1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Zhao Y, He X, Yang X, Hong Z, Xu Y, Xu J, Zheng H, Zhang L, Zuo Z, Hu X. CircFndc3b Mediates Exercise-Induced Neuroprotection by Mitigating Microglial/Macrophage Pyroptosis via the ENO1/KLF2 Axis in Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403818. [PMID: 39467260 DOI: 10.1002/advs.202403818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Circular RNA (circRNA) plays a pivotal role in regulating neurological damage post-ischemic stroke. Previous researches demonstrated that exercise mitigates neurological dysfunction after ischemic stroke, yet the specific contributions of circRNAs to exercise-induced neuroprotection remain unclear. This study reveals that mmu_circ_0001113 (circFndc3b) is markedly downregulated in the penumbral cortex of a mouse model subjected to middle cerebral artery occlusion (MCAO). However, exercise increased circFndc3b expression in microglia/macrophages, alleviating pyroptosis, reducing infarct volume, and enhancing neurological recovery in MCAO mice. Mechanistically, circFndc3b interacted with Enolase 1 (ENO1), facilitating ENO1's binding to the 3' Untranslated Region (3'UTR) of Krüppel-like Factor 2 (Klf2) mRNA, thereby stabilizing Klf2 mRNA and increasing its protein expression, which suppressed NOD-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome-mediated microglial/macrophage pyroptosis. Additionally, circFndc3b enhanced ENO1's interaction with the 3'UTR of Fused in Sarcoma (FUS) mRNA, leading to increased FUS protein levels and promoting circFndc3b cyclization. These results suggest that circFndc3b mediates exercise-induced anti-pyroptotic effects via the ENO1/Klf2 axis, and a circFndc3b/ENO1/FUS positive feedback loop may potentiate exercise's neuroprotective effects. This study unveils a novel mechanism underlying exercise-induced neuroprotection in ischemic stroke and positions circFndc3b as a promising therapeutic target for stroke management, mimicking the beneficial effects of exercise.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, 253 Industrial Middle Road, Guangzhou, Guangdong, 510282, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Yin Xu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, 253 Industrial Middle Road, Guangzhou, Guangdong, 510282, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
5
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
6
|
Bi Y, Xie Z, Cao X, Ni H, Xia S, Bao X, Huang Q, Xu Y, Zhang Q. Cedrol attenuates acute ischemic injury through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways. Brain Res Bull 2024; 218:111102. [PMID: 39414157 DOI: 10.1016/j.brainresbull.2024.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Microglia-associated neuroinflammation plays essential roles in pathology of acute stroke. Cedrol, a natural compound extracted from ginger, has been shown to confer inhibitory effects on inflammation in various diseases. However, whether Cedrol suppresses neuroinflammation and protects brains from acute ischemic injury still remains unclear. In this study, we found that Cedrol inhibited microglia activation and the production of inflammatory factors in LPS-challenged microglia and the penumbra region of middle cerebral artery occlusion (MCAO) mice. We also found that Cedrol reduced the infarct size and mNSS scores and improved acute cerebral ischemia-induced behavioral outcomes, suggesting remarked neuroprotection of Cedrol. Molecular docking analysis showed that Cedrol bound to estrogen receptor β (ERβ) with moderate-strong affinity. Intriguingly, treatment with fulvestrant, an ER blocker, abolished the anti-inflammatory effects of Cedrol. Cedrol significantly reversed the LPS- and MCAO-induced increases in phosphorylation levels of IκB and NF-κB P65 in primary microglia and MCAO mice, respectively. Additionally, Cedrol was observed to rescue LPS-induced shuttling of NF-κB P65 from cytoplasm to nuclei in primary microglia, indicating inhibitory effects of Cedrol on NF-κB signaling. These results suggest microglia associated neuroinflammation may be mediated by ERβ-NF-κB signaling pathway. Together, our study reveals that Cedrol protected brain function from acute cerebral ischemia through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways, and Cedrol may serve as an alternative option for treatment of acute stroke injury.
Collapse
Affiliation(s)
- Yu Bi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ziyi Xie
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qinyue Huang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Li R, Zhang S, Song M, Yu W, Fan X. Poria cocos Extract Alleviates tPA-Induced Hemorrhagic Transformation after Ischemic Stroke through Regulation of Microglia M1/M2 Phenotypes Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22144-22157. [PMID: 39321038 DOI: 10.1021/acs.jafc.4c06985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Delayed thrombolytic therapy with tissue plasminogen activator (tPA), the only FDA-approved drug for ischemic stroke, can cause catastrophic hemorrhagic transformation (HT) after ischemic stroke. However, it remains largely unknown how microglial polarization dynamically changes in HT. Poria cocos is a widely used functional edible fungus in Asia and has been used for more than 2000 years as a food and medicine in China. Our preliminary study found that P. cocos extract (PCE) significantly reduced the volume of cerebral infarction. We performed the effects of PCE on tPA-induced HT in rat models of autologous thromboembolism middle cerebral artery occlusion in vivo and BV-2 cells injured by oxygen-glucose deprivation/reperfusion in vitro. Hemorrhage test and triphenyltetrazolium chloride staining were performed to examine the efficiency of PCE. The expression level of proteins associated with microglia polarization was detected using Western blotting and immunofluorescence staining. Small interfering RNA transfection reveals the regulatory mechanism of PCE on microglia polarization. PCE plus tPA reduced hemorrhage and infarct volumes after ischemic stroke. During tPA-induced HT, M1 microglia increased over time from 3 days onward and remained high for at least 7 days, reaching the peak at 7 days, M2 microglia gradually increased after 3 days and continued to increase for at least 14 days. Furthermore, PCE inhibited the secretion of pro-inflammatory cytokines in M1 microglia and improved the secretion of anti-inflammatory cytokines in M2 microglia, which related to the regulation of the IRF5-IRF4 axis. This current study indicates that PCE alleviates tPA-induced HT after ischemic stroke by modulating microglia M1/M2 phenotype polarization.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wangqin Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Zhu Y, Sun C. Inactivation of cGAS signaling pathway mediated by TDP-43 deficiency protects microglia from hypoxia/reoxygenation induced injury. Brain Res 2024; 1839:148999. [PMID: 38761845 DOI: 10.1016/j.brainres.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Microglia are damaged during cerebral ischemia-reperfusion (I/R). This study was performed to investigate the regulatory effect of tAR DNA-binding protein-43 (TDP-43) on microglia after cerebral I/R in vitro and in vivo. METHOD The hypoxia/reoxygenation (H/R) treated microglia and rats with middle cerebral artery occlusion surgery were constructed respectively. The TDP-43 expression in brain tissues and microglia of each group was evaluated by qPCR and western blotting methods. Cell viability and cell apoptosis were combined to evaluate the degree of cell injury. As for animal experiments, neurological score and infarct volume were obtained to evaluate neurological injury. RESULTS The levels of TDP-43 in the brain tissues of I/R group were higher than that in sham group. Both TDP-43 and Iba1, a typical microglia marker, were expressed in the brain tissues. TDP-43 was also elevated in microglia with H/R treatment. Inhibition of TDP-43 significantly down-regulated neurological deficit scores of rats after I/R surgery, and weakened the H/R treatment induced injury by promoting cell viability, inhibiting cell apoptosis, down-regulating IL-6 and iNOS levels, and up-regulating Arg-1 and IL-10 levels. Inactivation of cGAS pathway mediated by TDP-43 knockdown protects microglia from H/R treatment induced injury. CONCLUSION The highly expressed TDP-43 level is associated with cerebral I/R, and inhibition of TDP-43 protects microglia from H/R induced injury through cGAS pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Emergency/Critical Care Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chen Sun
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
10
|
Grinchevskaya LR, Salikhova DI, Silachev DN, Goldshtein DV. Neural and Glial Regulation of Angiogenesis in CNS in Ischemic Stroke. Bull Exp Biol Med 2024:10.1007/s10517-024-06219-4. [PMID: 39266920 DOI: 10.1007/s10517-024-06219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 09/14/2024]
Abstract
CNS diseases associated with compromised blood supply and/or vascular integrity are one of the leading causes of mortality and disability in adults worldwide and are also among 10 most common causes of death in children. Angiogenesis is an essential element of regeneration processes upon nervous tissue damage and can play a crucial role in neuroprotection. Here we review the features of cerebral vascular regeneration after ischemic stroke, including the complex interactions between endothelial cells and other brain cell types (neural stem cells, astrocytes, microglia, and oligodendrocytes). The mechanisms of reciprocal influence of angiogenesis and neurogenesis, the role of astrocytes in the formation of the blood-brain barrier, and roles of microglia and oligodendrocytes in vascular regeneration are discussed. Understanding the mechanisms of angiogenesis regulation in CNS is of critical importance for the development of new treatments of neurovascular pathologies.
Collapse
Affiliation(s)
- L R Grinchevskaya
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
| | - D I Salikhova
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia.
- Research Centre for Medical Genetics, Moscow, Russia.
| | - D N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D V Goldshtein
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
11
|
Wei W, Lattau SSJ, Xin W, Pan Y, Tatenhorst L, Zhang L, Graf I, Kuang Y, Zheng X, Hao Z, Popa-Wagner A, Gerner ST, Huber S, Nietert M, Klose C, Kilic E, Hermann DM, Bähr M, Huttner HB, Liu H, Fitzner D, Doeppner TR. Dynamic Brain Lipid Profiles Modulate Microglial Lipid Droplet Accumulation and Inflammation Under Ischemic Conditions in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2306863. [PMID: 39252446 DOI: 10.1002/advs.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1β as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
- Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | | | - Wenqiang Xin
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Yongli Pan
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Lin Zhang
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Zhongnan Hao
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Manuel Nietert
- Department of Medical Bioinformatics, UMG, University of Göttingen, 37075, Göttingen, Germany
| | | | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34720, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Hua Liu
- Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Dirk Fitzner
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, 9002, Bulgaria
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35037, Giessen, Germany
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, 34810, Turkey
| |
Collapse
|
12
|
Liao YS, Zhang TC, Tang YQ, Yu P, Liu YN, Yuan J, Zhao L. Electroacupuncture reduces inflammatory damage following cerebral ischemia-reperfusion by enhancing ABCA1-mediated efferocytosis in M2 microglia. Mol Brain 2024; 17:61. [PMID: 39223647 PMCID: PMC11367741 DOI: 10.1186/s13041-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease with high disability and mortality rates, where the inflammatory response is crucial to its progression and prognosis. Efferocytosis, the prompt removal of dead cells, can reduce excessive inflammation after IS injury. While electroacupuncture (EA) has been shown to decrease inflammation post-ischemia/reperfusion (I/R), its link to efferocytosis is unclear. Our research identified ATP-binding cassette transporter A1 (Abca1) as a key regulator of the engulfment process of efferocytosis after IS by analyzing public datasets and validating findings in a mouse model, revealing its close ties to IS progression. We demonstrated that EA can reduce neuronal cell death and excessive inflammation caused by I/R. Furthermore, EA treatment increased Abca1 expression, prevented microglia activation, promoted M2 microglia polarization, and enhanced their ability to phagocytose injured neurons in I/R mice. This suggests that EA's modulation of efferocytosis could be a potential mechanism for reducing cerebral I/R injury, making regulators of efferocytosis steps a promising therapeutic target for EA benefits.
Collapse
Affiliation(s)
- Yu-Sha Liao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Tie-Chun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Yu-Qi Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Pei Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Ya-Ning Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
- Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
13
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Chen Y, He W, Qiu J, Luo Y, Jiang C, Zhao F, Wei H, Meng J, Long T, Zhang X, Yang L, Xu Q, Wang J, Zhang C. Pterostilbene improves neurological dysfunction and neuroinflammation after ischaemic stroke via HDAC3/Nrf1-mediated microglial activation. Cell Mol Biol Lett 2024; 29:114. [PMID: 39198723 PMCID: PMC11360871 DOI: 10.1186/s11658-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Stroke is a type of acute brain damage that can lead to a series of serious public health challenges. Demonstrating the molecular mechanism of stroke-related neural cell degeneration could help identify a more efficient treatment for stroke patients. Further elucidation of factors that regulate microglia and nuclear factor (erythroid-derived 2)-like 1 (Nrf1) may lead to a promising strategy for treating neuroinflammation after ischaemic stroke. In this study, we investigated the possible role of pterostilbene (PTS) in Nrf1 regulation in cell and animal models of ischaemia stroke. METHODS We administered PTS, ITSA1 (an HDAC activator) and RGFP966 (a selective HDAC3 inhibitor) in a mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and a model of microglial oxygen‒glucose deprivation/reperfusion (OGD/R). The brain infarct size, neuroinflammation and microglial availability were also determined. Dual-luciferase reporter, Nrf1 protein stability and co-immunoprecipitation assays were conducted to analyse histone deacetylase 3 (HDAC3)/Nrf1-regulated Nrf1 in an OGD/R-induced microglial injury model. RESULTS We found that PTS decreased HDAC3 expression and activity, increased Nrf1 acetylation in the cell nucleus and inhibited the interaction of Nrf1 with p65 and p65 accumulation, which reduced infarct volume and neuroinflammation (iNOS/Arg1, TNF-α and IL-1β levels) after ischaemic stroke. Furthermore, the CSF1R inhibitor PLX5622 induced elimination of microglia and attenuated the therapeutic effect of PTS following MCAO/R. In the OGD/R model, PTS relieved OGD/R-induced microglial injury and TNF-α and IL-1β release, which were dependent on Nrf1 acetylation through the upregulation of HDAC3/Nrf1 signalling in microglia. However, the K105R or/and K139R mutants of Nrf1 counteracted the impact of PTS in the OGD/R-induced microglial injury model, which indicates that PTS treatment might be a promising strategy for ischaemia stroke therapy. CONCLUSION The HDAC3/Nrf1 pathway regulates the stability and function of Nrf1 in microglial activation and neuroinflammation, which may depend on the acetylation of the lysine 105 and 139 residues in Nrf1. This mechanism was first identified as a potential regulatory mechanism of PTS-based neuroprotection in our research, which may provide new insight into further translational applications of natural products such as PTS.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Wei He
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266000, Shandong, China
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Xi'an, 710043, Shaanxi, China
| | - Yangyang Luo
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Feng Zhao
- Department of Sport Medicine, Sports Medicine Institute, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Wei
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiao Meng
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Tianlin Long
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Xin Zhang
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Lingjian Yang
- School of Chemistry & Chemical Engineering, Ankang University, Ankang, 725000, China
| | - Quanhua Xu
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Juning Wang
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Chi Zhang
- Department of Neurosurgery, The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
15
|
Chen A, Volpato G, Pong A, Schofield E, Huang J, Qiu Z, Paxinos G, Liang H. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Int J Biomed Imaging 2024; 2024:4482931. [PMID: 39224835 PMCID: PMC11368551 DOI: 10.1155/2024/4482931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/24/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background: The blood-brain barrier (BBB) is part of the neurovascular unit (NVU) which plays a key role in maintaining homeostasis. However, its 3D structure is hardly known. The present study is aimed at imaging the BBB using tissue clearing and 3D imaging techniques in both human brain tissue and rat brain tissue. Methods: Both human and rat brain tissue were cleared using the CUBIC technique and imaged with either a confocal or two-photon microscope. Image stacks were reconstructed using Imaris. Results: Double staining with various antibodies targeting endothelial cells, basal membrane, pericytes of blood vessels, microglial cells, and the spatial relationship between astrocytes and blood vessels showed that endothelial cells do not evenly express CD31 and Glut1 transporter in the human brain. Astrocytes covered only a small portion of the vessels as shown by the overlap between GFAP-positive astrocytes and Collagen IV/CD31-positive endothelial cells as well as between GFAP-positive astrocytes and CD146-positive pericytes, leaving a big gap between their end feet. A similar structure was observed in the rat brain. Conclusions: The present study demonstrated the 3D structure of both the human and rat BBB, which is discrepant from the 2D one. Tissue clearing and 3D imaging are promising techniques to answer more questions about the real structure of biological specimens.
Collapse
Affiliation(s)
- Aiwen Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of AcupunctureShuguang HospitalShanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gavin Volpato
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Alice Pong
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Emma Schofield
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Jun Huang
- School of Chemical and Biomolecular EngineeringThe University of Sydney, Camperdown, New South Wales, Australia
| | - Zizhao Qiu
- Centre of Life ScienceSuzhou Industrial Park Monash Research Institute of Science and TechnologySoutheast University-Monash University Joint Graduate SchoolMonash University-Southeast University Joint Research Institute, Suzhou, Jiangsu Province, China
| | - George Paxinos
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Huazheng Liang
- Translational Research Institute of Brain and Brain-Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- Centre of Life ScienceSuzhou Industrial Park Monash Research Institute of Science and TechnologySoutheast University-Monash University Joint Graduate SchoolMonash University-Southeast University Joint Research Institute, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Jin B, Han Y, Xu F, Wang J, Zhao Y, Liu H, Wang F, Wang Z, Lu W, Wang M, Cui L, Zhao Y, Hao J, Chai G. Translatome analysis in acute ischemic stroke: Astrocytes and microglia exhibit differences in poststroke alternative splicing of expressed transcripts. FASEB J 2024; 38:e23855. [PMID: 39096134 DOI: 10.1096/fj.202400341r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo-Tag-seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response (Adam8, Ccr1), metabolism (Acsl6, Pcyt2, Myo5a), and developmental cell growth (App), among others. Selective DAS events were further validated by semiquantitative RT-PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.
Collapse
Affiliation(s)
- Bingxue Jin
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yilai Han
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fang Xu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Junjie Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yunzhi Zhao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Haijie Liu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fei Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ze Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wanting Lu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Mingyang Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Lili Cui
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yinan Zhao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Junwei Hao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Guoliang Chai
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
17
|
Bowen CA, Nguyen HM, Lin Y, Bagchi P, Natu A, Espinosa-Garcia C, Werner E, Kumari R, Brandelli AD, Kumar P, Tobin BR, Wood L, Faundez V, Wulff H, Seyfried NT, Rangaraju S. Proximity Labeling Proteomics Reveals Kv1.3 Potassium Channel Immune Interactors in Microglia. Mol Cell Proteomics 2024; 23:100809. [PMID: 38936775 DOI: 10.1016/j.mcpro.2024.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.
Collapse
Affiliation(s)
- Christine A Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Young Lin
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Rashmi Kumari
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Prateek Kumar
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Brendan R Tobin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Enigneering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Heike Wulff
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; School of Medicine, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
18
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
19
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
20
|
Yan B, Liao P, Liu Y, Han Z, Wang C, Chen F, Lei P. Therapeutic potential of microglia-derived extracellular vesicles in ischemic stroke. Int Immunopharmacol 2024; 139:112712. [PMID: 39032476 DOI: 10.1016/j.intimp.2024.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
21
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
22
|
Lemarchand E, Grayston A, Wong R, Rogers M, Ouvrier B, Llewellyn B, Webb F, Lénárt N, Denes A, Brough D, Allan SM, Bix GJ, Pinteaux E. Selective deletion of interleukin-1 alpha in microglia does not modify acute outcome but regulates neurorepair processes after experimental ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580635. [PMID: 38585834 PMCID: PMC10996562 DOI: 10.1101/2024.02.16.580635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Inflammation is a key contributor to stroke pathogenesis and exacerbates brain damage leading to poor outcome. Interleukin-1 (IL-1) is an important regulator of post-stroke inflammation, and blocking its actions is beneficial in pre-clinical stroke models and safe in the clinical setting. However, the distinct roles of the two major IL-1 receptor type 1 agonists, IL-1α and IL-1β, and the specific role of IL-1α in ischemic stroke remain largely unknown. Here we show that IL-1α and IL-1β have different spatio-temporal expression profiles in the brain after experimental stroke, with early microglial IL-1α expression (4 h) and delayed IL-1β expression in infiltrated neutrophils and a small microglial subset (24-72 h). We examined for the first time the specific role of microglial-derived IL-1α in experimental permanent and transient ischemic stroke through microglial-specific tamoxifen-inducible Cre-loxP-mediated recombination. Microglial IL-1α deletion did not influence acute brain damage, cerebral blood flow, IL-1β expression, neutrophil infiltration, microglial nor endothelial activation after ischemic stroke. However, microglial IL-1α knock out (KO) mice showed reduced peri-infarct vessel density and reactive astrogliosis at 14 days post-stroke, alongside long-term impaired functional recovery. Our study identifies for the first time a critical role for microglial IL-1α on neurorepair and functional recovery after stroke, highlighting the importance of targeting specific IL-1 mechanisms in brain injury to develop more effective therapies.
Collapse
|
23
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024:AD.2024.0373. [PMID: 39012667 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated, and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| |
Collapse
|
24
|
Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, Yuan X, Chen X, Jiang B, Wang J. Nanozymes: Potential Therapies for Reactive Oxygen Species Overproduction and Inflammation in Ischemic Stroke and Traumatic Brain Injury. ACS NANO 2024; 18:16450-16467. [PMID: 38897929 DOI: 10.1021/acsnano.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.
Collapse
Affiliation(s)
- Yunfan Yang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zixiang Li
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- School of International Education, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiqian Yuan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
25
|
Liu Y, Leng C, Li Y, Zhou M, Ye X, Li C, Xia X, Sun B, Shu X, Liu W. A novel p55PIK signaling peptide inhibitor alleviates neuroinflammation via the STAT3/NF-kB signaling pathway in experimental stroke. J Stroke Cerebrovasc Dis 2024; 33:107736. [PMID: 38679216 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Ischemic stroke remains the predominant contributor to mortality and disability globally. Microglia undergo rapid activation and initiate inflammatory cascade reactions by phenotypic polarization, participating in the regulation of inflammatory injury and tissue repair post-ischemic stroke. Regulating microglia-mediated neuroinflammation is a promising therapeutic strategy for ischemic stroke. Previously, we designed and synthesized a novel p55PIK inhibitor, TAT-N15 polypeptide, which presents inhibitive activity on NF-κB signaling-mediated inflammation in acute conjunctivitis and allergic rhinitis. The present study aimed to explore the therapeutic effect and mechanism of TAT-N15 on ischemia stroke. METHODS The mouse model of transient cerebral ischemia was made using the intraluminal filament method. After being treated with daily intraperitoneal injections of TAT-N15 (10 mg/kg) for 7 d, the neurological outcomes and the cerebral infarction volume were evaluated. Histopathology of the ischemia cerebral hemisphere was observed by H&E and Nissl staining. Neuronal survival, astrogliosis, and co-labeling of CD86/Iba1 and CD206/Iba1 were detected by immunofluorescence. The cell apoptosis was estimated by TUNEL staining. The expression levels of apoptosis-associated proteins, proinflammatory cytokines, protein markers of M1 and M2 microglia, and the phosphorylation of NF-κB and STAT3 proteins in the ischemic penumbra were detected by Western blot. RESULTS TAT-N15 treatment significantly decreased the infarct volume and alleviated neurological functional impairment, neuronal injury, and neuron apoptosis. Meanwhile, TAT-N15 treatment restrained the activation of microglia and astrocytes as well as the protein expression of proinflammatory cytokine in ischemic penumbra. Additionally, the administration of TAT-N15 treatment resulted in a significant reduction in the density of M1 phenotype microglia while concurrently increasing the density of M2 phenotype microglia within the ischemic penumbra. Finally, mechanical analysis unveiled that TAT-N15 exerted a substantial inhibitory effect on the protein expression of phosphorylated STAT3 and NF-κB. CONCLUSION TAT-N15 may inhibit neuroinflammation via regulating microglia activation and polarization through the STAT3/NF-κB pathway, which exhibits the neuroprotection effect in ischemic stroke.
Collapse
Affiliation(s)
- Yujing Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youwei Li
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Meiling Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chaoxing Li
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Xianmin Xia
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
26
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
27
|
Maimaiti M, Li C, Cheng M, Zhong Z, Hu J, Yang L, Zhang L, Hong Z, Song J, Pan M, Ma X, Cui S, Zhang P, Hao H, Wang C, Hu H. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination. MED 2024; 5:622-644.e8. [PMID: 38663402 DOI: 10.1016/j.medj.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING This work was primarily funded by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Mingxing Cheng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziwei Zhong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Peng Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|
28
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
29
|
Hao X, Lin L, Sun C, Li C, Wang J, Jiang M, Yao Z, Yang Y. Inhibition of Notch1 signal promotes brain recovery by modulating glial activity after stroke. J Stroke Cerebrovasc Dis 2024; 33:106578. [PMID: 38636320 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 05/15/2022] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.
Collapse
Affiliation(s)
- Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Luyi Lin
- Department of Radiology, Shanghai cancer center, Fudan University, Shanghai 200032, China
| | - Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Min Jiang
- Institutes of Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
30
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
31
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
32
|
Li Z, Gao T, Wang J, Zhang X, Zhang Y, Zhang L, Yang P, Liu J. Ferroptosis mediated by TNFSF9 interferes in acute ischaemic stroke reperfusion injury with the progression of acute ischaemic stroke. J Neurochem 2024; 168:1030-1044. [PMID: 38344886 DOI: 10.1111/jnc.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 05/31/2024]
Abstract
In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.
Collapse
Affiliation(s)
- Zifu Li
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Tianxiang Gao
- University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jing Wang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Xiaoxi Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Yongxin Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Lei Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Pengfei Yang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Jianmin Liu
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| |
Collapse
|
33
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
34
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
37
|
Li C, Jiang M, Fang Z, Chen Z, Li L, Liu Z, Wang J, Yin X, Wang J, Wu M. Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14744. [PMID: 38727249 PMCID: PMC11084978 DOI: 10.1111/cns.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhi‐Ting Fang
- Department of Pathophysiology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Li Li
- Department of Intensive Care UnitThe Affiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
38
|
Battaglini M, Marino A, Montorsi M, Carmignani A, Ceccarelli MC, Ciofani G. Nanomaterials as Microglia Modulators in the Treatment of Central Nervous System Disorders. Adv Healthc Mater 2024; 13:e2304180. [PMID: 38112345 DOI: 10.1002/adhm.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Microglia play a pivotal role in the central nervous system (CNS) homeostasis, acting as housekeepers and defenders of the surrounding environment. These cells can elicit their functions by shifting into two main phenotypes: pro-inflammatory classical phenotype, M1, and anti-inflammatory alternative phenotype, M2. Despite their pivotal role in CNS homeostasis, microglia phenotypes can influence the development and progression of several CNS disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injuries, and even brain cancer. It is thus clear that the possibility of modulating microglia activation has gained attention as a therapeutic tool against many CNS pathologies. Nanomaterials are an unprecedented tool for manipulating microglia responses, in particular, to specifically target microglia and elicit an in situ immunomodulation activity. This review focuses the discussion on two main aspects: analyzing the possibility of using nanomaterials to stimulate a pro-inflammatory response of microglia against brain cancer and introducing nanostructures able to foster an anti-inflammatory response for treating neurodegenerative disorders. The final aim is to stimulate the analysis of the development of new microglia nano-immunomodulators, paving the way for innovative and effective therapeutic approaches for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
39
|
Zhao Y, Li Q, Niu J, Guo E, Zhao C, Zhang J, Liu X, Wang L, Rao L, Chen X, Yang K. Neutrophil Membrane-Camouflaged Polyprodrug Nanomedicine for Inflammation Suppression in Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311803. [PMID: 38519052 DOI: 10.1002/adma.202311803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.
Collapse
Affiliation(s)
- Ya Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Jian Zhang
- Biofunctional Experiment Teaching Center, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xue Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| |
Collapse
|
40
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
41
|
Perrone S, Carloni S, Dell'Orto VG, Filonzi L, Beretta V, Petrolini C, Lembo C, Buonocore G, Esposito S, Nonnis Marzano F. Hypoxic ischemic brain injury: animal models reveal new mechanisms of melatonin-mediated neuroprotection. Rev Neurosci 2024; 35:331-339. [PMID: 38153803 DOI: 10.1515/revneuro-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, 61029 Urbino, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants, Malades Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
42
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
43
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
44
|
Villa-González M, Rubio M, Martín-López G, Mallavibarrena PR, Vallés-Saiz L, Vivien D, Wandosell F, Pérez-Álvarez MJ. Pharmacological inhibition of mTORC1 reduces neural death and damage volume after MCAO by modulating microglial reactivity. Biol Direct 2024; 19:26. [PMID: 38582839 PMCID: PMC10999095 DOI: 10.1186/s13062-024-00470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula R Mallavibarrena
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU), Caen, France
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro de Investigaciones Biológicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Maria José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM-UAM), Madrid, Spain.
| |
Collapse
|
45
|
Mao M, Cao X, Liang Y, Li Q, Chen S, Zhou L, Zhang Y, Guo Y. Neuroprotection of rhubarb extract against cerebral ischaemia-reperfusion injury via the gut-brain axis pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155254. [PMID: 38342016 DOI: 10.1016/j.phymed.2023.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1β, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1β, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.
Collapse
Affiliation(s)
- Mingjiang Mao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xingqin Cao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yuhua Liang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Qiuying Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Simiao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Liping Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Ying Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
46
|
Sun D, Luo F, Fang C, Zhu Q, Li C. Molecular mechanisms underlying the therapeutic effects of Linggui Zhugan decoction in stroke: Insights from network pharmacology and single-cell transcriptomics analysis. Medicine (Baltimore) 2024; 103:e37482. [PMID: 38552092 PMCID: PMC10977571 DOI: 10.1097/md.0000000000037482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
Linggui Zhugan decoction (LZD), a traditional Chinese medicine formula, has demonstrated significant therapeutic effects in managing poststroke cognitive impairment and hemiplegia. However, the precise molecular mechanisms underlying its efficacy remain incompletely elucidated. The active ingredients and target proteins of LZD were retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform database, which is specifically designed for traditional Chinese medicine research. The stroke-related genes were obtained from publicly available databases. Protein-protein interaction, enrichment analysis, and single-cell data analysis were conducted to identify key cells, targets, and pathways. Molecular docking was employed to assess the binding affinity between key components and targets. Network pharmacology analysis identified 190 active ingredients and 248 targets in LZD. These targets were significantly enriched in processes and pathways such as cellular response to lipid, orexin receptor pathway, and were significantly associated with Cerebral infarction and Middle Cerebral Artery Occlusion. Intersection analysis with 2035 stroke-related genes revealed 144 potential targets, which exhibited 2870 interactions and were significantly enriched in signaling pathways such as PI3K-AKT single pathway, MAPK single pathway, and tumor necrosis factor single pathway. Gene set variation analysis showed that the targets of LZD exhibited higher enrichment scores in microglia, M2 macrophages, endothelial cells, and neutrophils, while lower enrichment scores were observed in oligodendrocytes. Furthermore, molecular docking demonstrated a strong binding affinity between key active ingredients and targets. Network pharmacology and single-cell sequencing analysis elucidated the key cells, pathways, targets, and components involved in the therapeutic mechanism of LZD for the treatment of stroke.
Collapse
Affiliation(s)
- Di Sun
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fang Luo
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chengbing Fang
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingyan Zhu
- Geriatric Medicine Department, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
| | - Chong Li
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Evans R, Bolduc PN, Pfaffenbach M, Gao F, May-Dracka T, Fang T, Hopkins BT, Chodaparambil JV, Henry KL, Li P, Metrick C, Nelson A, Trapa P, Thomas A, Burkly L, Peterson EA. The Discovery of 7-Isopropoxy-2-(1-methyl-2-oxabicyclo[2.1.1]hexan-4-yl)- N-(6-methylpyrazolo[1,5- a]pyrimidin-3-yl)imidazo[1,2- a]pyrimidine-6-carboxamide (BIO-7488), a Potent, Selective, and CNS-Penetrant IRAK4 Inhibitor for the Treatment of Ischemic Stroke. J Med Chem 2024. [PMID: 38467640 DOI: 10.1021/acs.jmedchem.3c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Interleukin receptor-associated kinase 4 (IRAK4) is a key node of signaling within the innate immune system that regulates the production of inflammatory cytokines and chemokines. The presence of damage-associated molecular patterns (DAMPs) after tissue damage such as stroke or traumatic brain injury (TBI) initiates signaling through the IRAK4 pathway that can lead to a feed-forward inflammatory loop that can ultimately hinder patient recovery. Herein, we describe the first potent, selective, and CNS-penetrant IRAK4 inhibitors for the treatment of neuroinflammation. Lead compounds from the series were evaluated in CNS PK/PD models of inflammation, as well as a mouse model of ischemic stroke. The SAR optimization detailed within culminates in the discovery of BIO-7488, a highly selective and potent IRAK4 inhibitor that is CNS penetrant and has excellent ADME properties.
Collapse
Affiliation(s)
- Ryan Evans
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Philippe N Bolduc
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Magnus Pfaffenbach
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fang Gao
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tricia May-Dracka
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T Hopkins
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kate L Henry
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pei Li
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire Metrick
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ashley Nelson
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Patrick Trapa
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ankur Thomas
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Linda Burkly
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Emily A Peterson
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
48
|
An Z, He Q, Jiang L, Wang Y, Zhang Y, Sun Y, Wang M, Yang S, Huang L, Li H, Hao Y, Liang X, Wang S. A One-Stone-Two-Birds Strategy of Targeting Microbubbles with "Dual" Anti-Inflammatory and Blood-Brain Barrier "Switch" Function for Ischemic Stroke Treatment. ACS Biomater Sci Eng 2024; 10:1774-1787. [PMID: 38420991 DOI: 10.1021/acsbiomaterials.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Inflammation is considered to be the main target of the development of new stroke therapies. There are three key issues in the treatment of stroke inflammation: the first one is how to overcome the blood-brain barrier (BBB) to achieve drug delivery, the second one is how to select drugs to treat stroke inflammation, and the third one is how to achieve targeted drug delivery. In this study, we constructed hydrocortisone-phosphatidylserine microbubbles and combined them with ultrasound (US)-targeted microbubble destruction technology to successfully open the BBB to achieve targeted drug delivery. Phosphatidylserine on the microbubbles was used for its "eat me" effect to increase the targeting of the microvesicles. In addition, we found that hydrocortisone can accelerate the closure of the BBB, achieving efficient drug delivery while reducing the entry of peripheral toxins into the brain. In the treatment of stroke inflammation, it was found that hydrocortisone itself has anti-inflammatory effects and can also change the polarization of microglia from the harmful pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype, thus achieving dual anti-inflammatory effects and enhancing the anti-inflammatory effects in ischemic areas after stroke, well reducing the cerebellar infarction volume by inhibiting the inflammatory response after cerebral ischemia. A confocal microendoscope was used to directly observe the polarization of microglial cells in living animal models for dynamic microscopic visualization detection showing the advantage of being closer to clinical work. Taken together, this study constructed a multifunctional targeted US contrast agent with the function of "one-stone-two-birds", which can not only "on-off" the BBB but also have "two" anti-inflammatory functions, providing a new strategy of integrated anti-inflammatory targeted delivery and imaging monitoring for ischemic stroke treatment.
Collapse
Affiliation(s)
- Zhongbin An
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Jiang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yongyue Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Lijie Huang
- Tsinghua University, Hai Dian, Beijing 017000, China
| | - Huiwen Li
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Yu Hao
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
49
|
Guo W, Xu X, Xiao Y, Zhang J, Shen P, Lu X, Fan X. Salvianolic acid C attenuates cerebral ischemic injury through inhibiting neuroinflammation via the TLR4-TREM1-NF-κB pathway. Chin Med 2024; 19:46. [PMID: 38468280 DOI: 10.1186/s13020-024-00914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Stroke is a leading cause of mortality and disability with ischemic stroke being the most common type of stroke. Salvianolic acid C (SalC), a polyphenolic compound found in Salviae Miltiorrhizae Radix et Rhizoma, has demonstrated therapeutic potential in the recovery phase of ischemic stroke. However, its pharmacological effects and underlying mechanisms during the early stages of ischemic stroke remain unclear. This study aimed to examine the potential mechanism of action of SalC during the early phase of ischemic stroke using network pharmacology strategies and RNA sequencing analysis. METHODS SalC effects on infarct volume, neurological deficits, and histopathological changes were assessed in a mouse model of transient middle cerebral artery occlusion (tMCAO). By integrating RNA sequencing data with a cerebral vascular disease (CVD)-related gene database, a cerebral ischemic disease (CID) network containing dysregulated genes from the tMCAO model was constructed. Network analysis algorithms were applied to evaluate the key nodes within the CID network. In vivo and in vitro validation of crucial targets within the identified pathways was conducted. RESULTS SalC treatment significantly reduced infarct volume, improved neurological deficits, and reversed pathological changes in the tMCAO mouse model. The integration of RNA sequencing data revealed an 80% gene reversion rate induced by SalC within the CID network. Among the reverted genes, 53.1% exhibited reversion rates exceeding 50%, emphasizing the comprehensive rebalancing effect of SalC within the CID network. Neuroinflammatory-related pathways regulated by SalC, including the toll-like-receptor 4 (TLR4)- triggering receptor expressed on myeloid cells 1 (TREM1)-nuclear factor kappa B (NF-κB) pathway, were identified. Further in vivo and in vitro experiments confirmed that TLR4-TREM1-NF-κB pathway was down-regulated by SalC in microglia, which was essential for its anti-inflammatory effect on ischemic stroke. CONCLUSIONS SalC attenuated cerebral ischemic injury by inhibiting neuroinflammation mediated by microglia, primarily through the TLR4-TREM1-NF-κB pathway. These findings provide valuable insights into the potential therapeutic benefits of SalC in ischemic stroke.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Xiaojing Xu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China
| | - Yulin Xiao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiatian Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peiqiang Shen
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321999, Zhejiang, China.
| |
Collapse
|
50
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 PMCID: PMC10581564 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|