1
|
Love C, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024; 22:393. [PMID: 39278907 PMCID: PMC11404034 DOI: 10.1186/s12916-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.
Collapse
Affiliation(s)
- Chloe Love
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Luba Sominsky
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Martin O'Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Samantha L Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
- Murdoch Children's Research Institute, Parkville, Australia.
- Food and Mood Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
2
|
Stojsavljević A, Lakićević N, Pavlović S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023; 11:3344. [PMID: 38137565 PMCID: PMC10741416 DOI: 10.3390/biomedicines11123344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury (Hg) is a non-essential trace metal with unique neurochemical properties and harmful effects on the central nervous system. In this study, we present a comprehensive review and meta-analysis of peer-reviewed research encompassing five crucial clinical matrices: hair, whole blood, plasma, red blood cells (RBCs), and urine. We assess the disparities in Hg levels between gender- and age-matched neurotypical children (controls) and children diagnosed with autism spectrum disorder (ASD) (cases). After applying rigorous selection criteria, we incorporated a total of 60 case-control studies into our meta-analysis. These studies comprised 25 investigations of Hg levels in hair (controls/cases: 1134/1361), 15 in whole blood (controls/cases: 1019/1345), 6 in plasma (controls/cases: 224/263), 5 in RBCs (controls/cases: 215/293), and 9 in urine (controls/cases: 399/623). This meta-analysis did not include the data of ASD children who received chelation therapy. Our meta-analysis revealed no statistically significant differences in Hg levels in hair and urine between ASD cases and controls. In whole blood, plasma, and RBCs, Hg levels were significantly higher in ASD cases compared to their neurotypical counterparts. This indicates that ASD children could exhibit reduced detoxification capacity for Hg and impaired mechanisms for Hg excretion from their bodies. This underscores the detrimental role of Hg in ASD and underscores the critical importance of monitoring Hg levels in ASD children, particularly in early childhood. These findings emphasize the pressing need for global initiatives aimed at minimizing Hg exposure, thus highlighting the critical intersection of human-environment interaction and neurodevelopment health.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
3
|
Hess JL, Quinn TP, Zhang C, Hearn GC, Chen S, Kong SW, Cairns M, Tsuang MT, Faraone SV, Glatt SJ. BrainGENIE: The Brain Gene Expression and Network Imputation Engine. Transl Psychiatry 2023; 13:98. [PMID: 36949060 PMCID: PMC10033657 DOI: 10.1038/s41398-023-02390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
In vivo experimental analysis of human brain tissue poses substantial challenges and ethical concerns. To address this problem, we developed a computational method called the Brain Gene Expression and Network-Imputation Engine (BrainGENIE) that leverages peripheral-blood transcriptomes to predict brain tissue-specific gene-expression levels. Paired blood-brain transcriptomic data collected by the Genotype-Tissue Expression (GTEx) Project was used to train BrainGENIE models to predict gene-expression levels in ten distinct brain regions using whole-blood gene-expression profiles. The performance of BrainGENIE was compared to PrediXcan, a popular method for imputing gene expression levels from genotypes. BrainGENIE significantly predicted brain tissue-specific expression levels for 2947-11,816 genes (false-discovery rate-adjusted p < 0.05), including many transcripts that cannot be predicted significantly by a transcriptome-imputation method such as PrediXcan. BrainGENIE recapitulated measured diagnosis-related gene-expression changes in the brain for autism, bipolar disorder, and schizophrenia better than direct correlations from blood and predictions from PrediXcan. We developed a convenient software toolset for deploying BrainGENIE, and provide recommendations for how best to implement models. BrainGENIE complements and, in some ways, outperforms existing transcriptome-imputation tools, providing biologically meaningful predictions and opening new research avenues.
Collapse
Affiliation(s)
- Jonathan L Hess
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Thomas P Quinn
- Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia
| | - Chunling Zhang
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gentry C Hearn
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuel Chen
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Murray Cairns
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Australia
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
- Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, USA
| | - Stephen V Faraone
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen J Glatt
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
4
|
Shiani A, Sharafi K, Omer AK, Kiani A, Karamimatin B, Massahi T, Ebrahimzadeh G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159246. [PMID: 36220469 DOI: 10.1016/j.scitotenv.2022.159246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by difficulties in social communication and repetitive behaviors. There have been many previous studies of toxic metals in ASD. Therefore, the priority of this study is to review the relationships between exposure to toxic metals and ASD. MATERIALS & METHODS This study was based on a comprehensive search of international databases, such as Web of Science, Science Direct, Scopus, PubMed, and Google Scholar, for all works related to the subject under discussion from 1982 to 2022. We further summarize published data linked to this topic and discuss with clarifying evidence that agrees and conflicts with the association between exposure to toxic metals, including mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), and aluminum (Al) and ASD. RESULTS 40 out of 63 papers met the requirements for meta-analysis. Blood Pb levels (standardized mean difference (SMD) = 0.81; 95 % confidence interval (CI): 0.36-1.25), blood Hg (SMD = 0.90; CI: 0.30-1.49), hair Pb (SMD = 1.47; CI: 0.03-2.92), urine As (SMD = 0.65; CI: 0.22-1.09), and urine Al levels (SMD = 0.85; CI: 0.40-1.29) in autistic individuals were significantly higher than those of healthy control (HC). Whereas, blood As levels (SMD = 1.33; CI: -1.32-3.97), hair As (SMD = 0.55; CI: -0.14-1.24), hair Cd (SMD = 0.60; CI: -0.31-1.51), hair Hg (SMD = 0.41; CI: -0.30-1.12), hair Al (SMD = 0.87; CI: -0.02-1.77), urine Pb (SMD = -0.68; CI: -2.55-1.20), urine Cd (SMD = -0.26; CI: -0.94-0.41), and urine Hg levels (SMD = 0.47; CI: -0.09-1.04) in autistic individuals were significantly lower than those of HC. CONCLUSION Toxic metal content significantly differed between individuals with ASD and HC in the current meta-analysis. The results assist in clarifying the significance of toxic metals as environmental factors in the development of ASD.
Collapse
Affiliation(s)
- Amir Shiani
- Department of Speech Therapy, School of Rehabilitation Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; Razga Company, Kurdistan Region, Iraq.
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Karamimatin
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
5
|
Sun L, Wang X, Wang X, Cui X, Li G, Wang L, Wang L, Song M, Yu L. Genome-wide DNA methylation profiles of autism spectrum disorder. Psychiatr Genet 2022; 32:131-145. [PMID: 35353793 DOI: 10.1097/ypg.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD). METHODS First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed. RESULTS Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis. CONCLUSIONS Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.
Collapse
Affiliation(s)
- Ling Sun
- Mental Health Center, The First Hospital of Hebei Medical University
- Medical Department
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Xia Wang
- Child Health Department (Psychological Behavior Department)
| | | | | | - Le Wang
- Institute of Pediatric Research, Children's Hospital of Hebei Province, China
| | - Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Lulu Yu
- Mental Health Center, The First Hospital of Hebei Medical University
| |
Collapse
|
6
|
Methylmercury chloride exposure exacerbates existing neurobehavioral and immune dysfunctions in the BTBR T+ Itpr3tf/J mouse model of autism. Immunol Lett 2022; 244:19-27. [DOI: 10.1016/j.imlet.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
|
7
|
Huang ZA, Zhang J, Zhu Z, Wu EQ, Tan KC. Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3971-3984. [PMID: 32841125 DOI: 10.1109/tnnls.2020.3016357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.
Collapse
|
8
|
Associations of Metabolic Genes ( GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041377. [PMID: 33546147 PMCID: PMC7913200 DOI: 10.3390/ijerph18041377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
We investigated interactive roles of three metabolic glutathione S-transferase (GST) genes (GSTP1, GSTT1, and GSTM1) and autism spectrum disorder (ASD) status in relation to blood Hg concentrations (BHC) of Jamaican children. We used data from 266 children (2-8 years) with ASD and their 1:1 age- and sex-matched typically developing (TD) controls. After adjusting General Linear Models for child’s age, socioeconomic status, consumption of leafy vegetables, fried plantain, canned fish, and the interaction between GSTP1 and GSTT1, we found significant interactions between GSTP1 and ASD status in relation to BHC either in a co-dominant or dominant genetic model for GSTP1(P < 0.001, P = 0.007, respectively). In the co-dominant model for the Ile105Val GSTP1 polymorphism, geometric mean (GM) BHC in ASD cases with genotype Ile/Ile were significantly higher than in cases with the Ile/Val genotype (0.73 vs. 0.48 µg/L, P = 0.01). In contrast, in TD controls with the Ile/Val genotype GM BHC were significantly higher than in those with the Ile/Ile genotype (0.72 vs. 0.49 µg/L, P = 0.03) or the Val/Val genotype (0.72 vs. 0.51 µg/L, P = 0.04). Although our findings are consistent with the role of GSTP1 in detoxification of Hg, replication in other populations is warranted.
Collapse
|
9
|
Sulaiman R, Wang M, Ren X. Exposure to Aluminum, Cadmium, and Mercury and Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2020; 33:2699-2718. [DOI: 10.1021/acs.chemrestox.0c00167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rosalind Sulaiman
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, New York 14214, United States
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, New York 14214, United States
- Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, New York 14214, United States
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
10
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry 2020; 10:8. [PMID: 32066674 PMCID: PMC7026179 DOI: 10.1038/s41398-020-0710-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and disease-related exposures. To date, few studies have examined differences in DNA methylation associated with attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the genome in saliva samples from children (age 7-12 years) with clinically established ADHD (N = 391) and nonpsychiatric controls (N = 213). We tested for differentially methylated positions (DMPs) associated with both ADHD diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects, and other potential confounders in our statistical models. Our results support previously reported associations between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated DMPs (p < 1e-5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs (cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby SNPs (p = 1.2e-46 and p = 2.07e-59), providing evidence that disease-associated DMPs are under genetic control. We also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a site annotated to the promoter of GART and SON (p = 6.71E-8). Finally, we show that ADHD-associated SNPs colocalize with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification, reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for ADHD risk variants.
Collapse
Affiliation(s)
- Michael A. Mooney
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690OHSU Knight Cancer Institute, Portland, OR USA
| | - Peter Ryabinin
- grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Beth Wilmot
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Priya Bhatt
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter University, Exeter, UK
| | - Joel T. Nigg
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
12
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
13
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
14
|
Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, Liu DZ, Cheng X, Hull H, Yee A, Ng K, Shroff N, Sharp FR. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab 2019; 39:1818-1835. [PMID: 29651892 PMCID: PMC6727143 DOI: 10.1177/0271678x18769513] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how the blood transcriptome of human intracerebral hemorrhage (ICH) differs from ischemic stroke (IS) and matched controls (CTRL) will improve understanding of immune and coagulation pathways in both disorders. This study examined RNA from 99 human whole-blood samples using GeneChip® HTA 2.0 arrays to assess differentially expressed transcripts of alternatively spliced genes between ICH, IS and CTRL. We used a mixed regression model with FDR-corrected p(Dx) < 0.2 and p < 0.005 and |FC| > 1.2 for individual comparisons. For time-dependent analyses, subjects were divided into four time-points: 0(CTRL), <24 h, 24-48 h, >48 h; 489 transcripts were differentially expressed between ICH and CTRL, and 63 between IS and CTRL. ICH had differentially expressed T-cell receptor and CD36 genes, and iNOS, TLR, macrophage, and T-helper pathways. IS had more non-coding RNA. ICH and IS both had angiogenesis, CTLA4 in T lymphocytes, CD28 in T helper cells, NFAT regulation of immune response, and glucocorticoid receptor signaling pathways. Self-organizing maps revealed 4357 transcripts changing expression over time in ICH, and 1136 in IS. Understanding ICH and IS transcriptomes will be useful for biomarker development, treatment and prevention strategies, and for evaluating how well animal models recapitulate human ICH and IS.
Collapse
Affiliation(s)
- Boryana Stamova
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P Ander
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen Jickling
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA.,2 Department of Medicine, University of Alberta, Edmonton, Canada
| | - Farah Hamade
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marc Durocher
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Da Zhi Liu
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xiyuan Cheng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan Yee
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Natasha Shroff
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
15
|
Durocher M, Ander BP, Jickling G, Hamade F, Hull H, Knepp B, Liu DZ, Zhan X, Tran A, Cheng X, Ng K, Yee A, Sharp FR, Stamova B. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. J Neuroinflammation 2019; 16:56. [PMID: 30836997 PMCID: PMC6399982 DOI: 10.1186/s12974-019-1433-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. METHODS We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. RESULTS Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications. One erythroblast module was enriched in autophagy pathways implicated in experimental ICH, and NRF2 signaling implicated in hematoma clearance. Many hub genes or module members, such as IARS, mTOR, S1PR1, LCK, FYN, SKAP1, ITK, AMBRA1, NLRC4, IL6R, IL17RA, GAB2, MXD1, PIK3CD, NUMB, MAPK14, DDX24, EVL, TDP1, ATG3, WDFY3, GSK3B, STAT3, STX3, CSF3R, PIP4K2A, ANXA3, DGAT2, LRP10, FLOT2, ANK1, CR1, SLC4A1, and DYSF, have been implicated in neuroinflammation, cell death, transcriptional regulation, and some as experimental ICH therapeutic targets. Gene-level analysis revealed 1225 genes (FDR p < 0.05, fold-change > |1.2|) have altered expression in ICH in peripheral blood. There was significant overlap of the 1225 genes with dysregulated genes in human perihematomal brain tissue (p = 7 × 10-3). Overlapping genes were enriched for neutrophil-specific genes (p = 6.4 × 10-08) involved in interleukin, neuroinflammation, apoptosis, and PPAR signaling. CONCLUSIONS This study delineates key processes underlying ICH pathophysiology, complements experimental ICH findings, and the hub genes significantly expand the list of novel ICH therapeutic targets. The overlap between blood and brain gene responses underscores the importance of examining blood-brain interactions in human ICH.
Collapse
Affiliation(s)
- Marc Durocher
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bradley P. Ander
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Glen Jickling
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Farah Hamade
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Heather Hull
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bodie Knepp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Da Zhi Liu
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xinhua Zhan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Anh Tran
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xiyuan Cheng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kwan Ng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Alan Yee
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Frank R. Sharp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
- MIND Institute Biosciences Building, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
16
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
17
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
18
|
Qin YY, Jian B, Wu C, Jiang CZ, Kang Y, Zhou JX, Yang F, Liang Y. A comparison of blood metal levels in autism spectrum disorder and unaffected children in Shenzhen of China and factors involved in bioaccumulation of metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17950-17956. [PMID: 29680891 DOI: 10.1007/s11356-018-1957-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The present study compared blood plasma metals in children with autism spectrum disorder (ASD) with those in unaffected children in Shenzhen (China). Factors associated with the metal bioaccumulation were further investigated. Thirty-four blood samples of children with ASD were collected in a local hospital (Shenzhen Children's Hospital), while those of 38 unaffected children were from a local large public kindergarten, during March to April in 2016. Metal analysis was carried out by inductively coupled plasma-optical emission spectrometry. The results showed that children with ASD had higher (P < 0.01, 0.05) Pb (ASD 31.9 μg/L, unaffected children 18.6 μg/L), Hg (3.83, and 1.09 μg/L), and Cd (0.70 and 0.26 μg/L) than unaffected children, while essential elements Zn (ASD 4552.0 μg/L, unaffected children 5118.6 μg/L), Se (61.7 and 90.6 μg/L), and Mn (13.5 and 21.4 μg/L) showed an opposite pattern. Moreover, the children exposed to passive smoking had higher (P < 0.05) Cd (passive smoking 1.08 μg/L; non-passive smoking 0.22 μg/L) than those without the exposure. Positive associations were found between levels of Hg or Pb and seafood consumption as well as body mass index (BMI). More future work is needed in order to clarify the association between metal exposure and ASD occurrence in China.
Collapse
Affiliation(s)
- Yan-Yan Qin
- Shenzhen Polytechnic, Shenzhen, 518055, People's Republic of China
| | - Bin Jian
- Shenzhen Public Security, Shenzhen, 518040, People's Republic of China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Cheng-Zi Jiang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yuan Kang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia-Xiu Zhou
- Shenzhen Children's Hospital, Shenzhen, 518026, People's Republic of China
| | - Feng Yang
- Shenzhen Children's Hospital, Shenzhen, 518026, People's Republic of China.
- Speech Therapy Department, Shenzhen Children's Hospital, Shenzhen, 518026, People's Republic of China.
| | - Yan Liang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
19
|
Wu J, Liu DJ, Shou XJ, Zhang JS, Meng FC, Liu YQ, Han SP, Zhang R, Jia JZ, Wang JY, Han JS. Chinese children with autism: A multiple chemical elements profile in erythrocytes. Autism Res 2018; 11:834-845. [DOI: 10.1002/aur.1949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Jing Wu
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| | - Duo-Jian Liu
- School of Public Health, Peking University; Beijing PR China
| | - Xiao-Jing Shou
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| | - Ji-Shui Zhang
- Department of Neurology; Beijing Children's Hospital Affiliated Capital Medical University; Beijing PR China
| | - Fan-Chao Meng
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| | - Ya-Qiong Liu
- School of Public Health, Peking University; Beijing PR China
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| | - Jin-Zhu Jia
- School of Public Health, Peking University; Beijing PR China
- Center of Statistical Science, Peking University; Beijing PR China
| | - Jing-Yu Wang
- School of Public Health, Peking University; Beijing PR China
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University; Beijing PR China
- Key Laboratory for Neuroscience, Ministry of Education of China; Peking University; Beijing PR China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; Peking University; Beijing PR China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing PR China
| |
Collapse
|
20
|
Li H, Li H, Li Y, Liu Y, Zhao Z. Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder. Biol Trace Elem Res 2018; 181:31-37. [PMID: 28480499 DOI: 10.1007/s12011-017-1002-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/17/2017] [Indexed: 12/15/2022]
Abstract
Environmental factors have been implicated in the etiology of autism spectrum disorder (ASD); however, the role of heavy metals has not been fully defined. This study investigated whether blood levels of mercury, arsenic, cadmium, and lead of children with ASD significantly differ from those of age- and sex-matched controls. One hundred eighty unrelated children with ASD and 184 healthy controls were recruited. Data showed that the children with ASD had significantly (p < 0.001) higher levels of mercury and arsenic and a lower level of cadmium. The levels of lead did not differ significantly between the groups. The results of this study are consistent with numerous previous studies, supporting an important role for heavy metal exposure, particularly mercury, in the etiology of ASD. It is desirable to continue future research into the relationship between ASD and heavy metal exposure.
Collapse
Affiliation(s)
- Huamei Li
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui Li
- Laboratory of Neuroinflammation, StVincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW, Australia
| | - Yun Li
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yujie Liu
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhengyan Zhao
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Department of Pediatric Health Care, Children's Hospital of Zhejiang University School of Medicine, 57 Zhuganxiang Road, Hangzhou, People's Republic of China, 310003.
| |
Collapse
|
21
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. RETRACTED ARTICLE: Systematic Assessment of Research on Autism Spectrum Disorder and Mercury Reveals Conflicts of Interest and the Need for Transparency in Autism Research. SCIENCE AND ENGINEERING ETHICS 2017; 23:1689-1690. [PMID: 26507205 PMCID: PMC5705728 DOI: 10.1007/s11948-015-9713-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| | - David A. Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | | | - Mark R. Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905 USA
| |
Collapse
|
23
|
Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. Systematic Assessment of Research on Autism Spectrum Disorder (ASD) and Mercury Reveals Conflicts of Interest and the Need for Transparency in Autism Research. SCIENCE AND ENGINEERING ETHICS 2017; 23:1691-1718. [PMID: 29119411 PMCID: PMC5705731 DOI: 10.1007/s11948-017-9983-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Historically, entities with a vested interest in a product that critics have suggested is harmful have consistently used research to back their claims that the product is safe. Prominent examples are: tobacco, lead, bisphenol A, and atrazine. Research literature indicates that about 80-90% of studies with industry affiliation found no harm from the product, while only about 10-20% of studies without industry affiliation found no harm. In parallel to other historical debates, recent studies examining a possible relationship between mercury (Hg) exposure and autism spectrum disorder (ASD) show a similar dichotomy. Studies sponsored and supported by industry or entities with an apparent conflict of interest have most often shown no evidence of harm or no "consistent" evidence of harm, while studies without such affiliations report positive evidence of a Hg/autism association. The potentially causal relationship between Hg exposure and ASD differs from other toxic products since there is a broad coalition of entities for whom a conflict of interest arises. These include influential governmental public health entities, the pharmaceutical industry, and even the coal burning industry. This review includes a systematic literature search of original studies on the potential relationship between Hg and ASD from 1999 to August 2015, finding that of the studies with public health and/or industry affiliation, 86% reported no relationship between Hg and ASD. However, among studies without public health and/or industry affiliation, only 21% find no relationship between Hg and ASD. The discrepancy in these results suggests a bias indicative of a conflict of interest.
Collapse
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| | - David A. Geier
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | | | - Mark R. Geier
- Institute of Chronic Illnesses, Inc, 14 Redgate Court, Silver Spring, MD 20905 USA
| |
Collapse
|
24
|
Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:340-368. [PMID: 28716727 DOI: 10.1016/j.pnpbp.2017.07.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. METHODS We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. RESULTS 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0.77, CI: 0.31 to 1.23). These findings were confirmed by meta-regression analyses indicating that development status of countries significantly influences the overall effect size of mean difference for hair arsenic, cadmium, lead, and mercury between patients with ASD and controls. CONCLUSION The findings help highlighting the role of toxic metals as environmental factors in the etiology of ASD, especially in developing lands. While there are environmental factors other than toxic metals that greatly contribute to the etiology of ASD in developed lands. It would be, thus, expected that classification of ASD includes etiological entities of ASD on the basis of implication of industrial pollutants (developed vs. developing ASD).
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
25
|
El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 2017; 32:1073-1080. [PMID: 28326463 DOI: 10.1007/s11011-017-9996-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication and behavioral challenges. Environmental contribution to ASD is due in large part to the sensitivity of the developing brain to external exposures such as lead (Pb), and mercury (Hg) as toxic heavy metals or due to a poor detoxification ability as the phenotype of this disorder. Selenium (Se) as an antioxidant element that counteracts the neurotoxicity of Hg, and Pb, presumably through the formation of nontoxic complexes. In the present study, Pb, Hg, and Se were measured in red blood cells (RBCs) of 35 children with ASD and 30 age- and gender-matched healthy control children using atomic absorption spectrometry. Receiver Operating Characteristics (ROC) analysis of the obtained data was performed to measure the predictive value of their absolute and relative concentrations. The obtained data demonstrates a significant elevation of Hg and Pb together with a significant decrease in the Se levels in RBCs of patients with ASD when compared to the healthy controls. The ratios of Se to both Pb and Hg were remarkably altered, being indicative of heavy metal neurotoxicity in patients with ASD. In conclusion, the present study indicates the importance of Se for prevention and/or therapy of heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Anatoly V Skalny
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Hussain Al Dera
- Basic Medical Science Department, College of Medicine, King Saud bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 5: a hint from chromosome 5 high density association screen. Am J Transl Res 2017; 9:2473-2491. [PMID: 28559998 PMCID: PMC5446530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes, M. F. Genet Med 2012, 14, 338-341) and any two or even three of these disorders could co-exist in some families. In addition, evidence from symptomatology and psychopharmacology also imply that there are intrinsic connections between these three major disorders. A total of 56,569 single nucleotide polymorphism (SNPs) on chromosome 5 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1000 controls. Associated SNPs and flanking genes was screen out systematically, and cadherin pathway genes (CDH6, CDH9, CDH10, CDH12, and CDH18) belong to outstanding genes. Unexpectedly, nearly all flanking genes of the associated SNPs distinctive for BPD and MDD were replicated in an enlarged cohort of 986 SCZ patients (P ≤ 9.9E-8). Considering multiple bits of evidence, our chromosome 5 analyses implicated that bipolar and major depressive disorder might be subtypes of schizophrenia rather than two independent disease entities. Also, cadherin pathway genes play important roles in the pathogenesis of the three major mental disorders.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Bin Cai
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Xiaohong Chen
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| |
Collapse
|
27
|
Tylee DS, Hess JL, Quinn TP, Barve R, Huang H, Zhang-James Y, Chang J, Stamova BS, Sharp FR, Hertz-Picciotto I, Faraone SV, Kong SW, Glatt SJ. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis. Am J Med Genet B Neuropsychiatr Genet 2017; 174:181-201. [PMID: 27862943 PMCID: PMC5499528 DOI: 10.1002/ajmg.b.32511] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022]
Abstract
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-effect linear models were used to identify gene transcripts and co-expression network modules that were significantly associated with diagnostic status. Permutation-based gene-set analysis was used to identify functionally related sets of genes that were over- and under-expressed among ASD samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell related activity in ASD. We explored evidence for sex-differences in the ASD-related transcriptomic signature. We also demonstrated that machine-learning classifiers using blood transcriptome data perform with moderate accuracy when data are combined across studies. Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines and trophic factors), we propose that ASD may feature decoupling between certain circulating signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically elicit within circulating immune cells (lower in ASD samples). These findings provide insight into ASD-related transcriptional differences in circulating immune cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel S. Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Jonathan L. Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Thomas P. Quinn
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yanli Zhang-James
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Jeffrey Chang
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, U.S.A
| | - Boryana S. Stamova
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and UC Davis MIND Institute, School of Medicine, Davis, CA
| | - Stephen V. Faraone
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, U.S.A
| | - Stephen J. Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A,To whom correspondence should be addressed: SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone: (315) 464-7742,
| |
Collapse
|
28
|
Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies. Front Neurosci 2017; 10:601. [PMID: 28105001 PMCID: PMC5214812 DOI: 10.3389/fnins.2016.00601] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental conditions that present in early childhood and have a current estimated prevalence of about 1 in 68 US children, 1 in 42 boys. ASDs are heterogeneous, and arise from epigenetic, genetic and environmental origins, yet, the exact etiology of ASDs still remains unknown. Individuals with ASDs are characterized by having deficits in social interaction, impaired communication and a range of stereotyped and repetitive behaviors. Currently, a diagnosis of ASD is based solely on behavioral assessments and phenotype. Hundreds of diverse ASD susceptibility genes have been identified, yet none of the mutations found account for more than a small subset of autism cases. Therefore, a genetic diagnosis is not yet possible for the majority of the ASD population. The susceptibility genes that have been identified are involved in a wide and varied range of biological functions. Since the genetics of ASDs is so diverse, information on genome function as provided by transcriptomic data is essential to further our understanding. Gene expression studies have been extremely useful in comparing groups of individuals with ASD and control samples in order to measure which genes (or group of genes) are dysregulated in the ASD group. Transcriptomic studies are essential as a key link between measuring protein levels and analyzing genetic information. This review of recent autism gene expression studies highlights genes that are expressed in the brain, immune system, and processes such as cell metabolism and embryology. Various biological processes have been shown to be implicated with ASD individuals as well as differences in gene expression levels between different types of biological tissues. Some studies use gene expression to attempt to separate autism into different subtypes. An updated list of genes shown to be significantly dysregulated in individuals with autism from all recent ASD expression studies will help further research isolate any patterns useful for diagnosis or understanding the mechanisms involved. The functional relevance of transcriptomic studies as a method of classifying and diagnosing ASD cannot be underestimated despite the possible limitations of transcriptomic studies.
Collapse
|
29
|
Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol 2016; 37:8-24. [PMID: 27473827 DOI: 10.1016/j.jtemb.2016.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The brain pathology in autism spectrum disorders (ASD) indicates marked and ongoing inflammatory reactivity with concomitant neuronal damage. These findings are suggestive of neuronal insult as a result of external factors, rather than some type of developmental mishap. Various xenobiotics have been suggested as possible causes of this pathology. In a recent review, the top ten environmental compounds suspected of causing autism and learning disabilities were listed and they included: lead, methyl-mercury, polychorinated biphenyls, organophosphate pesticides, organochlorine pesticides, endocrine disruptors, automotive exhaust, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, and perfluorinated compounds. This current review, however, will focus specifically on mercury exposure and ASD by conducting a comprehensive literature search of original studies in humans that examine the potential relationship between mercury and ASD, categorizing, summarizing, and discussing the published research that addresses this topic. This review found 91 studies that examine the potential relationship between mercury and ASD from 1999 to February 2016. Of these studies, the vast majority (74%) suggest that mercury is a risk factor for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates that mercury exposure is causal and/or contributory in ASD.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Lisa K Sykes
- CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Boyd E Haley
- University of Kentucky, 410 Administration Drive, Lexington, KY, 40506 USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| |
Collapse
|
30
|
Fujiwara T, Morisaki N, Honda Y, Sampei M, Tani Y. Chemicals, Nutrition, and Autism Spectrum Disorder: A Mini-Review. Front Neurosci 2016; 10:174. [PMID: 27147957 PMCID: PMC4837386 DOI: 10.3389/fnins.2016.00174] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
The rapid increase of the prevalence of autism spectrum disorder (ASD) suggests that exposure to chemicals may impact the development of ASD. Therefore, we reviewed literature on the following chemicals, nutrient to investigate their association with ASD: (1) smoke/tobacco, (2) alcohol, (3) air pollution, (4) pesticides, (5) endocrine-disrupting chemicals, (6) heavy metals, (7) micronutrients, (8) fatty acid, and (9) parental obesity as a proxy of accumulation of specific chemicals or nutritional status. Several chemical exposures such as air pollution (e.g., particular matter 2.5), pesticides, bisphenol A, phthalates, mercury, and nutrition deficiency such as folic acid, vitamin D, or fatty acid may possibly be associated with an increased risk of ASD, whereas other traditional risk factors such as smoking/tobacco, alcohol, or polychlorinated biphenyls are less likely to be associated with ASD. Further research is needed to accumulate evidence on the association between chemical exposure and nutrient deficiencies and ASD in various doses and populations.
Collapse
Affiliation(s)
- Takeo Fujiwara
- Department of Social Medicine, National Research Institute for Child Health and Development, Okura, Setagaya-ku, Tokyo, Japan; Department of Global Health Promotion, Tokyo Medical and Dental UniversityTokyo, Japan
| | - Naho Morisaki
- Department of Social Medicine, National Research Institute for Child Health and Development , Okura, Setagaya-ku, Tokyo, Japan
| | - Yukiko Honda
- Department of Social Medicine, National Research Institute for Child Health and Development, Okura, Setagaya-ku, Tokyo, Japan; Global Cooperation Institute for Sustainable Cities, Yokohama City UniversityYokohama, Japan
| | - Makiko Sampei
- Department of Social Medicine, National Research Institute for Child Health and Development , Okura, Setagaya-ku, Tokyo, Japan
| | - Yukako Tani
- Department of Social Medicine, National Research Institute for Child Health and Development, Okura, Setagaya-ku, Tokyo, Japan; Department of Global Health Promotion, Tokyo Medical and Dental UniversityTokyo, Japan; Department of Health Education and Health Sociology, School of Public Health, The University of TokyoTokyo, Japan
| |
Collapse
|
31
|
Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism 2015; 6:37. [PMID: 26146533 PMCID: PMC4491207 DOI: 10.1186/s13229-015-0029-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC). METHODS We measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression. RESULTS Two mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain. CONCLUSIONS Alterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS.
Collapse
Affiliation(s)
- Bradley P Ander
- Department of Neurology, MIND Institute, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA 95817 USA
| | - Nicole Barger
- Department of Psychiatry & Behavioral Sciences, MIND Institute, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, MIND Institute, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA 95817 USA
| | - Cynthia M Schumann
- Department of Psychiatry & Behavioral Sciences, MIND Institute, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
32
|
Macedoni-Lukšič M, Gosar D, Bjørklund G, Oražem J, Kodrič J, Lešnik-Musek P, Zupančič M, France-Štiglic A, Sešek-Briški A, Neubauer D, Osredkar J. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol Trace Elem Res 2015; 163:2-10. [PMID: 25234471 DOI: 10.1007/s12011-014-0121-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to determine the levels of metals in blood (zinc (Zn), copper (Cu), aluminium (Al), lead (Pb) and mercury (Hg)), as well as the specific porphyrin levels in the urine of patients with autism spectrum disorder (ASD) compared with patients with other neurological disorders. The study was performed in a group of children with ASD (N = 52, average age = 6.2 years) and a control group of children with other neurological disorders (N = 22, average age = 6.6 years), matched in terms of intellectual abilities (Mann-Whitney U = 565.0, p = 0.595). Measurement of metals in blood was performed by atomic absorption spectrometry, while the HPLC method via a fluorescence detector was used to test urinary porphyrin levels. Results were compared across groups using a multivariate analysis of covariance (MANCOVA). In addition, a generalized linear model was used to establish the impact of group membership on the blood Cu/Zn ratio. In terms of blood levels of metals, no significant difference between the groups was found. However, compared to the control group, ASD group had significantly elevated blood Cu/Zn ratio (Wald χ (2) = 6.6, df = 1, p = 0.010). Additionally, no significant difference between the groups was found in terms of uroporphyrin I, heptacarboxyporphyrin I, hexacarboxyporphyrin and pentacarboxyporphyrin I. However, the levels of coproporphyrin I and coproporphyrin III were lower in the ASD group compared to the controls. Due to observed higher Cu/Zn ratio, it is suggested to test blood levels of Zn and Cu in all autistic children and give them a Zn supplement if needed.
Collapse
|
33
|
Yoshimasu K, Kiyohara C, Takemura S, Nakai K. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology 2014; 44:121-31. [DOI: 10.1016/j.neuro.2014.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/14/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
34
|
Rahbar MH, Samms-Vaughan M, Ma J, Bressler J, Loveland KA, Ardjomand-Hessabi M, Dickerson AS, Grove ML, Shakespeare-Pellington S, Beecher C, McLaughlin W, Boerwinkle E. Role of metabolic genes in blood arsenic concentrations of Jamaican children with and without autism spectrum disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7874-95. [PMID: 25101770 PMCID: PMC4143838 DOI: 10.3390/ijerph110807874] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
Arsenic is a toxic metalloid with known adverse effects on human health. Glutathione-S-transferase (GST) genes, including GSTT1, GSTP1, and GSTM1, play a major role in detoxification and metabolism of xenobiotics. We investigated the association between GST genotypes and whole blood arsenic concentrations (BASC) in Jamaican children with and without autism spectrum disorder (ASD). We used data from 100 ASD cases and their 1:1 age- and sex-matched typically developing (TD) controls (age 2-8 years) from Jamaica. Using log-transformed BASC as the dependent variable in a General Linear Model, we observed a significant interaction between GSTP1 and ASD case status while controlling for several confounding variables. However, for GSTT1 and GSTM1 we did not observe any significant associations with BASC. Our findings indicate that TD children who had the Ile/Ile or Ile/Val genotype for GSTP1 had a significantly higher geometric mean BASC than those with genotype Val/Val (3.67 µg/L vs. 2.69 µg/L, p < 0.01). Although, among the ASD cases, this difference was not statistically significant, the direction of the observed difference was consistent with that of the TD control children. These findings suggest a possible role of GSTP1 in the detoxification of arsenic.
Collapse
Affiliation(s)
- Mohammad H Rahbar
- Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Jamaica.
| | - Jianzhong Ma
- Division of Clinical and Translational Sciences, Department of Internal Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Jan Bressler
- Human Genetics Center, University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
| | - Katherine A Loveland
- Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX 77054, USA.
| | - Manouchehr Ardjomand-Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | - Aisha S Dickerson
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | - Megan L Grove
- Human Genetics Center, University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
| | | | - Compton Beecher
- Department of Basic Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica.
| | - Wayne McLaughlin
- Department of Basic Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica.
| | - Eric Boerwinkle
- Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Yau VM, Green PG, Alaimo CP, Yoshida CK, Lutsky M, Windham GC, Delorenze G, Kharrazi M, Grether JK, Croen LA. Prenatal and neonatal peripheral blood mercury levels and autism spectrum disorders. ENVIRONMENTAL RESEARCH 2014; 133:294-303. [PMID: 24981828 DOI: 10.1016/j.envres.2014.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal and early-life exposures to mercury have been hypothesized to be associated with increased risk of autism spectrum disorders (ASDs). OBJECTIVES This study investigated the association between ASDs and levels of total mercury measured in maternal serum from mid-pregnancy and infant blood shortly after birth. METHODS The study sample was drawn from the Early Markers for Autism (EMA) Study. Three groups of children who were born in Orange County, CA in 2000-2001 were identified: children with ASD (n=84), children with intellectual disability or developmental delay (DD) (n=49), and general population controls (GP) (n=159). Maternal serum specimens and newborn bloodspots were retrieved from the California Department of Public Health prenatal and newborn screening specimen archives. Blood mercury levels were measured in maternal serum samples using mass spectrometer and in infant bloodspots with a 213 nm laser. RESULTS Maternal serum and infant blood mercury levels were significantly correlated among all study groups (all correlations >0.38, p<0.01). Adjusted logistic regression models showed no significant associations between ASD and log transformed mercury levels in maternal serum samples (ASD vs. GP: OR [95% CI]=0.96 [0.49-1.90]; ASD vs. DD: OR [95% CI]=2.56 [0.89-7.39]). Results for mercury levels in newborn blood samples were similar (ASD vs. GP: OR [95% CI]=1.18 [0.71-1.95]; ASD vs. DD: OR [95% CI]=1.96 [0.75-5.14]). CONCLUSIONS Results indicate that levels of total mercury in serum collected from mothers during mid-pregnancy and from newborn bloodspots were not significantly associated with risk of ASD, though additional studies with greater sample size and covariate measurement are needed.
Collapse
Affiliation(s)
- Vincent M Yau
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Peter G Green
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA, USA
| | - Christopher P Alaimo
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA, USA
| | | | - Marta Lutsky
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Gayle C Windham
- Division of Environmental and Occupational Disease Control, California Department of Public Health, Richmond, CA, USA
| | | | - Martin Kharrazi
- Genetic Disease Screening Program, California Department of Public Health, Richmond, CA, USA
| | - Judith K Grether
- Division of Environmental and Occupational Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente, Oakland, CA, USA.
| |
Collapse
|
36
|
Goyal DK, Miyan JA. Neuro-immune abnormalities in autism and their relationship with the environment: a variable insult model for autism. Front Endocrinol (Lausanne) 2014; 5:29. [PMID: 24639668 PMCID: PMC3945747 DOI: 10.3389/fendo.2014.00029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition affecting an individual's ability to communicate and socialize and often presents with repetitive movements or behaviors. It tends to be severe with less than 10% achieving independent living with a marked variation in the progression of the condition. To date, the literature supports a multifactorial model with the largest, most detailed twin study demonstrating strong environmental contribution to the development of the condition. Here, we present a brief review of the neurological, immunological, and autonomic abnormalities in ASD focusing on the causative roles of environmental agents and abnormal gut microbiota. We present a working hypothesis attempting to bring together the influence of environment on the abnormal neurological, immunological, and neuroimmunological functions and we explain in brief how such pathophysiology can lead to, and/or exacerbate ASD symptomatology. At present, there is a lack of consistent findings relating to the neurobiology of autism. Whilst we postulate such variable findings may reflect the marked heterogeneity in clinical presentation and as such the variable findings may be of pathophysiological relevance, more research into the neurobiology of autism is necessary before establishing a working hypothesis. Both the literature review and hypothesis presented here explore possible neurobiological explanations with an emphasis of environmental etiologies and are presented with this bias.
Collapse
Affiliation(s)
- Daniel K. Goyal
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Jaleel A. Miyan
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Raymond LJ, Deth RC, Ralston NVC. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. AUTISM RESEARCH AND TREATMENT 2014; 2014:164938. [PMID: 24734177 PMCID: PMC3966422 DOI: 10.1155/2014/164938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology.
Collapse
Affiliation(s)
- Laura J. Raymond
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicholas V. C. Ralston
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| |
Collapse
|
38
|
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4:e360. [PMID: 24518398 PMCID: PMC3944636 DOI: 10.1038/tp.2014.4] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022] Open
Abstract
Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case-control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case-control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose-effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five studies), glutathione S-transferase (GSTM1 and GSTP1, three of four studies), δ-aminolevulinic acid dehydratase (one study), SLC11A3 (one study) and the metal regulatory transcription factor 1 (one of two studies). Notably, many of the reviewed studies had significant limitations, including lack of replication, limited sample sizes, retrospective design, recall and publication biases, inadequate matching of cases and controls, and the use of nonstandard tools to diagnose ASD. The findings of this review suggest that the etiology of ASD may involve, at least in a subset of children, complex interactions between genetic factors and certain environmental toxicants that may act synergistically or in parallel during critical periods of neurodevelopment, in a manner that increases the likelihood of developing ASD. Because of the limitations of many of the reviewed studies, additional high-quality epidemiological studies concerning environmental toxicants and ASD are warranted to confirm and clarify many of these findings.
Collapse
Affiliation(s)
- D A Rossignol
- Family Medicine, Rossignol Medical Center, Irvine, CA, USA
| | - S J Genuis
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - R E Frye
- Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
39
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Croes K, De Coster S, De Galan S, Morrens B, Loots I, Van de Mieroop E, Nelen V, Sioen I, Bruckers L, Nawrot T, Colles A, Den Hond E, Schoeters G, van Larebeke N, Baeyens W, Gao Y. Health effects in the Flemish population in relation to low levels of mercury exposure: from organ to transcriptome level. Int J Hyg Environ Health 2013; 217:239-47. [PMID: 23920476 DOI: 10.1016/j.ijheh.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 11/30/2022]
Abstract
Due to possible health risks, quantification of mercury accumulation in humans was included in the Flemish biomonitoring programmes FLEHS I (2002-2006) and FLEHS II (2007-2011). The general objective of FLEHS I was to assess regional exposure levels in order to link possible differences in these internal exposure levels to different types of local environmental pressure. Therefore, Hg and MMHg (methylmercury) were only measured in pooled blood samples per region and per age class. In FLEHS II, mercury concentrations were measured in hair of each participant. About 200 adolescents and 250 mothers (reference group) and two times 200 adolescents (2 hotspots) were screened. The main objectives of the FLEHS II study were: (1) to determine reference levels of mercury in hair for Flanders; (2) to assess relations between mercury exposure and possible sources like fish consumption; (3) to assess dose-effect relations between mercury exposure and health effect markers. The results showed that mercury concentrations in the Flemish population were rather low compared to other studies. Mercury levels in the Flemish populations were strongly related to the age of the participants and consumption of fish. Significant negative associations were observed between mercury in hair and asthma, having received breast feeding as a newborn, age at menarche in girls, allergy for animals and free testosterone levels. Significant correlations were also observed between mercury in hair and genes JAK2, ARID4A, Hist1HA4L (boys) and HLAdrb5, PIAS2, MANN1B1, GIT and ABCA1 (girls).
Collapse
Affiliation(s)
- Kim Croes
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Sam De Coster
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sandra De Galan
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Bert Morrens
- University of Antwerp, Faculty of Political and Social Sciences, Department of Sociology, Sint Jacobstraat 2, 2000 Antwerp, Belgium
| | - Ilse Loots
- University of Antwerp, Faculty of Political and Social Sciences, Department of Sociology, Sint Jacobstraat 2, 2000 Antwerp, Belgium
| | - Els Van de Mieroop
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Isabelle Sioen
- Ghent University, Department of Public Health, UZ-2 Blok A, De Pintelaan 185, 9000 Ghent, Belgium; Research Foundation - Flanders, Egmontstraat 5, 1000 Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Tim Nawrot
- School of Public Health, Occupational & Environmental Medicine, K.U. Leuven, Herestraat 49 (O&N 706), 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Nicolas van Larebeke
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, De Pintelaan 185, 9000 Ghent, Belgium
| | - Willy Baeyens
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Yue Gao
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
41
|
Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 2013; 36:67-81. [PMID: 22918031 PMCID: PMC3554862 DOI: 10.1016/j.ntt.2012.07.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Imbalances in cytokines may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Paula E. Goines
- University of California, Davis, School of Veterinary Medicine, Department of Molecular Biosciences
| | - Paul Ashwood
- University of California, Davis, School of Medicine, Department of Medical Microbiology and Immunology
| |
Collapse
|
42
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
43
|
Genuis SJ, Schwalfenberg G, Siy AKJ, Rodushkin I. Toxic element contamination of natural health products and pharmaceutical preparations. PLoS One 2012; 7:e49676. [PMID: 23185404 PMCID: PMC3504157 DOI: 10.1371/journal.pone.0049676] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Concern has recently emerged regarding the safety of natural health products (NHPs)-therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs. METHODS Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products) as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits. RESULTS Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum. CONCLUSIONS Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control-developed and implemented by the NHP industry with government oversight-is recommended to guard the safety of unsuspecting consumers.
Collapse
Affiliation(s)
- Stephen J Genuis
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
44
|
Cuello S, Ximénez-Embún P, Ruppen I, Schonthaler HB, Ashman K, Madrid Y, Luque-Garcia JL, Cámara C. Analysis of protein expression in developmental toxicity induced by MeHg in zebrafish. Analyst 2012; 137:5302-11. [DOI: 10.1039/c2an35913h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Owens SE, Summar ML, Ryckman KK, Haines JL, Reiss S, Summar SR, Aschner M. Lack of association between autism and four heavy metal regulatory genes. Neurotoxicology 2011; 32:769-75. [PMID: 21798283 PMCID: PMC3206176 DOI: 10.1016/j.neuro.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
Abstract
Autism is a common neurodevelopmental disorder with genetic and environmental components. Though unproven, genetic susceptibility to high mercury (Hg) body burden has been suggested as an autism risk factor in a subset of children. We hypothesized that exposure to "safe" Hg levels could be implicated in the etiology of autism if genetic susceptibility altered Hg's metabolism or intracellular compartmentalization. Genetic sequences of four genes implicated in the transport and response to Hg were screened for variation and association with autism. LAT1 and DMT1 function in Hg transport, and Hg exposure induces MTF1 and MT1a. We identified and characterized 74 variants in MT1a, DMT1, LAT1 and MTF1. Polymorphisms identified through screening 48 unrelated individuals from the general and autistic populations were evaluated for differences in allele frequencies using Fisher's exact test. Three variants with suggestive p-values <0.1 and four variants with significant p-values <0.05 were followed-up with TaqMan genotyping in a larger cohort of 204 patients and 323 control samples. The pedigree disequilibrium test was used to examine linkage and association. Analysis failed to show association with autism for any variant evaluated in both the initial screening set and the expanded cohort, suggesting that variations in the ability of the four genes studied to process and transport Hg may not play a significant role in the etiology of autism.
Collapse
Affiliation(s)
- Sarah E. Owens
- Department of Pediatric Toxicology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marshall L. Summar
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli K. Ryckman
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sara Reiss
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha R. Summar
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael Aschner
- Department of Pediatric Toxicology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
46
|
Tian Y, Green PG, Stamova B, Hertz-Picciotto I, Pessah IN, Hansen R, Yang X, Gregg JP, Ashwood P, Jickling G, Van de Water J, Sharp FR. Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotox Res 2009; 19:1-13. [PMID: 19921347 PMCID: PMC3006638 DOI: 10.1007/s12640-009-9126-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/12/2009] [Indexed: 12/26/2022]
Abstract
The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis x log₂Pb) < 0.05). These genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded.
Collapse
Affiliation(s)
- Yingfang Tian
- Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|