1
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Madzivanzira T, Mvumi BM, Nazare RM, Nyakudya E, Mtambanengwe F, Mapfumo P. A review of appropriate mechanisation systems for sustainable traditional grain production by smallholder farmers in sub-Saharan Africa with particular reference to Zimbabwe. Heliyon 2024; 10:e36695. [PMID: 39281554 PMCID: PMC11400974 DOI: 10.1016/j.heliyon.2024.e36695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Climate change and variability is affecting the production of maize, a staple food in Zimbabwe, leading to the advocacy for production of traditional grains (sorghum, pearl millet and finger millet) as complementary crops for food and nutrition security; mainly because of their drought tolerance. Adoption of traditional grains as a climate change adaptation strategy is, however, limited by lack of appropriate field mechanisation technologies, inter alia. The specific objective of this review was to examine the field mechanisation technologies being used in different farming systems across the globe for their appropriateness in smallholder traditional grain production systems in developing countries, using Zimbabwe as an example, and focusing on the prevailing technical, socio-economic and environmental factors which influence sustainable adoption. The review was conducted by searching ScienceDirect, Researchgate, JSTOR, Springer, AGORA and Google Scholar databases for mechanisation strategies, policies, machinery and equipment used in cereal production systems across the globe. The review revealed that the mechanisation of traditional grain production operations is lagging behind that of other cereals and that there is need to work on developing appropriate mechanisation systems for smallholder farmers in developing countries. Various farm power options were analysed and the use of two-wheel tractors under service-provision was identified as the most suitable option. Conservation agriculture-based direct seeders and use of mowers or bio-pesticides are the best-suited technologies for crop establishment and weed control, respectively. In terms of harvesting, no available equipment can be recommended for smallholder use as yet. Further research is required to optimize the practical application of mowers and bio-pesticides as well as develop scale-based direct seeders and harvesting equipment. Policy issues were identified and recommendations for improvement made. The findings of the current study can be adapted by other sub-Sahara Africa countries where farming systems, priorities and challenges are similar to that of Zimbabwe.
Collapse
Affiliation(s)
- Tinashe Madzivanzira
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Zimbabwe
| | - Brighton M Mvumi
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Zimbabwe
| | - Raymond M Nazare
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Zimbabwe
- Currently Independent Agricultural Engineering Consultant, Zimbabwe
| | - Elijah Nyakudya
- Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Zimbabwe
| | - Florence Mtambanengwe
- Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Zimbabwe
| | - Paul Mapfumo
- Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Zimbabwe
| |
Collapse
|
3
|
Sharma S, Kumar S, Gautam P, Kumar AP, Kumar V, Ahmad W, Dobhal A. Process Standardization of Functionally Enriched Millet-Based Nutri-Cereal Mix Using D-Optimal Design Approach for Enhancing Food and Nutritional Security. ACS OMEGA 2024; 9:26293-26306. [PMID: 38911719 PMCID: PMC11191092 DOI: 10.1021/acsomega.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Millets are currently employed in a variety of ways, including direct consumption and usage in the manufacture of certain cuisines or snacks. The present investigation was aimed at optimizing functionally enriched millet-based nutri-cereal mix comprising chicken and vegetable for a nutrition-deficient population. A total of 16 experiments were carried out by using optimal (custom) design model of mixture design with 60% major ingredients, including malted sorghum flour (20-30%), malted green gram flour (15-25%), and boiled chicken powder (5-15%). To make 100% of the total nutri-cereal mixture, other ingredients such as malted pearl millet (10%), finger millet flour (10%), beetroot powder (2.5%), pumpkin powder (7.5%), skimmed milk powder (9.5%), and stevia powder (0.5%) were added. Numerical optimization was done using Design Expert software, version 13. The optimized ratio was 30% malted sorghum flour, 15% malted green gram flour, and 15% chicken powder. The predicted values of responses 5.101%, 3.616%, 1.963%, 11.165%, 28.005%, 50.149%, 330.282 kcal, and 0.373 were in accordance with experimental values 6.426%, 3.455%, 1.714%, 11.432%, 29.12%, 47.853%, 323.318 kcal, and 0.385 for moisture, ash, fat, fiber, protein, carbohydrates, energy, and water activity, respectively, with a small error percentage. The results of mineral content, phenolic content, and amino acid profiling revealed that the optimized Nutri-cereal mix have higher amounts of these components. The results also suggested that the optimized Nutri-cereal mix of these malted millet flours can potentially enhance the nutritional deficiency as well as improve food and nutritional security.
Collapse
Affiliation(s)
- Samiksha Sharma
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Sanjay Kumar
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Pankaj Gautam
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Avvaru Praveen Kumar
- Department
of Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
| | - Vinod Kumar
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
- Graphic
Era Hill University, Dehradun, Uttarakhand 248002, India
| | - Waseem Ahmad
- Department
of Chemistry, Graphic Era (Deemed to be
University), Dehradun, Uttarakhand 248002, India
| | - Ankita Dobhal
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| |
Collapse
|
4
|
Jha DK, Chanwala J, Barla P, Dey N. "Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9". FRONTIERS IN PLANT SCIENCE 2024; 15:1352040. [PMID: 38469329 PMCID: PMC10925649 DOI: 10.3389/fpls.2024.1352040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Abiotic stresses are major constraints in crop production, and are accountable for more than half of the total crop loss. Plants overcome these environmental stresses using coordinated activities of transcription factors and phytohormones. Pearl millet an important C4 cereal plant having high nutritional value and climate resilient features is grown in marginal lands of Africa and South-East Asia including India. Among several transcription factors, the basic leucine zipper (bZIP) is an important TF family associated with diverse biological functions in plants. In this study, we have identified 98 bZIP family members (PgbZIP) in pearl millet. Phylogenetic analysis divided these PgbZIP genes into twelve groups (A-I, S, U and X). Motif analysis has shown that all the PgbZIP proteins possess conserved bZIP domains and the exon-intron organization revealed conserved structural features among the identified genes. Cis-element analysis, RNA-seq data analysis, and real-time expression analysis of PgbZIP genes suggested the potential role of selected PgbZIP genes in growth/development and abiotic stress responses in pearl millet. Expression profiling of selected PgbZIPs under various phytohormones (ABA, SA and MeJA) treatment showed differential expression patterns of PgbZIP genes. Further, PgbZIP9, a homolog of AtABI5 was found to localize in the nucleus and modulate gene expression in pearl millet under stresses. Our present findings provide a better understanding of bZIP genes in pearl millet and lay a good foundation for the further functional characterization of multi-stress tolerant PgbZIP genes, which could become efficient tools for crop improvement.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Preeti Barla
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
5
|
Mondal S, Agrawal S, Balasubramanian A, Maji S, Shit S, Biswas P, Ghosh S, Islam SS, Dey S. Structural analysis of a water insoluble polysaccharide from pearl millet and evaluating its prebiotic activity. Int J Biol Macromol 2023; 253:126469. [PMID: 37625743 DOI: 10.1016/j.ijbiomac.2023.126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Epidemiological studies have shown an inverse correlation between dietary intake of prebiotics and the risk of chronic diseases. Pearl millet is a potential economic source to develop a new class of prebiotics in the form of its polysaccharide. In the present study, the chemical structure of a water insoluble homopolysaccharide (PMG), and its prebiotic properties were investigated. The structure of PMG was elucidated on the basis of total hydrolysis, methylation analysis, and 1D/2D NMR (1H, 13C, DEPT-135, HSQC, DQF-COSY, NOESY and ROESY) experiments. The results indicated that PMG was a glucan with an average molecular weight ~ 361 kDa having a backbone of (1 → 3) α-d-glucopyranosyl residues. Hydrolysis of PMG by salivary and pancreatic α amylase was 1.75 % ± 0.34 and 1.99 % ± 0.18 respectively. A positive prebiotic score of PMG with both L. acidophilus and L. brevis (0.446 ± 0.031 & 0.427 ± 0.016) hints towards its prebiotic potential. These observations suggest that PMG might be used as a potential prebiotic component in the food and pharmaceutical applications.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Shivangi Agrawal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Abinaya Balasubramanian
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Sachin Maji
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Sandip Shit
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Paramita Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Satyabrata Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India
| | - Syed S Islam
- Department of Chemistry and Chemical Technology, Vidyasagar University, West Midnapore, West Bengal 721102, India
| | - Satyahari Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Midnapore, West Bengal 721302, India.
| |
Collapse
|
6
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Agrawal P, Singh BR, Gajbe U, Kalambe MA, Bankar M. Managing Diabetes Mellitus With Millets: A New Solution. Cureus 2023; 15:e44908. [PMID: 37814770 PMCID: PMC10560538 DOI: 10.7759/cureus.44908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Diabetes mellitus (DM) is the leading cause of morbidity and mortality, and the disease's prevalence is increasing with each passing day. DM can be prevented and controlled with modifications to the diet, especially by incorporating millet in the diet. Throughout history, eating habits have been recognized for their significant contribution to promoting health and wellness by eating foods rich in nutrients. Millet is an underutilized food crop with many benefits for health, with the most beneficial being low glycemic index, high fiber content, polyunsaturated fatty acids (PUFA), non-acid-forming potential, and gluten-free. In addition to staple food crops, such as wheat, rice, and foxtail millet, millets are still highly nutritious and beneficial and have great potential to help the world combat the food insecurity many countries face today. Millets are in the top positions of recommended dietary charts with their numerous health benefits and antioxidant properties.
Collapse
Affiliation(s)
- Pragya Agrawal
- Anatomy, Datta Meghe Medical College, Datta Meghe Institute of Medical Science (Deemed to be University) Wardha, Nagpur, IND
| | - Brij Raj Singh
- Anatomy, Datta Meghe Medical College, Datta Meghe Institute of Medical Science (Deemed to be University) Wardha, Nagpur, IND
| | - Ujwal Gajbe
- Anatomy, Datta Meghe Medical College, Datta Meghe Institute of Medical Science (Deemed to be University) Wardha, Nagpur, IND
| | - Minal A Kalambe
- Obstetrics and Gynaecology, Datta Meghe Medical College, Datta Meghe Institute of Medical Science (Deemed to be University) Wardha, Nagpur, IND
| | - Maithili Bankar
- Medical Education Unit, Datta Meghe Medical College, Datta Meghe Institute of Medical Science (Deemed to be University) Wardha, Nagpur, IND
| |
Collapse
|
8
|
Samtiya M, Chandratre GA, Dhewa T, Badgujar PC, Sirohi R, Kumar A, Kumar A. A comparative study on comprehensive nutritional profiling of indigenous non-bio-fortified and bio-fortified varieties and bio-fortified hybrids of pearl millets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1065-1076. [PMID: 36908360 PMCID: PMC9998779 DOI: 10.1007/s13197-022-05452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Seven indigenous pearl millet varieties, including non-bio-fortified (HC-10 & HC-20) and bio-fortified (Dhanashakti) and bio-fortified hybrids, viz., AHB-1200, HHB-299, HHB-311, and RHB-233, were studied in the present work. There was not any significant difference observed in the crucial anti-nutrients content, i.e., phytate (24.88-32.56 mg/g), tannin (3.07-4.35 mg/g), and oxalate (0.33-0.43 mg/g). Phytochemical content and antioxidant activity showed significantly high (p < 0.05) TPC and FRAP, TFC, and DPPH radical scavenging activity in the HHB 299 and Dhanashakti, respectively. Quantitative analysis of polyphenols by HPLC (first report on these varieties) revealed that HHB-299 has the highest amount of gallic acid. Fatty acid profiling by GC-FID showed that Dhanashakti, AHB-1200, and HHB-299 have rich monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA). Mineral analysis by ICP-OES showed high iron (87.79 and 84.26 mg/kg) and zinc (55.05 and 52.43 mg/kg) content in the HHB-311 and Dhanashakti, respectively. Results of the present study would help facilitate the formulation of various processed functional food products (RTC/RTE) that are currently not reported/unavailable. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05452-x.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Gauri A. Chandratre
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ankur Kumar
- Central Instrumentation Laboratory, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| |
Collapse
|
9
|
Kumar R, Dhiman M, Sharma L, Dadhich A, Kaushik P, Sharma MM. Nanofertilizers: The targeted nutrient supplier and enhance nutrients uptake by pearl millets (Pennisetum glaucum). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
A Review of the Potential Consequences of Pearl Millet (Pennisetum glaucum) for Diabetes Mellitus and Other Biomedical Applications. Nutrients 2022; 14:nu14142932. [PMID: 35889889 PMCID: PMC9322144 DOI: 10.3390/nu14142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus has become a troublesome and increasingly widespread condition. Treatment strategies for diabetes prevention in high-risk as well as in affected individuals are largely attributed to improvements in lifestyle and dietary control. Therefore, it is important to understand the nutritional factors to be used in dietary intervention. A decreased risk of diabetes is associated with daily intake of millet-based foods. Pearl millet is a highly nutritious grain, nutritionally comparable and even superior in calories, protein, vitamins, and minerals to other large cereals, although its intake is confined to lower income segments of society. Pearl millet contains phenolic compounds which possess antidiabetic activity. Thus, it can be used to prepare a variety of food products for diabetes mellitus. Moreover, it also has many health benefits, including combating diabetes mellitus, cancer, cardiovascular conditions, decreasing tumour occurrence, lowering blood pressure, heart disease risk, cholesterol, and fat absorption rate. Therefore, the current review addresses the role of pearl millet in managing diabetes.
Collapse
|
11
|
Variation in Phenolic, Mineral, Dietary Fiber, and Antioxidant Activity across Southern Tunisian Pearl Millet Germplasm. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1437306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pearl millet crop, reputed as one of the most important food sources cultivated in arid and semiarid parts of Africa and Asia, is known to be a source of many bioactive molecules with potential health-promoting properties. In Tunisia, this crop presented historically rich and diversified germplasm, which is being threatened by genetic erosion. The preservation programs of these species have been held for more than 20 years via participatory breeding schemes. A prospection was undertaken to collect pearl millet cultivars preserved in the last two decades from south-eastern Tunisian farmers to estimate their variability and performances. The aim of this study was to assess the profiles of phenolic compounds, antioxidant capacities, mineral composition, and dietary fiber contents of ten pearl millet cultivars in south-eastern Tunisia. The total phenolics and flavonoids in the free fraction ranged from 506.33 to 1287.71 µg.g−1 DM ferulic acid equivalent (FAE) and 4.17 to 12.53 µg.g−1 DM catechin equivalent (CE), respectively. The highest polyphenolic content from all genotypes was 1134.96 µg·g−1 DM (genotype Med.AG1.3). LC-MS analysis of individual phenol compounds allowed the identification of eight phenolic acids in millet grains. The quinic acid, p-coumaric acid, and caffeic acid were predominant phenolic acids, and six flavonoid compounds with cirsiliol and silymarin were the predominant flavonoids. The ranges of mineral contents variation were 693.10 to 1075.40 and 80.75 to 175.40 μg·g−1 for Ca and Mg, respectively, and 9.55 to 32.80, 0.75 to 8.60, 1.84 to 12.21, and 3.63 to 11.40 μg·g−1 for Na, Zn, Cu, and Fe, respectively. The content of NDF, ADF, and ADL per dry weight varied from 20 to 31%, 1 to 4.2%, and 0.4 to 2.3%, respectively. Overall, considering the variability among the assessed attributes, heatmap analysis showed the association between each of the traits as related to the clustered genotypes.
Collapse
|
12
|
Pearl Millet (Pennisetum glaucum) Seedlings Transplanting as Climate Adaptation Option for Smallholder Farmers in Niger. ATMOSPHERE 2022. [DOI: 10.3390/atmos13070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pearl millet is the most widely grown cereal crop in the arid and semi-arid regions of Africa, and in Niger in particular. To determine an optimized management strategy for smallholder farmers in southern Niger to cope with crop production failure and improve cropping performance in the context of climate change and variability, multi-site trials were conducted to evaluate the impacts of transplanting on pearl millet growth and productivity. Eight treatments viz. T1-0NPK (100% transplanting without NPK), T1-NPK (100% transplanting + NPK), T2-0NPK (100% transplanting of empty hills without NPK), T2-NPK (100% transplanting of empty hills + NPK), T3-0NPK (50% transplanting of empty hills without NPK), T3-NPK (50% transplanting of empty hills + NPK), T4-0NPK (farmer practice without NPK), and T4-NPK (farmer practice + NPK) were included in the experiment. Compared to farmer practice, transplanting significantly reduced time to tillering, flowering, and maturity stages by 15%, 27%, and 11%, respectively. The results also revealed that T1-NPK significantly increased panicle weight, total biomass, grain yield, and plant height by 40%, 38%, 27%, and 23%, respectively. Farmers’ evaluations of the experiments supported these findings, indicating three substantial advantages of transplanting, including higher yield (37.50% of responses), larger, more vigorous and more panicles (34.17% of responses), and good tillering (28.33% of responses). An economic profitability analysis of the system revealed that biomass gain (XOF 359,387/ha) and grain gain (XOF 324,388/ha) increased by 34% and 22%, respectively, with T1-NPK. Therefore, it can be inferred that transplanting is a promising strategy for adapting millet cultivation to climate change and variability in southern Niger.
Collapse
|
13
|
Vinutha T, Kumar D, Bansal N, Krishnan V, Goswami S, Kumar RR, Kundu A, Poondia V, Rudra SG, Muthusamy V, Rama Prashat G, Venkatesh P, Kumari S, Jaiswal P, Singh A, Sachdev A, Singh SP, Satyavathi T, Ramesh SV, Praveen S. Thermal treatments reduce rancidity and modulate structural and digestive properties of starch in pearl millet flour. Int J Biol Macromol 2022; 195:207-216. [PMID: 34890636 DOI: 10.1016/j.ijbiomac.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
Pearl millet is a nutrient dense and gluten free cereal, however it's flour remains underutilized due to the onset of rancidity during its storage. To the best of our knowledge, processing methods, which could significantly reduce the rancidity of the pearl millet flour during storage, are non-existent. In this study, pearl millet grains were subjected to a preliminary hydro-treatment (HT). Subsequently, the hydrated grain-wet flour have undergone individual and combined thermal treatments viz., hydrothermal (HTh) and thermal near infrared rays (thNIR). Effects of these thermal treatments on the biochemical process of hydrolytic and oxidative rancidity were analyzed in stored flour. A significant (p < 0.05) decrease in the enzyme activities of lipase (47.8%), lipoxygenase (84.8%), peroxidase (98.1%) and polyphenol oxidase (100%) in HT-HTh-thNIR treated flour compared to the individual treatments was documented. Upon storage (90 days), decline of 67.84% and 66.4% of free fatty acid and peroxide contents were observed in flour under HT-HTh-thNIR treatment without altering starch and protein digestibility properties. HT-HTh treated flour exhibited the highest (7.6%) rapidly digestible starch, decreased viscosity and increased starch digestibility (67.17%). FTIR analysis of HT-HTh treated flour divulged destabilization of short-range ordered crystalline structure and altered protein structures with decreased in vitro digestibility of protein. Overall, these results demonstrated the effectiveness of combined thermal treatment of HT-HTh-thNIR in reducing rancidity and preserving the functional properties of the stored flour.
Collapse
Affiliation(s)
- T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Dinesh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Navita Bansal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijaykumar Poondia
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502285, India
| | - Shalini Gaur Rudra
- Division of Food Science & Post Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - G Rama Prashat
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - P Venkatesh
- Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sweta Kumari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pranita Jaiswal
- CCUBGA, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sumer P Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tara Satyavathi
- All India Coordinated Research on Pearl Millet, Jodhpur, Rajasthan 342304, India
| | - S V Ramesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala 671 124, India.
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
14
|
Satyavathi CT, Tomar RS, Ambawat S, Kheni J, Padhiyar SM, Desai H, Bhatt SB, Shitap MS, Meena RC, Singhal T, Sankar SM, Singh SP, Khandelwal V. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2022; 12:276. [PMID: 34997160 PMCID: PMC8742121 DOI: 10.1038/s41598-021-04388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.
Collapse
Affiliation(s)
- C Tara Satyavathi
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India.
| | - Rukam S Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Supriya Ambawat
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital M Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiralben Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S B Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M S Shitap
- Department of Agricultural Statistics, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Ramesh Chand Meena
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Tripti Singhal
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S Mukesh Sankar
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S P Singh
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - Vikas Khandelwal
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| |
Collapse
|
15
|
Salis S, Virmani A, Priyambada L, Mohan M, Hansda K, de Beaufort C. 'Old Is Gold': How Traditional Indian Dietary Practices Can Support Pediatric Diabetes Management. Nutrients 2021; 13:4427. [PMID: 34959978 PMCID: PMC8707693 DOI: 10.3390/nu13124427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nutrition is crucial for maintaining normal growth, development, and glycemic control in young people with diabetes (PwD). Undue restrictions cause nutrient deficiencies as well as poor adherence to meal plans. Widespread availability of low-cost, ultra-processed, and hyperpalatable food is further damaging. Most families struggle to find ways to provide nutritious, yet attractive, food with a low glycemic index (GI). India is one of the oldest continuous civilizations with a rich and diverse cultural and culinary heritage. Traditional dietary practices, including the centuries-old 'Thali' (meaning plate) concept, emphasize combinations (grains, lentils, vegetables, dairy, spices, prebiotics and probiotics, and fats) of local, seasonal, and predominantly plant-based ingredients. These practices ensure that all of the necessary food groups are provided and fit well with current evidence-based recommendations, including the International Society for Pediatric and Adolescent Diabetes (ISPAD) 2018 Guidelines. Techniques for the preparation, cooking, and preservation of food further impact the GI and nutrient availability. These practices benefit nutrient density, diet diversity, and palatability and thus improve adherence to meal plans and glycemic control. This narrative review describes the ancient wisdom, food composition, and culinary practices from across India which are still valuable today. These may be of benefit worldwide to improve glycemic control as well as quality of life, especially in PwD.
Collapse
Affiliation(s)
- Sheryl Salis
- Department of Nutrition, Nurture Health Solutions, Mumbai 400098, India
| | - Anju Virmani
- Department of Pediatric Endocrinology, Max Super Speciality Hospital, New Delhi 110017, India;
- Department of Pediatric Endocrinology, Madhukar Rainbow Children’s Hospital, New Delhi 110017, India
- Department of Pediatric Endocrinology, Pentamed Hospital, Delhi 110009, India
| | - Leena Priyambada
- Division of Pediatric Endocrinology, Rainbow Children’s Hospital, Hyderabad 500034, India;
| | - Meena Mohan
- Department of Pediatric Endocrinology, PSG Super Speciality Hospital, Coimbatore 641004, India;
| | - Kajal Hansda
- Department of Nutrition, Diabetes Awareness and You, Kolkata 700039, India;
| | - Carine de Beaufort
- Department of Pediatric Endocrinology, DECCP/Centre Hospitalier de Luxembourg, 1210 Luxembourg, Luxembourg;
- Faculty of Science, Technology and Medicine, Université of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Department of Pediatric Endocrinology, Free University Hospital Brussels UZ-VUB, 1090 Bruxelles, Belgium
| |
Collapse
|
16
|
Nasir M, Ahmad S, Usman M, Farooq U, Naz A, Murtaza MA, Shehzad Q, Mehmood A, Mueen ud din G. Influence of pregelatinized starch on rheology of composite flour, in vitro enzyme digestibility and textural properties of millet-based Chapatti. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Nutritional composition patterns and application of multivariate analysis to evaluate indigenous Pearl millet ((Pennisetum glaucum (L.) R. Br.) germplasm. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:659938. [PMID: 34589092 PMCID: PMC8475763 DOI: 10.3389/fpls.2021.659938] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/03/2021] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important cereal crop after rice, wheat, maize, barley and sorghum. It is widely grown on 30 million ha in the arid and semi-arid tropical regions of Asia and Africa, accounting for almost half of the global millet production. Climate change affects crop production by directly influencing biophysical factors such as plant and animal growth along with the various areas associated with food processing and distribution. Assessment of the effects of global climate changes on agriculture can be helpful to anticipate and adapt farming to maximize the agricultural production more effectively. Pearl millet being a climate-resilient crop is important to minimize the adverse effects of climate change and has the potential to increase income and food security of farming communities in arid regions. Pearl millet has a deep root system and can survive in a wide range of ecological conditions under water scarcity. It has high photosynthetic efficiency with an excellent productivity and growth in low nutrient soil conditions and is less reliant on chemical fertilizers. These attributes have made it a crop of choice for cultivation in arid and semi-arid regions of the world; however, fewer efforts have been made to study the climate-resilient features of pearl millet in comparison to the other major cereals. Several hybrids and varieties of pearl millet were developed during the past 50 years in India by both the public and private sectors. Pearl millet is also nutritionally superior and rich in micronutrients such as iron and zinc and can mitigate malnutrition and hidden hunger. Inclusion of minimum standards for micronutrients-grain iron and zinc content in the cultivar release policy-is the first of its kind step taken in pearl millet anywhere in the world, which can lead toward enhanced food and nutritional security. The availability of high-quality whole-genome sequencing and re-sequencing information of several lines may aid genomic dissection of stress tolerance and provide a good opportunity to further exploit the nutritional and climate-resilient attributes of pearl millet. Hence, more efforts should be put into its genetic enhancement and improvement in inheritance to exploit it in a better way. Thus, pearl millet is the next-generation crop holding the potential of nutritional richness and the climate resilience and efforts must be targeted to develop nutritionally dense hybrids/varieties tolerant to drought using different omics approaches.
Collapse
Affiliation(s)
- C. Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Supriya Ambawat
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Vikas Khandelwal
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Rakesh K. Srivastava
- Department of Molecular Breeding (Genomics Trait Discovery), International Crops Research Institute for Semi-arid Tropics, Patancheru, India
| |
Collapse
|
19
|
Luithui Y, Kamani MH, Manchanahally M. Impact of hydrothermal processing on Job's tears grain fractions and its protein isolates: Evaluation of digestibility, functionality, and anti‐nutritional factors. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoya Luithui
- Department of Grain Science and Technology CSIR—Central Food Technological Research Institute Mysore India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Mohammad Hassan Kamani
- Department of Grain Science and Technology CSIR—Central Food Technological Research Institute Mysore India
| | - Meera Manchanahally
- Department of Grain Science and Technology CSIR—Central Food Technological Research Institute Mysore India
- Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
20
|
Affonfere M, Chadare FJ, Fassinou FTK, Linnemann AR, Duodu KG. In-vitro Digestibility Methods and Factors Affecting Minerals Bioavailability: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Marius Affonfere
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Flora Josiane Chadare
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Finagnon Toyi Kévin Fassinou
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Anita Rachel Linnemann
- Food Quality and Design, (FQD/WUR), Wageningen University and Research, Wageningen, The Netherlands
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
21
|
Krishnan V, Awana M, Singh A, Goswami S, Vinutha T, Kumar RR, Singh SP, Sathyavathi T, Sachdev A, Praveen S. Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). Int J Biol Macromol 2021; 183:1087-1095. [PMID: 33965496 DOI: 10.1016/j.ijbiomac.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Starch-sugar homeostasis and starch molecular configuration regulates the dynamics of starch digestibility which result in sweet sensory perception and eliciting glycemic response, which has been measured in vitro as inherent glycemic potential (IGP). The objective of the research was to understand the key determinants of IGP as well as sweetness in different Pearl millet (PM) genotypes. To understand the intricate balance between starch and sugar, total starch content (TSC) and total soluble sugars (TSS) were evaluated. Higher concentrations of TSC (67.8%), TSS (2.75%), glucose (0.78%) and sucrose (1.68%) were found in Jafarabadi Bajra. Considering the role of compact molecular configuration of starch towards digestibility, X-ray powder diffraction (XRD) analysis was performed. A-type crystallinity with crystallinity degree (CD %) ranged from 53.53-62.63% among different genotypes, where the least CD% (53.53%) was found in Jafarabadi Bajra. In vitro starch hydrolyzation kinetics carried out to determine IGP, revealed a maximum of 77.05% IGP with minimum 1.42% resistant starch (RS) in Jafarabadi Bajra. Overall our results suggest higher sweet sensory perception of Jafarabadi Bajra which is contributed by the matrix composition with least molecular compactness of starch. Also, the interdependence among starch quality parameters; CD%, IGP, RS and amylose has also been discussed.
Collapse
Affiliation(s)
- Veda Krishnan
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Monika Awana
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Archana Singh
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - T Vinutha
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S P Singh
- Division of Genetics, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Tara Sathyavathi
- All India Coordinated Research Project on Pearl Millet (AICRP-PM), ICAR, Jodhpur, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India.
| |
Collapse
|
22
|
Diack O, Kanfany G, Gueye MC, Sy O, Fofana A, Tall H, Serba DD, Zekraoui L, Berthouly-Salazar C, Vigouroux Y, Diouf D, Kane NA. GWAS unveils features between early- and late-flowering pearl millets. BMC Genomics 2020; 21:777. [PMID: 33167854 PMCID: PMC7654029 DOI: 10.1186/s12864-020-07198-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background Pearl millet, a nutritious food for around 100 million people in Africa and India, displays extensive genetic diversity and a high degree of admixture with wild relatives. Two major morphotypes can be distinguished in Senegal: early-flowering Souna and late-flowering Sanio. Phenotypic variabilities related to flowering time play an important role in the adaptation of pearl millet to climate variability. A better understanding of the genetic makeup of these variabilities would make it possible to breed pearl millet to suit regions with different climates. The aim of this study was to characterize the genetic basis of these phenotypic differences. Results We defined a core collection that captures most of the diversity of cultivated pearl millets in Senegal and includes 60 early-flowering Souna and 31 late-flowering Sanio morphotypes. Sixteen agro-morphological traits were evaluated in the panel in the 2016 and 2017 rainy seasons. Phenological and phenotypic traits related with yield, flowering time, and biomass helped differentiate early- and late-flowering morphotypes. Further, using genotyping-by-sequencing (GBS), 21,663 single nucleotide polymorphisms (SNPs) markers with more than 5% of minor allele frequencies were discovered. Sparse non-negative matrix factorization (sNMF) analysis confirmed the genetic structure in two gene pools associated with differences in flowering time. Two chromosomal regions on linkage groups (LG 3) (~ 89.7 Mb) and (LG 6) (~ 68.1 Mb) differentiated two clusters among the early-flowering Souna. A genome-wide association study (GWAS) was used to link phenotypic variation to the SNPs, and 18 genes were linked to flowering time, plant height, tillering, and biomass (P-value < 2.3E-06). Conclusions The diversity of early- and late-flowering pearl millet morphotypes in Senegal was captured using a heuristic approach. Key phenological and phenotypic traits, SNPs, and candidate genes underlying flowering time, tillering, biomass yield and plant height of pearl millet were identified. Chromosome rearrangements in LG3 and LG6 were inferred as a source of variation in early-flowering morphotypes. Using candidate genes underlying these features between pearl millet morphotypes will be of paramount importance in breeding for resilience to climatic variability. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07198-2.
Collapse
Affiliation(s)
- Oumar Diack
- Centre d'Étude Régional pour l'Amélioration de l'Adaptation à la Sécheresse, Institut Sénégalais de Recherches Agricoles, Thiès, Sénégal.,Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Bel-Air, Dakar, Sénégal
| | - Ghislain Kanfany
- Centre National de Recherches Agronomiques de Bambey, Institut Sénégalais de Recherches Agricoles, Bambey, Sénégal
| | - Mame Codou Gueye
- Centre d'Étude Régional pour l'Amélioration de l'Adaptation à la Sécheresse, Institut Sénégalais de Recherches Agricoles, Thiès, Sénégal.,Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Bel-Air, Dakar, Sénégal
| | - Ousmane Sy
- Centre National de Recherches Agronomiques de Bambey, Institut Sénégalais de Recherches Agricoles, Bambey, Sénégal
| | - Amadou Fofana
- Centre National de Recherches Agronomiques de Bambey, Institut Sénégalais de Recherches Agricoles, Bambey, Sénégal
| | - Hamidou Tall
- Centre de Recherches Zootechniques de Kolda, Institut Sénégalais de Recherches Agricoles, Kolda, Sénégal
| | - Desalegn D Serba
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, USA
| | - Leila Zekraoui
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Bel-Air, Dakar, Sénégal.,Unité Mixte de Recherche DIADE, Institut de Recherche pour le Développement, Montpellier, 911 Avenue Agropolis cedex 5, 34394, Montpellier, France
| | - Cécile Berthouly-Salazar
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Bel-Air, Dakar, Sénégal.,Unité Mixte de Recherche DIADE, Institut de Recherche pour le Développement, Montpellier, 911 Avenue Agropolis cedex 5, 34394, Montpellier, France
| | - Yves Vigouroux
- Unité Mixte de Recherche DIADE, Institut de Recherche pour le Développement, Montpellier, 911 Avenue Agropolis cedex 5, 34394, Montpellier, France
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar-Fann, Code postal 10700, Dakar, Sénégal
| | - Ndjido Ardo Kane
- Centre d'Étude Régional pour l'Amélioration de l'Adaptation à la Sécheresse, Institut Sénégalais de Recherches Agricoles, Thiès, Sénégal. .,Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Bel-Air, Dakar, Sénégal.
| |
Collapse
|
23
|
Kumar P, Kaur C, Sethi S, Kaur Jambh H. Effect of extruded finger millet on dough rheology and functional quality of pearl millet‐based unleavened flatbread. Cereal Chem 2020. [DOI: 10.1002/cche.10321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pankaj Kumar
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Charanjit Kaur
- Division of Food Science and Post‐Harvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Swati Sethi
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Harpreet Kaur Jambh
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| |
Collapse
|
24
|
Kanfany G, Serba DD, Rhodes D, St Amand P, Bernardo A, Gangashetty PI, Kane NA, Bai G. Genomic diversity in pearl millet inbred lines derived from landraces and improved varieties. BMC Genomics 2020; 21:469. [PMID: 32641069 PMCID: PMC7341570 DOI: 10.1186/s12864-020-06796-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic improvement of pearl millet is lagging behind most of the major crops. Development of genomic resources is expected to expedite breeding for improved agronomic traits, stress tolerance, yield, and nutritional quality. Genotyping a breeding population with high throughput markers enables exploration of genetic diversity, population structure, and linkage disequilibrium (LD) which are important preludes for marker-trait association studies and application of genomic-assisted breeding. RESULTS Genotyping-by-sequencing (GBS) libraries of 309 inbred lines derived from landraces and improved varieties from Africa and India generated 54,770 high quality single nucleotide polymorphism (SNP) markers. On average one SNP per 29 Kb was mapped in the reference genome, with the telomeric regions more densely mapped than the pericentromeric regions of the chromosomes. Population structure analysis using 30,208 SNPs evenly distributed in the genome divided 309 accessions into five subpopulations with different levels of admixture. Pairwise genetic distance (GD) between accessions varied from 0.09 to 0.33 with the average distance of 0.28. Rapid LD decay implied low tendency of markers inherited together. Genetic differentiation estimates were the highest between subgroups 4 and 5, and the lowest between subgroups 1 and 2. CONCLUSIONS Population genomic analysis of pearl millet inbred lines derived from diverse geographic and agroecological features identified five subgroups mostly following pedigree differences with different levels of admixture. It also revealed the prevalence of high genetic diversity in pearl millet, which is very useful in defining heterotic groups for hybrid breeding, trait mapping, and holds promise for improving pearl millet for yield and nutritional quality. The short LD decay observed suggests an absence of persistent haplotype blocks in pearl millet. The diverse genetic background of these lines and their low LD make this set of germplasm useful for traits mapping.
Collapse
Affiliation(s)
- Ghislain Kanfany
- Institut Sénégalais de Recherches Agricoles (ISRA), Centre National de Recherches Agronomiques de Bambey, Diourbel, Senegal
| | - Desalegn D Serba
- Agricultural Research Center-Hays, Kansas State University, 1232 240th Avenue, Hays, KS, 67601, USA.
| | - Davina Rhodes
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Paul St Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, USA
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, USA
| | - Prakash I Gangashetty
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, Niger
| | - Ndjido Ardo Kane
- Institut Sénégalais de Recherches Agricoles/Centre d'Étude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (ISRA/CERAAS), Thiès, Senegal
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, USA
| |
Collapse
|
25
|
Klepacka J, Najda A, Klimek K. Effect of Buckwheat Groats Processing on the Content and Bioaccessibility of Selected Minerals. Foods 2020; 9:E832. [PMID: 32630374 PMCID: PMC7353638 DOI: 10.3390/foods9060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Adequate supply of minerals in the diet is necessary for the proper functioning of the human body. In recent years gluten-free diet, which rigorous forms may lead to deficiencies of mineral components (especially Mg, Mn, Zn and Cu), is becoming more and more popular. Buckwheat grains do not contain gluten, and their nutritional value is very high. They are often consumed in the form of groats, which are obtained from roasted and dehulled seeds. The purpose of the work was to determine how conducting the buckwheat groats production in industrial conditions affects the content and availability of magnesium, manganese, zinc and copper. The results indicated that husk removal had a particularly adverse effect on the total manganese content and its amount released by enzymatic digestion, whereas it had a positive effect on the post-digestion zinc level by increasing it by nearly half. Hydrothermal processes especially affected the release of analysed elements simulated by the in vitro method, and the extent of changes depended on the processing parameters. It was shown that bioaccessibility of minerals may be increased by treating buckwheat at a lower temperature for a short time, which has a particularly beneficial effect on the manganese and magnesium. Treating grains at a higher temperature reduces the bioaccessibility of all analysed elements, which was particularly noted for zinc and copper. Based on the obtained results, it should be stated that buckwheat groats should be a regular part of human diet, because they are a good source of easily digestible mineral compounds. Their consumption should be especially considered by people on a rigorous gluten-free diet, as they can prevent mineral deficiencies associated with its use.
Collapse
Affiliation(s)
- Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Kamila Klimek
- Department of Applied Mathematics and Informatics, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland;
| |
Collapse
|
26
|
|