1
|
Ulloque-Badaracco JR, Al-Kassab-Córdova A, Alarcon-Braga EA, Hernandez-Bustamante EA, Huayta-Cortez MA, Cabrera-Guzmán JC, Robles-Valcarcel P, Benites-Zapata VA. Association of vitamin B12, folate, and homocysteine with COVID-19 severity and mortality: A systematic review and meta-analysis. SAGE Open Med 2024; 12:20503121241253957. [PMID: 38774742 PMCID: PMC11107318 DOI: 10.1177/20503121241253957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Objective We aimed to review the available evidence on the association between vitamin B12, folate, and homocysteine levels with worse outcomes among COVID-19 patients. Methods The search was carried out in ten databases simultaneously run on 10 May 2023, without language restrictions. We included cross-sectional, case-control, and cohort studies. The random-effects meta-analysis was performed using the Sidik-Jonkman method and corrected 95% confidence intervals using the truncated Knapp-Hartung standard errors. Standardized mean difference and 95% CI was used as the measure effect size. Results Thirteen articles were included in this review (n = 2134). Patients with COVID-19 who did not survive had the highest serum vitamin B12 values (SMD: 1.05; 95% CI: 0.31-1.78; p = 0.01, I2 = 91.22%). In contrast, low serum folate values were associated with patients with severe COVID-19 (SMD: -0.77; 95% CI: -1.35 to -0.19; p = 0.02, I2 = 59.09%). The remaining tested differences did not yield significant results. Conclusion Elevated serum levels of vitamin B12 were associated with higher mortality in patients with COVID-19. Severe cases of COVID-19 were associated with low serum folate levels. Future studies should incorporate a larger sample size.
Collapse
Affiliation(s)
| | - Ali Al-Kassab-Córdova
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Enrique A Hernandez-Bustamante
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Juan C Cabrera-Guzmán
- Facultad de Ciencias de La Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Vicente A Benites-Zapata
- Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
2
|
Galván-Ojeda HJ, Acosta-Elias J, Saavedra-Alanis VM, Espinosa-Tanguma R, Del Carmen Rodríguez-Aranda M, Hernández-Arteaga AC, Navarro-Contreras HR. Raman spectroscopy study of 7,8-dihydrofolate inhibition on the Wuhan strain SARS-CoV-2 binding to human ACE2 receptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124050. [PMID: 38402702 DOI: 10.1016/j.saa.2024.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Emerging evidence suggests that elevated levels of folic acid in the bloodstream may confer protection against Wuhan-SARS-CoV-2 infection and mitigate its associated symptoms. Notably, two comprehensive studies of COVID-19 patients in Israel and UK uncovered a remarkable trend, wherein individuals with heightened folic acid levels exhibited only mild symptoms and necessitated no ventilatory support. In parallel, research has underscored the potential connection between decreased folic acid levels and the severity of Covid-19 among hospitalized patients. Yet, the underlying mechanisms governing this intriguing inhibition remain elusive. In a quest to elucidate these mechanisms, we conducted a molecular dynamics simulation approach followed by a Raman spectroscopy study to delve into the intricate interplay between the folic acid metabolite, 7,8-dihydrofolate (DHF), and the angiotensin-converting enzyme ACE2 receptor, coupled with its interaction with the receptor-binding domain (RBD) of the Wuhan strain of SARS-CoV-2. Through a meticulous exploration, we scrutinized the transformation of the ACE2 + RBD complex, allowing these reactants to form bonds. This was juxtaposed with a similar investigation where ACE2 was initially permitted to react with DHF, followed by the exposure of the ACE2 + DHF complex to RBD. We find that DHF, when bonded to ACE2, functions as a physical barrier, effectively inhibiting the binding of the Wuhan strain RBD. This physicochemical process offers a cogent explanation for the observed inhibition of host cell infection in subjects receiving supplementary folic acid doses, as epidemiologically substantiated in multiple studies. This study not only sheds light on a potential avenue for mitigating SARS-CoV-2 infection but also underscores the crucial role of folic acid metabolites in host-virus interactions. This research paves the way for novel therapeutic strategies in the battle against COVID-19 and reinforces the significance of investigating the molecular mechanisms underlying the protective effects of folic acid in the context of viral infections.
Collapse
Affiliation(s)
- Hiram Joazet Galván-Ojeda
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a, Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - Jesus Acosta-Elias
- Facultad de Ciencias, Universidad Autónoma de San Luís Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, Mexico
| | - Victor M Saavedra-Alanis
- Facultad de Medicina, Universidad Autónoma de San Luís Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, Mexico
| | - Ricardo Espinosa-Tanguma
- Facultad de Medicina, Universidad Autónoma de San Luís Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, Mexico
| | - Ma Del Carmen Rodríguez-Aranda
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a, Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - Aida Catalina Hernández-Arteaga
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a, Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a, Sección, CP 78210 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
3
|
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023; 13:13398. [PMID: 37592012 PMCID: PMC10435576 DOI: 10.1038/s41598-023-40160-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
Molecular docking is a computational technique that predicts the binding affinity of ligands to receptor proteins. Although it has potential uses in nutraceutical research, it has developed into a formidable tool for drug development. Bioactive substances called nutraceuticals are present in food sources and can be used in the management of diseases. Finding their molecular targets can help in the creation of disease-specific new therapies. The purpose of this review was to explore molecular docking's application to the study of dietary supplements and disease management. First, an overview of the fundamentals of molecular docking and the various software tools available for docking was presented. The limitations and difficulties of using molecular docking in nutraceutical research are also covered, including the reliability of scoring functions and the requirement for experimental validation. Additionally, there was a focus on the identification of molecular targets for nutraceuticals in numerous disease models, including those for sickle cell disease, cancer, cardiovascular, gut, reproductive, and neurodegenerative disorders. We further highlighted biochemistry pathways and models from recent studies that have revealed molecular mechanisms to pinpoint new nutraceuticals' effects on disease pathogenesis. It is convincingly true that molecular docking is a useful tool for identifying the molecular targets of nutraceuticals in the management of diseases. It may offer information about how nutraceuticals work and support the creation of new therapeutics. Therefore, molecular docking has a bright future in nutraceutical research and has a lot of potentials to lead to the creation of brand-new medicines for the treatment of disease.
Collapse
Affiliation(s)
- P C Agu
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Science Laboratory Technology (Biochemistry Option), Our Savior Institute of Science, Agriculture, and Technology, Enugu, Nigeria.
| | - C A Afiukwa
- Department of Biotechnology, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Faculty of Engineering, Caritas University, Amorji-Nike, Enugu, Nigeria
| | - I H Ofoke
- Department of Biochemistry, Faculty of Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - C O Ogbu
- Department of Biochemistry, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - E I Ugwuja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P M Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda.
| |
Collapse
|
4
|
Tomar S, Musyuni P, Aggarwal G. An overview of regulation for nutraceuticals and concept of personalized nutraceuticals. JOURNAL OF GENERIC MEDICINES 2023; 19:66-74. [PMID: 38603246 PMCID: PMC9841207 DOI: 10.1177/17411343221150875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nutraceuticals are essentially nutritional components that have a vital role in developing and maintaining the body's regular functions, which keeps people healthy. The nutraceutical sector is also primarily driven by the existing global population and trends. Examples of foods considered as nutraceuticals include prebiotics, fibre, polyunsaturated fatty acids, probiotics, antioxidants, and other natural or herbal foods. Some of the most serious health problems of the 20th century, like COVID-19 and diabetes mellitus, are managed with the help of the preceding nutraceuticals. As we move into a time of health and medicine, the food industry as a whole has become more focused on research.
Collapse
Affiliation(s)
- Saurav Tomar
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Pankaj Musyuni
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Geeta Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| |
Collapse
|
5
|
Karakousis ND, Gourgoulianis KI, Kotsiou OS. The Role of Folic Acid in SARS-CoV-2 Infection: An Intriguing Linkage under Investigation. J Pers Med 2023; 13:jpm13030561. [PMID: 36983742 PMCID: PMC10052526 DOI: 10.3390/jpm13030561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a life-threatening RNA virus that may cause an acute respiratory syndrome associated with extremely high morbidity and mortality rates. Folic acid (FA), also known as folate, is an essential vitamin vital for human homeostasis, participating in many biochemical pathways, and its deficiency has been associated with viral infection vulnerability. In this review, we investigated the association between FA intake and SARS-CoV-2 infection, along with the existence of any potential impact of FA on the health outcome of patients suffering from this new viral infection. METHODS Studies included were patients' and in silico and molecular docking studies. RESULTS Data from in silico studies and molecular docking support that FA inhibits SARS-CoV-2 entry into the host and viral replication, binding at essential residues. Accordingly, in patients' studies, a protective role of FA supplementation against SARS-CoV-2 infection is indicated. However, contradictory data from observational studies indicate that FA supplementation, often linked to deficits during systemic inflammation due to SARS-CoV-2, increases the risk of post-infection mortality. CONCLUSIONS Future randomized controlled trial studies, including the FA pharmacological group, are needed to better understand the role of FA as a potential protective or mortality risk indicator in COVID-19 patients.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Faculty of Nursing, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| |
Collapse
|
6
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
7
|
Desai AV, Vornholt SM, Major LL, Ettlinger R, Jansen C, Rainer DN, de Rome R, So V, Wheatley PS, Edward AK, Elliott CG, Pramanik A, Karmakar A, Armstrong AR, Janiak C, Smith TK, Morris RE. Surface-Functionalized Metal-Organic Frameworks for Binding Coronavirus Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9058-9065. [PMID: 36786318 PMCID: PMC9940617 DOI: 10.1021/acsami.2c21187] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.
Collapse
Affiliation(s)
- Aamod V. Desai
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Simon M. Vornholt
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Louise L. Major
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christian Jansen
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel N. Rainer
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Richard de Rome
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Venus So
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Paul S. Wheatley
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ailsa K. Edward
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caroline G. Elliott
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Atin Pramanik
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Avishek Karmakar
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States of America
| | - A. Robert Armstrong
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Terry K. Smith
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
8
|
Mohammadi AH, Behjati M, Karami M, Abari AH, Sobhani-Nasab A, Rourani HA, Hazrati E, Mirghazanfari SM, Hadi V, Hadi S, Milajerdi A. An overview on role of nutrition on COVID-19 immunity: Accumulative review from available studies. CLINICAL NUTRITION OPEN SCIENCE 2023; 47:6-43. [PMID: 36540357 PMCID: PMC9754583 DOI: 10.1016/j.nutos.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
The novel coronavirus infection (COVID-19) conveys a serious global threat to health and economy. A common predisposing factor for development to serious progressive disease is presence of a low-grade inflammation, e.g., as seen in diabetes, metabolic syndrome, and heart failure. Micronutrient deficiencies may also contribute to the development of this state. Therefore, the aim of the present study is to explore the role of the nutrition to relieve progression of COVID-19. According PRISMA protocol, we conducted an online databases search including Scopus, PubMed, Google Scholar and web of science for published literatures in the era of COVID-19 Outbreak regarding to the status of nutrition and COVID-19 until December 2021. There were available studies (80 studies) providing direct evidence regarding the associations between the status of nutrition and COVID-19 infection. Adequate nutritional supply is essential for resistance against other viral infections and also for improvement of immune function and reduction of inflammation. Hence, it is suggested that nutritional intervention which secures an adequate status might protect against the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome - coronavirus-2) and mitigate its course. We also recommend initiation of adequate nutritional supplementation in high-risk areas and/or soon after the time of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority for applying this nutritive adjuvant therapy that should be started prior to administration of specific and supportive medical measures.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Afrouzossadat Hosseini Abari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Sobhani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Amini Rourani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ebrahim Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Sayid Mahdi Mirghazanfari
- Department of Physiology and Iranian Medicine, School of Medicine, AJA University of Medical Sciences, Iran
| | - Vahid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Benarous L, Benarous K, Muhammad G, Ali Z. Deep learning application detecting SARS-CoV-2 key enzymes inhibitors. CLUSTER COMPUTING 2023; 26:1169-1180. [PMID: 35874186 PMCID: PMC9295888 DOI: 10.1007/s10586-022-03656-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 05/14/2023]
Abstract
The fast spread of the COVID-19 over the world pressured scientists to find its cures. Especially, with the disastrous results, it engendered from human life losses to long-term impacts on infected people's health and the huge financial losses. In addition to the massive efforts made by researchers and medicals on finding safe, smart, fast, and efficient methods to accurately make an early diagnosis of the COVID-19. Some researchers focused on finding drugs to treat the disease and its symptoms, others worked on creating effective vaccines, while several concentrated on finding inhibitors for the key enzymes of the virus, to reduce its spreading and reproduction inside the human body. These enzymes' inhibitors are usually found in aliments, plants, fungi, or even in some drugs. Since these inhibitors slow and halt the replication of the virus in the human body, they can help fight it at an early stage saving the patient from death risk. Moreover, if the human body's immune system gets rid of the virus at the early stage it can be spared from the disastrous sequels it may leave inside the patient's body. Our research aims to find aliments and plants that are rich in these inhibitors. In this paper, we developed a deep learning application that is trained with various aliments, plants, and drugs to detect if a component contains SARS-CoV-2 key inhibitor(s) intending to help them find more sources containing these inhibitors. The application is trained to identify various sources rich in thirteen coronavirus-2 key inhibitors. The sources are currently just aliments, plants, and seeds and the identification is done by their names.
Collapse
Affiliation(s)
- Leila Benarous
- LIM Laboratory (Laboratoire d’informatique Et de Mathématique), Department of Computer Science, Faculty of Science, University of Amar Telidji, Laghouat, Algeria
- LISSI-Tinc-NET Laboratory, University of Paris-Est Creteil, 94400 Vitry-sur-Seine, France
| | - Khedidja Benarous
- Science Fundamental Laboratory, Department of Biology, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Zulfiqar Ali
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
10
|
Mahnam K, Ghobadi Z. Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study. J Biomol Struct Dyn 2022; 40:12621-12641. [PMID: 34514953 DOI: 10.1080/07391102.2021.1973910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spike protein of coronavirus is a key protein in binding and entrance of virus to the human cell via binding to the receptor-binding domain (RBD) domain of S1 subunit to peptidase domain region of ACE2 receptor. In this study, the possible effect of 24 antiviral drugs on the RBD domain of spike protein was investigated via docking and molecular dynamics simulation for finding a dual-target drug. At first, all drugs were docked to the RBD domain of spike protein, and then all complexes and free RBD domains were separately used for molecular dynamics simulation for 50 ns via amber18 software. The simulation results showed that 10 ligands from 28 ligands were separated from the RBD domain, and among 18 remained ligands, baloxavir marboxil, and danoprevir drugs, besides endonuclease activity and protease inhibitory, can bind to key residues of the RBD domain. Then these drugs have a dual target and should be more effective than current drugs, and experimental studies should be done on baloxavir marboxil and danoprevir as more potential drugs for coronavirus disease Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | - Zahra Ghobadi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
11
|
Lin Y, Zhang Y, Wang D, Yang B, Shen YQ. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154481. [PMID: 36215788 DOI: 10.1016/j.phymed.2022.154481] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM), as a significant part of the global pharmaceutical science, the abundant molecular compounds it contains is a valuable potential source of designing and screening new drugs. However, due to the un-estimated quantity of the natural molecular compounds and diversity of the related problems drug discovery such as precise screening of molecular compounds or the evaluation of efficacy, physicochemical properties and pharmacokinetics, it is arduous for researchers to design or screen applicable compounds through old methods. With the rapid development of computer technology recently, especially artificial intelligence (AI), its innovation in the field of virtual screening contributes to an increasing efficiency and accuracy in the process of discovering new drugs. PURPOSE This study systematically reviewed the application of computational approaches and artificial intelligence in drug virtual filtering and devising of TCM and presented the potential perspective of computer-aided TCM development. STUDY DESIGN We made a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Then screening the most typical articles for our research. METHODS The systematic review was performed by following the PRISMA guidelines. The databases PubMed, EMBASE, Web of Science, CNKI were used to search for publications that focused on computer-aided drug virtual screening and design in TCM. RESULT Totally, 42 corresponding articles were included in literature reviewing. Aforementioned studies were of great significance to the treatment and cost control of many challenging diseases such as COVID-19, diabetes, Alzheimer's Disease (AD), etc. Computational approaches and AI were widely used in virtual screening in the process of TCM advancing, which include structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS). Besides, computational technologies were also extensively applied in absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction of candidate drugs and new drug design in crucial course of drug discovery. CONCLUSIONS The applications of computer and AI play an important role in the drug virtual screening and design in the field of TCM, with huge application prospects.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
13
|
Ahvanooei MRR, Norouzian MA, Vahmani P. Beneficial Effects of Vitamins, Minerals, and Bioactive Peptides on Strengthening the Immune System Against COVID-19 and the Role of Cow's Milk in the Supply of These Nutrients. Biol Trace Elem Res 2022; 200:4664-4677. [PMID: 34837602 PMCID: PMC8627168 DOI: 10.1007/s12011-021-03045-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, which causes severe respiratory tract infections in humans, has become a global health concern and is spreading rapidly. At present, the most important issue associated with COVID-19 is the immune system and the factors that affect it. It is well known that cow's milk is highly rich in micronutrients that increase and strengthen the immune system. Research shows that the administration of these nutrients is very effective in fighting COVID-19, and a deficiency in any of them can be a weakness in the fight against the virus. On the other hand, cow's milk is accessible to the whole population, and drinking colostrum, raw, and micro-filtered milk from cows vaccinated against SARS-CoV-2 could provide individuals with short-term protection against the SARS-CoV-2 infection until vaccines become commercially available. This review aimed to discuss the effects of milk vitamins, minerals, and bioactive peptides on general health in humans to combat viral diseases, especially COVID-19, and to what extent cow's milk consumption plays a role in providing these metabolites. Cow's milk contains many bioactive compounds that include vitamins, minerals, biogenic amines, nucleotides, oligosaccharides, organic acids, and immunoglobulins. Humans can meet a significant portion of their requirements for vitamins and minerals through the consumption of cow's milk. Recent studies have shown that micronutrients such as vitamins D, E, B, C, and A as well as minerals Zn, Cu, Mg, I, and Se and bioactive peptides, each can have positive and significant effects on strengthening the immune system and general health in humans.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Payam Vahmani
- Department of Animal Science, University of California, 2251 Meyer Hall, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
15
|
Roudi F, Saghi E, Ayoubi SS, Pouryazdanpanah M. Clinical nutrition approach in medical management of COVID-19 hospitalized patients: A narrative review. Nutr Health 2022; 28:357-368. [PMID: 35581719 PMCID: PMC9117992 DOI: 10.1177/02601060221101696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Malnutrition in COVID-19 hospitalized patients is associated with a high-risk condition to increase disease severity and prolonging the recovery period. Therefore, nutritional therapy, including supplements plays a critical role to reduce disease-related complications and the length of hospital stay. AIM To review the latest evidence on nutritional management options in COVID-19 hospitalized patients, as well as possibly prescribed supplements. Methods: This review was conducted by considering the latest recommendations, using the guidelines of the American Society of Enteral and Parenteral (ASPEN) and the European Society of Enteral and Parenteral (ESPEN), and searching Web of Science, PubMed/Medline, ISI, and Medline databases. The relevant articles were found using a mix of related mesh terms and keywords. We attempted to cover all elements of COVID-19 hospitalized patients' dietary management. Results: Energy demand in COVID-19 patients is a vital issue. Indirect Calorimetry (IC) is the recommended method to measure resting energy expenditure. However, in the absence of IC, predictive equations may be used. The ratio of administered diet for the macronutrients could be based on the phase and severity of Covid-19 disease. Moreover, there are recommendations for taking micronutrient supplements with known effects on improving the immune system or reducing inflammation. Conclusions: Nutritional treatment of COVID-19 patients in hospitals seems to be an important element of their medical care. Enteral nutrition would be the recommended feeding method for early nutrition support. However, data in the COVID-19 nutritional domain relating to micronutrient supplementation are still fragmentary and disputed, and further study is required.
Collapse
Affiliation(s)
- Fatemeh Roudi
- Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Effat Saghi
- Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sadat Ayoubi
- Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Pouryazdanpanah
- Department of Nutrition, Public Health School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Wang B, Li H, Li Z, Wang B, Zhang H, Zhang B, Luo H. Integrative network analysis revealed the molecular function of folic acid on immunological enhancement in a sheep model. Front Immunol 2022; 13:913854. [PMID: 36032143 PMCID: PMC9412826 DOI: 10.3389/fimmu.2022.913854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
We previously observed the beneficial role of folic acid supplemented from maternal or offspring diet on lamb growth performance and immunity. Twenty-four Hu lambs from four groups (mother received folic acid or not, offspring received folic acid or not) were used in the current study, which was conducted consecutively to elucidate the molecular regulatory mechanisms of folic acid in lambs by analyzing blood metabolome, liver transcriptome, and muscle transcriptome. Serum metabolomics analysis showed that L-homocitrulline, hyodeoxycholic acid, 9-Hpode, palmitaldehyde, N-oleoyl glycine, hexadecanedioic acid, xylose, 1,7-dimethylxanthine, nicotinamide, acetyl-N-formyl-5-methoxykynurenamine, N6-succinyl adenosine, 11-cis-retinol, 18-hydroxycorticosterone, and 2-acetylfuran were down-regulated and methylisobutyrate was up-regulated by the feeding of folic acid from maternal and/or offspring diets. Meanwhile, folic acid increased the abundances of S100A12 and IRF6 but decreased TMEM25 in the liver. In the muscle, RBBP9, CALCR, PPP1R3D, UCP3, FBXL4, CMBL, and MTFR2 were up-regulated, CYP26B1 and MYH9 were down-regulated by the feeding of folic acid. The pathways of bile secretion, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and herpes simplex virus 1 infection were changed by folic acid in blood, liver, or muscle. Further integrated analysis revealed potential interactions among the liver, blood, and muscle, and the circulating metabolites, hub gene, and pathways, which might be the predominant acting targets of folic acid in animals. These findings provide fundamental information on the beneficial function of folic acid no matter from maternal or offspring, in regulating animal lipid metabolism and immune enhancement, providing a theoretical basis for the use of folic acid from the view of animal health care.
Collapse
|
17
|
COVID-19 and One-Carbon Metabolism. Int J Mol Sci 2022; 23:ijms23084181. [PMID: 35456998 PMCID: PMC9026976 DOI: 10.3390/ijms23084181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease.
Collapse
|
18
|
Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100951. [PMID: 35475214 PMCID: PMC9020503 DOI: 10.1016/j.imu.2022.100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
The new severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is the etiological agent of Coronavirus disease 2019 (COVID-19), which becomes an eventual pandemic outbreak. Lack of proper therapeutic management has accelerated the researchers to repurpose existing drugs with known preclinical and toxicity profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. Vitamins are necessary nutrients for cell growth, function, and development. Furthermore, they play an important role in pathogen defence via cell-mediated responses and boost immunity. Using a computational approach, we intend to identify the probable inhibitory effect of all vitamins on the drug targets of COVID-19. The computational analysis demonstrated that vitamin B12 resulted in depicting suitable significant binding with furin, RNA dependent RNA polymerase (RdRp), Main proteases (Mpro), ORF3a and ORF7a and Vitamin D3 with spike protein and vitamin B9 with non structural protein 3 (NSP3). A detailed examination of vitamins suggests that vitamin B12 may be the component that reduces virulence by blocking furin which is responsible for entry of virus in the host cell. Details from the Molecular Dynamics (MD) simulation study aided in determining vitamin B12 as a possible furin inhibitor.
Collapse
|
19
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
20
|
High-Dose Vitamin C Supplementation as a Legitimate Anti-SARS-CoV-2 Prophylaxis in Healthy Subjects—Yes or No? Nutrients 2022; 14:nu14050979. [PMID: 35267953 PMCID: PMC8912816 DOI: 10.3390/nu14050979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Vitamin C has a number of acitvities that could contribute to its immune-modulating effects. The only question is whether we should provide ourselves with only the right level of it, or do we need much more during a pandemic? The possibility of reducing the incidence of viral diseases in a well-nourished population through the use of dietary supplements based on vitamin C is not supported in the literature. Despite this, the belief that an extra intake of vitamin C can increase the efficacy of the immune system is still popular and vitamin C is advertised as a remedy to prevent infectious disease. This article refers to the justification of the use of vitamin C in high doses as an anti-SARS-CoV-2 prophylaxis in healthy subjects. Does it make sense or not? As it turns out, any effects of vitamin C supplementation may be more prominent when the baseline vitamin C level is low, for example in physically active persons. People with hypovitaminosis C are more likely to respond to vitamin C administration. No studies regarding prevention of COVID-19 with high-dose vitamin C supplementation in healthy subjects were found.
Collapse
|
21
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Vitiello A, La Porta R, Ferrara F. The Role of Vitamin C in the Treatment of Sepsis. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
A Alfheeaid H, Imam Rabbani S. COVID-19: A Review on the Role of Trace Elements Present in Saudi Arabian Traditional Dietary Supplements. Pak J Biol Sci 2022; 25:1-8. [PMID: 35001569 DOI: 10.3923/pjbs.2022.1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The novel coronavirus infection is also called COVID-19 (coronavirus disease 2019). The infection has affected millions of people worldwide and caused morbidity as well mortality in patients with pre-existing chronic conditions such as metabolic, respiratory and cardiovascular disorders. The severity of the disease is mostly seen in people with low immunity and chronic sufferers of respiratory, cardiovascular and metabolic disorders. To date, there is no specific treatment available for COVID-19. Precaution and prevention are the most recommended options followed for controlling the spread of infection. Trace elements such as zinc, calcium, iron and magnesium play an important role in boosting the immunity of the host system. These components assist in the development and functioning of lymphocytes, cytokines, free radicals, inflammatory mediators and endothelial functioning. This review summarizes the common dietary supplements that are regularly consumed in Saudi Arabia and are known to contain these vital trace elements. Data available in Google Scholar, NCBI, PUBMED, EMBASE and Web of Science about COVID-19, micronutrients, trace elements and nutritional supplements of Saudi Arabia was collected. By highlighting the traditionally used dietary components containing the essential elements, this review could provide useful knowledge crucial for building immunity in the population.
Collapse
|
24
|
Toledano JM, Moreno-Fernandez J, Puche-Juarez M, Ochoa JJ, Diaz-Castro J. Implications of Vitamins in COVID-19 Prevention and Treatment through Immunomodulatory and Anti-Oxidative Mechanisms. Antioxidants (Basel) 2021; 11:antiox11010005. [PMID: 35052509 PMCID: PMC8773198 DOI: 10.3390/antiox11010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since the appearance of the coronavirus disease 2019 (COVID-19) and its announcement as a global pandemic, the search for prophylactic and therapeutic options have become a priority for governments and the scientific community. The approval of several vaccines against SARS-CoV-2 is being crucial to overcome this situation, although the victory will not be achieved while the whole population worldwide is not protected against the virus. This is why alternatives should be studied in order to successfully support the immune system before and during a possible infection. An optimal inflammatory and oxidative stress status depends on an adequate diet. Poor levels of several nutrients could be related to an impaired immune response and, therefore, an increased susceptibility to infection and serious outcomes. Vitamins exert a number of anti-microbial, immunomodulatory, anti-inflammatory, and antioxidant activities, which can be of use to fight against this and several other diseases (especially vitamin D and C). Even though they cannot be considered as a definitive therapeutic option, in part owing to the lack of solid conclusions from well-designed clinical trials, currently available evidence from similar respiratory diseases may indicate that it would be rational to deeply explore the use of vitamins during this global pandemic.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
25
|
Oyekale AS. Compliance Indicators of COVID-19 Prevention and Vaccines Hesitancy in Kenya: A Random-Effects Endogenous Probit Model. Vaccines (Basel) 2021; 9:1359. [PMID: 34835290 PMCID: PMC8618705 DOI: 10.3390/vaccines9111359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccine hesitancy remains a major public health concern in the effort towards addressing the COVID-19 pandemic. This study analyzed the effects of indicators of compliance with preventive practices on the willingness to take COVID-19 vaccines in Kenya. The data were from the COVID-19 Rapid Response Phone Surveys conducted between January and June 2021 during the fourth and fifth waves. The data were analyzed with the random-effects endogenous Probit regression model, with estimated parameters tested for robustness and stability. The results showed that willingness to take vaccines increased between the fourth and fifth waves. Compliance with many of the preventive practices also improved, although the utilizations of immune system-promoting practices were very low. The panel Probit regression results showed that compliance indicators were truly endogenous and there was existence of random effects. Immune system-boosting and contact-prevention indicators significantly increased and decreased the willingness to take vaccines, respectively (p < 0.01). The experience of mental health disorders in the form of nervousness and hopelessness also significantly influenced vaccine hesitancy (p < 0.10). Willingness to take vaccines also significantly increased among older people and those with a formal education (p < 0.01). Different forms of association exist between vaccine hesitancy and the prevention compliance indicators. There is a need to properly sensitize the people to the need to complement compliance with COVID-19 contact-prevention indicators with vaccination. Addressing mental health disorders in the form of loneliness, nervousness, depression, hopelessness and anxiety should also become the focus of public health, while efforts to reduce vaccine hesitancy should focus on individuals without formal education, males and youths.
Collapse
Affiliation(s)
- Abayomi Samuel Oyekale
- Department of Agricultural Economics and Extension, North-West University Mafikeng Campus, Mmabatho 2735, South Africa
| |
Collapse
|
26
|
Tagde P, Tagde S, Tagde P, Bhattacharya T, Monzur SM, Rahman MH, Otrisal P, Behl T, ul Hassan SS, Abdel-Daim MM, Aleya L, Bungau S. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines 2021; 9:biomedicines9091266. [PMID: 34572452 PMCID: PMC8468567 DOI: 10.3390/biomedicines9091266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a deadly or devastating disease is known to affect thousands of people every day, many of them dying all over the planet. The main reason for the massive effect of COVID-19 on society is its unpredictable spread, which does not allow for proper planning or management of this disease. Antibiotics, antivirals, and other prescription drugs, necessary and used in therapy, obviously have side effects (minor or significant) on the affected person, there are still not clear enough studies to elucidate their combined effect in this specific treatment, and existing protocols are sometimes unclear and uncertain. In contrast, it has been found that nutraceuticals, supplements, and various herbs can be effective in reducing the chances of SARS-CoV-2 infection, but also in alleviating COVID-19 symptoms. However, not enough specific details are yet available, and precise scientific studies to validate the approved benefits of natural food additives, probiotics, herbs, and nutraceuticals will need to be standardized according to current regulations. These alternative treatments may not have a direct effect on the virus or reduce the risk of infection with it, but these products certainly stimulate the human immune system so that the body is better prepared to fight the disease. This paper aims at a specialized literary foray precisely in the field of these “cures” that can provide real revelations in the therapy of coronavirus infection
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal 462026, India
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Sandeep Tagde
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathic Medical College, Bhopal 462003, India;
| | - Tanima Bhattacharya
- School of Chemistry and Chemical Engineering, Hubei University, Hubei 430062, China;
- Techno India NJR Institute of Technology, Udaipur 313003, India
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Pavel Otrisal
- Faculty of Physical Culture, Palacký University Olomouc, 77111 Olomouc, Czech Republic;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environment CNRS 6249, Université de Franche-Comté, 25000 Besançon, France;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| |
Collapse
|
27
|
Asad D, Shuja SH. Role of Folate, Cobalamin, and Probiotics in COVID-19 Disease Management [Letter]. Drug Des Devel Ther 2021; 15:3709-3710. [PMID: 34471347 PMCID: PMC8403566 DOI: 10.2147/dddt.s333295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dayab Asad
- Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | |
Collapse
|
28
|
Kumar P, Kumar M, Bedi O, Gupta M, Kumar S, Jaiswal G, Rahi V, Yedke NG, Bijalwan A, Sharma S, Jamwal S. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021; 29:1001-1016. [PMID: 34110533 PMCID: PMC8190991 DOI: 10.1007/s10787-021-00826-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) known as coronavirus disease (COVID-19), emerged in Wuhan, China, in December 2019. On March 11, 2020, it was declared a global pandemic. As the world grapples with COVID-19 and the paucity of clinically meaningful therapies, attention has been shifted to modalities that may aid in immune system strengthening. Taking into consideration that the COVID-19 infection strongly affects the immune system via multiple inflammatory responses, pharmaceutical companies are working to develop targeted drugs and vaccines against SARS-CoV-2 COVID-19. A balanced nutritional diet may play an essential role in maintaining general wellbeing by controlling chronic infectious diseases. A balanced diet including vitamin A, B, C, D, E, and K, and some micronutrients such as zinc, sodium, potassium, calcium, chloride, and phosphorus may be beneficial in various infectious diseases. This study aimed to discuss and present recent data regarding the role of vitamins and minerals in the treatment of COVID-19. A deficiency of these vitamins and minerals in the plasma concentration may lead to a reduction in the good performance of the immune system, which is one of the constituents that lead to a poor immune state. This is a narrative review concerning the features of the COVID-19 and data related to the usage of vitamins and minerals as preventive measures to decrease the morbidity and mortality rate in patients with COVID-19.
Collapse
Affiliation(s)
- Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda-151401, Bathinda, Punjab, India.
| | - Mandeep Kumar
- Department of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manisha Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sachin Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Ghudda-151401, Bathinda, Punjab, India
| | - Shubham Sharma
- Department of Pharmacology, Central University of Punjab, Ghudda-151401, Bathinda, Punjab, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
29
|
A theoretical strategy for acceleration of human immune response against SARS-CoV-2: a fusion protein harboring virus-binding and pre-exposed antigen domains. Virusdisease 2021; 32:384-387. [PMID: 34277894 PMCID: PMC8275912 DOI: 10.1007/s13337-021-00704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory disease that outbreaks since December 2019 and spread globally. Various methods have been used to treat SARS-CoV-2 that is generally based on the information obtained from the therapeutic approaches used for SARS-COV and MERS patients. In this article, we introduce a theoretical strategy in which a two-domain fusion protein presents the virus to the immune system. This fusion protein contains a viral-binding domain such as the ACE2 domain and a domain such as the hepatitis B antigen that has previously been exposed to the immune system. This two-domain fusion protein, could be called “virus-presenting fusion protein”, would attach to the virus spike protein via the ACE2 domain while the hepatitis B antigen would be bound by anti-hepatitis B antibodies facilitating the opsonization and presentation of the virus to the immune system. We believe that this virus-presenting fusion protein will accelerate the immune response to the SARS-CoV-2 virus.
Collapse
|
30
|
Nan J, Zhang S, Zhan P, Jiang L. Discovery of Novel GMPS Inhibitors of Candidatus Liberibacter Asiaticus by Structure Based Design and Enzyme Kinetic. BIOLOGY 2021; 10:biology10070594. [PMID: 34203217 PMCID: PMC8301025 DOI: 10.3390/biology10070594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The spread of citrus Huanglongbing caused significant damage to the world’s citrus industry. Thermotherapy and chemical agents were used to control this disease; however, the effectiveness of these treatments is frequently inconsistent. In addition, CLas cannot be cultured in vitro. Therefore, structure-based virtual screening is a novel method to find compounds that work against CLas. This study used CLas GMPS as a target for high-throughput screening and selected some compounds which have a higher binding affinity to test their inhibition of CLas GMPS. Finally, two molecules were identified as the lead compound to control citrus HLB. Abstract Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were used to discover the new inhibitors against CLas GMPS. Enzyme assay showed that folic acid and AZD1152 showed high inhibition at micromole concentrations, with AZD1152 being the most potent molecule. The inhibition constant (Ki) value of folic acid and AZD1152 was 51.98 µM and 4.05 µM, respectively. These results suggested that folic acid and AZD1152 could be considered as promising candidates for the development of CLas agents.
Collapse
Affiliation(s)
- Jing Nan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ping Zhan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Ling Jiang
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
- Correspondence:
| |
Collapse
|
31
|
Meisel E, Efros O, Bleier J, Beit Halevi T, Segal G, Rahav G, Leibowitz A, Grossman E. Folate Levels in Patients Hospitalized with Coronavirus Disease 2019. Nutrients 2021; 13:812. [PMID: 33801194 PMCID: PMC8001221 DOI: 10.3390/nu13030812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
We aimed to investigate the prevalence of decreased folate levels in patients hospitalized with Coronavirus Disease 2019 (COVID-19) and evaluate their outcome and the prognostic signifi-cance associated with its different levels. In this retrospective cohort study, data were obtained from the electronic medical records at the Sheba Medical Center. Folic acid levels were available in 333 out of 1020 consecutive patients diagnosed with COVID-19 infection hospitalized from January 2020 to November 2020. Thirty-eight (11.4%) of the 333 patients comprising the present study population had low folate levels. No significant difference was found in the incidence of acute kidney injury, hypoxemia, invasive ventilation, length of hospital stay, and mortality be-tween patients with decreased and normal-range folate levels. When sub-dividing the study population according to quartiles of folate levels, similar findings were observed. In conclusion, decreased serum folate levels are common among hospitalized patients with COVID-19, but there was no association between serum folate levels and clinical outcomes. Due to the important role of folate in cell metabolism and the potential pathologic impact when deficient, a follow-up of folate levels or possible supplementation should be encouraged in hospitalized COVID-19 patients. Fur-ther studies are required to assess the prevalence and consequences of folate deficiency in COVID-19 patients.
Collapse
Affiliation(s)
- Eshcar Meisel
- Department of Internal Medicine “D”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (O.E.); (J.B.); (T.B.H.); (A.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
| | - Orly Efros
- Department of Internal Medicine “D”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (O.E.); (J.B.); (T.B.H.); (A.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
- National Hemophilia Center and Institute of Thrombosis & Hemostasis, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Jonathan Bleier
- Department of Internal Medicine “D”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (O.E.); (J.B.); (T.B.H.); (A.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
| | - Tal Beit Halevi
- Department of Internal Medicine “D”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (O.E.); (J.B.); (T.B.H.); (A.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
| | - Gad Segal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
- Department of Internal Medicine “T”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
- Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Avshalom Leibowitz
- Department of Internal Medicine “D”, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; (O.E.); (J.B.); (T.B.H.); (A.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
| | - Ehud Grossman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (G.S.); (G.R.); (E.G.)
- Internal Medicine Wing, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| |
Collapse
|