1
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Hajhashemy Z, Golpour-Hamedani S, Eshaghian N, Sadeghi O, Khorvash F, Askari G. Practical supplements for prevention and management of migraine attacks: a narrative review. Front Nutr 2024; 11:1433390. [PMID: 39539367 PMCID: PMC11557489 DOI: 10.3389/fnut.2024.1433390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Migraine is one of the most debilitating neurological disorders that causes frequent attacks of headaches and affects approximately 11% of the global population. Deficient or even insufficient levels of vital nutrients would increase the severity and frequency of migraine attacks. Therefore, we aimed to examine the practical supplements for the prevention and management of migraine attacks. Method This narrative review study was conducted by searching PubMed, ISI web of science, EMBASE, Google Scholar, and Scopus using the keywords of "dietary supplement" and "migraine" plus their MeSH terms. Original articles published in English language from their inception to July 27th, 2024, studies that investigated adult population (aged >18 years), and those assessing the impact of intended nutrient supplementation on clinical symptoms of migraine were included in the study. Result Oxidative stress and low intake of antioxidants would be risk factors for migraine attacks by inducing inflammation. The secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-a, would lead to neuroinflammation and migraine episodes by increasing the cellular permeability and interactions. Evidence also indicated a direct association between phases of migraine attacks and calcitonin gene-related peptide (CGRP), mitochondrial disorders, monoaminergic pathway, disruption in brain energy metabolism, and higher serum levels of glutamate and homocysteine. Therefore, supplementation with nutrients involved in mitochondrial function, brain energy metabolism, and even methyl donors would relieve migraine attacks. Conclusion Evidence indicated that supplementation with riboflavin, omega-3 fatty acids, alpha lipoic acid, magnesium, probiotics, coenzyme Q10, ginger, and caffeine would have favorable effects on migraine patients. However, more prospective studies are required to evaluate the effect of other nutrients on migraine patients.
Collapse
Affiliation(s)
- Zahra Hajhashemy
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Saengsiwaritt W, Ngamtipakon P, Udomsinprasert W. Vitamin D and autophagy in knee osteoarthritis: A review. Int Immunopharmacol 2023; 123:110712. [PMID: 37523972 DOI: 10.1016/j.intimp.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Knee osteoarthritis (KOA), the highly prevalent degenerative disease affecting the joint, perpetually devastates the health of the elderly. Of various mechanisms known to participate in KOA etiology, apoptosis of chondrocytes is widely regarded as the primary cause of cartilage degradation. It has been suggested that the induction of autophagy in chondrocytes could potentially prolong the progression of KOA by modulating intracellular metabolic processes, which may be helpful for ameliorating chondrocyte apoptosis and eventual cartilage degeneration. Autophagy, a physiological process characterized by intracellular self-degradation, has been reportedly implicated in various pathologic conditions including KOA. Interestingly, vitamin D has been shown to regulate autophagy in human chondrocytes through multiple pathways, specifically AMPK/mTOR signaling pathway. This observation underscores the potential of vitamin D as a novel approach for restoring the functionality and survivability of chondrocytes in KOA. Supporting vitamin D's clinical significance, previous studies have demonstrated its substantial involvement in the symptoms and irregular joint morphology observed in KOA patients, strengthening potential therapeutic efficacy of vitamin D in treatment of KOA. Herein, the purpose of this review was to determine the mechanisms underlying the multi-processes of vitamin D implicated in autophagy in several cells including chondrocytes, which would bring unique insights into KOA pathogenesis.
Collapse
Affiliation(s)
| | - Phatchana Ngamtipakon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Alsaleh NB, Alasmari AF, Al-Hamamah MA, Alanazi A, Alshamrani AA, Bakheet SA, Harisa GI. The small molecule Erk1/2 signaling pathway inhibitor PD98059 improves DNA repair in an experimental autoimmune encephalomyelitis SJL/J mouse model of multiple sclerosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503650. [PMID: 37491119 DOI: 10.1016/j.mrgentox.2023.503650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - G I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Amirkhizi F, Ghoreishy SM, Baker E, Hamedi-Shahraki S, Asghari S. The association of vitamin D status with oxidative stress biomarkers and matrix metalloproteinases in patients with knee osteoarthritis. Front Nutr 2023; 10:1101516. [PMID: 36845046 PMCID: PMC9944738 DOI: 10.3389/fnut.2023.1101516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Objective The association of vitamin D status with osteoarthritis (OA) has been demonstrated previously. The current study was performed to examine the association of vitamin D status with oxidative stress markers and matrix metalloproteinases (MMPs) in patients with knee OA. Methods This case-control study was conducted on 124 subjects with mild to moderate knee OA and 65 healthy controls. Demographic data was collected from all participants at baseline. Serum levels of vitamin D as well as markers of oxidative stress including malondialdehyde (MDA), total oxidant status (TOS), superoxide dismutase (SOD), oxidative stress index (OSI), paraoxonase-1 (PON-1), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant capacity (TAC) were evaluated for each participant. Furthermore, serum concentrations of MMP-1, MMP-3, MMP-13, and cartilage oligomeric matrix protein (COMP) were measured. Results The results of the present study indicated that individuals with vitamin D insufficiency had higher levels of MDA, TOS, SOD, and OSI as well as lower levels of PON-1 and TAC. Based on the linear regression analysis, serum vitamin D levels were inversely correlated with MDA, TOS, SOD, OSI, MMP-1, and MMP-13 and positively associated with TAC levels (p < 0.0001). Patients with sufficient vitamin D levels had lower MMP-1 and MMP-13 levels compared to patients with vitamin D insufficiency (p < 0.001 and p < 0.001, respectively). Conclusion Findings from this study showed a strong association between vitamin D deficiency and increased oxidative stress and MMPs activity in patients with knee OA.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Clinical Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Emma Baker
- Cabrini Research, Malvern, VIC, Australia
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Somayyeh Asghari, ✉ ; ✉
| |
Collapse
|
7
|
Bulegon JS, Weber ADAP, de Souza MD, Viero FT, Pillat MM, Gonçalves TDL. Oxidative profile, inflammatory responses and δ-aminolevulinate dehydratase enzyme activity in influenza B virus infection. Pathog Dis 2023; 81:ftad028. [PMID: 37816669 DOI: 10.1093/femspd/ftad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
The aim of the current study was to determine the activity of the delta-aminolevulinate dehydratase (δ-ALA-D) enzyme, oxidative stress biomarkers and the expression of cytokines in those infected with influenza B virus (IBV). To evaluate the activity of the δ-ALA-D enzyme, lipid peroxidation was estimated as levels of thiobarbituric acid reactive substances, protein and non-protein thiol groups, ferric-reducing antioxidant power (FRAP), vitamin C concentration and cytokine levels in IBV-infected individuals (n = 50) and a control group (n = 30). δ-ALA-D activity was significantly lower in IBV-infected individuals compared with controls, as well as levels of thiols, vitamin C and FRAP. Lipid peroxidation and cytokine levels of IL-6, IL-10, IL-17A and IFN-y were statistically higher in the IBV group. In conclusion, we found evidence of the generation of oxidants, the depletion of the antioxidant system, decrease in the activity of the δ-ALA-D enzyme and an increase in the synthesis of cytokines, thus contributing to a better understanding of oxidative and inflammatory pathways during IBV infection.
Collapse
Affiliation(s)
- Jovana Simonetti Bulegon
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, RS, Brasil
| | - Andressa de Azambuja Pias Weber
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, RS, Brasil
| | - Manoela Dias de Souza
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade Federal de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, Brasil
| | - Fernanda Tibolla Viero
- Programa de Pós-graduação em Farmacologia, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Prédio 20, Universidade Federal de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, Brasil
| | - Micheli Mainardi Pillat
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, RS, Brasil
- Programa de Pós-graduação em Farmacologia, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Prédio 20, Universidade Federal de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, Brasil
| | - Thissiane de Lima Gonçalves
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, RS, Brasil
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Prédio 26, Universidade Federal de Santa Maria, UFSM, Av. Roraima, n° 1000, Cidade Universitária, Bairro Camobi, CEP: 97105-900, Santa Maria, Brasil
| |
Collapse
|
8
|
Bahmani E, Hoseini R, Amiri E. Home-based Aerobic Training and Vitamin D Improve Neurotrophins and Inflammatory Biomarkers in MS Patients. Mult Scler Relat Disord 2022; 60:103693. [DOI: 10.1016/j.msard.2022.103693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022]
|
9
|
Naseri A, Forghani N, Sadigh-Eteghad S, Shanehbandi D, Asadi M, Nasiri E, Talebi M. Circulatory antioxidant and oxidative stress markers are in correlation with demographics but not cognitive functions in multiple sclerosis patients. Mult Scler Relat Disord 2021; 57:103432. [PMID: 34922253 DOI: 10.1016/j.msard.2021.103432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is the most common non-traumatic cause of disability in younger adults. MS can be presented with a wide range of symptoms such as cognitive impairment (CI). Oxidative stress (OXS) is a major basis of the pathogenesis of MS. There is a positive correlation between OXS factors and the progression of the disease in MS patients. There are limited studies regarding the role of OXS in MS-related CI. In this study, as an exploratory analysis, we assess the role of endogenous antioxidants and OXS factors in cognitive function, the severity of disability due to MS, and demographic findings in a sample of MS patients. METHODS Adult (>18 years old) patients with a definite diagnosis of MS based on 2017 revised MacDonald criteria were included in this study. The neurophysiological assessment was conducted, using the validated Persian version of minimal assessment of cognitive function in multiple sclerosis (MACFIMS) battery, which is composed of seven different tests. Based on the structure of the battery, CI was defined as a failure in at least two different components of the MACFIMS battery. The patients were separated into two groups of CI and non-CI. Examined antioxidant factors included catalase Activity (CAT), Glutathione Peroxidase 1 (GPX1), Glutathione Peroxidase 2 (GPX2), Reduced Glutathione (GSH), Superoxide Dismutase (SOD), and serum total antioxidant capacity (TAC). Malondialdehyde (MDA) was also measured as an OXS marker. RESULTS 71 patients were involved in this study. The type of MS was relapsing-remitting MS (RRMS) in 80.28% of the participants. Disease duration (P<0.01), type of MS (p<0.01), and EDSS score (p<0.01) were different between CI and non-CI groups, but there were not any significant differences in CAT (p = 0.80), GPX1 (p = 0.71), GPX2 (p = 0.41), GSH (p = 0.96), TAC (p = 0.13), SOD (p = 0.37), and MDA (p = 0.82). A significant difference between RRMS and progressive MS (PMS) patients in the levels of GPX1 (p = 0.01), GPX2 (p = 0.01), and SOD (p = 0.01) was observed. Also, we found higher circulatory levels of CAT (p = 0.02) and TAC (p<0.01) in male MS patients. We found significant correlations between aging and CAT (R = 0.28; p = 0.01), GPX1 (R = 0.36; p<0.01), GPX2 (R = 0.34; p<0.01), and SOD (R = 0.40; p<0.01). EDSS, the duration of the disease, relapse rate, and the number of impaired cognitive tasks were not correlated with any of investigated OXS or antioxidant factors (p>0.05). In terms of a detailed investigation of associations between MACFIMS battery components and levels of OXS and antioxidant factors, there were no significant relations in this regard (p>0.05). Based on the logistic regression multivariate analysis, only disease duration (p = 0.03) and GPX1 (p = 0.01) were independently associated with CI in MS patients in our sample. CONCLUSION The circulatory levels of GPX1, GPX2, and SOD are significantly different between RRMS and PMS patients. Neither endogenous antioxidants nor MDA, as an OXS biomarker, are associated with the cognitive function or level of physical disability in MS patients. Limitations of this study suggest a need for future studies in a larger sample of MS patients.
Collapse
Affiliation(s)
- Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Forghani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021; 9:1284. [PMID: 34680401 PMCID: PMC8533313 DOI: 10.3390/biomedicines9101284] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Harry W.M. Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Cognitive Neuroscience, DGIST, Daegu 42988, Korea
| | - Emanuel Vamanu
- Faculty of Biotechnology, The University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| | - Ghulam Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| |
Collapse
|
11
|
Amirinejad R, Shirvani-Farsani Z, Naghavi Gargari B, Sahraian MA, Mohammad Soltani B, Behmanesh M. Vitamin D changes expression of DNA repair genes in the patients with multiple sclerosis. Gene 2021; 781:145488. [PMID: 33588040 DOI: 10.1016/j.gene.2021.145488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress (OS) plays an essential role in demyelination and tissue injury related to pathogenesis of multiple sclerosis (MS). On the other hand, vitamin D (VD) as an antioxidant reduces oxidative stress and has been used as adjuvant therapy in autoimmune diseases. Although VD supplementation is suggested as a protective and immunomodulation factor for MS patients, the molecular mechanisms remain unclear. Given that VD may modulate the immune system of MS patients through the DNA repair pathway, we aimed to evaluate the effects of VD supplementation in DNA repair genes expression including OGG1, MYH, MTH1, and ITPA. Transcript levels were measured using the RT-qPCR method in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) patients before and after two months of VD supplementation. Furthermore, in silico analysis and correlation gene expression analysis was performed to find the biological binding sites and the effect of NRF2 on the regulation of DNA repair genes. Our data revealed that in MS patients, 2-month VD treatment significantly altered the expression of MYH, OGG1, MTH1, and NRF2 genes. A significant correlation was observed between DNA repair genes and NRF2 expression, which was confirmed by the presence of antioxidant response element (ARE) binding sites in the promoter of OGG1, MYH, and MTH1 genes. This study demonstrated that the impact of VD on MS patients may be mediated through the improvement of DNA repair system efficiency. This finding brought some new evidence for the involvement of DNA repair genes in the physiopathology of MS patients.
Collapse
Affiliation(s)
- Roya Amirinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Bahar Naghavi Gargari
- Department of Basic Sciences, Faculty Nursing and Midwifery Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohhamad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Vitamin D deficiency and its association with fatigue and quality of life in multiple sclerosis patients. EPMA J 2019; 11:65-72. [PMID: 32140186 DOI: 10.1007/s13167-019-00191-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023]
Abstract
Background Vitamin D deficiency is associated with the incidence and prevalence of a variety of neurologic disorders, including multiple sclerosis. However, available studies to date have not provided convincing evidence that vitamin D treatment improves fatigue and life quality in patients with multiple sclerosis. Aim To assess the relationship of vitamin D deficiency with health-related quality-of-life issues and fatigue in multiple sclerosis patients. Methods Vitamin D3 levels were measured in 149 multiple sclerosis patients. In patients with lower than 30 ng/mL levels, vitamin D was administered. Fatigue and health-related quality of life scores were measured at baseline and months 1, 3, 6, and 12 after the beginning of vitamin D3 administration. Results Among 149 patients, 90% were vitamin D deficient. After vitamin D supplementation, health-related quality of life and fatigue scores improved significantly. There was a direct association between health-related quality of life with absence of fatigue and vitamin D status at the end of study. Conclusion The 90% frequency of multiple sclerosis patients with vitamin D deficiency, together with the significant association of vitamin D status with the absence of fatigue and improved physical and functional well-being, points to vitamin D supplementation as a potential therapy to enhance the patient's quality of life. Relevance of the article for predictive preventive and personalized medicine This article emphasizes that vitamin D supplementation can improve clinical outcome in multiple sclerosis patients providing immune modulation and neuroprotection. Identification and correction of vitamin D deficiency has the potential to treat the related quality of life in patients with multiple sclerosis.
Collapse
|
13
|
Blood levels of nitric oxide and DNA breaks assayed in whole blood and isolated peripheral blood mononucleated cells in patients with multiple sclerosis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:90-94. [DOI: 10.1016/j.mrgentox.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/19/2023]
|
14
|
Jantsch LB, de Lucca L, Dorneles BN, Konopka CK, Gonçalves TDL. Evaluation of oxidative stress and δ-aminolevulinate dehydratase activity in twin pregnancies. J Matern Fetal Neonatal Med 2019; 33:3071-3076. [PMID: 30688119 DOI: 10.1080/14767058.2019.1568980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose: To assess and understand the maternal oxidative stress in twin pregnancies, currently not studied, through ascertain indicators of oxidative damage in maternal blood in response of two fetuses, as well as the relation of placenta with or without the increase of oxidative stress in these gestations.Materials and methods: The activity of delta-aminolevulinate dehydratase (δ-ALA-D) was analyzed as an indirect marker of oxidative stress, as well as the quantification of thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH) and nonprotein thiol groups (NP-SH), vitamin C (VIT C) and catalase activity (CAT) in maternal blood samples from twin (n = 30) and single (n = 30) pregnancies. This study was approved by the Human Ethics Committee UFSM (register by the number 49823015.4.0000.5346).Results: TBARS was significantly higher in twin pregnancies, while thiol groups, VIT C and CAT were decreased, asides from the reduced activity of δ-ALA-D in comparison to single fetus gestations.Conclusions: The study established an oxidative stress increased and an antioxidant ability decreased in twin pregnancies, suggesting a possible relation between the levels of oxidants and antioxidants with the complications in those gestations.
Collapse
Affiliation(s)
- Letícia Bigolin Jantsch
- Department of Clinical and Toxicology Analysis, Postgraduate Program in Pharmaceutical Sciences, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Leidiane de Lucca
- Department of Clinical and Toxicology Analysis, Postgraduate Program in Pharmaceutical Sciences, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Bárbara Nicoli Dorneles
- Department of Clinical and Toxicology Analysis, Postgraduate Program in Pharmaceutical Sciences, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cristine Kolling Konopka
- Department of Obstetrics and Gynecology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Thissiane de Lima Gonçalves
- Department of Clinical and Toxicology Analysis, Postgraduate Program in Pharmaceutical Sciences, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
15
|
Adamczyk B, Koziarska D, Kasperczyk S, Adamczyk-Sowa M. Are antioxidant parameters in serum altered in patients with relapsing-remitting multiple sclerosis treated with II-line immunomodulatory therapy? Free Radic Res 2018; 52:1083-1093. [DOI: 10.1080/10715762.2018.1535176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Koziarska
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
16
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
17
|
Quercetin treatment regulates the Na +,K +-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55:45-56. [PMID: 29914627 DOI: 10.1016/j.nutres.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023]
Abstract
Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.
Collapse
|
18
|
Lazzarino G, Longo S, Amorini AM, Di Pietro V, D’Urso S, Lazzarino G, Belli A, Tavazzi B. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants. J Chromatogr A 2017; 1527:43-52. [DOI: 10.1016/j.chroma.2017.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
|
19
|
The Evaluation of Oxidative Stress Parameters in Serum Patients with Relapsing-Remitting Multiple Sclerosis Treated with II-Line Immunomodulatory Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9625806. [PMID: 29138683 PMCID: PMC5613460 DOI: 10.1155/2017/9625806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
Abstract
Objectives The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods One hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN, fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and total oxidative status (TOS) were determined. Results LHP, MDA, and TOS were lower in NT and FG groups compared to the de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion The II-line immunomodulatory treatment decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.
Collapse
|
20
|
Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017; 9:E659. [PMID: 28654017 PMCID: PMC5537779 DOI: 10.3390/nu9070659] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.
Collapse
Affiliation(s)
- Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Dorota Luchowska-Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Małgorzata Kiełczykowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Irena Musik
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
21
|
Mifflin KA, Frieser E, Benson C, Baker G, Kerr BJ. Voluntary wheel running differentially affects disease outcomes in male and female mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2017; 305:135-144. [DOI: 10.1016/j.jneuroim.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023]
|
22
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
23
|
New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1973834. [PMID: 27829982 PMCID: PMC5088319 DOI: 10.1155/2016/1973834] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease of the central nervous system (CNS) characterized by an inflammatory process and demyelination. The etiology of the disease is still not fully understood. Therefore, finding new etiological factors is of such crucial importance. It is suspected that the development of MS may be affected by oxidative stress (OS). In the acute phase OS initiates inflammatory processes and in the chronic phase it sustains neurodegeneration. Redox processes in MS are associated with mitochondrial dysfunction, dysregulation of axonal bioenergetics, iron accumulation in the brain, impaired oxidant/antioxidant balance, and OS memory. The present paper is a review of the current literature about the role of OS in MS and it focuses on all major aspects. The article explains the mechanisms of OS, reports unique biomarkers with regard to their clinical significance, and presents a poorly understood relationship between OS and neurodegeneration. It also provides novel methods of treatment, including the use of antioxidants and the role of antioxidants in neuroprotection. Furthermore, adding new drugs in the treatment of relapse may be useful. The article considers the significance of OS in the current treatment of MS patients.
Collapse
|
24
|
Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids 2016; 49:129-138. [DOI: 10.1007/s00726-016-2340-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
|