1
|
Lei P, Luo L, Guo P, Yang Q, Shi W, Yang Q, Tian Y, Liu Y, Zeng R, Li Y, Zhang C, Qu Y. Microfluidic design and preparation of hydrogel microcapsules of Mesona chinensis polysaccharide: Characterization, pH-responsive behavior and gastrointestinal protection for Lactobacillus plantarum. Int J Biol Macromol 2025; 301:140446. [PMID: 39884599 DOI: 10.1016/j.ijbiomac.2025.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Probiotics have brought many health benefits to the human body. However, their viability during gastrointestinal transit is a concern. Therefore, this study selected Mesona chinensis polysaccharide (MCP), an edible natural polysaccharide, and constructed a new type of microcapsules using MCP as raw material to prepare cross-linked calcium ions through a microfluidic system as an ideal intestinal targeting carrier to achieve precise delivery of bioactive substances. The results showed that the Mesona chinensis polysaccharide microcapsules (MCM) had high monodispersity, stable morphology and uniform particle size (737.25 ± 10.40-511.65 ± 10.99 μm) under various parameters, and had good pH-response ability in simulated body fluids. In vivo imaging demonstrated the targeting and protective effects of the microcapsules. Compared to the free group, MCM had a longer retention time in the intestine. After encapsulating Lactobacillus plantarum, MCM formed a dense protective layer on the outer layer in simulated gastric fluid, which improved the survival and storage stability of Lactobacillus plantarum. It can be reasonably proposed that MCM represents a viable alternative as a carrier with gastric acid protection and intestinal targeting. This has the potential to expand the application of MCP in functional food and medicine, while also facilitating the future delivery of bioactive substances.
Collapse
Affiliation(s)
- Pengkun Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan Nursing Vocational College, China
| | - Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiaolin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuchun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Zeng
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Chengdu 610041, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Gupta N, Al-Dossari M, El-Gawaad NSA, Alghamdi S, Qusty NF, Babalghith AO, Yadav VK, Niazi P, Mallasiy LO. Lactiplantibacillus plantarum Moderating Effect on Autoimmune Celiac Disease Triggers. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10514-5. [PMID: 40106190 DOI: 10.1007/s12602-025-10514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
The only approved preventive treatment option GFD remains insufficient to manage Celiac Disease (CeD). A cohort of probiotic bacteria recently indicated that probiotic bacteria such as L. plantarum (LP) have a protective effect on CeD. LP has been a prominent probiotic, studied for numerous modulating properties. This review highlights and summarizes LP's ameliorating effect on various triggers/drivers of CeD. Probiotic LP potential for CeD is noticeable, mainly involving gut microbiota modulation, gluten digestion, intestinal homeostasis, CeD-associated pathogens reduction, and CD4 + T cell regulation. LP supplementation maintains intestinal physiology by improving the ratio of intestinal villus height to crypt depth. Gut microbiota modulation also improves tight junction proteins and the intestinal barrier. LP increases the digestibility of immunoreactive 33-mer gliadin peptides and regulates immune triggers such as CD4 + T cells. LP supplementation may minimize the gastrointestinal symptoms of CeD. Nevertheless, the therapeutic applicability of LP is subjected to significant clinical and nonclinical studies.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Division, River Engineering Private Limited, Ecotech-3, Greater Noida, India.
| | - M Al-Dossari
- Muhayil Asir, Applied College, King Khalid University, 62529, Abha, Saudi Arabia
| | - N S Abd El-Gawaad
- Muhayil Asir, Applied College, King Khalid University, 62529, Abha, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University Makkah, Makkah, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, 3801, Afghanistan
| | - L O Mallasiy
- Muhayil Asir, Applied College, King Khalid University, 61913, Abha, Saudi Arabia
| |
Collapse
|
3
|
Lee JH, Kim J, Jo YC, Jo YH, Jeong YH, Jeong SA, Lim BO, Shin DW. Enhanced Antioxidant and Protective Effects of Fermented Solanum melongena L. Peel Extracts Against Ultraviolet B-Induced Skin Damage. Nutrients 2025; 17:847. [PMID: 40077718 PMCID: PMC11901538 DOI: 10.3390/nu17050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: The skin, being the body's outermost organ, plays a vital role in protecting against various external stimuli. Ultraviolet generates reactive oxygen species (ROS), promoting the secretion of matrix metalloproteinases (MMPs) and inducing collagen degradation. Many studies have been conducted to identify natural substances that can prevent or delay the harmful effects of UV. Methods: A wound healing assay, DCF-DA reactive oxygen species (ROS) assay, and JC-1 assay were performed to assess the effects of bio-converted eggplant peels (BEPs) on human dermal fibroblasts (HDFs). Western blot analysis was also conducted to understand the underlying mechanisms for their effects. Finally, hematoxylin-eosin staining and immunohistochemistry were also performed in animal studies. Results: Our study evaluated the antioxidant efficacy of BEPs fermented with Lactobacillus plantarum in hydrogen peroxide (H2O2)-HDFs and UVB-induced skin damage in hairless mice. We demonstrated that BEPs exhibited enhanced antioxidant properties compared to non-fermented eggplant peels (EPs). BEPs facilitated wound healing in H2O2-damaged HDFs, reduced ROS levels, and restored mitochondrial membrane potential. BEPs suppressed the phosphorylation of ERK, p38, and JNK as their underlying mechanism. We further demonstrated that dietary supplementation of BEPs also downregulated matrix metalloproteinase 1 (MMP1) expression and upregulated collagen I (COL1) in UVB-damaged hairless mice, indicating that BEPs were more effective compared to EPs. Conclusions: Our studies suggest that BEPs fermented with Lactobacillus plantarum hold significant potential as a protective agent for mitigating UVB-induced damage and promoting skin health.
Collapse
Affiliation(s)
- Joo Hwa Lee
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.H.L.); (J.K.); (Y.H.J.)
| | - Jinsick Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.H.L.); (J.K.); (Y.H.J.)
| | - Yu Chang Jo
- Department of Applied Biochemistry, Konkuk University, Chungju 27478, Republic of Korea; (Y.C.J.); (Y.H.J.); (S.A.J.)
| | - Yun Hoo Jo
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.H.L.); (J.K.); (Y.H.J.)
| | - Yeong Hwan Jeong
- Department of Applied Biochemistry, Konkuk University, Chungju 27478, Republic of Korea; (Y.C.J.); (Y.H.J.); (S.A.J.)
| | - Soo Ah Jeong
- Department of Applied Biochemistry, Konkuk University, Chungju 27478, Republic of Korea; (Y.C.J.); (Y.H.J.); (S.A.J.)
- Human Bioscience Corporate R&D Center, Human Bioscience Corp., 268 Chungwondaero, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Department of Applied Biochemistry, Konkuk University, Chungju 27478, Republic of Korea; (Y.C.J.); (Y.H.J.); (S.A.J.)
- Human Bioscience Corporate R&D Center, Human Bioscience Corp., 268 Chungwondaero, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.H.L.); (J.K.); (Y.H.J.)
| |
Collapse
|
4
|
Trossolo E, Alabiden Tlais AZ, Tonini S, Filannino P, Gobbetti M, Cagno RD. Fermentation of a wine pomace and microalgae blend to synergistically enhance the functional value of protein- and polyphenol-rich matrices. Food Res Int 2025; 202:115785. [PMID: 39967119 DOI: 10.1016/j.foodres.2025.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
This study aimed to generate new functional ingredients from microalgae and wine pomace through starter-assisted fermentation. Five lactic acid bacteria (LAB) and five yeasts were variously chosen for their species diversity, origin, and metabolic potential. During fermentation, the combination of Chlorella vulgaris and wine pomace overcame the limited growth observed in pomace substrate, with all LAB and yeasts effectively utilizing sugars and synthesizing microbial metabolites. Additionally, the synergistic interplay between the substrates, alongside the enzyme specificity of the starter cultures, improved the bioavailability of phenolic compounds, particularly flavanols, flavonols, and procyanidins, while simultaneously generating unique peptides in the formulated ingredients. In some cases, these metabolic changes were associated with enhanced antioxidant activity, improved protein digestibility, and overall protein quality. Our findings highlighted the potential of fermented mixed substrates as new functional ingredients, with promising health-promoting benefits and significant potential for applications in the food industry.
Collapse
Affiliation(s)
- Elisabetta Trossolo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Stefano Tonini
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Pasquale Filannino
- International Center on Food Fermentation, 39100 Bolzano, Italy; Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| |
Collapse
|
5
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
6
|
Herrera-Cardoso ED, Tapia-Cervantes KA, Cepeda-Negrete J, Gutiérrez-Vargas S, León-Galván MF. Isolation and identification of Lactobacillus species from gut microbiota of Aegiale hesperiaris (Lepidoptera: Hesperiidae) larvae. FEMS Microbiol Lett 2025; 372:fnaf015. [PMID: 39886864 DOI: 10.1093/femsle/fnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Entomophagy, the practice of consuming insects, is a global tradition. In Mexico, one of the most notable and widely consumed insects is the larva of Aegiale hesperiaris. This insect feeds on the leaves of various Agave species with high polysaccharide content, suggesting their potential role as prebiotics for the intestinal microbiota, particularly lactic acid bacteria (LAB). LAB are recognized for their use as probiotics in foods due to their health-promoting capabilities. In this study, LAB from the intestinal microbiota of A. hesperiaris larvae were isolated and characterized, utilizing 16S rRNA gene identification. The analysis revealed three bacterial species from the Lactobacillaceae family, indicating a close symbiotic relationship with the insect. This suggests a significant impact on carbohydrate and protein metabolism, vitamin synthesis, and amino acid production, contributing to the high nutritional value of this edible insect. The study provides insights into the bacteria within the digestive tract of A. hesperiaris larvae and their role in enhancing the nutritional value of this edible insect. Additionally, it establishes a foundation for future research on the ecological roles and potential biotechnological benefits of these bacteria in the food industry and the development of therapies for various conditions and diseases.
Collapse
Affiliation(s)
- Ericka Denice Herrera-Cardoso
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Karen Alejandra Tapia-Cervantes
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Jonathan Cepeda-Negrete
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
- Department of Agricultural engineering, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| | - Santiago Gutiérrez-Vargas
- Department of Science and Engineering, Engineering Division, University of Guanajuato, Campus León, León, Guanajuato 37670, México
| | - Ma Fabiola León-Galván
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
- Department of Foods, University of Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, Mexico
| |
Collapse
|
7
|
Kim JH, Choi Y, Lee S, Oh MS. Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial. Biomol Ther (Seoul) 2025; 33:54-74. [PMID: 39676295 PMCID: PMC11704393 DOI: 10.4062/biomolther.2024.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
9
|
Cai H, Wang Q, Han X, Zhang H, Wang N, Huang Y, Yang P, Zhang R, Meng K. In Vitro Evaluation of Probiotic Activities and Anti-Obesity Effects of Enterococcus faecalis EF-1 in Mice Fed a High-Fat Diet. Foods 2024; 13:4095. [PMID: 39767037 PMCID: PMC11675756 DOI: 10.3390/foods13244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
This research sought to assess the anti-obesity potential of Enterococcus faecalis EF-1. An extensive and robust in vitro methodology confirmed EF-1's significant potential in combating obesity, probably due to its excellent gastrointestinal tract adaptability, cholesterol-lowering property, bile salt hydrolase activity, α-glucosidase inhibition, and fatty acid absorption ability. Moreover, EF-1 exhibited antimicrobial activity against several pathogenic strains, lacked hemolytic activity, and was sensitive to all antibiotics tested. To further investigate EF-1's anti-obesity properties in vivo, a high-fat diet (HFD) was used to induce obesity in C57BL/6J mice. Treatment with EF-1 (2 × 109 CFU/day) mitigated HFD-induced body weight gain, reduced adipose tissue weight, and preserved liver function. EF-1 also ameliorated obesity-associated microbiota imbalances, such as decreasing the Firmicutes/Bacteroidetes ratio and boosting the levels of bacteria (Faecalibacterium, Mucispirillum, Desulfovibrio, Bacteroides, and Lachnospiraceae_NK4A136_group), which are responsible for the generation of short-chain fatty acids (SCFAs). Concurrently, the levels of total SCFAs were elevated. Thus, following comprehensive safety and efficacy assessments in vitro and in vivo, our results demonstrate that E. faecalis EF-1 inhibits HFD-induced obesity through the regulation of gut microbiota and enhancing SCFA production. This strain appears to be a highly promising candidate for anti-obesity therapeutics or functional foods.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Qingya Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Xiling Han
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Haiou Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Na Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Yuyin Huang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Rui Zhang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| |
Collapse
|
10
|
Liu CY, Tsai TY, Liu TH, Chang TC, Chen YW, Tsao CW. Lactiplantibacillus plantarum 1008 Promotes Reproductive Function and Cognitive Activity in Aged Male Mice with High-Fat-Diet-Induced Obesity by Altering Metabolic Parameters and Alleviating Testicular Oxidative Damage, Inflammation and Apoptosis. Antioxidants (Basel) 2024; 13:1498. [PMID: 39765826 PMCID: PMC11673844 DOI: 10.3390/antiox13121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The effects of Lactiplantibacillus plantarum 1008 (LP1008) on age-related cognitive impairment and skeletal muscle atrophy have been reported previously. However, its role in obesity- and age-related hypogonadism has yet to be explored. This study investigates the therapeutic efficacy of low- and high-dose LP1008 in a high-fat-diet-fed male mouse model. Mice at 37 weeks of age were fed a standard diet (n = 8) or a 45% high-fat diet for 28 weeks, and the high-fat-diet-fed mice were divided into vehicle, low-dose and high-dose LP1008 groups (n = 8 per group) on the basis of the treatment administered for an additional 8 weeks. We found that LP1008 suppressed the increases in total cholesterol levels and liver function parameters and alleviated histological changes in the brain, ileum, gastrocnemius muscle and testes. In terms of reproductive function, LP1008 attenuated the decreases in sperm quality, sperm maturity, testosterone levels and levels of enzymes involved in testosterone biosynthesis. Furthermore, LP1008 altered impairments in spatial learning and memory and induced slight alterations in the gut microbiota. Moreover, LP1008 exerted antioxidant, anti-inflammatory and anti-apoptotic effects in aged, obese male mice. LP1008 reversed diet-induced obesity, age-related reproductive dysfunction and pathological damage by increasing testosterone levels and altering the gut microbiome through the regulation of mediators involved in oxidative stress, apoptosis and inflammation.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (T.-C.C.); (Y.-W.C.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (T.-C.C.); (Y.-W.C.)
| | - Yi-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-Y.L.); (T.-C.C.); (Y.-W.C.)
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
11
|
Gutiérrez-García K, Aumiller K, Dodge R, Obadia B, Deng A, Agrawal S, Yuan X, Wolff R, Zhu H, Hsia RC, Garud N, Ludington WB. A conserved bacterial genetic basis for commensal-host specificity. Science 2024; 386:1117-1122. [PMID: 39636981 PMCID: PMC11914777 DOI: 10.1126/science.adp7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of living Drosophila melanogaster to show that Lactiplantibacillus plantarum specifically recognizes the fruit fly foregut as a distinct physical niche. L. plantarum establishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Kevin Aumiller
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ren Dodge
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Benjamin Obadia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ann Deng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Agrawal
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xincheng Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haolong Zhu
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ru-Ching Hsia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - William B. Ludington
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Vertillo Aluisio G, Mezzatesta ML, Cafiso V, Scuderi R, Stefani S, Santagati M. Cell-free supernatant of Lactobacillus gasseri 1A-TV shows a promising activity to eradicate carbapenem-resistant Klebsiella pneumoniae colonization. Front Cell Infect Microbiol 2024; 14:1471107. [PMID: 39628665 PMCID: PMC11613640 DOI: 10.3389/fcimb.2024.1471107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Background The use of beneficial bacteria like Lactobacillus spp. is a potential innovative approach to fight antibiotic-resistant pathogens. Klebsiella pneumoniae is one of the most concerning multi drug-resistant (MDR) pathogens, and its ability to colonize the human gut is considered to be the main reason for recurrent infections in critically ill patients. Methods In this study, Lactobacillus gasseri 1A-TV, already described for its probiotic activity, was characterized at the genomic level. Moreover, its cell-free supernatant (CFS) was tested for antimicrobial activity against extended-spectrum β-lactamase (ESBL)- and carbapenemase (KPC)-producing K. pneumoniae clinical isolates. Results Whole-genome sequencing showed that the L. gasseri 1A-TV genome was of 2,018,898 bp in size with 34.9% GC content, containing 1,937 putative protein coding sequences, 55 tRNA, and 4 rRNA detected by RAST and classified in 20 functional groups by Cluster of Orthologous Genes (COG). BAGEL4 (BActeriocin GEnome minimal tooL) and the antiSMASH 7.0 pipeline identified two bacteriocin biosynthetic gene clusters (BBGCs), namely, BBGC1 that comprises two class IIc bacteriocins including gassericin A-like bacteriocin, and BBGC2 carrying the class III bacteriocin helveticin J. Strikingly, 1A-TV CFS inhibited the growth of all K. pneumoniae isolates only after 8 h of incubation, showing a bactericidal effect at 24 h and interfering, even at lower concentrations, with the biofilm production of biofilm-producer strains independently of a bactericidal effect. NMR analysis of CFS identified and quantified several metabolites involved in carbohydrate metabolism and amino acid metabolism, and organic acids like ethanol, lactate, acetate, and succinate. Finally, in vitro assays of 1A-TV showed significant co-aggregation effects against carbapenem-resistant K. pneumoniae, namely, strains 1, 2, 3, and 7. Conclusions Our findings highlight the antimicrobial activity of 1A-TV as a probiotic candidate or its CFS as a natural bioproduct active against MDR K. pneumoniae strains, underlining the importance of novel therapeutic strategies for prevention and control of ESBL- and carbapenemase-producing K. pneumoniae colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Santagati
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| |
Collapse
|
13
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
14
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
15
|
Gong Z, Wu Z, Yang Q, Liu J, Jiao P, Tang C. Influences of lactic acid bacteria strains on the flavor profiles, metabolites and quality characteristics of red yeast rice produced by solid-state fermentation. Food Res Int 2024; 197:115172. [PMID: 39593384 DOI: 10.1016/j.foodres.2024.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Red yeast rice (RYR) as a traditional fermented food produced by inoculation of the Monascus genus into steamed rice through solid-state fermentation, has been used intensively for thousands of years in China. Herein, we investigated the flavor profiles, metabolites and quality characteristics of RYR produced by mix fermentation with lactic acid bacteria (LAB) using the headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GCMS) approach integrated with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS). 56 volatile organic compounds (VOCs) and 1287 non-volatile metabolites were identified and classified into eight classes, the inoculation of Lactiplantibacillus plantarum (LP) and Limosilactobacillus fermentum (LF) increased VOCs and enhanced the flavor characteristics of RYR, with LP being the more significant. The KEGG pathway enrichment analysis revealed that most of the differential metabolites were enriched in amino acid metabolism when integrating volatile and non-volatile omics data, meanwhile, the addition of LAB promoted the metabolism of amino acid, alcohols, fatty acid and some flavonoids, in particular, amino acid metabolism was almost upregulated in the LP group. Therefore, this study highlights the tremendous potential of LAB in improving the flavor quality of RYR. This study provides novel insights into RYR fermentation processes and establishes a theoretical foundation for developing and applying new RYR products.
Collapse
Affiliation(s)
- Zihan Gong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhengyan Wu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qi Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Pengfei Jiao
- College of Life Science, Nanyang Normal University, No. 1638 Wolong Road, Nanyang, Henan 473061, China.
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Jiangsu Institute of Industrial Biotechnology Co. Ltd., Nanjing, Jiangsu 210061, China
| |
Collapse
|
16
|
Radziejewska-Kubzdela E, Kidoń M, Kowiel A, Waszkowiak K, Szymandera-Buszka K, Bednarek M, Kuligowski M, Kobus-Cisowska J, Mierzwa D. The Effect of Ultrasound and Lactic Acid Fermentation on the Selected Quality Parameters and Bioactive Compounds Content in Fermented Pumpkin ( Cucurbita pepo L.). Molecules 2024; 29:5586. [PMID: 39683745 DOI: 10.3390/molecules29235586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing the consumption of fruit and vegetables can be achieved by creating new products. A promising method seems to be the directed fermentation of vegetables. The aim of this study was to investigate the effect of ultrasonic pretreatment (US; 25 kHz; 5 min) and the lactic acid bacteria strain (LAB; Lactiplantibacillus plantarum 299v and Lacticaseibacillus rhamnosus GG) on the quality of fermented pumpkin (Cucurbita pepo L.). The pumpkin was inoculated with 5 log CFU/g of specific LAB strain. Fermentation was carried out for 7 days at 35 °C. Some samples were US treated at the washing stage. During fermentation, there was an increase in the LAB count of 3 logarithmic cycles compared to the initial inoculum. For L. rhamnosus, preceding fermentation by US treatment contributed to an increased bacteria count of 4 logarithmic cycles. In the case of fermentation with L. rhamnosus, the lactic acid content was significantly higher than for L. plantarum. These samples are also characterized by higher sensory properties, desirability of taste, and overall desirability. Fermentation contributed to a decrease in carotenoid and phenolic compounds content and an increase in the antioxidant capacity of the pumpkins, regardless of the bacterial strain.
Collapse
Affiliation(s)
- Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Marcin Kidoń
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Angelika Kowiel
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Marta Bednarek
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Dominik Mierzwa
- Division of Process Engineering, Institute of Chemical Technology and Engineering, Poznań University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
17
|
Heczko PB, Giemza M, Ponikiewska W, Strus M. Importance of Lactobacilli for Human Health. Microorganisms 2024; 12:2382. [PMID: 39770585 PMCID: PMC11676770 DOI: 10.3390/microorganisms12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
As an extraordinarily diverse group of bacteria, lactobacilli are now classified into several genera, many of which still include "Lactobacillus" in their names. Despite their names, this group of lactic acid bacteria comprises microorganisms that are crucial for human health, especially during the early development of the human microbiota and immune system. The interactions between lactobacilli and components of the mucosal immunity lead to its shaping and development, which is possibly considered a prime mover in the advancement of the human immune system. Although much of the evidence backing the pivotal role of lactobacilli in maintaining human health comes from studies on probiotics aiming to elucidate the mechanisms of their functional activities and studies on mucosal immunity in germ-free mice, it is justifiable to extend observations on the properties of the individual probiotic Lactobacillus that are related to health benefits onto other strains sharing common characteristics of the species. In this review, we will discuss the acquisition, presence, and functions of lactobacilli in different human microbiota throughout their whole life, including those arising in the amnion and their interactions with mucosal and immune cells. Examples of immune system modulation by probiotic lactobacilli include their colonic competition for available nutrients, interference with colonization sites, competition for binding sites on gut epithelial cells, bacteriocin production, reduction of colonic pH, and nonspecific stimulation of the immune system.
Collapse
Affiliation(s)
- Piotr B. Heczko
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, 31-121 Cracow, Poland;
| | | | | | - Magdalena Strus
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, 31-121 Cracow, Poland;
| |
Collapse
|
18
|
Duduyemi OP, Potapenko K, Limanska N, Kotsyuda S, Petriv N, Suo H, Gudzenko T, Ivanytsia V, Yevsa T. Lactiplantibacillus plantarum inhibited the growth of primary liver cancer by inducing early apoptosis and senescence, in vitro. Front Microbiol 2024; 15:1451170. [PMID: 39600571 PMCID: PMC11590124 DOI: 10.3389/fmicb.2024.1451170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 11/29/2024] Open
Abstract
Primary liver cancer (PLC), comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a severe form of cancer associated with a high mortality and morbidity rate and increasing incidence worldwide. Current treatment options are limited and chemotherapeutics demonstrate strong side effects. New therapies are highly required. Lactobacilli represent the most diverse lactic acid-producing bacteria group and a prominent example of probiotics. Several studies have highlighted the anticancer efficacy of probiotics, especially of Lactiplantibacillus plantarum. However, there are limited studies on its activity on two PLC types, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). This study evaluated the inhibitory mechanism and properties of L. plantarum ONU 12 (Lp 12) and L. plantarum ONU 355 (Lp 355), isolated from grapes in Ukraine and France, in murine PLC cell lines, in vitro. Strain Lacticaseibacillus casei ATCC 393 (Lc 393) has been taken for a direct comparison, as the most studied probiotic strain. The three Lactobacillus species were used in three forms: as live and heat-killed suspensions, and as sonicated extracts, and tested either as a monotherapy or in combination with standard chemotherapeutics (sorafenib for HCC and gemcitabine for CCA). Cell proliferation and viability were assessed via crystal violet staining assay and cell counting kit-8 assay. The induction of senescence was investigated by senescence-associated β-galactosidase assay. Fluorescence-activated cell sorting analysis was used to determine the apoptotic mechanism behind the inhibitory property of lactobacilli. The results showed that the live suspensions and sonicated extracts of Lp 12, Lp 355, and Lc 393 demonstrated inhibitory properties in CCA and HCC cells after 48 h of incubation. In combinations with standard chemotherapeutics, lactobacilli treatments have shown strong synergistic effects. The combination therapy allowed to reduce the chemotherapeutic doses of gemcitabine from 50 μM to 0.1 and 0.05 μM and sorafenib from 13.8 μM to 6.9 and 3.45 μM. Successful treatment regimes induced early apoptosis and cellular senescence in PLC, as the mechanism of inhibition. Heat-killed suspensions showed no inhibitory effect in none of the cell lines. Both strains, Lp 12 and Lp 355, showed successful results and need further testing in vivo, using autochthonous HCC and CCA models.
Collapse
Affiliation(s)
- Oladimeji Paul Duduyemi
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Kateryna Potapenko
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Nataliia Limanska
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Sofiya Kotsyuda
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Nataliia Petriv
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Tetyana Gudzenko
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Volodymyr Ivanytsia
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
19
|
Bas-Bellver C, Barrera C, Seguí L. Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods 2024; 13:3585. [PMID: 39594002 PMCID: PMC11593915 DOI: 10.3390/foods13223585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Fruit and vegetable industrialisation is a major contributor to food waste; thus, its integral transformation into functional powders has gained attention. Pretreatments can be incorporated into valorisation processes to generate structural or biochemical changes that improve powders' characteristics. This study deepens into the impact of biological (fermentation, FERM) and thermophysical (autoclaving, AUTO; microwaves, MW; ultrasound, US; and pasteurisation, PAST) pretreatments, combined with dehydration (hot air-drying, HAD; or freeze-drying, FD) on the characteristics of powdered products obtained from broccoli stems. The impact of pretreatments on physicochemical (moisture, water activity, total soluble solids) and antioxidant properties (phenols, flavonoids, antioxidant capacity by ABTS and DPPH) on residue and powdered products was studied, together with their impact on plant tissue structure (Cryo-SEM) and the powders' phenolic profile (HPLC). Probiotic viability was also determined on the fermented samples. The pretreatments applied, particularly the ultrasound, improved the antioxidant properties of the broccoli stems compared to the unpretreated samples, in line with microscopic observations. Dehydration did also improve the antioxidant attributes of the broccoli wastes, especially drying at 60 °C. However, pretreatments combined with dehydration did not generally lead to an improvement in the antioxidant properties of the powders. Probiotic properties were preserved in the freeze-dried products (>107 CFU/g). In conclusion, pretreatments may be applied to enhance the antioxidant attributes of broccoli wastes, but not necessarily that of dried powdered products.
Collapse
Affiliation(s)
| | | | - Lucía Seguí
- Institute of Food Engineering—FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.)
| |
Collapse
|
20
|
Janssen AWF, van der Lugt B, Duivenvoorde LPM, Vos AP, Bastiaan-Net S, Tomassen MMM, Verbokkem JAC, Blok-Heimerikx E, Hooiveld GJEJ, van Baarlen P, Ferrier L, van der Zande M. Comparison of iPSC-derived human intestinal epithelial cells with Caco-2 cells and human in vivo data after exposure to Lactiplantibacillus plantarum WCFS1. Sci Rep 2024; 14:26464. [PMID: 39488516 PMCID: PMC11531526 DOI: 10.1038/s41598-024-74802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
To investigate intestinal health and its potential disruptors in vitro, representative models are required. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) more closely resemble the in vivo intestinal tissue than conventional in vitro models like human colonic adenocarcinoma Caco-2 cells. However, the potential of IECs to study immune-related responses upon external stimuli has not been investigated in detail yet. The aim of the current study was to evaluate immune-related effects of IECs by challenging them with a pro-inflammatory cytokine cocktail. Subsequently, the effects of Lactiplantibacillus plantarum WCFS1 were investigated in unchallenged and challenged IECs. All exposures were compared to Caco-2 cells and in vivo data where possible. Upon the inflammatory challenge, IECs and Caco-2 cells induced a pro-inflammatory response which was strongest in IECs. Heat-killed L. plantarum exerted the strongest effect on immune parameters in the IEC model, while L. plantarum in the stationary growth phase had most pronounced effects on immune-related gene expression in Caco-2 cells. Unfortunately, comparison to in vivo transcriptomics data showed limited similarities, which could be explained by essential differences in the study setups. Altogether, hiPSC-derived IECs show a high potential as a model to study immune-related responses in the intestinal epithelium in vitro.
Collapse
Grants
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
Collapse
Affiliation(s)
- Aafke W F Janssen
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Benthe van der Lugt
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Arjan Paul Vos
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Janine A C Verbokkem
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Emmie Blok-Heimerikx
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Laurent Ferrier
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Meike van der Zande
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Gizachew S, Engidawork E. Genomic Characterization of Lactiplantibacillus plantarum Strains: Potential Probiotics from Ethiopian Traditional Fermented Cottage Cheese. Genes (Basel) 2024; 15:1389. [PMID: 39596588 PMCID: PMC11593849 DOI: 10.3390/genes15111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. Although Lactic acid bacteria are generally regarded as safe, there are rare cases of the emergence of infections and antibiotic resistance by certain probiotics. OBJECTIVE An in silico whole genome sequence analysis of putative probiotic bacteria was set up to identify strains, predict desirable functional properties, and identify potentially detrimental antibiotic resistance and virulence genes. METHODS We characterized the genomes of three L. plantarum strains (54B, 54C, and 55A) isolated from Ethiopian traditional cottage cheese. Whole-genome sequencing was performed using Illumina MiSeq sequencing. The completeness and quality of the genome of L. plantarum strains were assessed through CheckM. RESULTS Analyses results showed that L. plantarum 54B and 54C are closely related but different strains. The genomes studied did not harbor resistance and virulence factors. They had five classes of carbohydrate-active enzymes with several important functions. Cyclic lactone autoinducer, terpenes, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides-like gene clusters, sactipeptides, and all genes required for riboflavin biosynthesis were identified, evidencing their promising probiotic properties. Six bacteriocin-like structures encoding genes were found in the genome of L. plantarum 55A. CONCLUSIONS The lack of resistome and virulome and their previous functional capabilities suggest the potential applicability of these strains in food industries as bio-preservatives and in the prevention and/or treatment of infectious diseases. The results also provide insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.
Collapse
Affiliation(s)
- Seyoum Gizachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia;
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia;
| |
Collapse
|
22
|
Gutiérrez-Fernández J, Cerezo-Collado L, Garcés V, Alarcón-Guijo P, Delgado-López JM, Dominguez-Vera JM. Probiotic-Loaded Bacterial Cellulose as an Alternative to Combat Carbapenem-Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1003. [PMID: 39596698 PMCID: PMC11591192 DOI: 10.3390/antibiotics13111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority. Objective: With the aim of finding new alternatives to fight against ARB and especially against carbapenem-resistant bacteria, we have developed a series of living materials formed by incorporating the probiotics Lactobacillus plantarum (Lp), Lactobacillus fermentum (Lf), and a mixture of both (L. plantarum+L. fermentum) into bacterial cellulose (BC). Results: These probiotic-loaded bacterial celluloses inhibited the proliferation of three ARB, including two carbapenem-resistant enterobacteria (CRE), identified as Klebsiella pneumoniae and Enterobacter cloacae, and a carbapenem-resistant Pseudomonas aeruginosa. Interestingly, while the probiotics L. plantarum, L. fermentum, and the mixture of both were found to be inactive against these ARB, they became active once incorporated into BC. Conclusions: The increase in activity is due to the known effect that cells increase their activity once incorporated into a suitable matrix, forming a living material. For the same reasons, the probiotics in the living materials BC-L. plantarum, BC-L. fermentum, and BC-L. plantarum+L. fermentum showed increased stability, allowing them to be stored with bacterial activity for long periods of time (two months).
Collapse
Affiliation(s)
| | - Laura Cerezo-Collado
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Víctor Garcés
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Pablo Alarcón-Guijo
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - José M. Delgado-López
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Jose M. Dominguez-Vera
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| |
Collapse
|
23
|
Huang X, Bao J, Yang M, Li Y, Liu Y, Zhai Y. The role of Lactobacillus plantarum in oral health: a review of current studies. J Oral Microbiol 2024; 16:2411815. [PMID: 39444695 PMCID: PMC11497578 DOI: 10.1080/20002297.2024.2411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background Oral non-communicable diseases, particularly dental caries and periodontal disease, impose a significant global health burden. The underlying microbial dysbiosis is a prominent factor, driving interest in strategies that promote a balanced oral microbiome. Lactobacillus plantarum, a gram-positive lactic acid bacterium known for its adaptability, has gained attention for its potential to enhance oral health. Recent studies have explored the use of probiotic L. plantarum in managing dental caries, periodontal disease, and apical periodontitis. However, a comprehensive review on its effects in this context is still lacking. Aims This narrative review evaluates current literature on L. plantarum's role in promoting oral health and highlights areas for future research. Content In general, the utilization of L. plantarum in managing non-communicable biofilm-dependent oral diseases is promising, but additional investigations are warranted. Key areas for future study include: exploring its mechanisms of action, identifying optimal strains or strain combinations of L. plantarum, determining effective delivery methods and dosages, developing commercial antibacterial agents from L. plantarum, and addressing safety considerations related to its use in oral care.
Collapse
Affiliation(s)
- Xinyan Huang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Jianhang Bao
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Yingying Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| |
Collapse
|
24
|
Qamar H, He R, Li Y, Song M, Deng D, Cui Y, Yu M, Ma X. Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal. Antioxidants (Basel) 2024; 13:1253. [PMID: 39456506 PMCID: PMC11505245 DOI: 10.3390/antiox13101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Approximately one-third of the entire world's food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
25
|
Pulido-Mateos E, Lessard-Lord J, Desjardins Y, Roy D. Lactiplantibacillus plantarum Interstrain Variability in the Production of Bioactive Phenolic Metabolites from Flavan-3-ols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21677-21689. [PMID: 39304182 PMCID: PMC11450936 DOI: 10.1021/acs.jafc.4c07890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Flavan-3-ols intake is associated with numerous health benefits, but these are influenced by their conversion into smaller phenolic metabolites by the gut microbiota. Thus, the identification of bacteria that metabolize flavan-3-ols could lead to targeted interventions to enhance their benefits. To this end, we screened 47 Lactiplantibacillus plantarum strains for their ability to metabolize (+)-catechin, a flavan-3-ol. Then, we assessed these strains for their capacity to convert various flavan-3-ol structures. Out of the 47 isolates, 12 released 3-(3',4'-dihydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-propan-2-ol (a form of diphenylpropan-2-ol) from (+)-catechin. All strains metabolized (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, but only a subset transformed (-)-gallocatechin. Among these simple flavan-3-ol structures, (-)-epicatechin was metabolized the most. A hierarchical cluster analysis identified two groups of flavan-3-ol-metabolizing strains categorized as having "high" and "low" production of diphenylpropan-2-ols. Notably, the strains that produced higher levels of diphenylpropan-2-ol from (+)-gallocatechin and (+)-catechin also performed better with a camu-camu extract, which was studied as a complex source of flavan-3-ols and predominantly contained these two flavan-3-ols. These results demonstrate the interstrain variability in L. plantarum metabolism, which may be useful for developing tailored formulations to enhance the production of flavan-3-ols bioactive metabolites.
Collapse
Affiliation(s)
- Elena
C. Pulido-Mateos
- Institut
sur la Nutrition et les Aliments Fonctionnels de l’Université
Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada
- Laboratoire
de Génomique Microbienne, Département des Sciences des
Aliments, Faculté des Sciences de l’agriculture et de
l’alimentation, Université
Laval, Quebec G1 V 0A6, QC, Canada
| | - Jacob Lessard-Lord
- Institut
sur la Nutrition et les Aliments Fonctionnels de l’Université
Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada
| | - Yves Desjardins
- Institut
sur la Nutrition et les Aliments Fonctionnels de l’Université
Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada
| | - Denis Roy
- Institut
sur la Nutrition et les Aliments Fonctionnels de l’Université
Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada
- Laboratoire
de Génomique Microbienne, Département des Sciences des
Aliments, Faculté des Sciences de l’agriculture et de
l’alimentation, Université
Laval, Quebec G1 V 0A6, QC, Canada
| |
Collapse
|
26
|
Lu J, Shataer D, Yan H, Dong X, Zhang M, Qin Y, Cui J, Wang L. Probiotics and Non-Alcoholic Fatty Liver Disease: Unveiling the Mechanisms of Lactobacillus plantarum and Bifidobacterium bifidum in Modulating Lipid Metabolism, Inflammation, and Intestinal Barrier Integrity. Foods 2024; 13:2992. [PMID: 39335920 PMCID: PMC11431124 DOI: 10.3390/foods13182992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has risen annually, yet due to the intricacies of its pathogenesis and therapeutic challenges, there remains no definitive medication for this condition. This review explores the intricate relationship between the intestinal microbiome and the pathogenesis of NAFLD, emphasizing the substantial roles played by Lactobacillus plantarum and Bifidobacterium bifidum. These probiotics manipulate lipid synthesis genes and phosphorylated proteins through pathways such as the AMPK/Nrf2, LPS-TLR4-NF-κB, AMPKα/PGC-1α, SREBP-1/FAS, and SREBP-1/ACC signaling pathways to reduce hepatic lipid accumulation and oxidative stress, key components of NAFLD progression. By modifying the intestinal microbial composition and abundance, they combat the overgrowth of harmful bacteria, alleviating the inflammatory response precipitated by dysbiosis and bolstering the intestinal mucosal barrier. Furthermore, they participate in cellular immune regulation, including CD4+ T cells and Treg cells, to suppress systemic inflammation. L. plantarum and B. bifidum also modulate lipid metabolism and immune reactions by adjusting gut metabolites, including propionic and butyric acids, which inhibit liver inflammation and fat deposition. The capacity of probiotics to modulate lipid metabolism, immune responses, and gut microbiota presents an innovative therapeutic strategy. With a global increase in NAFLD prevalence, these insights propose a promising natural method to decelerate disease progression, avert liver damage, and tackle associated metabolic issues, significantly advancing microbiome-focused treatments for NAFLD.
Collapse
Affiliation(s)
- Jing Lu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Dilireba Shataer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Huizhen Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Xiaoxiao Dong
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| |
Collapse
|
27
|
Lutter L, Kuzina A, Andreson H. Genotypic Stability of Lactic Acid Bacteria in Industrial Rye Bread Sourdoughs Assessed by ITS-PCR Analysis. Microorganisms 2024; 12:1872. [PMID: 39338546 PMCID: PMC11434513 DOI: 10.3390/microorganisms12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Sourdough bread production relies on metabolically active starters refreshed daily with flour and water. The stability of sourdough microbial strains is crucial for consistent bread quality. However, many bakeries lack information on the persistence of starter cultures in ongoing sourdough production. Consequently, there is growing interest in identifying microbial strains from regularly used sourdoughs that possess good functional properties and resist changes in the complex growth environment. This study aimed to evaluate the composition and stability of lactic acid bacteria (LAB) in industrial wheat (WS) and rye (RS) sourdoughs propagated over a long period. LAB isolates (n = 66) from both sourdoughs, sampled over four seasons, were identified using phenotypic methods and genotyped via ITS-PCR and ITS-PCR/TaqI restriction analysis. Eight LAB species were detected, with Lactiplantibacillus plantarum being the most dominant and stable. Nineteen distinct LAB genotypes were observed, highlighting significant diversity. The presence of identical LAB genotypes in both sourdoughs suggests microbial transfer through the environment and bakery workers. LAB in RS were found to be more stable than those in WS. These findings underscore the importance of monitoring microbial stability and diversity in industrial sourdough production to maintain consistent bread quality.
Collapse
Affiliation(s)
| | | | - Helena Andreson
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (L.L.)
| |
Collapse
|
28
|
Kleerebezem M, Führen J. Synergistic vs. complementary synbiotics: the complexity of discriminating synbiotic concepts using a Lactiplantibacillus plantarum exemplary study. MICROBIOME RESEARCH REPORTS 2024; 3:46. [PMID: 39741951 PMCID: PMC11684985 DOI: 10.20517/mrr.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025]
Abstract
Synbiotics are defined as "a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host". The definition discriminates between synergistic and complementary synbiotics. Synergistic synbiotics involve a direct interaction between the substrate and co-administered microbe(s), while complementary synbiotics act through independent mechanisms. Here, we evaluate the complexity of discrimination between these two synbiotic concepts using an exemplary study performed with a panel of Lactiplantibacillus plantarum (L. plantarum) strains to identify strain-specific synergistic synbiotics that eventually turned out to work via a complementary synbiotic mechanism. This study highlights that assessing the in situ selectivity of synergistic synbiotics in the intestinal tract is challenging due to the confounding effects of the substrate ingredient on the endogenous microbiome, thereby raising doubts about the added value of distinguishing between synergistic and complementary concepts in synbiotics.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Department of Animal Sciences, Host Microbe Interactomics Group, Wageningen university and Research, Wageningen 6708 WD, the Netherlands
| | - Jori Führen
- Laboratory of Food Microbiology, Wageningen university and Research, Wageningen 6708 WG, the Netherlands
| |
Collapse
|
29
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
30
|
Zhang Y, Liu LH, Xu B, Zhang Z, Yang M, He Y, Chen J, Zhang Y, Hu Y, Chen X, Sun Z, Ge Q, Wu S, Lei W, Li K, Cui H, Yang G, Zhao X, Wang M, Xia J, Cao Z, Jiang A, Wu YR. Screening antimicrobial peptides and probiotics using multiple deep learning and directed evolution strategies. Acta Pharm Sin B 2024; 14:3476-3492. [PMID: 39234615 PMCID: PMC11372459 DOI: 10.1016/j.apsb.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 09/06/2024] Open
Abstract
Owing to their limited accuracy and narrow applicability, current antimicrobial peptide (AMP) prediction models face obstacles in industrial application. To address these limitations, we developed and improved an AMP prediction model using Comparing and Optimizing Multiple DEep Learning (COMDEL) algorithms, coupled with high-throughput AMP screening method, finally reaching an accuracy of 94.8% in test and 88% in experiment verification, surpassing other state-of-the-art models. In conjunction with COMDEL, we employed the phage-assisted evolution method to screen Sortase in vivo and developed a cell-free AMP synthesis system in vitro, ultimately increasing AMPs yields to a range of 0.5-2.1 g/L within hours. Moreover, by multi-omics analysis using COMDEL, we identified Lactobacillus plantarum as the most promising candidate for AMP generation among 35 edible probiotics. Following this, we developed a microdroplet sorting approach and successfully screened three L. plantarum mutants, each showing a twofold increase in antimicrobial ability, underscoring their substantial industrial application values.
Collapse
Affiliation(s)
- Yu Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China
| | - Bo Xu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Yiyang He
- School of Education, Jianghan University, Wuhan 430056, China
| | - Jingjing Chen
- Yeasen Biotechnology (Shanghai) Co., Ltd., Shanghai 200000, China
| | - Yang Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Yucheng Hu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Xipeng Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Zitong Sun
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Qijun Ge
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Song Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Wei Lei
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Kaizheng Li
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Hua Cui
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Gangzhu Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Xuemei Zhao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Man Wang
- Yeasen Biotechnology (Shanghai) Co., Ltd., Shanghai 200000, China
| | - Jiaqi Xia
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Zhen Cao
- Yeasen Biotechnology (Shanghai) Co., Ltd., Shanghai 200000, China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China
| |
Collapse
|
31
|
Wang M, Xu X, Sheng M, Zhang M, Wu F, Zhao Z, Guo M, Fang B, Wu J. Tannic acid protects against colitis by regulating the IL17 - NFκB and microbiota - methylation pathways. Int J Biol Macromol 2024; 274:133334. [PMID: 38908626 DOI: 10.1016/j.ijbiomac.2024.133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Tannic acid, a bioactive polyphenol found in various phytogenic foods and medicinal plants, has potential prevention effects on colitis, though more evidence and mechanistic studies are required to substantiate this. In this study, we investigated the effects of different doses from 0 to 3 mg/mL of tannic acid on mice, ultimately selecting a dose of 3 mg/mL for the anti-colitis trial based on growth and intestinal morphology assessments. Using the DSS-induced colitis model, we found that tannic acid may alleviate colitis by inhibiting the IL-17 - NF-κB p65 signaling pathway and modulating epigenetic pathways, particularly methylation modifications. Additionally, tannic acid altered the gut microbiota, increasing the abundances of Prevotella, Eubacterium_siraeum_group, and Enterorhabdus in the colon. Supplementation with Eubacterium siraeum via gavage also inhibited colitis, accompanied by increased folate and methylation regulators in the colon. These findings suggest that tannic acid may inhibit colitis through the suppression of the IL-17 - NF-κB pathway and the enhancement of microbiota-mediated methylation pathways.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong 271018, China
| | - Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong 250012, China
| | - Mingxuan Sheng
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zhi Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Meng Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jianmin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Sebouai M, Hamma-Faradji S, Rezgui A, Sobhi W, Belaouni HA, Ben Salah R, Aksas A, Bendali F. Encapsulated probiotic Lactiplantibacillus strains with promising applications as feed additives for broiler chickens. Comp Immunol Microbiol Infect Dis 2024; 111:102213. [PMID: 38941742 DOI: 10.1016/j.cimid.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Lactic acid bacteria (LAB), particularly Lactobacilli strains, represent a widely studied and promising group of probiotics with numerous potential health benefits. In this study, we isolated LAB strains from fecal samples of healthy broiler chickens and characterized their probiotic properties. Out of 62 initial isolates, five strains were selected for further investigations based on their antibacterial activity against pathogenic bacteria. These selected strains were identified as Lactiplantibacillus species. They exhibited desirable probiotic traits, including non-hemolyis, non-cytotoxicity, lack of antibiotic resistance, acid tolerance, auto-aggregation, and antioxidative potential. Encapsulation of these strains in alginate beads enhanced their survival compared to free cells, in stomach (69-87 % vs. 34-47 %) and intestinal (72-100 % vs. 27-51 %) juices, after 120 min exposure. These findings suggest that encapsulated Lactiplantibacillus strains could be used as feed additives for broiler chickens. Nevertheless, further studies are needed to set on their probiotic potential in vivo.
Collapse
Affiliation(s)
- Manel Sebouai
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biotechnologie végétale et ethnobotanique, Bejaia 06000, Algeria
| | - Samia Hamma-Faradji
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
| | - Abdelmalek Rezgui
- Centre National de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | - Widad Sobhi
- Centre National de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | | | - Riadh Ben Salah
- Laboratoire de Biotechnologie Microbienne et d'Ingenierie enzymatqiue (LBMIE), Centre de Biotechnologie de Sfax, B.P 1177, Sfax 3018, Tunisia
| | - Ali Aksas
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biotechnologie végétale et ethnobotanique, Bejaia 06000, Algeria
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria.
| |
Collapse
|
33
|
Qamar H, Li Y, He R, Waqas M, Song M, Deng D, Cui Y, Yang P, Liu Z, Qammar B, Asnan M, Xie X, Yu M, Ma X. Integrated Metabolomics and Metagenomics Unveiled Biomarkers of Antioxidant Potential in Fermented Brewer's Grains. Antioxidants (Basel) 2024; 13:872. [PMID: 39061941 PMCID: PMC11274078 DOI: 10.3390/antiox13070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
About one-third of the global food supply is wasted. Brewers' spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques to assess the effects of enzyme treatments and Lactobacillus fermentation on the antioxidant capacity of BSG. The biotreated BSG revealed improved antioxidant capability, as evidenced by significantly increased (p < 0.05) radical scavenging activity and flavonoid and polyphenol content. Untargeted metabolomics revealed that Lactobacillus fermentation led to the prominent synthesis (p < 0.05) of 15 novel antioxidant peptides, as well as significantly higher (p < 0.05) enrichment of isoflavonoid and phenylpropanoid biosynthesis pathways. The correlation analysis demonstrated that Lactiplantibacillus plantarum exhibited strong correlation (p < 0.05) with aucubin and carbohydrate-active enzymes, namely, glycoside hydrolases 25, glycosyl transferases 5, and carbohydrate esterases 9. The fermented BSG has potential applications in the food industry as a culture medium, a functional food component for human consumption, and a bioactive feed ingredient for animals.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Pan Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | | | - Muhammad Asnan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Xiangxue Xie
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
34
|
Sun Y, Liu P, Guo W, Guo J, Chen J, Xue X, Duan C, Wang Z, Yan X. Study on the alleviative effect of Lactobacillus plantarum on Eimeria falciformis infection. Infect Immun 2024; 92:e0013024. [PMID: 38842306 PMCID: PMC11324035 DOI: 10.1128/iai.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.
Collapse
Affiliation(s)
- Yufei Sun
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Pufang Liu
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Wenhui Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jun Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jia Chen
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinyu Xue
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Chao Duan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Zixuan Wang
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinlei Yan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| |
Collapse
|
35
|
Biskou O, Walter S, Israelsen H, Winberg ME, Bednarska O, Keita ÅV. ReFerm ®: a postbiotic fermented oat gruel composition is reducing mast cell degranulation in the colon of patients with irritable bowel syndrome. Front Med (Lausanne) 2024; 11:1408623. [PMID: 39026547 PMCID: PMC11255971 DOI: 10.3389/fmed.2024.1408623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder that affects ~4% of the global population. ReFerm® is a postbiotic product derived from oat gruel fermented with Lactobacillus plantarum 299v, and it has been shown to have beneficial effects on intestinal permeability in patients with IBS. In this study, we investigated the effects of ReFerm® on regulators of intestinal permeability, namely mast cells and enteric glial cells. Materials and methods A total of 30 patients with moderate to severe IBS were treated with an enema containing ReFerm® or a placebo twice daily. The patients underwent sigmoidoscopy with biopsies obtained from the distal colon at baseline and after 14 days of treatment. These biopsies were processed in two ways: some were fixed, embedded in paraffin, sectioned, and stained for mast cells and enteric glial cells; others were cryopreserved, lysed, and subjected to Western blotting to analyze the same markers. Results Treatment with ReFerm®, but not the placebo, significantly reduced mast cell tryptase protein levels in the biopsy lysates. Although the number of mast cells remained unchanged in colonic biopsies, ReFerm® treatment significantly reduced mast cell degranulation, a result not observed in the placebo group. Neither ReFerm® or placebo treatment had an impact on total protein levels or the number of enteric glial cells in the biopsies. Conclusion ReFerm® treatment significantly reduced both total mast cell tryptase levels and the degranulation of mast cells in colonic biopsies from patients with IBS, suggesting a decrease in mast cell activity as a potential mechanism underlying the beneficial effects of ReFerm®. However, further research is required to assess the molecular mechanisms through which ReFerm® operates in the colons of patients with IBS. Clinical trial registration https://clinicaltrials.gov, identifier: NCT05475314.
Collapse
Affiliation(s)
- Olga Biskou
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susanna Walter
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Martin E. Winberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olga Bednarska
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Shokoohi E, Machado RAR, Masoko P. Bacterial communities associated with Acrobeles complexus nematodes recovered from tomato crops in South Africa. PLoS One 2024; 19:e0304663. [PMID: 38843239 PMCID: PMC11156337 DOI: 10.1371/journal.pone.0304663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.
Collapse
Affiliation(s)
- Ebrahim Shokoohi
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Ricardo A. R. Machado
- Experimental Biology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Peter Masoko
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
37
|
Sun C, Wang S, Wang S, Wang P, Zhang G, Liu H, Zhu D. Characterization of high-internal-phase emulsions based on soy protein isolate with varying concentrations of soy hull polysaccharide and their capabilities for probiotic delivery: In vivo and in vitro release and thermal stability. Food Res Int 2024; 186:114371. [PMID: 38729729 DOI: 10.1016/j.foodres.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.
Collapse
Affiliation(s)
- Chenyuan Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Guangchen Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
38
|
Zhong H, Wang L, Jia F, Yan Y, Xiong F, Li Y, Hidayat K, Guan R. Effects of Lactobacillus plantarum supplementation on glucose and lipid metabolism in type 2 diabetes mellitus and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 61:377-384. [PMID: 38777458 DOI: 10.1016/j.clnesp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Lactobacillus plantarum has been shown to improve glucose and lipid metabolism in mouse models of type 2 diabetes mellitus (T2DM). However, it remains unclear whether such benefits extend to humans. A systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to clarify the effect of L. plantarum supplementation on glucose and lipid metabolism in T2DM and prediabetes. The PubMed, Cochrane, and Web of Science databases were searched. A random-effects model was used to estimate the pooled mean difference with 95% CI (confidence interval). L. plantarum supplementation reduced the levels of fasting plasma glucose (-0.41, 95%CI -0.63, -0.19 mg/dL; n = 5) and hemoglobin A1c (-0.2, 95%CI: -0.3, 0%; n = 4). A non-statistically significant tendency towards improvements in the Homeostatic Model Assessment for Insulin Resistance (MD: -0.74, 95%CI: -1.72, 0.25; n = 3), low-density lipoprotein cholesterol (-6.87; 95%CI: -15.03, 1.29 mg/dL; n = 3), high-density lipoprotein cholesterol (MD: 1.34; 95%CI: -0.78, 3.46 mg/dL; n = 3), triglyceride (MD: -3.90; 95%CI: -11.05, 3.24 mg/dL; n = 3), and total cholesterol (MD: -4.88; 95%CI: -11.84, 2.07 mg/dL; n = 3) was observed with the supplementation. In summary, while the evidence from the currently available RCTs provides a crude indication that L. plantarum supplementation might improve glucose and lipid metabolism in patients with T2DM and prediabetes, the benefits of the supplementation are likely subtle, and its clinical significance requires further investigation.
Collapse
Affiliation(s)
- Hao Zhong
- School of Medicine, Nankai University, Tianjin, 310071, China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yongqiu Yan
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo, 315012, China
| | - Yunhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Khemayanto Hidayat
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
39
|
Bordini FW, Fernandes JC, de Souza VLC, Galhardo EC, de Mancilha IM, de Almeida Felipe MDG. Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014. Braz J Microbiol 2024; 55:1655-1667. [PMID: 38635155 PMCID: PMC11153477 DOI: 10.1007/s42770-024-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL-1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL-1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.
Collapse
Affiliation(s)
- Fernanda Weber Bordini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Júlia Cristina Fernandes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Viviane Lívia Carvalho de Souza
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Elaine Cristina Galhardo
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Ismael Maciel de Mancilha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil.
| |
Collapse
|
40
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
41
|
Aljohani A, Rashwan N, Vasani S, Alkhawashki A, Wu TT, Lu X, Castillo DA, Xiao J. The Health Benefits of Probiotic Lactiplantibacillus plantarum: A Systematic Review and Meta-Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10287-3. [PMID: 38816672 DOI: 10.1007/s12602-024-10287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
To ensure effective administration of probiotics in clinical practice, it is crucial to comprehend the specific strains and their association with human health. Therefore, we conducted a systematic review and meta-analysis to evaluate the scientific evidence on the impact of Lactiplantibacillus plantarum probiotic consumption on human health. Out of 11,831 records, 135 studies were assessed qualitatively, and 18 studies were included in the meta-analysis. This systematic review demonstrated that probiotic supplementation with L. plantarum, either alone or in combination, can significantly improve outcomes for patients with specific medical conditions. Meta-analysis revealed notable benefits in periodontal health, evidenced by reduced pocket depth and bleeding on probing (p < 0.001); in gastroenterological health, marked by significant reductions in abdominal pain (p < 0.001); and in infectious disease, through a reduction in C-reactive protein levels (p < 0.001). Cardiovascular benefits included lowered total cholesterol and low-density lipoprotein cholesterol in the L. plantarum intervention group (p < 0.05). Our study's clinical significance highlights the importance of considering probiotic strain and their application to specific diseases when planning future studies and clinical interventions, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Amal Aljohani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Noha Rashwan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Shruti Vasani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Alkhawashki
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
- Pediatrics, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Prema P, Ali D, Nguyen VH, Pradeep BV, Veeramanikandan V, Daglia M, Arciola CR, Balaji P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics (Basel) 2024; 13:437. [PMID: 38786166 PMCID: PMC11118495 DOI: 10.3390/antibiotics13050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
A variety of bacteria, including beneficial probiotic lactobacilli, produce antibacterials to kill competing bacteria. Lactobacilli secrete antimicrobial peptides (AMPs) called bacteriocins and organic acids. In the food industry, bacteriocins, but even whole cell-free supernatants, are becoming more and more important as bio-preservatives, while, in orthopedics, bacteriocins are introducing new perspectives in biomaterials technologies for anti-infective surfaces. Studies are focusing on Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum). L. plantarum exhibits great phenotypic versatility, which enhances the chances for its industrial exploitation. Importantly, more than other lactobacilli, it relies on AMPs for its antibacterial activity. In this study, Response Surface Methodology (RSM) through a Box-Behnken experimental design was used to estimate the optimal conditions for the production of antibacterials by L. plantarum. A temperature of 35 °C, pH 6.5, and an incubation time of 48 h provided the highest concentration of antibacterials. The initial pH was the main factor influencing the production of antibacterials, at 95% confidence level. Thanks to RSM, the titer of antibacterials increased more than 10-fold, this result being markedly higher than those obtained in the very few studies that have so far used similar statistical methodologies. The Box-Behnken design turned out to be a valid model to satisfactorily plan a large-scale production of antibacterials from L. plantarum.
Collapse
Affiliation(s)
- Paulpandian Prema
- Department of Zoology, VHN Senthikumar Nadar College, Virudhunagar 626001, TN, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India;
| | - Bhathini Vaikuntavasan Pradeep
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Veeramani Veeramanikandan
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India
| |
Collapse
|
43
|
Wang Q, Xiong J, He Y, He J, Cai M, Luo Z, Zhang T, Zhou X. Effect of L-arabinose and lactulose combined with Lactobacillus plantarum on obesity induced by a high-fat diet in mice. Food Funct 2024; 15:5073-5087. [PMID: 38656276 DOI: 10.1039/d4fo00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jialu Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yalun He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Juncheng He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zexian Luo
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
44
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
45
|
Wang LH, Qu WH, Xu YN, Xia SG, Xue QQ, Jiang XM, Liu HY, Xue CH, Wen YQ. Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods 2024; 13:1386. [PMID: 38731757 PMCID: PMC11083161 DOI: 10.3390/foods13091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Wen-Hui Qu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Ya-Nan Xu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Song-Gang Xia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Qian-Qian Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Xiao-Ming Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hong-Ying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China;
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Yun-Qi Wen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| |
Collapse
|
46
|
Li J, Yu J, Song Y, Wang S, Mu G, Tuo Y. Exopolysaccharides and Surface-Layer Proteins Expressed by Biofilm-State Lactiplantibacillus plantarum Y42 Play Crucial Role in Preventing Intestinal Barrier and Immunity Dysfunction of Balb/C Mice Infected by Listeria monocytogenes ATCC 19115. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8581-8594. [PMID: 38590167 DOI: 10.1021/acs.jafc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Our previous study showed that Lactiplantibacillus plantarum Y42 in the biofilm state can produce more exopolysaccharides and surface-layer proteins and showed a stronger promoting effect on intestinal barrier function than that in the planktonic state. In this study, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites (exopolysaccharides and surface-layer proteins) increased the expression of Occludin, Claudin-1, ZO-1, and MUC2 in the gut of the Balb/C mice after exposure to Listeria monocytogenes ATCC 19115 and inhibited the activation of the NLRP3 inflammasome pathway, which in turn reduced the levels of inflammatory cytokines IL-1β and IL-18 in the serum of the mice. Furthermore, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites increased the abundance of beneficial bacteria (e.g., Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001) while reducing the abundance of harmful bacteria (e.g., norank_f__Muribaculaceae) in the gut of the mice, in line with the increase of short-chain fatty acids and indole derivatives in the feces of the mice. Notably, biofilm L. plantarum Y42 exerted a better preventing effect on the intestinal barrier dysfunction of the Balb/C mice due to the fact that biofilm L. plantarumY42 expressed more exopolysaccharides and surface-layer proteins than the planktonic state. These results provide data support for the use of exopolysaccharides and surface-layer proteins extracted from biofilm-state L. plantarum Y42 as functional food ingredients in preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Sihan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
47
|
Hong Y, Song G, Feng X, Niu J, Wang L, Yang C, Luo X, Zhou S, Ma W. The Probiotic Kluyveromyces lactis JSA 18 Alleviates Obesity and Hyperlipidemia in High-Fat Diet C57BL/6J Mice. Foods 2024; 13:1124. [PMID: 38611428 PMCID: PMC11011337 DOI: 10.3390/foods13071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity poses a significant threat to various health conditions such as heart diseases, diabetes, high blood pressure, and heart attack, with the gut microbiota playing a crucial role in maintaining the body's energy balance. We identified a novel probiotic fungal strain, Kluyveromyces lactis JSA 18 (K. lactis), which was isolated from yak milk and was found to possess anti-obesity properties. Additionally, Lactobacillus plantarum CGMCC 8198 (LP8198) from our previous study was also included to evaluate its anti-obesity properties. The findings indicated that K. lactis caused a notable reduction in weight gain, liver and fat indexes, and hyperlipidemia in mice fed a high-fat diet (HFD). Administering K. lactis and LP8198 to mice on a high-fat diet resulted in a reduction of serum triglyceride levels. Furthermore, the supplements reduced ALT and AST activity, and inhibited the production of inflammatory cytokines such as TNF-α and IL-1β. In addition, lipid metabolism was enhanced by the downregulation of ACC1, PPAR-γ, SREBP-1, and Fasn. Moreover, this study found that K. lactis and LP8198 have little effect on gut bacteria. Additionally, K. lactis partially influenced intestinal fungi, while LP8198 had a minor influence on gut mycobiota. The main goal of this research was to show how effective K. lactis can be as a probiotic in combating obesity.
Collapse
Affiliation(s)
- Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Guodong Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xiaoqian Feng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Jialei Niu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Caini Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
48
|
Popova-Krumova P, Danova S, Atanasova N, Yankov D. Lactic Acid Production by Lactiplantibacillus plantarum AC 11S-Kinetics and Modeling. Microorganisms 2024; 12:739. [PMID: 38674683 PMCID: PMC11051871 DOI: 10.3390/microorganisms12040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Lactic acid is a versatile chemical with wide application in many industries. It can be produced by the fermentation of different sugars by various lactobacilli and investigations on lactic acid production from different substrates and by different strains are still in progress. The present study aimed to study lactic acid production from lactose by Lactiplantibacillus plantarum AC 11S and to choose a mathematical model describing in the best way the experimental data obtained. The influence of initial substrate concentration was investigated, and optimal pH and temperature were determined. An unstructured mathematical model was developed comprising equations for bacterial growth, substrate consumption, and product formation. The model was solved with different terms for specific growth rates considering substrate and/or product inhibition. The best bacterial growth and lactic acid production were achieved at pH = 6.5 and 30 °C. Production of lactic acid was mainly growth-associated, and at initial substrate concentration over 15 g/L, a considerable product inhibition was observed. The parameters of different models were determined and compared. The modified Gompertz equation gave the best fit when solving only the equation for biomass growth at different initial substrate concentrations. Solving the entire set of differential equations for bacterial growth, substrate consumption, and product formation, the best results were obtained when using a variant of the logistic equation for biomass growth. This variant included a term for product inhibition and described in the best way all experimental data. Solving the model for different biomass concentrations showed that an increase in biomass led to a shorter lag phase and the stationary phase was reached faster. The results obtained, optimum conditions and the kinetic model, are good bases for studying pH-controlled fermentation, as well as a continuous process.
Collapse
Affiliation(s)
- Petya Popova-Krumova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103 Acad. G. Bontchev Str., 1113 Sofia, Bulgaria;
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bontchev Str., 1113 Sofia, Bulgaria; (S.D.); (N.A.)
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bontchev Str., 1113 Sofia, Bulgaria; (S.D.); (N.A.)
| | - Dragomir Yankov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103 Acad. G. Bontchev Str., 1113 Sofia, Bulgaria;
| |
Collapse
|
49
|
Liu Y, Wang S, Wang L, Lu H, Zhang T, Zeng W. Characterization of Genomic, Physiological, and Probiotic Features of Lactiplantibacillus plantarum JS21 Strain Isolated from Traditional Fermented Jiangshui. Foods 2024; 13:1082. [PMID: 38611386 PMCID: PMC11011416 DOI: 10.3390/foods13071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
50
|
Yetiman A, Horzum M, Bahar D, Akbulut M. Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on "In Silico" and "In Vitro" Approaches. Probiotics Antimicrob Proteins 2024; 16:334-351. [PMID: 36735220 DOI: 10.1007/s12602-022-10038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to characterize the genomic and metabolic properties of a novel Lb. fermentum strain AGA52 which was isolated from a lactic acid fermented beverage called "shalgam." The genome size of AGA52 was 2,001,184 bp, which is predicted to carry 2024 genes, including 50 tRNAs, 3 rRNAs, 3 ncRNAs, 15 CRISPR repeats, 14 CRISPR spacers, and 1 CRISPR array. The genome has a GC content of 51.82% including 95 predicted pseudogenes, 56 complete or partial transposases, and 2 intact prophages. The similarity of the clusters of orthologous groups (COG) was analyzed by comparison with the other Lb. fermentum strains. The detected resistome on the genome of AGA52 was found to be intrinsic originated. Besides, it has been determined that AGA52 has an obligate heterofermentative carbohydrate metabolism due to the absence of the 1-phosphofructokinase (pfK) enzyme. Furthermore, the strain is found to have a better antioxidant capacity and to be tolerant to gastrointestinal simulated conditions. It was also observed that the AGA52 has antimicrobial activity against Yersinia enterocolitica ATCC9610, Bacillus cereus ATCC33019, Salmonella enterica sv. Typhimurium, Escherichia coli O157:h7 ATCC43897, Listeria monocytogenes ATCC7644, Klebsiella pneumoniae ATCC13883, and Proteus vulgaris ATCC8427. Additionally, AGA52 exhibited 42.74 ± 4.82% adherence to HT29 cells. Cholesterol assimilation (33.9 ± 0.005%) and GABA production capacities were also confirmed by "in silico" and "in vitro." Overall, the investigation of genomic and metabolic features of the AGA52 revealed that is a potential psychobiotic and probiotic dietary supplement candidate and can bring functional benefits to the host.
Collapse
Affiliation(s)
- Ahmet Yetiman
- Food Engineering Department, Faculty of Engineering, Erciyes University, 38030, Kayseri, Turkey.
| | - Mehmet Horzum
- Food Engineering Department, Graduate School of Natural and Applied Sciences, Erciyes University, 38030, Kayseri, Turkey
| | - Dilek Bahar
- Genkök Genome and Stem Cell Center, Erciyes University, 38030, Kayseri, Turkey
| | - Mikail Akbulut
- Department of Biology, Faculty of Science, Erciyes University, 38030, Kayseri, Turkey
| |
Collapse
|