular and genetic aspects, as well as duplicate articles, were excluded. RESULTS Twenty-nine large, meta-analyses were included in this review. Light alcohol drinking was not associated with an increased risk of cancer occurrence, with the exception of breast and prostate cancer and melanoma. Furthermore, a possible protective role of light alcohol consumption on the development of bladder, kidney and ovarian cancer and Non Hodgkin Lymphoma was observed. CONCLUSION Light alcohol drinking was not associated with the development of several malignancies, except for a light increase of melanoma, breast cancer in women and prostate cancer in men.
Collapse
Affiliation(s)
- Giuseppe G Caprio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Desiree Picascia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Pietro P Vitiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Emilio F Giunta
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Vincenzo De Falco
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Anna C Procopio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Famiglietti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Erika Martinelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Antonietta G Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| | - Davide Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, NA, Italy
| |
Collapse
|
46
|
Associations between ALDH Genetic Variants, Alcohol Consumption, and the Risk of Nasopharyngeal Carcinoma in an East Asian Population. Genes (Basel) 2021; 12:genes12101547. [PMID: 34680942 PMCID: PMC8535421 DOI: 10.3390/genes12101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) and alcohol flush syndrome are thought to be strongly influenced by genetic factors and are highly prevalent amongst East Asians. Diminished activity of aldehyde dehydrogenase (ALDH), a major enzyme in the alcohol-metabolizing pathway, causes the flushing syndrome associated with alcoholic consumption. The genetic effect of ALDH isoforms on NPC is unknown. We therefore investigated the association between the genetic polymorphisms of all 19 ALDH isoforms and NPC among 458 patients with NPC and 1672 age- and gender-matched healthy controls in Taiwan. Single-nucleotide polymorphisms (SNPs) located between the 40,000 base pairs upstream and downstream of the 19 ALDH isoform coding regions were collected from two genome-wise association studies conducted in Taiwan and from the Taiwan Biobank. Thirteen SNPs located on ALDH4A1, ALDH18A1, ALDH3B2, ALDH1L2, ALDH1A2, and ALDH2 Glu487Lys (rs671) were associated with NPC susceptibility. Stratification by alcohol status revealed a cumulative risk effect for NPC amongst drinkers and non-drinkers, with odds ratios of 4.89 (95% confidence interval 2.15–11.08) and 3.57 (1.97–6.47), respectively. A synergistic effect was observed between SNPs and alcohol. This study is the first to report associations between genetic variants in 19 ALDH isoforms, their interaction with alcohol consumption and NPC in an East Asian population.
Collapse
|
47
|
Johnson CH, Golla JP, Dioletis E, Singh S, Ishii M, Charkoftaki G, Thompson DC, Vasiliou V. Molecular Mechanisms of Alcohol-Induced Colorectal Carcinogenesis. Cancers (Basel) 2021; 13:4404. [PMID: 34503214 PMCID: PMC8431530 DOI: 10.3390/cancers13174404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
The etiology of colorectal cancer (CRC) is complex. Approximately, 10% of individuals with CRC have predisposing germline mutations that lead to familial cancer syndromes, whereas most CRC patients have sporadic cancer resulting from a combination of environmental and genetic risk factors. It has become increasingly clear that chronic alcohol consumption is associated with the development of sporadic CRC; however, the exact mechanisms by which alcohol contributes to colorectal carcinogenesis are largely unknown. Several proposed mechanisms from studies in CRC models suggest that alcohol metabolites and/or enzymes associated with alcohol metabolism alter cellular redox balance, cause DNA damage, and epigenetic dysregulation. In addition, alcohol metabolites can cause a dysbiotic colorectal microbiome and intestinal permeability, resulting in bacterial translocation, inflammation, and immunosuppression. All of these effects can increase the risk of developing CRC. This review aims to outline some of the most significant and recent findings on the mechanisms of alcohol in colorectal carcinogenesis. We examine the effect of alcohol on the generation of reactive oxygen species, the development of genotoxic stress, modulation of one-carbon metabolism, disruption of the microbiome, and immunosuppression.
Collapse
Affiliation(s)
- Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Evangelos Dioletis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Momoko Ishii
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| |
Collapse
|
48
|
Sami A, Elimairi I, Patangia D, Watkins C, Ryan CA, Ross RP, Stanton C. The ultra-structural, metabolomic and metagenomic characterisation of the sudanese smokeless tobacco 'Toombak'. Toxicol Rep 2021; 8:1498-1512. [PMID: 34401360 PMCID: PMC8355839 DOI: 10.1016/j.toxrep.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Toombak is a smokeless tobacco produced from the Nicotiana rustica tobacco plant from Sudan. Pre-prepared and ready to buy Toombak samples were analysed using mass spectrometry (heavy metals), gas and liquid chromatography (metabolomics), 16S rRNA metagenomic sequencing (microbiome) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and pH analysis. Chromium, cobalt, and copper were high in the pre-prepared form of Toombak while iron, tobacco specific nitrosamines (TSNAs), formaldehyde and acetaldehyde were high in both types. Firmicutes and Actinobacteria dominated Toombak. Samples of ready to buy Toombak showed inter-variational differences depending on place of purchase. We found Virgibacillus were increased in the pre-prepared form while Corynebacterium casei, Atopococus tabaci, Atopostipes suicloacalis, Oceanobacillus chironomi and Staphylococcus gallinarum were the most abundant species in the ready to buy forms. PICRUSt analysis highlighted increased activity of metal transport systems in the ready to buy samples as well as an antibiotic transport system. SEM-EDX highlighted large non-homogenous, irregular particles with increased sodium, while pH of samples was in the alkaline range. The final composition of Toombak is affected by its method of preparation and the end product has the potential to impart many negative consequences on the health of its users. TSNA levels observed in Toombak were some of the highest in the world while the micro-environment of Toombak supports a distinct microbiota profile.
Collapse
Affiliation(s)
- Amel Sami
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile Street, Khartoum, 1111, Sudan
| | - Imad Elimairi
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile Street, Khartoum, 1111, Sudan
| | - Dhrati Patangia
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
| | - Claire Watkins
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
| | - C. Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, T12 DFK4, Ireland
| | - R. Paul Ross
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland
| |
Collapse
|
49
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
50
|
McKeon TP, Hwang WT, Ding Z, Tam V, Wileyto P, Glanz K, Penning TM. Environmental exposomics and lung cancer risk assessment in the Philadelphia metropolitan area using ZIP code-level hazard indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31758-31769. [PMID: 33611735 PMCID: PMC8238722 DOI: 10.1007/s11356-021-12884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
To illustrate methods for assessing environmental exposures associated with lung cancer risk, we investigated anthropogenic based air pollutant data in a major metropolitan area using United States-Environmental Protection Agency (US-EPA) Toxic Release Inventory (TRI) (1987-2017), and PM2.5 (1998-2016) and NO2 (1996-2012) concentrations from NASA satellite data. We studied chemicals reported according to the following five exposome features: (1) International Agency for Research on Cancer (IARC) cancer grouping; (2) priority EPA polycyclic aromatic hydrocarbons (PAHs); (3) component of diesel exhaust; (4) status as a volatile organic compound (VOC); and (5) evidence of lung carcinogenesis. Published articles from PubChem were tallied for occurrences of 10 key characteristics of cancer-causing agents on those chemicals. Zone Improvement Plan (ZIP) codes with higher exposures were identified in two ways: (1) combined mean exposure from all features, and (2) hazard index derived through a multi-step multi-criteria decision analysis (MMCDA) process. VOCs, IARC Group 1 carcinogens consisted 82.3% and 11.5% of the reported TRI emissions, respectively. ZIP codes along major highways tended to have greater exposure. The MMCDA approach yielded hazard indices based on imputed toxicity, occurrence, and persistence for risk assessment. Despite many studies describing environmental exposures and lung cancer risk, this study develops a method to integrate these exposures into population-based exposure estimates that could be incorporated into future lung cancer screening trials and benefit public health surveillance of lung cancer incidence. Our methodology may be applied to probe other hazardous exposures for other cancers.
Collapse
Affiliation(s)
- Thomas P. McKeon
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Departments of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, 1315, BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104 USA
| | - Wei-Ting Hwang
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Zhuoran Ding
- Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Vicky Tam
- Cartographic Modeling Laboratory Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Paul Wileyto
- Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Karen Glanz
- Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Departments of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, 1315, BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104 USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|