1
|
Miao ZW, Wang Z, Zheng SL, Wang SN, Miao CY. Anti-stroke biologics: from recombinant proteins to stem cells and organoids. Stroke Vasc Neurol 2024; 9:467-480. [PMID: 38286483 DOI: 10.1136/svn-2023-002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Bellotti C, Samudyata S, Thams S, Sellgren CM, Rostami E. Organoids and chimeras: the hopeful fusion transforming traumatic brain injury research. Acta Neuropathol Commun 2024; 12:141. [PMID: 39215375 PMCID: PMC11363608 DOI: 10.1186/s40478-024-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Research in the field of traumatic brain injury has until now heavily relied on the use of animal models to identify potential therapeutic approaches. However, a long series of failed clinical trials has brought many scientists to question the translational reliability of pre-clinical results obtained in animals. The search for an alternative to conventional models that better replicate human pathology in traumatic brain injury is thus of the utmost importance for the field. Recently, orthotopic xenotransplantation of human brain organoids into living animal models has been achieved. This review summarizes the existing literature on this new method, focusing on its potential applications in preclinical research, both in the context of cell replacement therapy and disease modelling. Given the obvious advantages of this approach to study human pathologies in an in vivo context, we here critically review its current limitations while considering its possible applications in traumatic brain injury research.
Collapse
Affiliation(s)
- Cristina Bellotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm Health Care Services, Karolinska Institutet, and Stockholm Health Care Services, Stockholm, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Ahammed B, Kalangi SK. A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology. ACS OMEGA 2024; 9:30087-30096. [PMID: 39035960 PMCID: PMC11256333 DOI: 10.1021/acsomega.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Organoid technology, revolutionizing biomedical research, offers a transformative approach to studying human developmental biology, disease pathology, and drug discovery. Originating from the pioneering work of Henry Van Peters Wilson in 1907 and evolving through subsequent breakthroughs, organoids are three-dimensional structures derived from stem cells or tissue explants that mimic the architecture and function of organs in vitro. With the ability to model various organs such as intestine, liver, brain, kidney, and more, organoids provide unprecedented insights into organ development, disease mechanisms, and drug responses. This review highlights the historical context, generation methods, applications, and challenges of organoid technology. Furthermore, it discusses recent advancements, including strategies to address hypoxia-induced cell death and enhance vascularization within organoids, aiming to refine their physiological relevance and unlock their full potential in personalized medicine and organ transplantation.
Collapse
Affiliation(s)
- Basheer Ahammed
- West BC Colony,
Guduru, Kurnool, Andhra Pradesh 518466, India
| | - Suresh K. Kalangi
- Molecular
Microbiology and Immunology Division, CSIR—Central Drug Research
Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
6
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
7
|
Tamada A, Muguruma K. Recapitulation and investigation of human brain development with neural organoids. IBRO Neurosci Rep 2024; 16:106-117. [PMID: 39007085 PMCID: PMC11240300 DOI: 10.1016/j.ibneur.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Organoids are 3D cultured tissues derived from stem cells that resemble the structure of living organs. Based on the accumulated knowledge of neural development, neural organoids that recapitulate neural tissue have been created by inducing self-organized neural differentiation of stem cells. Neural organoid techniques have been applied to human pluripotent stem cells to differentiate 3D human neural tissues in culture. Various methods have been developed to generate neural tissues of different regions. Currently, neural organoid technology has several significant limitations, which are being overcome in an attempt to create neural organoids that more faithfully recapitulate the living brain. The rapidly advancing neural organoid technology enables the use of living human neural tissue as research material and contributes to our understanding of the development, structure and function of the human nervous system, and is expected to be used to overcome neurological diseases and for regenerative medicine.
Collapse
Affiliation(s)
- Atsushi Tamada
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
8
|
Zhang MF, Wang JH, Sun S, Xu YT, Wan D, Feng S, Tian Z, Zhu HF. Catalpol attenuates ischemic stroke by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155362. [PMID: 38522312 DOI: 10.1016/j.phymed.2024.155362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.
Collapse
Affiliation(s)
- Mei-Feng Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jing-Hui Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Si Sun
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi-Tong Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shan Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Hui-Feng Zhu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Giorgi C, Castelli V, d’Angelo M, Cimini A. Organoids Modeling Stroke in a Petri Dish. Biomedicines 2024; 12:877. [PMID: 38672231 PMCID: PMC11048104 DOI: 10.3390/biomedicines12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Stroke is a common neurological disorder, the second leading cause of death, and the third leading cause of disability. Unfortunately, the only approved drug for it is tissue plasminogen, but the therapeutic window is limited. In this context, preclinical studies are relevant to better dissect the underlying mechanisms of stroke and for the drug screening of potential therapies. Brain organoids could be relevant in this setting. They are derived from pluripotent stem cells or isolated organ progenitors that differentiate to form an organ-like tissue, exhibiting multiple cell types that self-organize to form a structure not unlike the organ in vivo. Brain organoids mimic many key features of early human brain development at molecular, cellular, structural, and functional levels and have emerged as novel model systems that can be used to investigate human brain diseases including stroke. Brain organoids are a promising and powerful tool for ischemic stroke studies; however, there are a few concerns that need to be addressed, including the lack of vascularization and the many cell types that are typically present in the human brain. The aim of this review is to discuss the potential of brain organoids as a novel model system for studying ischemic stroke, highlighting both the advantages and disadvantages in the use of this technology.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| |
Collapse
|
11
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
12
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 PMCID: PMC10581587 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
13
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
14
|
Roberto de Barros N, Wang C, Maity S, Peirsman A, Nasiri R, Herland A, Ermis M, Kawakita S, Gregatti Carvalho B, Hosseinzadeh Kouchehbaghi N, Donizetti Herculano R, Tirpáková Z, Mohammad Hossein Dabiri S, Lucas Tanaka J, Falcone N, Choroomi A, Chen R, Huang S, Zisblatt E, Huang Y, Rashad A, Khorsandi D, Gangrade A, Voskanian L, Zhu Y, Li B, Akbari M, Lee J, Remzi Dokmeci M, Kim HJ, Khademhosseini A. Engineered organoids for biomedical applications. Adv Drug Deliv Rev 2023; 203:115142. [PMID: 37967768 PMCID: PMC10842104 DOI: 10.1016/j.addr.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.
Collapse
Affiliation(s)
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; São Paulo State University (UNESP), Bioengineering and Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jean Lucas Tanaka
- Butantan Institute, Viral Biotechnology Laboratory, São Paulo, SP Brazil; University of São Paulo (USP), São Paulo, SP Brazil
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Elisheva Zisblatt
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.
| |
Collapse
|
15
|
Tan Y, Coyle RC, Barrs RW, Silver SE, Li M, Richards DJ, Lin Y, Jiang Y, Wang H, Menick DR, Deleon-Pennell K, Tian B, Mei Y. Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts. SCIENCE ADVANCES 2023; 9:eadf2898. [PMID: 37540743 PMCID: PMC10403216 DOI: 10.1126/sciadv.adf2898] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Human cardiac organoids hold remarkable potential for cardiovascular disease modeling and human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) transplantation. Here, we show cardiac organoids engineered with electrically conductive silicon nanowires (e-SiNWs) significantly enhance the therapeutic efficacy of hPSC-CMs to treat infarcted hearts. We first demonstrated the biocompatibility of e-SiNWs and their capacity to improve cardiac microtissue engraftment in healthy rat myocardium. Nanowired human cardiac organoids were then engineered with hPSC-CMs, nonmyocyte supporting cells, and e-SiNWs. Nonmyocyte supporting cells promoted greater ischemia tolerance of cardiac organoids, and e-SiNWs significantly improved electrical pacing capacity. After transplantation into ischemia/reperfusion-injured rat hearts, nanowired cardiac organoids significantly improved contractile development of engrafted hPSC-CMs, induced potent cardiac functional recovery, and reduced maladaptive left ventricular remodeling. Compared to contemporary studies with an identical injury model, greater functional recovery was achieved with a 20-fold lower dose of hPSC-CMs, revealing therapeutic synergy between conductive nanomaterials and human cardiac organoids for efficient heart repair.
Collapse
Affiliation(s)
- Yu Tan
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Robert C. Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Yiliang Lin
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Yuanwen Jiang
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristine Deleon-Pennell
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bozhi Tian
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Cao SY, Tao MD, Lou SN, Yang D, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY. Functional reconstruction of the impaired cortex and motor function by hMGEOs transplantation in stroke. Biochem Biophys Res Commun 2023; 671:87-95. [PMID: 37300945 DOI: 10.1016/j.bbrc.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, 210008, China
| | - Meng-Dan Tao
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Shu-Ning Lou
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, 210008, China
| | - Yan Liu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Cao SY, Yang D, Huang ZQ, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen Med 2023; 8:27. [PMID: 37253754 DOI: 10.1038/s41536-023-00301-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Stroke usually causes prolonged or lifelong disability, owing to the permanent loss of infarcted tissue. Although a variety of stem cell transplantation has been explored to improve neuronal defect behavior by enhancing neuroplasticity, it remains unknown whether the infarcted tissue can be reconstructed. We here cultured human cerebral organoids derived from human pluripotent stem cells (hPSCs) and transplanted them into the junction of the infarct core and the peri-infarct zone of NOD-SCID mice subjected to stroke. Months later, we found that the grafted organoids survived well in the infarcted core, differentiated into target neurons, repaired infarcted tissue, sent axons to distant brain targets, and integrated into the host neural circuit and thereby eliminated sensorimotor defect behaviors of stroke mice, whereas transplantation of dissociated single cells from organoids failed to repair the infarcted tissue. Our study offers a new strategy for reconstructing infarcted tissue via organoids transplantation thereby reversing stroke-induced disability.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210008, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen-Quan Huang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210008, China
| | - Yan Liu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sá R. A beginner's guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther 2023; 14:87. [PMID: 37061699 PMCID: PMC10105545 DOI: 10.1186/s13287-023-03302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The first human brain organoid protocol was presented in the beginning of the previous decade, and since then, the field witnessed the development of many new brain region-specific models, and subsequent protocol adaptations and modifications. The vast amount of data available on brain organoid technology may be overwhelming for scientists new to the field and consequently decrease its accessibility. Here, we aimed at providing a practical guide for new researchers in the field by systematically reviewing human brain organoid publications. METHODS Articles published between 2010 and 2020 were selected and categorised for brain organoid applications. Those describing neurodevelopmental studies or protocols for novel organoid models were further analysed for culture duration of the brain organoids, protocol comparisons of key aspects of organoid generation, and performed functional characterisation assays. We then summarised the approaches taken for different models and analysed the application of small molecules and growth factors used to achieve organoid regionalisation. Finally, we analysed articles for organoid cell type compositions, the reported time points per cell type, and for immunofluorescence markers used to characterise different cell types. RESULTS Calcium imaging and patch clamp analysis were the most frequently used neuronal activity assays in brain organoids. Neural activity was shown in all analysed models, yet network activity was age, model, and assay dependent. Induction of dorsal forebrain organoids was primarily achieved through combined (dual) SMAD and Wnt signalling inhibition. Ventral forebrain organoid induction was performed with dual SMAD and Wnt signalling inhibition, together with additional activation of the Shh pathway. Cerebral organoids and dorsal forebrain model presented the most cell types between days 35 and 60. At 84 days, dorsal forebrain organoids contain astrocytes and potentially oligodendrocytes. Immunofluorescence analysis showed cell type-specific application of non-exclusive markers for multiple cell types. CONCLUSIONS We provide an easily accessible overview of human brain organoid cultures, which may help those working with brain organoids to define their choice of model, culture time, functional assay, differentiation, and characterisation strategies.
Collapse
Affiliation(s)
- Lance A Mulder
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Josse A Depla
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Adithya Sridhar
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Katja Wolthers
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Renata Vieira de Sá
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| |
Collapse
|
21
|
Wang M, Gage FH, Schafer ST. Transplantation Strategies to Enhance Maturity and Cellular Complexity in Brain Organoids. Biol Psychiatry 2023; 93:616-621. [PMID: 36739209 PMCID: PMC10662460 DOI: 10.1016/j.biopsych.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Human brain organoids are 3-dimensional cell aggregates that are generated from pluripotent stem cells and recapitulate features of the early developing human brain. Brain organoids mainly consist of cells from the neural lineage, such as neural progenitor cells, neurons, and astrocytes. However, current brain organoid systems lack functional vasculature as well as other non-neuronal cells that are indispensable for oxygen and nutrient supply to the organoids, causing cell stress and formation of a necrotic center. Attempts to utilize intracerebral transplantation approaches have demonstrated successful vascularization of brain organoids and robust neurodifferentiation. In this review, we summarize recent progress and discuss ethical considerations in the field of brain organoid transplantation.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California; Department of Psychiatry and Psychotherapy, Medical School, Technical University of Munich, Munich, Germany; Center for Organoid Systems and Tissue Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
22
|
Fang J, Song F, Chang C, Yao M. Intracerebral Hemorrhage Models and Behavioral Tests in Rodents. Neuroscience 2023; 513:1-13. [PMID: 36690062 DOI: 10.1016/j.neuroscience.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Intracerebral hemorrhage (ICH) is one of the common types of stroke, which can cause neurological dysfunction. In preclinical ICH studies, researchers often established rodent models by donor/autologous whole blood or a collagenase injection. White matter injury (WMI) can result from primary and secondary injuries after ICH. WMI can lead to short- and long-term neurological impairment, and functional recovery can assess the effect of drug therapy after ICH. Therefore, researchers have devised various behavioral tests to assess dysfunction. This review compares the two ICH modeling methods in rodents and summarizes the pathological mechanisms underlying dysfunction after ICH. We also summarize the functions and characteristics of various behavioral methods, including sensation, motion, emotion, and cognition, to assist researchers in selecting the appropriate tests for preclinical ICH research.
Collapse
Affiliation(s)
- Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen 518060, China; Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Measurement and Quality Inspection, Shenzhen 518060, China.
| |
Collapse
|
23
|
Wang SN, Wang Z, Wang XY, Zhang XP, Xu TY, Miao CY. Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents. Acta Pharmacol Sin 2023; 44:513-523. [PMID: 36100766 PMCID: PMC9958103 DOI: 10.1038/s41401-022-00986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Establishing a stoke experimental model, which is better in line with the physiology and function of human brain, is the bottleneck for the development of effective anti-stroke drugs. A three-dimensional cerebral organoids (COs) from human pluripotent stem cells can mimic cell composition, cortical structure, brain neural connectivity and epigenetic genomics of in-vivo human brain, which provides a promising application in establishing humanized ischemic stroke model. COs have been used for modeling low oxygen condition-induced hypoxic injury, but there is no report on the changes of COs in response to in vitro oxygen-glucose deprivation (OGD)-induced damage of ischemic stroke as well as its application in testing anti-stroke drugs. In this study we compared the cell composition of COs at different culture time and explored the cell types, cell ratios and volume size of COs at 85 days (85 d-CO). The 85 d-CO with diameter more than 2 mm was chosen for establishing humanized ischemic stroke model of OGD. By determining the time-injury relationship of the model, we observed aggravated ischemic injury of COs with OGD exposure time, obtaining first-hand evidence for the damage degree of COs under different OGD condition. The sensitivity of the model to ischemic injury and related treatment was validated by the proven pan-Caspase inhibitor Z-VAD-FMK (20 μM) and Bcl-2 inhibitor navitoclax (0.5 μM). Neuroprotective agents edaravone, butylphthalide, P7C3-A20 and ZL006 (10 μM for each) exerted similar beneficial effects in this model. Taken together, this study establishes a humanized ischemic stroke model based on COs, and provides evidence as a new research platform for anti-stroke drug development.
Collapse
Affiliation(s)
- Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Xi-Yuan Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Xiu-Ping Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
- Department of Anesthesia Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Rogulska O, Havelkova J, Petrenko Y. Cryopreservation of Organoids. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Organoids represent indispensable opportunities for biomedicine, including drug discovery, cancer biology, regenerative and personalised medicine or tissue and organ transplantation. However, the lack of optimised preservation strategies limits the wide use of organoids in research
or clinical fields. In this review, we present a short outline of the recent developments in organoid research and current cryopreservation strategies for organoid systems. While both vitrification and slow controlled freezing have been utilized for the cryopreservation of organoid structures
or their precursor components, the controlled-rate slow freezing under protection of Me2 SO remains the most common approach. The application of appropriate pre- or post-treatment strategies, like the addition of Rho-kinase or myosin inhibitors into cell culture or cryopreservation
medium, can increase the recovery of complex organoid constructs post-thaw. However, the high complexity of the organoid structure and heterogeneity of cellular composition bring challenges associated with cryoprotectant distribution, distinct response of cells to the solution and freezing-induced
injuries. The deficit of adequate quality control methods, which may ensure the assessment of organoid recovery in due term without prolonged re-cultivation process, represents another challenge limiting the reproducibility of current cryobanking technology. In this review, we attempt to assess
the current demands and achievements in organoid cryopreservation and highlight the key questions to focus on during the development of organoid preservation technologies.
Collapse
Affiliation(s)
- Olena Rogulska
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of the NAS Ukraine, Kharkiv, Ukraine
| | - Jarmila Havelkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the CAS, Prague, Czech Republic
| | - Yuriy Petrenko
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the CAS, Prague, Czech Republic
| |
Collapse
|
25
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
26
|
Jgamadze D, Lim JT, Zhang Z, Harary PM, Germi J, Mensah-Brown K, Adam CD, Mirzakhalili E, Singh S, Gu JB, Blue R, Dedhia M, Fu M, Jacob F, Qian X, Gagnon K, Sergison M, Fruchet O, Rahaman I, Wang H, Xu F, Xiao R, Contreras D, Wolf JA, Song H, Ming GL, Chen HCI. Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell 2023; 30:137-152.e7. [PMID: 36736289 PMCID: PMC9926224 DOI: 10.1016/j.stem.2023.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Brain organoids created from human pluripotent stem cells represent a promising approach for brain repair. They acquire many structural features of the brain and raise the possibility of patient-matched repair. Whether these entities can integrate with host brain networks in the context of the injured adult mammalian brain is not well established. Here, we provide structural and functional evidence that human brain organoids successfully integrate with the adult rat visual system after transplantation into large injury cavities in the visual cortex. Virus-based trans-synaptic tracing reveals a polysynaptic pathway between organoid neurons and the host retina and reciprocal connectivity between the graft and other regions of the visual system. Visual stimulation of host animals elicits responses in organoid neurons, including orientation selectivity. These results demonstrate the ability of human brain organoids to adopt sophisticated function after insertion into large injury cavities, suggesting a translational strategy to restore function after cortical damage.
Collapse
Affiliation(s)
- Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James T Lim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhijian Zhang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Germi
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kobina Mensah-Brown
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Adam
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ehsan Mirzakhalili
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shikha Singh
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiahe Ben Gu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Blue
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehek Dedhia
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Fu
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fadi Jacob
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuyu Qian
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly Gagnon
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Sergison
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oceane Fruchet
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Imon Rahaman
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huadong Wang
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Rui Xiao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Han-Chiao Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Wang J, Liu X, Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front Neurosci 2023; 17:1158057. [PMID: 36937662 PMCID: PMC10017736 DOI: 10.3389/fnins.2023.1158057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The microbiota-gut-brain axis connects the brain and the gut in a bidirectional manner. The organism's homeostasis is disrupted during an ischemic stroke (IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites. Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes by inducing systemic inflammation. Some studies have recently provided novel insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse events of the gut microbiome in IS. In this review, we discussed the view that the gut microbiome is of clinical value in personalized therapeutic regimens for IS. Based on recent non-clinical and clinical studies on stroke, we discussed new therapeutic strategies that might be developed by modulating gut bacterial flora. These strategies include dietary intervention, fecal microbiota transplantation, probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell transplantation. Although the gut microbiota-targeted intervention is optimistic, some issues need to be addressed before clinical translation. These issues include a deeper understanding of the potential underlying mechanisms, conducting larger longitudinal cohort studies on the gut microbiome and host responses with multiple layers of data, developing standardized protocols for conducting and reporting clinical analyses, and performing a clinical assessment of multiple large-scale IS cohorts. In this review, we presented certain opportunities and challenges that might be considered for developing effective strategies by manipulating the gut microbiome to improve the treatment and prevention of ischemic stroke.
Collapse
|
28
|
Mani KK, El-Hakim Y, Branyan TE, Samiya N, Pandey S, Grimaldo MT, Habbal A, Wertz A, Sohrabji F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav Immun 2023; 107:345-360. [PMID: 36328163 DOI: 10.1016/j.bbi.2022.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.
Collapse
Affiliation(s)
- Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Ali Habbal
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Anna Wertz
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States.
| |
Collapse
|
29
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
30
|
Modelling Alzheimer's disease using human brain organoids: current progress and challenges. Expert Rev Mol Med 2022; 25:e3. [PMID: 36517884 DOI: 10.1017/erm.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by gradual memory loss and declining cognitive and executive functions. AD is the most common cause of dementia, affecting more than 50 million people worldwide, and is a major health concern in society. Despite decades of research, the cause of AD is not well understood and there is no effective curative treatment so far. Therefore, there is an urgent need to increase understanding of AD pathophysiology in the hope of developing a much-needed cure. Dissecting the cellular and molecular mechanisms of AD pathogenesis has been challenging as the most commonly used model systems such as transgenic animals and two-dimensional neuronal culture do not fully recapitulate the pathological hallmarks of AD. The recent advent of three-dimensional human brain organoids confers unique opportunities to study AD in a humanised model system by encapsulating many aspects of AD pathology. In the present review, we summarise the studies of AD using human brain organoids that recapitulate the major pathological components of AD including amyloid-β and tau aggregation, neuroinflammation, mitochondrial dysfunction, oxidative stress and synaptic and circuitry dysregulation. Additionally, the current challenges and future directions of the brain organoids modelling system are discussed.
Collapse
|
31
|
Zhang S, Kong DW, Ma GD, Liu CD, Yang YJ, Liu S, Jiang N, Pan ZR, Zhang W, Kong LL, Du GH. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacol Sin 2022; 43:2212-2225. [PMID: 35217812 PMCID: PMC9433393 DOI: 10.1038/s41401-021-00844-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3β/β-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3β/β-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.
Collapse
Affiliation(s)
- Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - De-Wen Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cheng-di Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Jiao Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shan Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Nan Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Henan University, Zhengzhou, 475004, China
| | - Zi-Rong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Pang J, Matei N, Peng J, Zheng W, Yu J, Luo X, Camara R, Chen L, Tang J, Zhang JH, Jiang Y. Macrophage Infiltration Reduces Neurodegeneration and Improves Stroke Recovery after Delayed Recanalization in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6422202. [PMID: 36035227 PMCID: PMC9402313 DOI: 10.1155/2022/6422202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Background Recent cerebrovascular recanalization therapy clinical trials have validated delayed recanalization in patients outside of the conventional window. However, a paucity of information on the pathophysiology of delayed recanalization and favorable outcomes remains. Since macrophages are extensively studied in tissue repair, we anticipate that they may play a critical role in delayed recanalization after ischemic stroke. Methods In adult male Sprague-Dawley rats, two ischemic stroke groups were used: permanent middle cerebral artery occlusion (pMCAO) and delayed recanalization at 3 days following middle cerebral artery occlusion (rMCAO). To evaluate outcome, brain morphology, neurological function, macrophage infiltration, angiogenesis, and neurodegeneration were reported. Confirming the role of macrophages, after their depletion, we assessed angiogenesis and neurodegeneration after delayed recanalization. Results No significant difference was observed in the rate of hemorrhage or animal mortality among pMCAO and rMCAO groups. Delayed recanalization increased angiogenesis, reduced infarct volumes and neurodegeneration, and improved neurological outcomes compared to nonrecanalized groups. In rMCAO groups, macrophage infiltration contributed to increased angiogenesis, which was characterized by increased vascular endothelial growth factor A and platelet-derived growth factor B. Confirming these links, macrophage depletion reduced angiogenesis, inflammation, neuronal survival in the peri-infarct region, and favorable outcome following delayed recanalization. Conclusion If properly selected, delayed recanalization at day 3 postinfarct can significantly improve the neurological outcome after ischemic stroke. The sanguineous exposure of the infarct/peri-infarct to macrophages was essential for favorable outcomes after delayed recanalization at 3 days following ischemic stroke.
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nathanael Matei
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wen Zheng
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jing Yu
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xu Luo
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Richard Camara
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
33
|
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7:168. [PMID: 35610212 PMCID: PMC9127490 DOI: 10.1038/s41392-022-01024-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Shanshan Wu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Chu Chu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Wei N, Li C, Zhu Y, Zheng P, Hu R, Chen J. Fluoxetine regulates the neuronal differentiation of neural stem cells transplanted into rat brains after stroke by increasing the 5HT level. Neurosci Lett 2022; 772:136447. [PMID: 35007690 DOI: 10.1016/j.neulet.2022.136447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
Fluoxetine, a 5-HT uptake inhibitor, has been adopted for the treatment of post-stroke depression in recent years. It has been confirmed to induce neuronal regeneration in vivo, but its effect on inducing stem cell differentiation after transplantation has not yet been verified. To evaluate its regulatory effect on stem cell differentiation, fluoxetine was used in this study to treat rats with cerebral ischemia after neural stem cell (NSC) transplantation. The results showed that the proportion of NSCs differentiating into neurons significantly increased after fluoxetine treatment. In NSC adherent culture, the addition of 5-HT but not of fluoxetine significantly increased the neuronal differentiation ratio of NSCs. Moreover, the addition of 5-HT2A or 5-HT3A antagonists inhibited this effect. In addition, Western blotting revealed that the increase in 5-HT inhibited ERK2 phosphorylation and upregulated neurogenin1 expression. In conclusion, fluoxetine increased the 5-HT level and promoted neuronal differentiation, thereby upregulating neurogenin1 expression and downregulating ERK2 phosphorylation.
Collapse
Affiliation(s)
- Naili Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Peiqi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| |
Collapse
|
35
|
Zhang JS, Hou PP, Shao S, Manaenko A, Xiao ZP, Chen Y, Zhao B, Jia F, Zhang XH, Mei QY, Hu Q. microRNA-455-5p alleviates neuroinflammation in cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 17:1769-1775. [PMID: 35017437 PMCID: PMC8820705 DOI: 10.4103/1673-5374.332154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated. In this study, mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion. Agomir-455-5p, antagomir-455-5p, and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion (MCAO). The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood. Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue, reduced the cerebral infarct volume, and improved neurological function. Furthermore, primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion. miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels, inhibited microglia activation, and reduced the production of the inflammatory factors tumor necrosis factor-α and interleukin-1β. These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.
Collapse
Affiliation(s)
- Jian-Song Zhang
- Central Laboratory, Renji Hospital; Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Xiao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital; Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:ijms23020624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
|
37
|
Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res 2022; 9:2. [PMID: 34991734 PMCID: PMC8740337 DOI: 10.1186/s40779-021-00363-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Military psychiatry, a new subcategory of psychiatry, has become an invaluable, intangible effect of the war. In this review, we begin by examining related military research, summarizing the related epidemiological data, neuropathology, and the research achievements of diagnosis and treatment technology, and discussing its comorbidity and sequelae. To date, advances in neuroimaging and molecular biology have greatly boosted the studies on military traumatic brain injury (TBI). In particular, in terms of pathophysiological mechanisms, several preclinical studies have identified abnormal protein accumulation, blood-brain barrier damage, and brain metabolism abnormalities involved in the development of TBI. As an important concept in the field of psychiatry, TBI is based on organic injury, which is largely different from many other mental disorders. Therefore, military TBI is both neuropathic and psychopathic, and is an emerging challenge at the intersection of neurology and psychiatry.
Collapse
Affiliation(s)
- Ling-Zhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Rui-Li Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shao-Hua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| | - Jian-Bo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
38
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
40
|
Non-Animal Models in Experimental Subarachnoid Hemorrhage Research: Potentials and the Dilemma of the Translation from Bench to Bedside. Transl Stroke Res 2021; 13:218-221. [PMID: 34714498 PMCID: PMC8918456 DOI: 10.1007/s12975-021-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
|
41
|
Extracellular Vesicles Taken up by Astrocytes. Int J Mol Sci 2021; 22:ijms221910553. [PMID: 34638890 PMCID: PMC8508591 DOI: 10.3390/ijms221910553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 01/20/2023] Open
Abstract
Extracellular vesicles (EVs) are composed of lipid bilayer membranes and contain various molecules, such as mRNA and microRNA (miRNA), that regulate the functions of the recipient cell. Recent studies have reported the importance of EV-mediated intercellular communication in the brain. The brain contains several types of cells, including neurons and glial cells. Among them, astrocytes are the most abundant glial cells in the mammalian brain and play a wide range of roles, from structural maintenance of the brain to regulation of neurotransmission. Furthermore, since astrocytes can take up EVs, it is possible that EVs originating from inside and outside the brain affect astrocyte function, which in turn affects brain function. However, it has not been fully clarified whether the specific targeting mechanism of EVs to astrocytes as recipient cells exists. In recent years, EVs have attracted attention as a cell-targeted therapeutic approach in various organs, and elucidation of the targeting mechanism of EVs to astrocytes may pave the way for new therapies for brain diseases. In this review, we focus on EVs in the brain that affect astrocyte function and discuss the targeting mechanism of EVs to astrocytes.
Collapse
|
42
|
Pang J, Wu Y, Peng J, Yang P, Chen L, Jiang Y. Association of Pericyte Loss With Microthrombosis After Subarachnoid Hemorrhage in ApoE-Deficient Mice. Front Neurol 2021; 12:726520. [PMID: 34566870 PMCID: PMC8460864 DOI: 10.3389/fneur.2021.726520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The occurrence of microthrombosis contributes to not only delayed cerebral ischemia (DCI), but also early brain injury (EBI) after SAH. However, the underlying mechanism is not completely investigated. In the current study, we explored the underlying mechanism of microthrombosis in EBI stage after SAH in ApoE-deficient mice. Methods: Experimental SAH was established by endovascular perforation in apolipoprotein E (ApoE)-deficient mice and wild type (WT) mice. Neurobehavioral, molecular biological and histopathological methods were used to assess the relationship between pericytes loss, neurobehavioral performance, and microthrombosis. Results: We found that the number of microthrombi was significantly increased and peaked 48 h after SAH in WT mice. The increased microthrombosis was related to the decreased effective microcirculation perfusion area and EBI severity. ApoE-deficient mice showed more extensive microthrombosis than that of WT mice 48 h after SAH, which was thereby associated with greater neurobehavioral deficits. Immunohistochemical staining showed that microthrombi were predominantly located in microvessels where pericytes coverage was absent. Mechanistically, ApoE deficiency caused more extensive CypA-NF-κB-MMP-9 pathway activation than that observed in WT mice, which thereby led to more degradation of N-cadherin, and subsequently more pericytes loss. Thereafter, the major adhesion molecule that promoting microthrombi formation in microvessels, P-selectin, was considerably increased in WT mice and increased to a greater extent in the ApoE-deficient mice. Conclusion: Taken together, these data suggest that pericytes loss is associated with EBI after SAH through promoting microthrombosis. Therapies that target ApoE to reduce microthrombosis may be a promising strategy for SAH treatment.
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
43
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Abstract
Gliomas are common brain mass with a high mortality rate. Patients with gliomas have a severely bad outcome, with an average survive duration less 15 months because of high recurrent rate and being resistant to radio-therapy and chemistry drugs therapy. Hyperbaric oxygen is extensively taken as an adjuvant treatment for various disease conditions. To know the characteristics of hyperbaric oxygen as a remedy for gliomas, we find that, in general, hyperbaric oxygen shows an obviously positive effect on the treatment of gliomas, and it can also relieve the complications caused by postoperative radiotherapy and chemotherapy of gliomas. Whereas, several researches have shown that hyperbaric oxygen promotes glioma progression.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
45
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
46
|
The Evolving Role of Induced Pluripotent Stem Cells and Cerebral Organoids in Treating and Modeling Neurosurgical Diseases. World Neurosurg 2021; 155:171-179. [PMID: 34454068 DOI: 10.1016/j.wneu.2021.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
Over the past decade, the use of induced pluripotent stem cells (IPSCs), as both direct therapeutics and building blocks for 3D in vitro models, has exhibited exciting potential in both helping to elucidate pathogenic mechanisms and treating diseases relevant to neurosurgery. Transplantation of IPSCs is being studied in neurological injuries and diseases, such as spinal cord injury and Parkinson's disease, whose clinical manifestations stem from underlying neuronal and/or axonal degeneration. Both animal models and clinical trials have shown that IPSCs have the ability to regenerate damaged neural tissue. Such evidence makes IPSCs a potentially promising therapeutic modality for patients who suffer from these neurological injuries/diseases. In addition, the cerebral organoid, a 3D assembly of IPSC aggregates that develops heterogeneous brain regions, has become the first in vitro model to closely recapitulate the complexity of the brain extracellular matrix, a 3-dimensional network of molecules that structurally and biochemically support neighboring cells. Cerebral organoids have become an exciting prospect for modeling and testing drug susceptibility of brain tumors, such as glioblastoma and metastatic brain cancer. As patient-derived organoid models are becoming more faithful to the brain, they are becoming an increasingly accurate substitute for patient clinical trials; such patient-less trials would protect the patient from potentially ineffective drugs, and speed up trial results and optimize cost. In this review, we aim to describe the role of IPSCs and cerebral organoids in treating and modeling diseases that are relevant to neurosurgery.
Collapse
|
47
|
Cerebral Organoids-Challenges to Establish a Brain Prototype. Cells 2021; 10:cells10071790. [PMID: 34359959 PMCID: PMC8306666 DOI: 10.3390/cells10071790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
The new cellular models based on neural cells differentiated from induced pluripotent stem cells have greatly enhanced our understanding of human nervous system development. Highly efficient protocols for the differentiation of iPSCs into different types of neural cells have allowed the creation of 2D models of many neurodegenerative diseases and nervous system development. However, the 2D culture of neurons is an imperfect model of the 3D brain tissue architecture represented by many functionally active cell types. The development of protocols for the differentiation of iPSCs into 3D cerebral organoids made it possible to establish a cellular model closest to native human brain tissue. Cerebral organoids are equally suitable for modeling various CNS pathologies, testing pharmacologically active substances, and utilization in regenerative medicine. Meanwhile, this technology is still at the initial stage of development.
Collapse
|
48
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
49
|
Fang H, Li HF, He MH, Yang M, Zhang JP. HDAC3 Downregulation Improves Cerebral Ischemic Injury via Regulation of the SDC1-Dependent JAK1/STAT3 Signaling Pathway Through miR-19a Upregulation. Mol Neurobiol 2021; 58:3158-3174. [PMID: 33634377 DOI: 10.1007/s12035-021-02325-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can protect the brain from ischemic injury. This study aimed to identify the regulation of HDAC3 in cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was performed to establish a mouse model with cerebral ischemic injury, in which expression of HDAC3 and miR-19a was evaluated using RT-qPCR. In MCAO mice with silencing of HDAC3, infarct volume was determined using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and serum levels of TNF-α, IL-6, and IL-8 were measured using ELISA. An in vitro model was constructed in human umbilical vein endothelial cells (HUVECs) with oxygen-glucose deprivation/reoxygenation (OGD/R), followed by gain- and loss-of-function experiments. Relationships among miR-19a, HDAC3, and syndecan-1 (SDC1) were explored using RIP, ChIP, and dual-luciferase reporter assays. The expression of HDAC3, SDC1, JAK1, and STAT3 along with the extent of JAK1 and STAT3 phosphorylation was measured by Western blot analysis. HUVEC viability, apoptosis, and angiogenesis were assessed by CCK-8, flow cytometry, and angiogenesis assays in vitro separately. We found elevated HDAC3 and downregulated miR-19a expression in the MCAO mice. Decreased TNF-α, IL-6, and IL-8 serum levels were observed in response to silencing of HDAC3. HDAC3 inhibited the expression of miR-19a, which in turn targeted SDC1, leading to JAK1/STAT3 signaling pathway activation. HDAC3 overexpression or miR-19a inhibition repressed HUVEC viability and angiogenesis but enhanced HUVEC apoptosis. Our data unraveled the mechanism whereby HDAC3 inhibition ameliorated cerebral ischemic injury by activating the JAK1/STAT3 signaling pathway through miR-19a-mediated SDC1 inhibition.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ming-Hai He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China.
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China.
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
50
|
Borodinova AA, Balaban PM, Bezprozvanny IB, Salmina AB, Vlasova OL. Genetic Constructs for the Control of Astrocytes' Activity. Cells 2021; 10:cells10071600. [PMID: 34202359 PMCID: PMC8306323 DOI: 10.3390/cells10071600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes’ activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals. Therefore, efficient and sufficient targeting of astrocytes is a multiparametric process that requires a combination of specific AAV serotypes naturally predisposed to transduce astroglia with astrocyte-specific promoters in the AAV cassette. Inadequate combinations may result in off-target neuronal transduction to different degrees. Potentially, these constraints may be bypassed with the latest strategies of generating novel synthetic AAV serotypes with specified properties by rational engineering of AAV capsids or using directed evolution approach by searching within a more specific promoter or its replacement with the unique enhancer sequences characterized using modern molecular techniques (ChIP-seq, scATAC-seq, snATAC-seq) to drive the selective transgene expression in the target population of cells or desired brain regions. Realizing these strategies to restrict expression and to efficiently target astrocytic populations in specific brain regions or across the brain has great potential to enable future studies.
Collapse
Affiliation(s)
- Anastasia A. Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Correspondence:
| | - Ilya B. Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Alla B. Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Research Institute of Molecular Medicine and Pathobiochemistry, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
| |
Collapse
|