1
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
2
|
Ma J, Tu Z, Du S, Zhang X, Wang J, Guo J, Feng Y, He H, Wang H, Li C, Tu C, Liu Y. IFITM3 restricts RABV infection through inhibiting viral entry and mTORC1- dependent autophagy. Vet Microbiol 2023; 284:109823. [PMID: 37392666 DOI: 10.1016/j.vetmic.2023.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNβ induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNβ in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.
Collapse
Affiliation(s)
- Jiaqi Ma
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shouwen Du
- Department of infectious diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xinying Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Engineering Research Center of Glycoconjugates of Ministry of Education, Jinlin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianxiong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
3
|
Zhang B, Cai T, He H, Huang X, Luo Y, Huang S, Luo J, Guo X. TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons. Genes (Basel) 2023; 14:1555. [PMID: 37628607 PMCID: PMC10454932 DOI: 10.3390/genes14081555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| |
Collapse
|
4
|
Zhang B, Cai T, He H, Huang X, Chen G, Lai Y, Luo Y, Huang S, Luo J, Guo X. TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination. Int J Mol Sci 2023; 24:10892. [PMID: 37446070 PMCID: PMC10341556 DOI: 10.3390/ijms241310892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Guie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yanqin Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| |
Collapse
|
5
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Substitution of S179P in the Lyssavirus Phosphoprotein Impairs Its Interferon Antagonistic Function. J Virol 2022; 96:e0112522. [PMID: 36326274 PMCID: PMC9683011 DOI: 10.1128/jvi.01125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN) and the IFN-induced cellular antiviral response constitute the first line of defense against viral invasion. Evading host innate immunity, especially IFN signaling, is the key step required for lyssaviruses to establish infection.
Collapse
|
8
|
Uddin MB, Liang Y, Shao S, Palani S, McKelvey M, Weaver SC, Sun K. Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion. Immunohorizons 2022; 6:716-721. [DOI: 10.4049/immunohorizons.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.
Collapse
Affiliation(s)
- Md Bashir Uddin
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Yuejin Liang
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Shengjun Shao
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Sunil Palani
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Michael McKelvey
- †Department of Experimental Pathology, University of Texas Medical Branch, Galveston, TX
| | - Scott C. Weaver
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Keer Sun
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| |
Collapse
|
9
|
Papies J, Sieberg A, Ritz D, Niemeyer D, Drosten C, Müller MA. Reduced IFN-ß inhibitory activity of Lagos bat virus phosphoproteins in human compared to Eidolon helvum bat cells. PLoS One 2022; 17:e0264450. [PMID: 35259191 PMCID: PMC8903296 DOI: 10.1371/journal.pone.0264450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Eidolon helvum bats are reservoir hosts for highly pathogenic lyssaviruses often showing limited disease upon natural infection. An enhanced antiviral interferon (IFN) response combined with reduced inflammation might be linked to the apparent virus tolerance in bats. Lyssavirus phosphoproteins inhibit the IFN response with virus strain-specific efficiency. To date, little is known regarding the lyssavirus P-dependent anti-IFN countermeasures in bats, mainly due to a lack of in vitro tools. By using E. helvum bat cell cultures in a newly established bat-specific IFN-promoter activation assay, we analyzed the IFN-ß inhibitory activity of multiple lyssavirus P in E. helvum compared to human cells. Initial virus infection studies with a recently isolated E. helvum-borne Lagos bat virus street strain from Ghana showed enhanced LBV propagation in an E. helvum lung cell line compared to human A549 lung cells at later time points suggesting effective viral countermeasures against cellular defense mechanisms. A direct comparison of the IFN-ß inhibitory activity of the LBV-GH P protein with other lyssavirus P proteins showed that LBV-GH P and RVP both strongly inhibited the bat IFN-β promotor activation (range 75–90%) in EidLu/20.2 and an E. helvum kidney cell line. Conversely, LBV-GH P blocked the activation of the human IFN-β promoter less efficiently compared to a prototypic Rabies virus P protein (range LBV P 52–68% vs RVP 71–95%) in two different human cell lines (HEK-293T, A549). The same pattern was seen for two prototypic LBV P variants suggesting an overall reduced LBV P IFN-ß inhibitory activity in human cells as compared to E. helvum bat cells. Increased IFN-ß inhibition by lyssavirus P in reservoir host cells might be a result of host-specific adaptation processes towards an enhanced IFN response in bat cells.
Collapse
Affiliation(s)
- Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Sieberg
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Ritz
- Institute of Virology, Universitätsklinikum Bonn, Bonn, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
- * E-mail:
| |
Collapse
|
10
|
Appolinário CM, Daly JM, Emes RD, Marchi FA, Ribeiro BLD, Megid J. Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice. Viruses 2022; 14:v14040692. [PMID: 35458422 PMCID: PMC9031335 DOI: 10.3390/v14040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Pathogenicity and pathology of rabies virus (RABV) varies according to the variant, but the mechanisms are not completely known. In this study, gene expression profile in brains of mice experimentally infected with RABV isolated from a human case of dog rabies (V2) or vampire bat-acquired rabies (V3) were analyzed. In total, 138 array probes associated with 120 genes were expressed differentially between mice inoculated with V2 and sham-inoculated control mice at day 10 post-inoculation. A single probe corresponding to an unannotated gene was identified in V3 versus control mice. Gene ontology (GO) analysis revealed that all of the genes upregulated in mice inoculated with V2 RABV were involved in the biological process of immune defense against pathogens. Although both variants are considered pathogenic, inoculation by the same conditions generated different gene expression results, which is likely due to differences in pathogenesis between the dog and bat RABV variants. This study demonstrated the global gene expression in experimental infection due to V3 wild-type RABV, from the vampire bat Desmodus rotundus, an important source of infection for humans, domestic animals and wildlife in Latin America.
Collapse
Affiliation(s)
- Camila M. Appolinário
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
- Correspondence: (C.M.A.); (J.M.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (J.M.D.); (R.D.E.)
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (J.M.D.); (R.D.E.)
| | | | - Bruna Leticia Devidé Ribeiro
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
| | - Jane Megid
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
- Correspondence: (C.M.A.); (J.M.)
| |
Collapse
|
11
|
Chailangkarn T, Tanwattana N, Jaemthaworn T, Sriswasdi S, Wanasen N, Tangphatsornruang S, Leetanasaksakul K, Jantraphakorn Y, Nawae W, Chankeeree P, Lekcharoensuk P, Lumlertdacha B, Kaewborisuth C. Establishment of Human-Induced Pluripotent Stem Cell-Derived Neurons-A Promising In Vitro Model for a Molecular Study of Rabies Virus and Host Interaction. Int J Mol Sci 2021; 22:ijms222111986. [PMID: 34769416 PMCID: PMC8584829 DOI: 10.3390/ijms222111986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| | - Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Thanakorn Jaemthaworn
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
| | - Sira Sriswasdi
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Wanapinun Nawae
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Penpicha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, 1871 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| |
Collapse
|
12
|
Beier KT. The Serendipity of Viral Trans-Neuronal Specificity: More Than Meets the Eye. Front Cell Neurosci 2021; 15:720807. [PMID: 34671244 PMCID: PMC8521040 DOI: 10.3389/fncel.2021.720807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Trans-neuronal viruses are frequently used as neuroanatomical tools for mapping neuronal circuits. Specifically, recombinant one-step rabies viruses (RABV) have been instrumental in the widespread application of viral circuit mapping, as these viruses have enabled labs to map the direct inputs onto defined cell populations. Within the neuroscience community, it is widely believed that RABV spreads directly between neurons via synaptic connections, a hypothesis based principally on two observations. First, the virus labels neurons in a pattern consistent with known anatomical connectivity. Second, few glial cells appear to be infected following RABV injections, despite the fact that glial cells are abundant in the brain. However, there is no direct evidence that RABV can actually be transmitted through synaptic connections. Here we review the immunosubversive mechanisms that are critical to RABV’s success for infiltration of the central nervous system (CNS). These include interfering with and ultimately killing migratory T cells while maintaining levels of interferon (IFN) signaling in the brain parenchyma. Finally, we critically evaluate studies that support or are against synaptically-restricted RABV transmission and the implications of viral-host immune responses for RABV transmission in the brain.
Collapse
Affiliation(s)
- Kevin Thomas Beier
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Wang C, Lv L, Wu Q, Wang Z, Luo Z, Sui B, Zhou M, Fu ZF, Zhao L. The role of interferon regulatory factor 7 in the pathogenicity and immunogenicity of rabies virus in a mouse model. J Gen Virol 2021; 102. [PMID: 34661517 DOI: 10.1099/jgv.0.001665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/β and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.
Collapse
Affiliation(s)
- Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
14
|
Glycoproteins of Predicted Amphibian and Reptile Lyssaviruses Can Mediate Infection of Mammalian and Reptile Cells. Viruses 2021; 13:v13091726. [PMID: 34578307 PMCID: PMC8473393 DOI: 10.3390/v13091726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Lyssaviruses are neurotropic rhabdoviruses thought to be restricted to mammalian hosts, and to originate from bats. The identification of lyssavirus sequences from amphibians and reptiles by metatranscriptomics thus comes as a surprise and challenges the mammalian origin of lyssaviruses. The novel sequences of the proposed American tree frog lyssavirus (ATFLV) and anole lizard lyssavirus (ALLV) reveal substantial phylogenetic distances from each other and from bat lyssaviruses, with ATFLV being the most distant. As virus isolation has not been successful yet, we have here studied the functionality of the authentic ATFLV- and ALLV-encoded glycoproteins in the context of rabies virus pseudotype particles. Cryogenic electron microscopy uncovered the incorporation of the plasmid-encoded G proteins in viral envelopes. Infection experiments revealed the infectivity of ATFLV and ALLV G-coated RABV pp for a broad spectrum of cell lines from humans, bats, and reptiles, demonstrating membrane fusion activities. As presumed, ATFLV and ALLV G RABV pp escaped neutralization by human rabies immune sera. The present findings support the existence of contagious lyssaviruses in poikilothermic animals, and reveal a broad cell tropism in vitro, similar to that of the rabies virus.
Collapse
|
15
|
Kienes I, Bauer S, Gottschild C, Mirza N, Pfannstiel J, Schröder M, Kufer TA. DDX3X Links NLRP11 to the Regulation of Type I Interferon Responses and NLRP3 Inflammasome Activation. Front Immunol 2021; 12:653883. [PMID: 34054816 PMCID: PMC8158815 DOI: 10.3389/fimmu.2021.653883] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Tight regulation of inflammatory cytokine and interferon (IFN) production in innate immunity is pivotal for optimal control of pathogens and avoidance of immunopathology. The human Nod-like receptor (NLR) NLRP11 has been shown to regulate type I IFN and pro-inflammatory cytokine responses. Here, we identified the ATP-dependent RNA helicase DDX3X as a novel binding partner of NLRP11, using co-immunoprecipitation and LC-MS/MS. DDX3X is known to enhance type I IFN responses and NLRP3 inflammasome activation. We demonstrate that NLRP11 can abolish IKKϵ-mediated phosphorylation of DDX3X, resulting in lower type I IFN induction upon viral infection. These effects were dependent on the LRR domain of NLRP11 that we mapped as the interaction domain for DDX3X. In addition, NLRP11 also suppressed NLRP3-mediated caspase-1 activation in an LRR domain-dependent manner, suggesting that NLRP11 might sequester DDX3X and prevent it from promoting NLRP3-induced inflammasome activation. Taken together, our data revealed DDX3X as a central target of NLRP11, which can mediate the effects of NLRP11 on type I IFN induction as well as NLRP3 inflammasome activation. This expands our knowledge of the molecular mechanisms underlying NLRP11 function in innate immunity and suggests that both NLRP11 and DDX3X might be promising targets for modulation of innate immune responses.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sarah Bauer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Clarissa Gottschild
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility University of Hohenheim, Mass Spectrometry Module, University of Hohenheim, Stuttgart, Germany
| | - Martina Schröder
- Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Luo J, Zhang B, Lyu Z, Wu Y, Zhang Y, Guo X. Single amino acid change at position 255 in rabies virus glycoprotein decreases viral pathogenicity. FASEB J 2020; 34:9650-9663. [PMID: 32469133 DOI: 10.1096/fj.201902577r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that the amino acid at position 333 in the glycoprotein (G) is closely related to rabies virus (RABV) pathogenicity. However, whether there are other amino acid residues in G that relate to pathogenicity remain unclear. The aim of this study is to find new amino acid residues in G that could strongly reduce RABV pathogenicity. The present study found that the pathogenicity of a virulent strain was strongly attenuated when the amino acid glycine (Gly) replaced the aspartic acid (Asp) at position 255 in G (D255G) as intracranial (i.c.) infection with this D255G mutant virus did not cause death in adult mice. The indexes of neurotropism of the D255G mutant strain and the parent GD-SH-01 are 0.72 and 10.0, respectively, which indicate that the D255G mutation decreased the neurotropism of RABV. In addition, the D255G mutation significantly decreased RABV replication in the mouse brain. Furthermore, the D255G mutation enhanced the immune response in mice, which contributed to the clearance of RABV after infection. The Asp255 → Gly255 mutation was genetically stable in vitro and in vivo. In this study, we describe a new referenced amino acid site in G that relates to the pathogenicity of RABV.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Lyu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Luo J, Zhang B, Wu Y, Guo X. Amino Acid Mutation in Position 349 of Glycoprotein Affect the Pathogenicity of Rabies Virus. Front Microbiol 2020; 11:481. [PMID: 32308648 PMCID: PMC7145897 DOI: 10.3389/fmicb.2020.00481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a zoonotic disease infecting mammals including humans. Studies have confirmed that glycoprotein (G) is most related to RABV pathogenicity. In the present study, to discover more amino acid sites related to viral pathogenicity, artificial mutants have been constructed in G of virulent strain GD-SH-01 backbone. Results showed that pathogenicity of GD-SH-01 significantly decreased when Gly349 was replaced by Glu349 through in vivo assays. Gly349→Glu349 of G did not significantly influence viral growth and spread in NA cells. Gly349→Glu349 of G increased the immunogenicity of GD-SH-01 in periphery and induced more expression of interferon alpha (IFN-α) in the brain in mice. It was observed that Gly349→Glu349 of G led to enhanced blood–brain barrier (BBB) permeability at day 5 postinfection. All together, these data revealed that Gly349→Glu349 of G mutation decreased RABV pathogenicity through enhanced immune response and increased BBB permeability. This study provides a new referenced site G349 that could attenuate pathogenicity of RABV.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Khan Z, Terrien E, Delhommel F, Lefebvre-Omar C, Bohl D, Vitry S, Bernard C, Ramirez J, Chaffotte A, Ricquier K, Vincentelli R, Buc H, Prehaud C, Wolff N, Lafon M. Structure-based optimization of a PDZ-binding motif within a viral peptide stimulates neurite outgrowth. J Biol Chem 2019; 294:13755-13768. [PMID: 31346033 DOI: 10.1074/jbc.ra119.008238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
Protection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth. Here, we designed peptides derived from the native viral protein to increase the affinity of these peptides for the MAST2-PDZ domain. Our strategy involved modifying the length and flexibility of the noninteracting sequence linking the two subsites anchoring the peptide to the PDZ domain. Three peptides, Neurovita1 (NV1), NV2, and NV3, were selected, and we found that they all had increased affinities for the MAST2-PDZ domain, with Kd values decreasing from 1300 to 60 nm, while target selectivity was maintained. A parallel biological assay evaluating neurite extension and branching in cell cultures revealed that the NV peptides gradually improved neural activity, with the efficacies of these peptides for stimulating neurite outgrowth mirroring their affinities for MAST2-PDZ. We also show that NVs can be delivered into the cytoplasm of neurons as a gene or peptide. In summary, our findings indicate that virus-derived peptides targeted to MAST2-PDZ stimulate neurite outgrowth in several neuron types, opening up promising avenues for potentially using NVs in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zakir Khan
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Elouan Terrien
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Florent Delhommel
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Cynthia Lefebvre-Omar
- Institut du Cerveau et de la Moelle Epinière, ICM, U1127 INSERM, UMR 7225 CNRS, Sorbonne Université, Paris 75013, France
| | - Delphine Bohl
- Institut du Cerveau et de la Moelle Epinière, ICM, U1127 INSERM, UMR 7225 CNRS, Sorbonne Université, Paris 75013, France
| | - Sandrine Vitry
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Clara Bernard
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Juan Ramirez
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Alain Chaffotte
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Kevin Ricquier
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Renaud Vincentelli
- Unité Mixte de Recherche 7257, CNRS Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13009, France
| | - Henri Buc
- Institut Pasteur, Paris 75015, France
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Nicolas Wolff
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| |
Collapse
|
19
|
Rogée S, Larrous F, Jochmans D, Ben-Khalifa Y, Neyts J, Bourhy H. Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Res 2019; 161:1-9. [DOI: 10.1016/j.antiviral.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
|
20
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
21
|
Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Sci Rep 2018; 8:11858. [PMID: 30089776 PMCID: PMC6082909 DOI: 10.1038/s41598-018-30359-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is still the deadliest infectious disease. Mechanism of host immune response upon RABV infection is not yet fully understood. Accumulating evidences suggest that long noncoding RNAs (lncRNAs) plays key roles in host antiviral responses. However, expression profile and function of lncRNAs in RABV infection remain unclear. In the present study, expression profile of lncRNAs and mRNAs profiles were investigated in RABV-infected brain tissues of mice by RNA sequencing. A total of 140 lncRNAs and 3,807 mRNAs were differentially expressed in RABV-infected animals. The functional annotation and enrichment analysis using Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that differentially expressed transcripts were predominantly involved in signaling pathways related to host immune response. The expression profiles of the selected lncRNAs in brains of mice during RABV infections were verified by quantitative real time polymerase chain reaction (qRT-PCR). To our knowledge, this is the first report to profile the lncRNA expression in RABV infected mice. Our findings provide insights into understanding the role of lncRNAs in host immune response against RABV infection.
Collapse
|
22
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
23
|
Marosi A, Dufkova L, Forró B, Felde O, Erdélyi K, Širmarová J, Palus M, Hönig V, Salát J, Tikos R, Gyuranecz M, Růžek D, Martina B, Koraka P, Osterhaus ADME, Bakonyi T. Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. Vaccine 2018; 37:4724-4735. [PMID: 29805091 DOI: 10.1016/j.vaccine.2018.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
Abstract
Recent studies demonstrated that inhibitors of pro-inflammatory molecular cascades triggered by rabies infection in the central nervous system (CNS) can enhance survival in mouse model and that certain antiviral compounds interfere with rabies virus replication in vitro. In this study different combinations of therapeutics were tested to evaluate their effect on survival in rabies-infected mice, as well as on viral load in the CNS. C57Bl/6 mice were infected with Silver-haired bat rabies virus (SHBRV)-18 at virus dose approaching LD50 and LD100. In one experimental group daily treatments were initiated 4 h before-, in other groups 48 or 96 h after challenge. In the first experiment therapeutic combination contained inhibitors of tumour necrosis factor-α (infliximab), caspase-1 (Ac-YVAD-cmk), and a multikinase inhibitor (sorafenib). In the treated groups there was a notable but not significant increase of survival compared to the virus infected, non-treated mice. The addition of human rabies immunoglobulins (HRIG) to the combination in the second experiment almost completely prevented mortality in the pre-exposure treatment group along with a significant reduction of viral titres in the CNS. Post-exposure treatments also greatly improved survival rates. As part of the combination with immunomodulatory compounds, HRIG had a higher impact on survival than alone. In the third experiment the combination was further supplemented with type-I interferons, ribavirin and favipiravir (T-705). As a blood-brain barrier opener, mannitol was also administered. This treatment was unable to prevent lethal consequences of SHBRV-18 infection; furthermore, it caused toxicity in treated mice, presumably due to interaction among the components. In all experiments, viral loads in the CNS were similar in mice that succumbed to rabies regardless of treatment. According to the findings, inhibitors of detrimental host response to rabies combined with antibodies can be considered among the possible therapeutic and post-exposure options in human rabies cases.
Collapse
Affiliation(s)
- András Marosi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary.
| | - Lucie Dufkova
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Orsolya Felde
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Károly Erdélyi
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2, 1149 Budapest, Hungary
| | - Jana Širmarová
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Martin Palus
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Václav Hönig
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Réka Tikos
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Byron Martina
- Artemis One Health Research Foundation, Delft, The Netherlands
| | - Penelope Koraka
- Viroscience Lab, Erasmus Medical Centre, Wytemaweg 80 3015CN, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Artemis One Health Research Foundation, Delft, The Netherlands; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Germany
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary; Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
24
|
Koraka P, Martina BEE, van den Ham HJ, Zaaraoui-Boutahar F, van IJcken W, Roose J, van Amerongen G, Andeweg A, Osterhaus ADME. Analysis of Mouse Brain Transcriptome After Experimental Duvenhage Virus Infection Shows Activation of Innate Immune Response and Pyroptotic Cell Death Pathway. Front Microbiol 2018; 9:397. [PMID: 29615985 PMCID: PMC5869263 DOI: 10.3389/fmicb.2018.00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/21/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is an important neglected disease, characterized by invariably fatal encephalitis. Several studies focus on understanding the pathogenic mechanisms of the prototype lyssavirus rabies virus (RABV) infection, and little is known about the pathogenesis of rabies caused by other lyssaviruses. We sought to characterize the host response to Duvenhage virus infection and compare it with responses observed during RABV infection by gene expression profiling of brains of mice with the respective infections. We found in both infections differentially expressed genes leading to increased expression of type I interferons (IFNs), chemokines, and proinflammatory cytokines. In addition several genes of the IFN signaling pathway are up-regulated, indicating a strong antiviral response and activation of the negative feedback mechanism to limit type I IFN responses. Furthermore we provide evidence that in the absence of significant neuronal apoptotic death, cell death of neurons is mediated via the pyroptotic pathway in both infections. Taken together, we have identified several genes and/or pathways for both infections that could be used to explore novel approaches for intervention strategies against rabies.
Collapse
Affiliation(s)
- Penelope Koraka
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Artemis One Health Research Foundation, Delft, Netherlands
| | | | | | - Wilfred van IJcken
- Erasmus Centre for Genomics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Jouke Roose
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Artemis One Health Research Foundation, Delft, Netherlands
| | | | - Arno Andeweg
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Albertus D M E Osterhaus
- Artemis One Health Research Foundation, Delft, Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
25
|
Marosi A, Forgách P, Gyuranecz M, Sulyok KM, Bakonyi T. Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication. Vaccine 2018; 37:4663-4672. [PMID: 29459063 DOI: 10.1016/j.vaccine.2018.01.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
Abstract
Five different compounds were tested for their in vitro inhibitory effect against RABV multiplication in mouse neuroblastoma (N2A) cell line. N2A cells were infected with the fixed RABV strain CVS-11 one hour prior to adding antivirals or their respective combinations. The infectious titre of RABV as well as the quantity of viral RNA was determined in the cell culturing medium after 48 h. All five tested compounds (mouse interferon (IFN)-α and -β, ribavirin, favipiravir (T-705) and sorafenib) reduced viral replication in a concentration-dependent manner: IFN-β and sorafenib both provided 73.71% relative inhibition of viral replication in the highest non-cytotoxic concentration, while ribavirin caused 48.07%, IFN-α caused 44.87% and favipiravir caused 35.25% relative inhibition, respectively. When applied in combination, their antiviral activity was not synergistic, but a pronounced inhibition was detected when IFN-β was combined with sorafenib, ribavirin, or favipiravir. The highest antiviral effect was caused by the combination of IFN-β and sorafenib (77.19% relative inhibition). In other combinations there was an antagonistic effect detected in the reduction of viral replication. The results demonstrate that these compounds can be promising candidates for a potential combination treatment of rabies, noting that some combinations are not favourable in vitro, which makes thorough in vivo studies necessary.
Collapse
Affiliation(s)
- András Marosi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, 1143 Budapest, Hungary.
| | - Petra Forgách
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, 1143 Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Kinga M Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, 1143 Budapest, Hungary; Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
26
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
27
|
Gilli F, Royce DB, DiSano KD, Pachner AR. Pegylated interferon beta in the treatment of the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. J Neuroimmunol 2017; 313:34-40. [DOI: 10.1016/j.jneuroim.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/19/2023]
|
28
|
Smreczak M, Marzec A, Orłowska A, Trębas P, Reichert M, Kycko A, Koraka P, Osterhaus A, Żmudziński JF. The effect of selected molecules influencing the detrimental host immune response on a course of rabies virus infection in a murine model. Vaccine 2017; 37:4715-4723. [PMID: 29153584 DOI: 10.1016/j.vaccine.2017.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
Rabies is invariably fatal, when post-exposure prophylaxis is administered after the onset of clinical symptoms. In many countries, rabies awareness is very low and the availability of post-exposure prophylaxis, as recommended by WHO guidelines, is very limited or non-existent, probably as a consequence of high cost. Therefore, new concepts for rabies therapy are needed. Innate immune mechanisms involving the production of pro-inflammatory cytokines and chemokines, activated after rabies infection, are thought to be involved in the neuropathogenesis of rabies. These mechanisms can contribute to a detrimental host response to the rabies virus (RABV) infection. The use of inhibitors of cytokines/chemokines are supposed to extend the survival of a sick individual. Inhibitors of TNF-α, IL-6 and MAPKs were used in RABV inoculated mice to define their influence on the survival time of rabid mice. The study demonstrated that all inhibitors extended mice survival, but at different rates. A log-rank test confirmed the statistically significant survival of mice treated with TNF-α (p = .0087) and MAPKs inhibitors (p = .0024). A delay in the time of onset of rabies was also recorded, in mice given TNF-α and MAPKs inhibitors. The highest virus load was found in the spinal cord and the lowest in the cortex, regardless of the experimental group. Significant TNF-α (p ≤ .0001) and IL-6 (p ≤ .0001) gene upregulation was observed in mice, as a consequence of RABV infection. Regarding MAPKs pathways, there was significant upregulation of the caspase 3 (p = .012, p = .0026) and Mcl-1 (p = .0348, p = .0153) genes, whereas significant downregulation of the cytochrome C (p ≤ .0001), Bcl2 (p = .0002, p = .0007) and JNK3 (p = .042) genes. Rabies pathogenesis is multifactorial, involving both virus and host influences on the course of the infection.
Collapse
Affiliation(s)
- Marcin Smreczak
- National Veterinary Research Institute, Department of Virology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | - Anna Marzec
- National Veterinary Research Institute, Department of Virology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | - Anna Orłowska
- National Veterinary Research Institute, Department of Virology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | - Paweł Trębas
- National Veterinary Research Institute, Department of Virology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | - Michał Reichert
- National Veterinary Research Institute, Department of Pathology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | - Anna Kycko
- National Veterinary Research Institute, Department of Pathology, Av. Partyzantów 57, 24-100 Puławy, Poland
| | | | - Ab Osterhaus
- Erasmus Medical Centre (EMC), Rotterdam, The Netherlands
| | - Jan Franciszek Żmudziński
- National Veterinary Research Institute, Department of Virology, Av. Partyzantów 57, 24-100 Puławy, Poland.
| |
Collapse
|
29
|
Phoolcharoen W, Prehaud C, van Dolleweerd CJ, Both L, da Costa A, Lafon M, Ma JK. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1331-1339. [PMID: 28273388 PMCID: PMC5595719 DOI: 10.1111/pbi.12719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/12/2017] [Accepted: 03/01/2017] [Indexed: 05/03/2023]
Abstract
The biomedical applications of antibody engineering are developing rapidly and have been expanded to plant expression platforms. In this study, we have generated a novel antibody molecule in planta for targeted delivery across the blood-brain barrier (BBB). Rabies virus (RABV) is a neurotropic virus for which there is no effective treatment after entry into the central nervous system. This study investigated the use of a RABV glycoprotein peptide sequence to assist delivery of a rabies neutralizing single-chain antibody (ScFv) across an in cellulo model of human BBB. The 29 amino acid rabies virus peptide (RVG) recognizes the nicotinic acetylcholine receptor (nAchR) at neuromuscular junctions and the BBB. ScFv and ScFv-RVG fusion proteins were produced in Nicotiana benthamiana by transient expression. Both molecules were successfully expressed and purified, but the ScFv expression level was significantly higher than that of ScFv-RVG fusion. Both ScFv and ScFv-RVG fusion molecules had potent neutralization activity against RABVin cellulo. The ScFv-RVG fusion demonstrated increased binding to nAchR and entry into neuronal cells, compared to ScFv alone. Additionally, a human brain endothelial cell line BBB model was used to demonstrate that plant-produced ScFv-RVGP fusion could translocate across the cells. This study indicates that the plant-produced ScFv-RVGP fusion protein was able to cross the in celluloBBB and neutralize RABV.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
- Pharmacognosy and Pharmaceutical BotanyFaculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| | - Christophe Prehaud
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Craig J. van Dolleweerd
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| | - Leonard Both
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| | - Anaelle da Costa
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Monique Lafon
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| |
Collapse
|
30
|
Abstract
Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.
Collapse
|
31
|
Immunological aspects of rabies: a literature review. Arch Virol 2017; 162:3251-3268. [PMID: 28726129 DOI: 10.1007/s00705-017-3484-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
Abstract
Rabies is a lethal disease caused by the neurotropic virus rabies virus (RABV), and it remains an important public health problem globally. It is known that the host immune response is important for control of viral infection and promoting viral clearance. In this context, it is well documented that, in addition to RABV neutralizing antibody, interferons and cell-mediated immunity also have an important role in preventing the establishment of disease. On the other hand, RABV suppresses host immunity through different mechanisms, for example, direct inhibition of host gene expression, sequestration of pathogen-associated molecular patterns, or modification of cytokine signalling pathways, which hinder the protective host immune responses to RABV infection. Here, we review the immunological aspects of rabies, highlighting innate and adaptive immunity, as well as the host evasion immune mechanisms used by the virus. Finally, we briefly discuss how this knowledge can direct new research and be harnessed for future therapeutic strategies.
Collapse
|
32
|
Mei M, Long T, Zhang Q, Zhao J, Tian Q, Peng J, Luo J, Wang Y, Lin Y, Guo X. Phenotypic Consequences In vivo and In vitro of Rearranging the P Gene of RABV HEP-Flury. Front Microbiol 2017; 8:120. [PMID: 28217116 PMCID: PMC5289960 DOI: 10.3389/fmicb.2017.00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) of the Rabies virus (RABV) is critically required for viral replication and pathogenicity. Here we manipulated infectious cDNA clones of the RABV HEP-Flury to translocate the P gene from its wild-type position 2 to 1, 3, or 4 in gene order, using an approach which left the viral nucleotide sequence unaltered. The recovered viruses were evaluated for the levels of gene expression, growth kinetics in cell culture, lethality in suckling mice and protection of mice. The results showed that viral replication was affected by the absolute value of N protein which was regulated by P protein. Viral lethality in suckling mice was consistent with the ratio of P mRNA in one complete transcription. The protection of mice induced by viruses was related to the antibody titer 5 weeks post-infection which might be regulated by G protein. However, the ability to induce cell apoptosis and viral spread were not only related to the viral replication but also to the ratio of related gene which affected by the gene position. These findings might not only improve the understanding of phenotype of RABV and P gene rearrangement, but also help rabies vaccine candidate construction.
Collapse
Affiliation(s)
- Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Teng Long
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Qiong Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yifei Wang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yingyi Lin
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
33
|
Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus. Front Microbiol 2016; 7:751. [PMID: 27242764 PMCID: PMC4871871 DOI: 10.3389/fmicb.2016.00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022] Open
Abstract
Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV) strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq) to compare the brain transcriptomes of normal mice vs. HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV) infection can effectively prevent the CVS-11 to invade central nervous system (CNS), but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4+ T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the post-exposure treatment window for RABV infection.
Collapse
Affiliation(s)
- Daiting Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Feilong He
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University Zhongshan, China
| | - Huixia Guo
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Baoshi Zhang
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Fan Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Jiaqi Liang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Youtian Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
34
|
Ito N, Moseley GW, Sugiyama M. The importance of immune evasion in the pathogenesis of rabies virus. J Vet Med Sci 2016; 78:1089-98. [PMID: 27041139 PMCID: PMC4976263 DOI: 10.1292/jvms.16-0092] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rabies is a zoonotic disease caused by the Lyssavirus rabies virus
(RABV) that can infect most mammals, including humans, where it has a case-fatality rate
of almost 100%. Although preventable by vaccination, rabies causes c. 59,000 human
fatalities every year worldwide. Thus, there exists an urgent need to establish an
effective therapy and/or improve dissemination of vaccines for humans and animals. These
outcomes require greater understanding of the mechanisms of RABV pathogenesis to identify
new molecular targets for the development of therapeutics and/or live vaccines with high
levels of safety. Importantly, a number of studies in recent years have indicated that
RABV specifically suppresses host immunity through diverse mechanisms and that this is a
key process in pathogenicity. Here, we review current understanding of immune modulation
by RABV, with an emphasis on its significance to pathogenicity and the potential
exploitation of this knowledge to develop new vaccines and antivirals.
Collapse
Affiliation(s)
- Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | |
Collapse
|
35
|
Appolinário CM, Allendorf SD, Peres MG, Ribeiro BD, Fonseca CR, Vicente AF, Antunes JMADP, Megid J. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice. Am J Trop Med Hyg 2015; 94:378-83. [PMID: 26711511 DOI: 10.4269/ajtmh.15-0361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection.
Collapse
Affiliation(s)
- Camila Michele Appolinário
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Susan Dora Allendorf
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marina Gea Peres
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruna Devidé Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Clóvis R Fonseca
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Acácia Ferreira Vicente
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - João Marcelo A de Paula Antunes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jane Megid
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
36
|
Appolinário C, Allendorf SD, Vicente AF, Ribeiro BD, Fonseca CRD, Antunes JM, Peres MG, Kotait I, Carrieri ML, Megid J. Fluorescent antibody test, quantitative polymerase chain reaction pattern and clinical aspects of rabies virus strains isolated from main reservoirs in Brazil. Braz J Infect Dis 2015; 19:479-85. [PMID: 26303004 PMCID: PMC9427647 DOI: 10.1016/j.bjid.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) isolated from different mammals seems to have unique characteristics that influence the outcome of infection. RABV circulates in nature and is maintained by reservoirs that are responsible for the persistence of the disease for almost 4000 years. Considering the different pattern of pathogenicity of RABV strains in naturally and experimentally infected animals, the aim of this study was to analyze the characteristics of RABV variants isolated from the main Brazilian reservoirs, being related to a dog (variant 2), Desmodus rotundus (variant 3), crab eating fox, marmoset, and Myotis spp. Viral replication in brain tissue of experimentally infected mouse was evaluated by two laboratory techniques and the results were compared to clinical evolution from five RABV variants. The presence of the RABV was investigated in brain samples by fluorescent antibody test (FAT) and real time polymerase chain reaction (qRT-PCR) for quantification of rabies virus nucleoprotein gene (N gene). Virus replication is not correlated with clinical signs and evolution. The pattern of FAT is associated with RABV replication levels. Virus isolates from crab eating fox and marmoset had a longer evolution period and higher survival rate suggesting that the evolution period may contribute to the outcome. RABV virus variants had independent characteristics that determine the clinical evolution and survival of the infected mice.
Collapse
Affiliation(s)
- Camila Appolinário
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Susan Dora Allendorf
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Acácia Ferreira Vicente
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bruna Devidé Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Clóvis Reinaldo da Fonseca
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - João Marcelo Antunes
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marina Gea Peres
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | | | | | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
37
|
Appolinario CM, Allendorf SD, Peres MG, Fonseca CR, Vicente AF, Antunes JMADP, Pantoja JCF, Megid J. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus. Braz J Infect Dis 2015; 19:453-8. [PMID: 26254692 PMCID: PMC9427455 DOI: 10.1016/j.bjid.2015.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/11/2022] Open
Abstract
We have evaluated the efficacy of short-interfering RNAs targeting the nucleoprotein gene and also the brain immune response in treated and non-treated infected mice. Mice were inoculated with wild-type virus, classified as dog (hv2) or vampire bat (hv3) variants and both groups were treated or leaved as controls. No difference was observed in the lethality rate between treated and non-treated groups, although clinical evaluation of hv2 infected mice showed differences in the severity of clinical disease (p = 0.0006). Evaluation of brain immune response 5 days post-inoculation in treated hv2 group showed no difference among the analyzed genes, whereas after 10 days post-inoculation there was increased expression of 2′,5′-oligoadenylate synthetase 1, tumor necrosis factor alpha, interleukin 12, interferon gamma, and C-X-C motif chemokine 10 associated with higher expression of N gene in the same period (p < 0.0001). In hv2 non-treated group only higher interferon beta expression was found at day 5. The observed differences in results of the immune response genes between treated and non-treated groups is not promising as they had neither impact on mortality nor even a reduction in the expression of N gene in siRNA treated animals. This finding suggests that the use of pre-designed siRNA alone may not be useful in rabies treatment.
Collapse
Affiliation(s)
- Camila Michele Appolinario
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Susan Dora Allendorf
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Marina Gea Peres
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Clovis Reynaldo Fonseca
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Acacia Ferreira Vicente
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - João Marcelo Azevedo de Paula Antunes
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - José Carlos Figueiredo Pantoja
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil.
| |
Collapse
|
38
|
Rosato PC, Leib DA. Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLoS Pathog 2015; 11:e1005028. [PMID: 26153886 PMCID: PMC4495997 DOI: 10.1371/journal.ppat.1005028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/17/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens. Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus that can cause cold sores, blindness, and even death from encephalitis. There is no vaccine against HSV, and although antiviral drugs can control HSV-1, it persists because it establishes lifelong latent infections in neurons. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Sensory neurons, in which HSV resides, have projection which that extend long distances to innervate the skin, the initial site of HSV infection. We found that neurons can respond to interferon beta, a molecule that strongly stimulates innate immunity and inhibits virus growth, at both the cell body and at the end of these long projections. Moreover, we found that this interferon response of neurons is critical for controlling HSV infection in vivo and that the interferon responses of non-neuronal cells are insufficient to provide protection. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
Affiliation(s)
- Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
39
|
Davis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2015; 2:451-71. [PMID: 26958924 DOI: 10.1146/annurev-virology-100114-055157] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cultural impact of rabies, the fatal neurological disease caused by infection with rabies virus, registers throughout recorded history. Although rabies has been the subject of large-scale public health interventions, chiefly through vaccination efforts, the disease continues to take the lives of about 40,000-70,000 people per year, roughly 40% of whom are children. Most of these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, although the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is currently no effective treatment that will save the life of a symptomatic rabies patient. This review focuses on the major unanswered research questions related to rabies virus pathogenesis, especially those connecting the disease progression of rabies with the complex dysfunction caused by the virus in infected cells. The recent applications of cutting-edge research strategies to this question are described in detail.
Collapse
Affiliation(s)
| | - Glenn F Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Matthias J Schnell
- Department of Microbiology and Immunology and.,Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; .,Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
40
|
Watson NB, Schneider KM, Massa PT. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2796-809. [PMID: 25681345 DOI: 10.4049/jimmunol.1402210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Karin M Schneider
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Paul T Massa
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and Department of Neurology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
41
|
Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC. Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol 2015; 89:312-22. [PMID: 25320312 PMCID: PMC4301114 DOI: 10.1128/jvi.01572-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(-) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50) more than 100-fold greater than SPBN(-). In vitro and in vivo mouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR(-/-)) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons. IMPORTANCE Survival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.
Collapse
Affiliation(s)
- Darryll A Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol 2014; 89:48-60. [PMID: 25320290 DOI: 10.1128/jvi.02394-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Susceptibility to alphavirus infection is age dependent, and host maturation is associated with decreased virus replication and less severe encephalitis. To identify factors associated with maturation-dependent restriction of virus replication, we studied AP-7 rat olfactory bulb neuronal cells, which can differentiate in vitro. Differentiation was associated with a 150- to 1,000-fold decrease in replication of the alphaviruses Sindbis virus and Venezuelan equine encephalitis virus, as well as La Crosse bunyavirus. Differentiation delayed synthesis of SINV RNA and protein but did not alter the susceptibility of neurons to infection or virion maturation. Additionally, differentiation slowed virus-induced translation arrest and death of infected cells. Differentiation of uninfected AP-7 neurons was associated with changes in expression of antiviral genes. Expression of key transcription factors was increased, including interferon regulatory factor 3 and 7 (IRF-3 and IRF-7) and STAT-1, suggesting that neuronal maturation may enhance the capacity for antiviral signaling upon infection. IRF-7 produced by undifferentiated AP-7 neurons was exclusively the short dominant negative γ-isoform, while that produced by differentiated neurons was the full-length α-isoform. A similar switch in IRF-7 isoforms also occurred in the brains of maturing C57BL/6J mice. Silencing of IRF expression did not improve virus multiplication in differentiated neurons. Therefore, neuronal differentiation is associated with upregulation of transcription factors that activate antiviral signaling, but this alone does not account for maturation-dependent restriction of virus replication. IMPORTANCE Viral encephalomyelitis is an important cause of age-dependent morbidity and mortality. Because mature neurons are not readily regenerated, recovery from encephalitis suggests that mature neurons utilize unique antiviral mechanisms to block infection and/or clear virus. To identify maturational changes in neurons that may improve outcome, we compared immature and mature cultured neurons for susceptibility to three encephalitic arboviruses and found that replication of Old World and New World alphaviruses and a bunyavirus was reduced in mature compared to immature neurons. Neuronal maturation was associated with increased baseline expression of interferon regulatory factor 3 and 7 mRNAs and production of distinct isoforms of interferon regulatory factor 7 protein. Overall, our studies identified maturational changes in neurons that likely contribute to assembly of immunoregulatory factors prior to infection, a more rapid antiviral response, increased resistance to virus infection, and improved survival.
Collapse
|
43
|
Wang Y, Tian Q, Xu X, Yang X, Luo J, Mo W, Peng J, Niu X, Luo Y, Guo X. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity. Virology 2014; 468-470:621-630. [PMID: 25310498 DOI: 10.1016/j.virol.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022]
Abstract
Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage.
Collapse
Affiliation(s)
- Yifei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianfeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiyu Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuefeng Niu
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
44
|
Appolinario CM, Jackson AC. Antiviral therapy for human rabies. Antivir Ther 2014; 20:1-10. [PMID: 25156675 DOI: 10.3851/imp2851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.
Collapse
Affiliation(s)
- Camila M Appolinario
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
45
|
Wu Q, Yu F, Xu J, Li Y, Chen H, Xiao S, Fu ZF, Fang L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet Microbiol 2014; 171:93-101. [DOI: 10.1016/j.vetmic.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
|
46
|
Anti-lyssaviral activity of interferons κ and ω from the serotine bat, Eptesicus serotinus. J Virol 2014; 88:5444-54. [PMID: 24574413 DOI: 10.1128/jvi.03403-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Interferons (IFNs) are cytokines produced by host cells in response to the infection with pathogens. By binding to the corresponding receptors, IFNs trigger different pathways to block intracellular replication and growth of pathogens and to impede the infection of surrounding cells. Due to their key role in host defense against viral infections, as well as for clinical therapies, the IFN responses and regulation mechanisms are well studied. However, studies of type I IFNs have mainly focused on alpha interferon (IFN-α) and IFN-β subtypes. Knowledge of IFN-κ and IFN-ω is limited. Moreover, most studies are performed in humans or mouse models but not in the original host of zoonotic pathogens. Bats are important reservoirs and transmitters of zoonotic viruses such as lyssaviruses. A few studies have shown an antiviral activity of IFNs in fruit bats. However, the function of type I IFNs against lyssaviruses in bats has not been studied yet. Here, IFN-κ and IFN-ω genes from the European serotine bat, Eptesicus serotinus, were cloned and functionally characterized. E. serotinus IFN-κ and IFN-ω genes are intronless and well conserved between microchiropteran species. The promoter regions of both genes contain essential regulatory elements for transcription factors. In vitro studies indicated a strong activation of IFN signaling by recombinant IFN-ω, whereas IFN-κ displayed weaker activation. Noticeably, both IFNs inhibit to different extents the replication of different lyssaviruses in susceptible bat cell lines. The present study provides functional data on the innate host defense against lyssaviruses in endangered European bats. IMPORTANCE We describe here for the first time the molecular and functional characterization of two type I interferons (IFN-κ and -ω) from European serotine bat (Eptesicus serotinus). The importance of this study is mainly based on the fact that very limited information about the early innate immune response against bat lyssaviruses in their natural host serotine bats is yet available. Generally, whereas the antiviral activity of other type I interferons is well studied, the functional involvement of IFN-κ and -ω has not yet been investigated.
Collapse
|
47
|
Owens T, Khorooshi R, Wlodarczyk A, Asgari N. Interferons in the central nervous system: A few instruments play many tunes. Glia 2013; 62:339-55. [DOI: 10.1002/glia.22608] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Nasrin Asgari
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
- Department of Neurology; Vejle Hospital; Denmark
| |
Collapse
|
48
|
Wild-type rabies virus phosphoprotein is associated with viral sensitivity to type I interferon treatment. Arch Virol 2013; 158:2297-305. [DOI: 10.1007/s00705-013-1743-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/19/2013] [Indexed: 12/19/2022]
|
49
|
Hofer MJ, Campbell IL. Type I interferon in neurological disease-the devil from within. Cytokine Growth Factor Rev 2013; 24:257-67. [PMID: 23548179 DOI: 10.1016/j.cytogfr.2013.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 12/31/2022]
Abstract
The members of the type I interferon (IFN-I) family of cytokines are pleiotropic factors that have seminal roles in host defence, acting as antimicrobial and antitumor mediators as well as potent immunomodulatory factors that bridge the innate and adaptive immune responses. Despite these beneficial actions there is mounting evidence that link inappropriate or chronic production of IFN-I in the CNS to the development of a number of severe neuroinflammatory disorders. The most persuasive example is the genetically determined inflammatory encephalopathy, Aicardi-Goutières syndrome (AGS) in which patients have chronically elevated IFN-α production in the CNS. The presentation of AGS can often mimic congenital viral infection, however, molecular genetic studies have identified mutations in six genes that can cause AGS, most likely via dysregulated nucleic acid metabolism and activation of the innate immune response leading to increased intrathecal production of IFN-α. The role of IFN-α as a pathogenic factor in AGS and other neurological disorders has gained considerable support from experimental studies. In particular, a transgenic mouse model with CNS-restricted production of IFN-α replicates many of the cardinal neuropathologic features of AGS and reveal IFN-I to be the "devil from within", mediating molecular and cellular damage within the CNS. Thus, targeting IFN-I may be an effective strategy for the treatment of AGS as well as some other autoimmune and infectious neurological "interferonopathies".
Collapse
Affiliation(s)
- Markus J Hofer
- School of Molecular Bioscience and the Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
50
|
Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T. Antiviral type I and type III interferon responses in the central nervous system. Viruses 2013; 5:834-57. [PMID: 23503326 PMCID: PMC3705299 DOI: 10.3390/v5030834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Collapse
Affiliation(s)
- Frédéric Sorgeloos
- Université catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 avenue Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | |
Collapse
|