1
|
Nascimento IRSD, Silva LDR, Rodrigues ENS, Cruz JMFL, Araújo DB, Pereira CDS, Silva LMF, Pereira WE, Silva MC, Santos JPO, Farias OR. Effect of calcium-enriched microalgae extract on mitigating saline stress in papaya seedlings. BRAZ J BIOL 2024; 84:e283432. [PMID: 39319979 DOI: 10.1590/1519-6984.283432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024] Open
Abstract
The papaya (Carica papaya L.) is among the mainly fruit species produced in tropical and subtropical climate. The salinity of water in agricultural areas is considered a limiting factor for the expansion of papaya. This study aimed to evaluate calcium-enriched microalgae extract (EMa-Ca) as an attenuator of saline stress in irrigation water on the growth and physiology of Formosa papaya seedlings, hybrid Tainung. The experiment was conducted in a protected environment, with treatments distributed in a 5 × 2 factorial scheme, comprising five electrical conductivities of irrigation water (0.50; 1.10; 2.50; 3.90 and 4.50 dSm-1) with the presence and absence of EMa-Ca in the substrate. Evaluated characteristics were: plant height, number of leaves, stem diameter, leaf area, dry masses weight of roots, aboveground parts and total. Gas exchanges and chlorophyll indices (a, b and total) were also evaluated. The application of EMa-Ca resulted in an increase of 6.05% in height and 6.33% in trunk diameter. The number of leaves decreased with an increase in electrical conductivity, and the leaf area was reduced by 33%. All seedling dry masses showed greater declines in the absence of EM-Ca. The EMa-Ca increased net photosynthesis, CO2 concentration, transpiration and stomatal conductance by 39.13%, 30.43%, 38.88% and 42.85%, respectively. For chlorophyll without the use of EMa-Ca, a decrease rate of 1.21%, 0.41% and 1.62% was observed for Chla, Chlb and Chlt, respectively. Therefore, the EMa-Ca application (1.0 ml/L) significantly enhance the vegetative development, gas exchanges, and chlorophyll indices of papaya seedlings under saline stress conditions.
Collapse
Affiliation(s)
- I R S do Nascimento
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - L D R Silva
- Universidade Federal de Lavras - UFLA, Departamento de Agronomia, Programa de Pós-graduação em Agronomia, Lavras, MG, Brasil
| | - E N S Rodrigues
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - J M F L Cruz
- Universidade Federal de Lavras - UFLA, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, Lavras, MG, Brasil
| | - D B Araújo
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - C D S Pereira
- Universidade Federal de Lavras - UFLA, Departamento de Agronomia, Programa de Pós-graduação em Agronomia, Lavras, MG, Brasil
| | - L M F Silva
- Universidade Federal da Paraíba - UFPB, Departamento de Solos e Engenharia Rural, Areia, PB, Brasil
| | - W E Pereira
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Fundamentais e Sociais, Areia, PB, Brasil
| | - M C Silva
- Universidade Federal da Paraíba - UFPB, Departamento de Biociência, Programa de Pós-graduação em Biodiversidade, Areia, PB, Brasil
| | - J P O Santos
- Instituto Federal do Tocantis - IFTO, Campus Avançado Lagoa da Confusão, Lagoa da Confusão, TO, Brasil
| | - O R Farias
- Universidade Federal da Paraíba - UFPB, Programa de Pós-doutorado em Agronomia, Areia, PB, Brasil
| |
Collapse
|
2
|
He Z, Shang X, Zhang T, Yun J. Effect of calcium and magnesium on starch synthesis in maize kernels and its physiological driving mechanism. FRONTIERS IN PLANT SCIENCE 2024; 14:1332517. [PMID: 38259946 PMCID: PMC10800842 DOI: 10.3389/fpls.2023.1332517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The content of kernel starch (STC), which is a fundamental indicator of the nutritional value of maize, is directly correlated with the grain's taste and aroma. Both calcium (Ca) and magnesium (Mg) are critical nutrients that play a significant role in the growth and development of maize, as well as in the synthesis of STC. To determine the physiological driving mechanisms of Ca and Mg effects on the accumulation of STC synthesis in maize kernels and the characteristics of their effects on endogenous hormones and enzymes of STC synthesis in maize leaves, our study applied foliar Ca and Mg fertilizers at various levels to maize prior to pollination. (1) The levels of Ca, Mg, indole-3-acetic acid (IAA), gibberellin (GA), and zeatin riboside (ZR) in maize leaves increased and then decreased after the supplementation of Ca and Mg. They peaked on the 32nd day after pollination. In contrast, the levels of abscisic acid (ABA) initially decreased and then increased. Ca and Mg had a negative correlation with ABA and a positive correlation with IAA, GA, and ZR. (2) As the levels of Ca and Mg increased, correspondingly rose the activities of enzymes responsible for STC synthesis and the content of STC and its components. Principally influencing the synthesis of STC were ABA, IAA, uridine diphosphate-glucose pyrophosphorylase (UDPG), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS). (3) "IAA-UDPG or GBSS-STC" was the predominant physiological regulation pathway of Ca on kernel STC, whereas "IAA-GBSS-STC" was the dominant physiological regulation pathway of Mg on kernel STC. The regulatory impact of STC by UDPG and GBSS was positive, as were the effects of IAA on UDPG and GBSS. In conclusion, the accumulation of kernel starch was significantly enhanced by Ca and Mg supplementation via the modulation of endogenous hormone levels and key enzyme activities. This research identifies a viable approach to improve the nutritional composition of maize.
Collapse
Affiliation(s)
- Zhaoquan He
- School of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
| | - Xue Shang
- School of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Jiangxi, Nanchang, China
| | - Tonghui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jianying Yun
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Zhang Y, Qiao D, Zhang Z, Li Y, Shi S, Yang Y. Calcium signal regulated carbohydrate metabolism in wheat seedlings under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:123-136. [PMID: 38435855 PMCID: PMC10902238 DOI: 10.1007/s12298-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150 mM) alone or combined with 500 μM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.
Collapse
Affiliation(s)
- Ya Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Dan Qiao
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Zhe Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yaping Li
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Shuqian Shi
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yingli Yang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| |
Collapse
|
4
|
Dong X, Gao Y, Bao X, Wang R, Ma X, Zhang H, Liu Y, Jin L, Lin G. Multi-Omics Revealed Peanut Root Metabolism Regulated by Exogenous Calcium under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3130. [PMID: 37687376 PMCID: PMC10490012 DOI: 10.3390/plants12173130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
High salinity severely inhibits plant seedling root development and metabolism. Although plant salt tolerance can be improved by exogenous calcium supplementation, the metabolism molecular mechanisms involved remain unclear. In this study, we integrated three types of omics data (transcriptome, metabolome, and phytohormone absolute quantification) to analyze the metabolic profiles of peanut seedling roots as regulated by exogenous calcium under salt stress. (1) exogenous calcium supplementation enhanced the allocation of carbohydrates to the TCA cycle and plant cell wall biosynthesis rather than the shikimate pathway influenced by up-regulating the gene expression of antioxidant enzymes under salt stress; (2) exogenous calcium induced further ABA accumulation under salt stress by up-regulating the gene expression of ABA biosynthesis key enzymes AAO2 and AAO3 while down-regulating ABA glycosylation enzyme UGT71C5 expression; (3) exogenous calcium supplementation under salt stress restored the trans-zeatin absolute content to unstressed levels while inhibiting the root cis-zeatin biosynthesis.
Collapse
Affiliation(s)
- Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Yan Gao
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Xuefeng Bao
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Rongjin Wang
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Xinyu Ma
- Testing Center for Agricultural Product Safety and Environmental Quality, Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Culture Road, Shenhe District, Shenyang 110017, China
| | - Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Yifei Liu
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Lanshu Jin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| |
Collapse
|
5
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
6
|
Zhang B, Du H, Yang S, Wu X, Liu W, Guo J, Xiao Y, Peng F. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach ( Prunus persica (L.) Batsch). PLANTS (BASEL, SWITZERLAND) 2023; 12:1492. [PMID: 37050118 PMCID: PMC10097042 DOI: 10.3390/plants12071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is a fruit tree of economic and nutritional importance, but it is very sensitive to drought stress, which affects its growth to a great extent. Lauric acid (LA) is a fatty acid produced in plants and associated with the response to abiotic stress, but the underlying mechanism remains unclear. In this study, physiological analysis showed that 50 ppm LA pretreatment under drought stress could alleviate the growth of peach seedlings. LA inhibits the degradation of photosynthetic pigments and the closing of pores under drought stress, increasing the photosynthetic rate. LA also reduces the content of O2-, H2O2, and MDA under drought stress; our results were confirmed by Evans Blue, nitroblue tetrazolium (NBT), and DAB(3,3-diaminobenzidine) staining experiments. It may be that, by directly removing reactive oxygen species (ROS) and improving enzyme activity, i.e., catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and ascorbate peroxidase (APX) activity, the damage caused by reactive oxygen species to peach seedlings is reduced. Peach seedlings treated with LA showed a significant increase in osmoregulatory substances compared with those subjected to drought stress, thereby regulating osmoregulatory balance and reducing damage. RNA-Seq analysis identified 1876 DEGs (differentially expressed genes) in untreated and LA-pretreated plants under drought stress. In-depth analysis of these DEGs showed that, under drought stress, LA regulates the expression of genes related to plant-pathogen interaction, phenylpropanoid biosynthesis, the MAPK signaling pathway, cyanoamino acid metabolism, and sesquiterpenoid and triterpenoid biosynthesis. In addition, LA may activate the Ca2+ signaling pathway by increasing the expressions of CNGC, CAM/CML, and CPDK family genes, thereby improving the drought resistance of peaches. In summary, via physiological and transcriptome analyses, the mechanism of action of LA in drought resistance has been revealed. Our research results provide new insights into the molecular regulatory mechanism of the LA-mediated drought resistance of peach trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Xiao
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| | - Futian Peng
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| |
Collapse
|
7
|
Hamouzová K, Sen MK, Bharati R, Košnarová P, Chawdhery MRA, Roy A, Soukup J. Calcium signalling in weeds under herbicide stress: An outlook. FRONTIERS IN PLANT SCIENCE 2023; 14:1135845. [PMID: 37035053 PMCID: PMC10080077 DOI: 10.3389/fpls.2023.1135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The continuous use of herbicides for controlling weeds has led to the evolution of resistance to all major herbicidal modes of action globally. Every year, new cases of herbicide resistance are reported. Resistance is still in progress in many species, which must be stopped before it becomes a worldwide concern. Several herbicides are known to cause stressful conditions that resemble plant abiotic stresses. Variation in intracellular calcium (Ca2+) concentration is a primary event in a wide range of biological processes in plants, including adaptation to various biotic and abiotic stresses. Ca2+ acts as a secondary messenger, connecting various environmental stimuli to different biological processes, especially during stress rejoindering in plants. Even though many studies involving Ca2+ signalling in plants have been published, there have been no studies on the roles of Ca2+ signalling in herbicide stress response. Hence, this mini-review will highlight the possible sensing and molecular communication via Ca2+ signals in weeds under herbicide stress. It will also discuss some critical points regarding integrating the sensing mechanisms of multiple stress conditions and subsequent molecular communication. These signalling responses must be addressed in the future, enabling researchers to discover new herbicidal targets.
Collapse
Affiliation(s)
- Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavlína Košnarová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Md Rafique Ahasan Chawdhery
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
8
|
Feng D, Wang X, Gao J, Zhang C, Liu H, Liu P, Sun X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1143963. [PMID: 37025147 PMCID: PMC10070993 DOI: 10.3389/fpls.2023.1143963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stresses are various environmental factors that inhibit a normal plant growth and limit the crop productivity. Plant scientists have been attempting for a long time to understand how plants respond to these stresses and find an effective and feasible solution in mitigating their adverse impacts. Exogenous calcium ion as an essential element for the plant growth, development and reproduction has proven to be effective in alleviating plant stresses through enhancing its resistance or tolerance against them. With a comprehensive review of most recent advances and the analysis by VOSviewer in the researches on this focus of "exogenous calcium" and "stress" for last decade, this paper summarizes the mechanisms of exogenous calcium that are involved in plant defensive responses to abiotic stresses and classifies them accordingly into six categories: I) stabilization of cell walls and membranes; II) regulation of Na+ and K+ ratios; III) regulation of hormone levels in plants; IV) maintenance of photosynthesis; V) regulation of plant respiratory metabolism and improvement of root activities; and VI) induction of gene expressions and protein transcriptions for the stress resistance. Also, the progress and advances from the updated researches on exogenous calcium to alleviate seven abiotic stresses such as drought, flooding, salinity, high temperature, low temperature, heavy metals, and acid rain are outlined. Finally, the future research perspectives in agricultural production are discussed.
Collapse
Affiliation(s)
- Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xuejie Wang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Afairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Ping Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| |
Collapse
|
9
|
Islam MM, Jahan K, Sen A, Urmi TA, Haque MM, Ali HM, Siddiqui MH, Murata Y. Exogenous Application of Calcium Ameliorates Salinity Stress Tolerance of Tomato (Solanum lycopersicum L.) and Enhances Fruit Quality. Antioxidants (Basel) 2023; 12:antiox12030558. [PMID: 36978806 PMCID: PMC10044850 DOI: 10.3390/antiox12030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Tomato is affected by various biotic and abiotic stresses, especially salinity, which drastically hinders the growth and yield of tomato. Calcium (Ca) is a vital macronutrient which plays physiological and biochemical roles in plants. Hence, we studied the protective roles of Ca against salinity stress in tomato. There were eight treatments comprising control (nutrient solution), 5 mM Ca, 10 mM Ca, 15 mM Ca, 12 dS m−1 NaCl, 12 dS m−1 NaCl + 5 mM Ca, 12 dS m−1 NaCl + 10 mM Ca and 12 dS m−1 NaCl + 15 mM Ca, and two tomato varieties: BARI tomato-2 and Binatomato-5. Salinity significantly decreased the plant-growth and yield attributes, relative water content (RWC), photosynthetic pigments (SPAD value) and the uptake of K, Ca and Mg in leaves and roots. Salinity-induced oxidative stress was present in the form of increased Na+ ion concentration, hydrogen peroxide (H2O2) content and lipid peroxidation (MDA). Ca application reduced oxidative stress through the boosting of antioxidant enzymatic activity. Exogenous Ca application enhanced proline and glycine betaine content and reduced Na+ uptake, which resulted in the inhibition of ionic toxicity and osmotic stress, respectively. Hence, Ca application significantly increased the growth and yield attributes, RWC, SPAD value, and uptake of K, Ca and Mg. Calcium application also had a significant effect on the fruit quality of tomato and the highest total soluble solid, total sugar, reducing sugar, β-carotene, vitamin C and juice pH were found for the combined application of NaCl and Ca. Therefore, application of Ca reversed the salt-induced changes through increasing osmoprotectants, activation of antioxidants enzymes, and by optimizing mineral nutrient status.
Collapse
Affiliation(s)
- Md. Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence: ; Tel.: +880-171-213-2019
| | - Khurshida Jahan
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Arpita Sen
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh
| | - Tahmina Akter Urmi
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Moynul Haque
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Mirdar Mansuri R, Azizi AH, Sadri AH, Shobbar ZS. Long non-coding RNAs as the regulatory hubs in rice response to salt stress. Sci Rep 2022; 12:21696. [PMID: 36522395 PMCID: PMC9755261 DOI: 10.1038/s41598-022-26133-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Salinity seriously constrains growth and fertility of rice worldwide. Long non-coding RNAs (lncRNAs) play crucial roles in plant abiotic stress response. However, salt responsive lncRNAs are poorly understood in rice. Herein, salt responsive lncRNAs (DE-lncRNAs) were identified in FL478 (salt tolerant) compared to its susceptible parent (IR29) using RNA-seq in root tissues at seedling stage. In FL478 and IR29, 8724 and 9235 transcripts with length of > 200 bp were nominated as potential lncRNAs, respectively. Rigorous filtering left four (in FL478) and nine (in IR29) DE-lncRNAs with only 2 DE-lncRNAs in common. ATAC-seq data showed that the genomic regions of all four lncRNAs in FL478 and 6/9 in IR29 are significantly accessible for transcription. Weighted correlation network analysis (WGCNA) revealed that lncRNA.2-FL was highly correlated with 173 mRNAs as trans-targets and a gene encoding pentatricopeptide repeat (PPR) protein was predicted as cis-target of lncRNA.2-FL. In silico mutagenesis analysis proposed the same transcription factor binding sites (TFBSs) in vicinity of the trans- and cis-regulatory target genes of lncRNA.2-FL, which significantly affect their transcription start site (TSS). This study provides new insights into involvement of the DE-lncRNAs in rice response to salt stress. Among them, lncRNA.2-FL may play a significant regulatory role in the salt stress tolerance of FL478.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- grid.417749.80000 0004 0611 632XDepartment of Systems Biology, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), PO Box 31535-1897, Karaj, Iran
| | - Amir-Hossein Azizi
- grid.417749.80000 0004 0611 632XDepartment of Systems Biology, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), PO Box 31535-1897, Karaj, Iran
| | - Amir-Hossein Sadri
- grid.417749.80000 0004 0611 632XDepartment of Systems Biology, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), PO Box 31535-1897, Karaj, Iran
| | - Zahra-Sadat Shobbar
- grid.417749.80000 0004 0611 632XDepartment of Systems Biology, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
11
|
Qiu XM, Sun YY, Wang JQ, Xiang RH, Li ZG. Involvement of osmoregulation, glyoxalase, and non-glyoxalase systems in signaling molecule glutamic acid-boosted thermotolerance in maize seedlings. PROTOPLASMA 2022; 259:1507-1520. [PMID: 35277781 DOI: 10.1007/s00709-022-01753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Glutamic acid (Glu) is not only an important protein building block, but also a signaling molecule in plants. However, the Glu-boosted thermotolerance and its underlying mechanisms in plants still remain unclear. In this study, the maize seedlings were irrigated with Glu solution prior to exposure to heat stress (HS), the seedlings' thermotolerance as well as osmoregulation, glyoxalase, and non-glyoxalase systems were evaluated. The results manifested that the seedling survival and tissue vitality after HS were boosted by Glu, while membrane damage was reduced in comparison with the control seedlings without Glu treatment, indicating Glu boosted the thermotolerance of maize seedlings. Additionally, root-irrigation with Glu increased its endogenous level, reinforced osmoregulation system (i.e., an increase in the levels of proline, glycine betaine, trehalose, and total soluble sugar, as well as the activities of pyrroline-5-carboxylate synthase, betaine dehydrogenase, and trehalose-5-phosphate phosphatase) in maize seedlings under non-HS and HS conditions compared with the control. Also, Glu treatment heightened endogenous methylglyoxal level and the activities of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (methylglyoxal reductase, lactate dehydrogenase, aldo-ketoreductase, and alkenal/alkenone reductase) in maize seedlings under non-HS and HS conditions as compared to the control. These data hint that osmoregulation, glyoxalase, and non-glyoxalase systems are involved in signaling molecule Glu-boosted thermotolerance of maize seedlings.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Jia-Qi Wang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Ru-Hua Xiang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China.
| |
Collapse
|
12
|
Li H, Huang S, Ren C, Weng X, Zhang S, Liu L, Pei J. Optimal exogenous calcium alleviates the damage of Snow-melting agent to Salix matsudana seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:928092. [PMID: 36247589 PMCID: PMC9554415 DOI: 10.3389/fpls.2022.928092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
As the main component of snowmelt agents, NaCl is widely used in northern winters and significantly impacts the expected growth of garden plants in north China. Salix matsudana is also faced with salt stress caused by snowmelt, which seriously affects its development as the main tree species in the northern landscape. However, how exogenous calcium alleviates salt stress in Salix matsudana is not yet clear. In this study, the indicators of growth indices, photosynthetic characteristics and stress resistance were measured by hydroponic assays in combination with three NaCl conditions (0, 50 and 200 mmol·L-1) and five calcium concentrations (0, 2.5, 5, 10 and 20 mmol·L-1). The study's results indicated that the application of exogenous calcium remarkably promoted the growth of Salix matsudana seedlings under NaCl stress. When the exogenous calcium concentration was 10 mmol·L-1, the plant height and basal diameter of Salix matsudana seedlings increased significantly, and the biomass of all parts reached the maximum (P< 0.05). Exogenous calcium can substantially improve the photosynthesis of Salix matsudana seedlings under salt stress. The photosynthetic parameters, photosynthetic pigment content and photosynthetic product synthesis of Salix matsudana seedlings were significantly increased at an exogenous calcium concentration of 10 mmol·L-1, and the photosynthetic level of Salix matsudana seedlings reached the highest value. The chlorophyll fluorescence parameters (F v /F m, F v /F 0) of Salix matsudana seedlings were significantly decreased under different concentrations of NaCl stress. The maximum photochemical efficiency (F v /F m) and potential photochemical efficiency (F v /F 0) of Salix matsudana seedlings peaked when the exogenous calcium concentration was 10 mmol·L-1, which was significantly higher than that of the other treatments (P< 0.05). The water use efficiency of Salix matsudana was affected considerably by NaCl stress. The WUE and iWUE peak values of Salix matsudana were significantly higher than those of other calcium concentrations at 10 mmol·L-1 (P< 0.05). Exogenous calcium can increase the activities of CAT, SOD and POD enzymes in Salix matsudana seedlings under different NaCl concentrations. Under NaCl stress, adding exogenous calcium promoted the survival rate and growth of Salix matsudana seedlings. In conclusion, the optimum exogenous calcium concentration for Salix matsudana seedlings was 10 mmol·L-1. High or low concentrations of exogenous calcium did not achieve the best results in alleviating salt stress in Salix matsudana.
Collapse
Affiliation(s)
- Hui Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Shenglan Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Chengshuai Ren
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Xiaohang Weng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Songzhu Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Liying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Jiubo Pei
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
13
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
14
|
Li L, Li H, Wu L, Qi H. Sulfur dioxide improves drought tolerance through activating Ca 2+ signaling pathways in wheat seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:852-859. [PMID: 35538264 DOI: 10.1007/s10646-022-02547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Sulfur dioxide (SO2) and drought are two important co-occurring abiotic stresses affecting the growth and productivity of plants. Here, we will investigate the role of Ca2+ in regulating antioxidant defense during drought or SO2/drought stress, and the effect of SO2 pretreatment on the physiological response of wheat seedlings to drought stress. The results showed that exogenous Ca2+ increased the activities of SOD, CAT and POD, and reduced the contents of H2O2 and MDA in drought-treated wheat seedlings, suggesting Ca2+ could improve drought tolerance by promoting antioxidant defense in plants. Moreover, exogenous Ca2+ up-regulated the expression of two stress-responsive transcription factor (TF) genes, ERF1 and MYB30, to cope with drought stress. Exposure of wheat seedlings to 10 mg m-3 SO2 significantly enhanced the activities of SOD, CAT and POD. The contents of H2O2 and MDA remained at control levels, showing that SO2 at this concentration led to an activation of the antioxidant defense system and did not cause oxidative damage to the seedlings. Furthermore, 10 mg m-3 SO2 pretreatment increased the expression of CCaMK and CPK10, enhanced the activities of SOD and POD, and reduced the accumulation of H2O2 and MDA in drought-treated wheat seedlings, showing a role of SO2 in protection of plants against drought stress. However, with removal of Ca2+ by spraying EGTA on the SO2-pretreated wheat seedlings, the expression of transcription factor genes and activities of antioxidant enzymes were decreased, and the contents of H2O2 and MDA enhanced to the level of drought treatment alone, suggesting a role of Ca2+ in the SO2-induced alleviation of drought stress. Together, these results indicated that exogenous Ca2+ increased defense-related gene expression and enzyme activity in response to drought stress, and that pre-exposure to appropriate levels of SO2 could improve drought tolerance through activation of Ca2+ signaling pathways in plants. This study would provide new strategy for enhancing plant resistance to environmental stress.
Collapse
Affiliation(s)
- Lihong Li
- Department of Chemistry and Chemical Engineering, JinzhongUniversity, Yuci, China
| | - Haiyan Li
- Department of Biology, Taiyuan Normal University, Yuci, China
| | - Lihua Wu
- Department of Biology, Taiyuan Normal University, Yuci, China
| | - Hongxue Qi
- Department of Chemistry and Chemical Engineering, JinzhongUniversity, Yuci, China.
| |
Collapse
|
15
|
Omer AM, Osman MS, Badawy AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. BOTANICAL STUDIES 2022; 63:15. [PMID: 35587317 PMCID: PMC9120335 DOI: 10.1186/s40529-022-00345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinized soils negatively affect plant growth, so it has become necessary to use safe and eco-friendly methods to mitigate this stress. In a completely randomized design, a pot experiment was carried out to estimate the influence of the inoculation with endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata and their co-inoculation on growth and metabolic aspects of flax (Linum usitatissimum) plants that already grown in salinized soil. RESULTS The results observed that inoculation of salinity-stressed flax plants with the endophytes A. brasilense and P. geniculata (individually or in co-inoculation) increases almost growth characteristics (shoot and root lengths, fresh and dry weights as well as number of leaves). Moreover, contents of chlorophylls and carotenoids pigments, soluble sugars, proteins, free proline, total phenols, ascorbic acid, and potassium (K+) in flax plants grown in salinized soil were augmented because of the inoculation with A. brasilense and P. geniculata. Oppositely, there are significant decreases in free proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and sodium (Na+) contents. Regarding antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), the inoculation with the tested endophytes led to significant enhancements in the activities of antioxidant enzymes in stressed flax plants. CONCLUSIONS The results of this work showed that the use of the endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata (individually or in co-inoculation) could be regarded as an uncommon new model to alleviate salinity stress, especially in salinized soils.
Collapse
Affiliation(s)
- Amal M Omer
- Soil Fertility and Microbiology Department, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Mahmoud S Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
16
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
17
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.
Collapse
|
18
|
Zhang L, Ge AH, Tóth T, An F, Guo L, Nie Z, Liu J, Yang F, Wang Z. Soil bacterial microbiota predetermines rice yield in reclaiming saline-sodic soils leached with brackish ice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6472-6483. [PMID: 34002389 DOI: 10.1002/jsfa.11319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Saline-sodic lands threaten the food supply and ecological security in the western Songnen Plain of northeast China, and the gypsum is commonly adopted for restoration. However, the dynamics of soil bacterial community and the correlation with crop yield during restoring processes remain poorly understood. Here, we elucidated the soil chemical properties and bacterial communities and their associations with rice yield under different flue gas desulphurization gypsum (FGDG) application rates combined with brackish ice leaching. RESULTS The increased application rate of FGDG generally improved soil reclamation effects, as indicated by soil chemical properties, bacterial diversity, and rice yield. Compared with fresh ice irrigation, the rice yield in brackish ice treatment increased by 15.84%, and the soil alkalinity and sodium adsorption ratio (SAR) decreased by 35.19% and 10.30%, respectively. The bacterial alpha diversity significantly correlated and predicted rice yield as early as brackish ice melt, suggesting the bacterial diversity was a sensitive indicator in predicting rice yield. Meanwhile, the bacterial communities in the control possessed a high abundance of oligotrophic Firmicutes, while eutrophic bacterial taxa (e.g. Proteobacteria) were enriched after brackish water irrigation and FGDG application. Moreover, we also established a Random Forest model and identified a bacterial consortium that explained an 80.0% variance of rice yield. CONCLUSION Together, our results highlight the reclaiming effect of brackish ice in the saline-sodic field and demonstrate the sensitivity and importance of the soil bacterial community in predicting crop yield, which would provide essential knowledge on the soil quality indication and bio-fertilizer development for soil reclamation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Zhang
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - An-Hui Ge
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Tibor Tóth
- Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (MTA TAKI-RISSAC), Budapest, Hungary
| | - Fenghua An
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
| | - Liangliang Guo
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyang Nie
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianbo Liu
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
| | - Zhichun Wang
- Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
19
|
Basu S, Roychoudhury A. Transcript profiling of stress-responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. PHYSIOLOGIA PLANTARUM 2021; 173:1434-1447. [PMID: 33905541 DOI: 10.1111/ppl.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we carried out comprehensive transcript profiling of diverse genes under salinity (200 mM NaCl) at different time points, accompanied by certain biochemical alterations of the indica (IR-64 and Pokkali) and japonica (Nipponbare and M-202) rice. The higher susceptibility of Nipponbare and IR-64 was reflected by lower relative water content, chlorophyll loss, higher malondialdehyde content, and accumulation of H2 O2 , and reduced nitrate reductase activity, compared to M-202 and Pokkali, where such changes were less pronounced. Enhanced levels of anthocyanins and reduced glutathione, together with elevated phenylalanine ammonia lyase activity, mainly conferred protection to Nipponbare and IR-64, while metabolites like phenolics, flavonoids, proline, and polyamines were more induced in M-202 and Pokkali. Varietal differences in the expression pattern of diverse groups of genes during different durations (6, 24, and 48 h) of stress were striking. A gene showing early induction for a particular variety exhibited a delayed induction in another variety or a gradually decreased expression with treatment time. Pokkali was clearly identified as the salt-tolerant genotype among the examined varieties based on increased antioxidant potential and enhanced expression of genes encoding for PAL, CHS, and membrane transporters like SOS3, NHX-1, and HKT-1. The results presented in this work provide insight into the complex varying regulation patterns for different genes across the investigated rice varieties in providing salt tolerance and highlights distinct differences in expression patterns between susceptible and tolerant indica and japonica rice.
Collapse
|
20
|
Gupta P, De B. Influence of calcium channel modulators on the production of serotonin, gentisic acid, and a few other biosynthetically related phenolic metabolites in seedling leaves of salt tolerant rice variety Nonabokra. PLANT SIGNALING & BEHAVIOR 2021; 16:1929732. [PMID: 34024248 PMCID: PMC8331021 DOI: 10.1080/15592324.2021.1929732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride-induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography-Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.
Collapse
Affiliation(s)
- Poulami Gupta
- Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
21
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Life Table and Preference Choice of Frankliniella occidentalis (Thysanoptera: Thripidae) for Kidney Bean Plants Treated by Exogenous Calcium. INSECTS 2021; 12:insects12090838. [PMID: 34564278 PMCID: PMC8471031 DOI: 10.3390/insects12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Western flower thrips, Frankliniella occidentalis, is an invasive key pest that damages vegetables and ornamentals worldwide. The activation of induced resistance by chemicals may provide a simple and feasible way of achieving improvement of resistance to stress in crop plants, which is an important technology for the development of sustainable agriculture. Calcium (Ca) is an essential element for plants; numerous studies have shown that Ca can confer crop plants with resistance to abiotic and biotic stresses. For the first time, we report the negative effects of exogenous Ca on kidney bean plants in relation to the performance of F. occidentalis, including a reduced preference of thrips. Therefore, Ca could potentially be used to control F. occidentalis. Abstract Exogenous calcium (Ca) has been used to induce host plant resistance in response to abiotic and biotic stresses, including from thrips attack. The aim of this study was to determine whether exogenously applied Ca affects the performance of Frankliniella occidentalis. We assessed the development time, total longevity, reproduction, and population parameters of F. occidentalis, and its preference choice on Ca-treated or untreated control kidney bean plants under laboratory conditions. The results showed that F. occidentalis fed on Ca-treated leaves had a longer developmental time but lower longevity (female and male) and fecundity than F. occidentalis fed on control leaves. Population parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0), were all found higher in control leaves than in Ca-treated leaves, and the mean generation time (T) was shorter. In preference choices, the number of thrips on control plants was higher than the number of thrips on Ca-treated kidney bean plants. Overall, our results indicated that exogenous Ca pretreatment on kidney bean plants affected the life history and preference choice of F. occidentalis, suggesting Ca might be used as a promising elicitor of inducible plant defense against thrips.
Collapse
|
23
|
Citric Acid-Mediated Abiotic Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22137235. [PMID: 34281289 PMCID: PMC8268203 DOI: 10.3390/ijms22137235] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 01/07/2023] Open
Abstract
Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.
Collapse
|
24
|
Tahjib-Ul-Arif M, Sohag AAM, Mostofa MG, Polash MAS, Mahamud AGMSU, Afrin S, Hossain MA, Hossain MA, Murata Y, Tran LSP. Comparative effects of ascobin and glutathione on copper homeostasis and oxidative stress metabolism in mitigation of copper toxicity in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:162-169. [PMID: 33236382 DOI: 10.1111/plb.13222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 05/25/2023]
Abstract
Copper (Cu) pollution of agricultural land is a major threat to crop production. Exogenous chemical treatment is an easily accessible and rapid approach to remediate metal toxicity, including Cu toxicity in plants. We compared the effects of ascobin (ASC; ascorbic acid:citric acid at 2:1) and glutathione (GSH) in mitigation of Cu toxicity in rice. Plants subjected to Cu stress displayed growth inhibition and biomass reduction, which were connected to reduced levels of chlorophylls, RWC, total phenolic compounds, carotenoids and Mg2+ . Increased accumulation of ROS and malondialdehyde indicated oxidative stress in Cu-stressed plants. However, application of ASC or GSH minimized the inhibitory effects of Cu stress on rice plants by restricting Cu2+ uptake and improving mineral balance, chlorophyll content and RWC. Both ASC and GSH pretreatments reduced levels of ROS and malondialdehyde and improved activities of antioxidant enzymes, suggesting their roles in alleviating oxidative damage. A comparison on the effects of ASC and GSH under Cu stress revealed that ASC was more effective in restricting Cu2+ accumulation (69.5% by ASC and 57.1% by GSH), Ca2+ and Mg2+ homeostasis, protection of photosynthetic pigments and activation of antioxidant defence mechanisms [catalase (110.4%), ascorbate peroxidase (76.5%) and guaiacol peroxidase (39.0%) by ASC, and catalase (58.9%) and ascorbate peroxidase (59.9%) by GSH] in rice than GSH, eventually resulting in better protection of ASC-pretreated plants against Cu stress. In conclusion, although ASC and GSH differed in induction of stress protective mechanisms, both were effective in improving rice performance in response to Cu phytotoxicity.
Collapse
Affiliation(s)
- M Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - A A M Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M G Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M A S Polash
- Department of Crop Botany, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - A G M S U Mahamud
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - S Afrin
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - M A Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M A Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Y Murata
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - L-S P Tran
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| |
Collapse
|
25
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
26
|
Wang X, Hu H, Li F, Yang B, Komatsu S, Zhou S. Quantitative proteomics reveals dual effects of calcium on radicle protrusion in soybean. J Proteomics 2021; 230:103999. [PMID: 33017647 DOI: 10.1016/j.jprot.2020.103999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022]
Abstract
To reveal calcium-mediated germination in soybean, a gel-free/label-free proteomics was performed in radicle of seed imbibed with CaCl2. Morphological analysis presented promoting and suppressing performance of seed growth under 5 and 50 mM CaCl2, respectively. A total of 106 and 581 proteins were identified in response to 5 and 50 mM CaCl2, respectively. Among 33 proteins, which were simultaneously affected by 5 and 50 mM CaCl2 imbibition, proteins related to protein metabolism, cell, development, and stress showed reversed abundance in response to CaCl2 on dose-dependent manner. Notably, protein abundance of late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin decreased and increased by 5 and 50 mM CaCl2, respectively, consistent with the transcript level. Moreover, inhibited biosynthesis of gibberellic acid repressed growth of 5 mM CaCl2-imbibed soybean, while inhibition of abscisic acid biosynthesis released the suppressing effects of 50 mM CaCl2. Taken together, these results suggest that decreased or increased protein abundance of LEA4-5, LEA4, and dehydrin might determine promoting or suppressing effects of low or high level of calcium on soybean through enhancing seed sensitivity to gibberellic acid or abscisic acid during radicle protrusion. SIGNIFICANCE: Calcium serves as a versatile signal in plant growth; however, calcium-mediated germination on dose-dependent manner remains elusive. In this study, dual effects of calcium on radicle protrusion in soybean were investigated using proteomic approach. Radicle growth of germinating seed was improved by 5 mM CaCl2; however, it was retarded by 50 mM CaCl2. Late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin displayed converse profiles in response to low and high concentrations of CaCl2 at both protein abundance and gene expression level. Inhibited biosynthesis of gibberellic acid (GA) significantly impeded radicle protrusion in presence of low concentration of CaCl2, while inhibiting of abscisic acid (ABA) biosynthesis released suppression induced by high concentration of CaCl2. These findings suggest that LEA proteins are associated with calcium-mediated radicle protrusion on dose-dependent manner, and seed sensitivity to GA and ABA might determine promoting and suppressing effects of calcium on radicle protrusion in soybean.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Han Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|