1
|
Mariappan V, Adla D, Jangili S, Ranganadin P, Green SR, Mohammed S, Mutheneni SR, Pillai AB. Understanding COVID-19 outcome: Exploring the prognostic value of soluble biomarkers indicative of endothelial impairment. Cytokine 2024; 180:156673. [PMID: 38857562 DOI: 10.1016/j.cyto.2024.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Host proteins released by the activated endothelial cells during SARS-CoV-2 infection are implicated to be involved in coagulation and endothelial dysfunction. However, the underlying mechanism that governs the vascular dysfunction and disease severity in COVID-19 remains obscure. The study evaluated the serum levels of Bradykinin, Kallikrein, SERPIN A, and IL-18 in COVID-19 (N-42 with 20 moderate and 22 severe) patients compared to healthy controls (HC: N-10) using ELISA at the day of admission (DOA) and day 7 post-admission. The efficacy of the protein levels in predicting disease severity was further determined using machine learning models. The levels of bradykinins and SERPIN A were higher (P ≤ 0.001) in both severe and moderate cases on day 7 post-admission compared to DOA. All the soluble proteins studied were found to elevated (P ≤ 0.01) in severe compared to moderate in day 7 and were positively correlated (P ≤ 0.001) with D-dimer, a marker for coagulation. ROC analysis identified that SERPIN A, IL-18, and bradykinin could predict the clinical condition of COVID-19 with AUC values of 1, 0.979, and 1, respectively. Among the models trained using univariate model analysis, SERPIN A emerged as a strong prognostic biomarker for COVID-19 disease severity. The serum levels of SERPIN A in conjunction with the coagulation marker D-dimer, serve as a predictive indicator for COVID-19 clinical outcomes. However, studies are required to ascertain the role of these markers in disease virulence.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Deepthi Adla
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Shraddha Jangili
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Siva Ranaganthan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Salma Mohammed
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| |
Collapse
|
2
|
Kannan N, Choi A, Rivera De Jesus MA, Wei PM, Sahler JM, Curley SM, August A, DeLisa MP, Whittaker GR, Putnam D. Intranasal Vaccination with Recombinant TLR2-Active Outer Membrane Vesicles Containing Sequential M2e Epitopes Protects against Lethal Influenza a Challenge. Vaccines (Basel) 2024; 12:724. [PMID: 39066362 PMCID: PMC11281606 DOI: 10.3390/vaccines12070724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza is a highly contagious respiratory disease, resulting in an estimated 3 to 5 million cases of severe illness annually. While most influenza vaccines are administered parenterally via injection, one shortcoming is that they do not generate a strong immune response at the site of infection, which can become important in a pandemic. Intranasal vaccines can generate both local and systemic protective immune responses, can reduce costs, and enhance ease of administration. Previous studies showed that parenterally administered outer membrane vesicles (OMVs) that carry sequences of the M2e protein (OMV-M2e) protect against influenza A/PR8 challenge in mice and ferrets. In the current study, we measured the effectiveness of the intranasal route of the OMV-M2e vaccine against the influenza A/PR8 strain in mice. We observed high anti-M2e IgG and IgA titers post-challenge in mice vaccinated intranasally with OMV-M2e. In addition, we observed a Th1/Tc1 bias in the vaccinated mice, and an increased Th17/Tc17 response, both of which correlated with survival to A/PR8 challenge and significantly lower lung viral titers. We conclude that the intranasal-route administration of the OMV-M2e vaccine is a promising approach toward generating protection against influenza A as it leads to an increased proinflammatory immune response correlating with survival to viral challenge.
Collapse
Affiliation(s)
- Nisha Kannan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (N.K.); (M.A.R.D.J.); (P.M.W.); (S.M.C.)
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (A.C.); (J.M.S.); (A.A.); (G.R.W.)
| | - Mariela A. Rivera De Jesus
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (N.K.); (M.A.R.D.J.); (P.M.W.); (S.M.C.)
| | - Peter Male Wei
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (N.K.); (M.A.R.D.J.); (P.M.W.); (S.M.C.)
| | - Julie Marie Sahler
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (A.C.); (J.M.S.); (A.A.); (G.R.W.)
| | - Stephanie Marie Curley
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (N.K.); (M.A.R.D.J.); (P.M.W.); (S.M.C.)
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (A.C.); (J.M.S.); (A.A.); (G.R.W.)
| | - Matthew P. DeLisa
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (A.C.); (J.M.S.); (A.A.); (G.R.W.)
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; (N.K.); (M.A.R.D.J.); (P.M.W.); (S.M.C.)
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
3
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Boylan BT, Hwang M, Bergmann CC. The Impact of Innate Components on Viral Pathogenesis in the Neurotropic Coronavirus Encephalomyelitis Mouse Model. Viruses 2023; 15:2400. [PMID: 38140641 PMCID: PMC10747027 DOI: 10.3390/v15122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognition of viruses invading the central nervous system (CNS) by pattern recognition receptors (PRRs) is crucial to elicit early innate responses that stem dissemination. These innate responses comprise both type I interferon (IFN-I)-mediated defenses as well as signals recruiting leukocytes to control the infection. Focusing on insights from the neurotropic mouse CoV model, this review discusses how early IFN-I, fibroblast, and myeloid signals can influence protective anti-viral adaptive responses. Emphasis is placed on three main areas: the importance of coordinating the distinct capacities of resident CNS cells to induce and respond to IFN-I, the effects of select IFN-stimulated genes (ISGs) on host immune responses versus viral control, and the contribution of fibroblast activation and myeloid cells in aiding the access of T cells to the parenchyma. By unraveling how the dysregulation of early innate components influences adaptive immunity and viral control, this review illustrates the combined effort of resident CNS cells to achieve viral control.
Collapse
Affiliation(s)
- Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- School of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
6
|
Beilinson HA, Sevilleja A, Spring J, Benavides F, Beilinson V, Neokosmidis N, Golovkina T. A single dominant locus restricts retrovirus replication in YBR/Ei mice. J Virol 2023; 97:e0068523. [PMID: 37578238 PMCID: PMC10506465 DOI: 10.1128/jvi.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Differential responses to viral infections are influenced by the genetic makeup of the host. Studies of resistance to retroviruses in human populations are complicated due to the inability to conduct proof-of-principle studies. Inbred mouse lines, which have a range of susceptible phenotypes to retroviruses, are an ideal tool to identify and characterize mechanisms of resistance and define their genetic underpinnings. YBR/Ei mice become infected with Mouse Mammary Tumor Virus, a mucosally transmitted murine retrovirus, but eliminate the virus from their pedigrees. Virus elimination correlates with a lack of virus-specific neonatal oral tolerance, which is a major mechanism for blocking the anti-virus response in susceptible mice. Virus control is unrelated to virus-neutralizing antibodies, cytotoxic CD8+ T cells, NK cells, and NK T cells, which are the best characterized mechanisms of resistance to retroviruses. We identified a single, dominant locus that controls the resistance mechanism, which we provisionally named attenuation of virus titers (Avt) and mapped to the distal region of chromosome 18. IMPORTANCE Elucidation of the mechanism that mediates resistance to retroviruses is of fundamental importance to human health, as it will ultimately lead to knowledge of the genetic differences among individuals in susceptibility to microbial infections.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Amanda Sevilleja
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Wang W, Hariharan M, Bartlett A, Barragan C, Castanon R, Rothenberg V, Song H, Nery J, Aldridge A, Altshul J, Kenworthy M, Ding W, Liu H, Tian W, Zhou J, Chen H, Wei B, Gündüz IB, Norell T, Broderick TJ, McClain MT, Satterwhite LL, Burke TW, Petzold EA, Shen X, Woods CW, Fowler VG, Ruffin F, Panuwet P, Barr DB, Beare JL, Smith AK, Spurbeck RR, Vangeti S, Ramos I, Nudelman G, Sealfon SC, Castellino F, Walley AM, Evans T, Müller F, Greenleaf WJ, Ecker JR. Human Immune Cell Epigenomic Signatures in Response to Infectious Diseases and Chemical Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546792. [PMID: 37425926 PMCID: PMC10327221 DOI: 10.1101/2023.06.29.546792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.
Collapse
Affiliation(s)
- Wenliang Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Manoj Hariharan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Vince Rothenberg
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Haili Song
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joseph Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew Aldridge
- Duke University School of Medicine, Bryan Research Building, 311 Research Drive, Durham, NC 27710, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Bei Wei
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Irem B. Gündüz
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | - Todd Norell
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Timothy J Broderick
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Micah T. McClain
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Elizabeth A. Petzold
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Vance G. Fowler
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Duke Clinical Research Institute, Durham NC 27701 USA
| | - Felicia Ruffin
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Dana B. Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | | | - Anthony K. Smith
- Battelle Memorial Institute, 505 King Ave Columbus OH 43201, USA
| | | | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Flora Castellino
- U.S. Department of Health and Human Services, Administration for Strategic Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Anna Maria Walley
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Thomas Evans
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Fabian Müller
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | | | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Lim YS, Lee AG, Jiang X, Scott JM, Cofie A, Kumar S, Kennedy D, Granville DJ, Shin H. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep 2023; 42:112410. [PMID: 37071533 DOI: 10.1016/j.celrep.2023.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.
Collapse
Affiliation(s)
- Ying Shiang Lim
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aisha G Lee
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason M Scott
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adjoa Cofie
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dania Kennedy
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC V5V 3P1, Canada
| | - Haina Shin
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Wang Y, Zeng M, Xia L, Valerie Olovo C, Su Z, Zhang Y. Bacterial strategies for immune systems - Role of the type VI secretion system. Int Immunopharmacol 2023; 114:109550. [PMID: 36525796 DOI: 10.1016/j.intimp.2022.109550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
The process of host infection by bacteria is complicated. Bacterial infections strongly induce the host immune system, which necessitates a robust clearance of the infection. However, bacteria have over time developed strategies that enable their evasion of attacks by the host immune system. One such strategy is the type VI secretion system (T6SS), a special needle-like secretion system that is widespread in Gram-negative bacteria and is responsible for delivering effector proteins into the external bacterial environment or directly into the host cell cytosol. Bacterial T6SS and its secreted effector proteins play an important role in the interaction between bacteria and host immune system. They also serve as antigens that are employed in the development of vaccines for clinical trials as well as future vaccine candidates. This review focuses mainly on aspects of T6SS effectors that impact the strength of the host immune system, including inflammation, autophagy, and apoptosis (silent programmed cell death). The T6SS-based vaccines are also described.
Collapse
Affiliation(s)
- Yurou Wang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Chinasa Valerie Olovo
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Zhaoliang Su
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Tong X, Ping H, Gong X, Zhang K, Chen Z, Cai C, Lu Z, Yang R, Gao S, Wang Y, Wang X, Liu L, Ke H. Pyroptosis in the lung and spleen of patients died from
COVID-19. EUR J INFLAMM 2022; 20:1721727X221140661. [PMCID: PMC9702972 DOI: 10.1177/1721727x221140661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study was to investigate the expression of pyroptosis-related factors (NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD) in patients who died of COVID-19. The expression levels of NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD in lung and spleen tissues of the COVID-19 group and the control group were detected by tissue immunofluorescence. The control group includes lung tissues and spleen tissues of two patients who died unexpectedly without SARS-CoV-2 infection, and the COVID-19 group includes the lung and spleen tissues of three patients who died of SARS-CoV-2 virus infection. The positive rates of NF-κB, NLRP3, IL-18, and GSDMD in the lung tissues from the control group and COVID-19 group were 9.8% vs 73.4% (p = 0.000), 5.5% vs 63.6% (p = 0.000), 24.4% vs 76.2% (p = 0.000), and 17.5% and 46.8% (p = 0.000) respectively. The positive rates of NF-κB, NLRP3, IL-18, HMGB-1, and GSDMD in the spleen tissues from the control group and COVID-19 group were 20.6% vs 71.2% (p = 0.000), 18.9% vs 72.0% (p = 0.000), 15.2% vs 64.8% (p = 0.000), 27.6% vs 69.2% (p = 0.000), and 23% and 48.8% (p = 0.000), respectively. The positive rates of SARS-CoV-2 spike protein in the CD68 positive cells of the lung and spleen in the control group and COVID-19 group were 2.5% vs 56.8% (p = 0.000); 3.0% vs 64.9% (p = 0.000) respectively. The rates of NF-κB positive nuclei in the control group and COVID-19 group were 13.4% vs 51.4% (p = 0.000) in the lung and 38.2% vs 59.3% (p = 0.000) in the spleen. The rates of HMGB-1 positive cytoplasm in the control and the COVID-19 group were 19.7% vs 50.3% (p = 0.000) in the lung and 12.3% vs 45.2% (p = 0.000) in the spleen. The targets of SARS-CoV-2 are the lung and spleen, where increased macrophages could be involved in the up-regulation of pyroptosis-related inflammatory factors such as NF-κB, HMGB-1, NLRP3, IL-18, and GSDMD.
Collapse
Affiliation(s)
- Xin Tong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Haiqin Ping
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Xiaoming Gong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Kai Zhang
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhaojun Chen
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Caiyun Cai
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhiyan Lu
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Rongrong Yang
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Shicheng Gao
- Department of infectious disease, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Yunyun Wang
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Liang Liu
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Hengning Ke
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| |
Collapse
|
11
|
Sylvester PA, Corbett JA, Tarakanova VL. T cell-extrinsic IL-1 signaling controls long-term gammaherpesvirus infection by suppressing viral reactivation. Virology 2022; 576:134-140. [PMID: 36244319 PMCID: PMC10069094 DOI: 10.1016/j.virol.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Gammaherpesviruses establish life-long infection in over 95% of adults and are associated with several cancers, including B cell lymphomas. Using the murine gammaherpesvirus 68 (MHV68) animal model, we previously showed a pro-viral role of Interleukin-1 (IL-1) signaling that supported viral reactivation during the establishment of chronic infection. Unexpectedly, in this study we found that the proviral effects of IL-1 signaling originally observed during the establishment of chronic gammaherpesvirus infection convert to antiviral effects during the long-term stage of infection. Specifically, IL-1 signaling promoted expansion of antiviral CD8+ T cells and control of viral reactivation in the peritoneal cavity of a long-term infected host. Using a novel mouse model of T cell-specific IL-1 signaling deficiency, we found that the antiviral effects of IL-1 signaling were T cell extrinsic. Our study highlights a dynamic nature of host factors that shape the parameters of chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- P A Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - J A Corbett
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - V L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Cognasse F, Hamzeh-Cognasse H, Duchez AC, Shurko N, Eyraud MA, Arthaud CA, Prier A, Heestermans M, Hequet O, Bonneaudeau B, Rochette-Eribon S, Teyssier F, Barlet-Excoffier V, Chavarin P, Legrand D, Richard P, Morel P, Mooney N, Tiberghien P. Inflammatory profile of convalescent plasma to treat COVID: Impact of amotosalen/UVA pathogen reduction technology. Front Immunol 2022; 13:1034379. [PMID: 36275757 PMCID: PMC9585295 DOI: 10.3389/fimmu.2022.1034379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blood products in therapeutic transfusion are now commonly acknowledged to contain biologically active constituents during the processes of preparation. In the midst of a worldwide COVID-19 pandemic, preliminary evidence suggests that convalescent plasma may lessen the severity of COVID-19 if administered early in the disease, particularly in patients with profound B-cell lymphopenia and prolonged COVID-19 symptoms. This study examined the influence of photochemical Pathogen Reduction Treatment (PRT) using amotosalen‐HCl and UVA light in comparison with untreated control convalescent plasma (n= 72 – paired samples) - cFFP, regarding soluble inflammatory factors: sCD40L, IFN-alpha, IFN-beta, IFN-gamma, IL-1 beta, IL-6, IL-8, IL-10, IL-18, TNF-alpha and ex-vivo inflammatory bioactivity on endothelial cells. We didn’t observe significant modulation of the majority of inflammatory soluble factors (8 of 10 molecules tested) pre- or post-PRT. We noted that IL-8 concentrations were significantly decreased in cFFP with PRT, whereas the IL-18 concentration was increased by PRT. In contrast, endothelial cell release of IL-6 was similar whether cFFP was pre-treated with or without PRT. Expression of CD54 and CD31 in the presence of cFFP were similar to control levels, and both were significant decreased in when cFFP had been pre-treated by PRT. It will be interesting to continue investigations of IL-18 and IL-8, and the physiopathological effect of PRT- treated convalescent plasma and in clinical trials. But overall, it appears that cFFP post-PRT were not excessively pro-inflammatory. Further research, including a careful clinical evaluation of CCP-treated patients, will be required to thoroughly define the clinical relevance of these findings.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
- *Correspondence: Fabrice Cognasse,
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Natalia Shurko
- Institute of Blood Pathology and Transfusion Medicine NAMS (National Academy of Medical Sciences) of Ukraine, Lviv, Ukraine
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Olivier Hequet
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- CIRI, International Center for Infectiology Research, INSERM (Institut National de la Santé et de la Recherche Médicale) U1111, Université de Lyon, Lyon, France
| | | | | | - Françoise Teyssier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Patricia Chavarin
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Dominique Legrand
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Pascal Morel
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology and Immunotherapy, INSERM (Institut National de la Santé et de la Recherche Médicale) U976, Paris, France
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| |
Collapse
|
14
|
Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, Dalla Gasperina D, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 2022; 85:104299. [PMID: 36209522 PMCID: PMC9536001 DOI: 10.1016/j.ebiom.2022.104299] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1β (IL-1β) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1β in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Paul C. Cremer
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy
| | - Ettore Porreca
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | | | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy,Corresponding author.
| |
Collapse
|
15
|
Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022; 42:406-420. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) pandemic has caused massive morbidity and mortality worldwide. In severe cases, it is mainly associated with acute pneumonia, cytokine storm, and multi-organ dysfunction. Inflammasomes play a primary role in various pathological processes such as infection, injury, and cancer. However, their role in COVID-19-related complications has not been explored. In addition, the role of underlying medical conditions on COVID-19 disease severity remains unclear. Therefore, this review expounds on the mechanisms of inflammasomes following COVID-19 infection and provides recent evidence on the potential double-edged sword effect of inflammasomes during COVID-19 pathogenesis. The assembly and activation of inflammasomes are critical for inducing effective antiviral immune responses and disease resolution. However, uncontrolled activation of inflammasomes causes excessive production of proinflammatory cytokines (cytokine storm), increased risk of acute respiratory distress syndrome, and death. Therefore, discoveries in the role of the inflammasome in mediating organ injury are key to identifying therapeutic targets and treatment modifications to prevent or reduce COVID-19-related complications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hangyuan Zhao
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiqing Wang
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Department of Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
17
|
Declercq J, De Leeuw E, Lambrecht BN. Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: From prognostic marker to therapeutic agent. Cytokine 2022; 157:155934. [PMID: 35709568 PMCID: PMC9170572 DOI: 10.1016/j.cyto.2022.155934] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023]
|
18
|
Abstract
Vulnerability to coronavirus disease (COVID)-19 varies due to differences in interferon gamma (IFNγ) immunity. We investigated whether a key modifiable interferon precursor, interleukin-18, was related to COVID-19, overall and by severity, using Mendelian randomisation. We used four established genome-wide significant genetic predictors of interleukin-18 applied to the most recent genome-wide association study of COVID-19 (June 2021) to obtain Mendelian randomisation inverse variance weighted estimates by severity, i.e. any (cases = 112 612, non-cases = 2 474 079), hospitalised (cases = 24 274, non-cases = 2 061 529) and very severe (cases = 8779, non-cases = 1 001 875) COVID-19. To be comprehensive, we also conducted an exploratory analysis for IFNγ and two related cytokines with less well-established genetic predictors, i.e. interleukin-12 and interleukin-23. Genetically predicted interleukin-18 was associated with lower risk of any COVID-19 (odds ratio (OR) 0.96 per standard deviation, 95% confidence interval (0.94–0.99, P-value 0.004)) and of very severe COVID-19 (OR 0.88, 95% CI 0.78–0.999, P-value 0.048). Sensitivity analysis and a more liberal genetic instrument selection gave largely similar results. Few genome-wide significant genetic predictors were available for IFNγ, interleukin-12 or interleukin-23, and no associations with COVID-19 were evident. Interleukin-18 could be a modifiable target to prevent COVID-19 and should be further explored in an experimental design.
Collapse
|
19
|
Getz M, Wang Y, An G, Asthana M, Becker A, Cockrell C, Collier N, Craig M, Davis CL, Faeder JR, Ford Versypt AN, Mapder T, Gianlupi JF, Glazier JA, Hamis S, Heiland R, Hillen T, Hou D, Islam MA, Jenner AL, Kurtoglu F, Larkin CI, Liu B, Macfarlane F, Maygrundter P, Morel PA, Narayanan A, Ozik J, Pienaar E, Rangamani P, Saglam AS, Shoemaker JE, Smith AM, Weaver JJA, Macklin P. Iterative community-driven development of a SARS-CoV-2 tissue simulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.04.02.019075. [PMID: 32511322 PMCID: PMC7239052 DOI: 10.1101/2020.04.02.019075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.
Collapse
|
20
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
22
|
Ciaglia E, Lopardo V, Montella F, Sellitto C, Manzo V, De Bellis E, Iannaccone T, Franci G, Zannella C, Pagliano P, Di Pietro P, Carrizzo A, Vecchione C, Conti V, Filippelli A, Puca AA. BPIFB4 Circulating Levels and Its Prognostic Relevance in COVID-19. J Gerontol A Biol Sci Med Sci 2021; 76:1775-1783. [PMID: 34396395 PMCID: PMC8436991 DOI: 10.1093/gerona/glab208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Emanuela De Bellis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Infectious Diseases Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Department of Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
23
|
Mancuso G, Midiri A, Beninati C, Zummo S, Biondo C. Protective role of IL-18 in host defenses against group B Streptococcus. Eur J Clin Microbiol Infect Dis 2021; 40:2657-2663. [PMID: 34218324 DOI: 10.1007/s10096-021-04299-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the role of IL-18, a member of the IL-1 family, in group B Streptococcus (GBS) infection. Both in a neonatal and adult model of GBS infection, IL-18-deficient animals were significantly more susceptible to infection than WT animals. The lack of IL18 was associated with a marked reduction in IFN-γ-levels after bacterial stimulation but did not play a significant role in the recruitment of PMN to sites of GBS infection. Collectively, our data document a fundamental function of IL-18 signaling in boosting the host immune responses against GBS infection.
Collapse
Affiliation(s)
- G Mancuso
- Department of Human Pathology, University of Messina, Messina, Italy.
| | - A Midiri
- Department of Human Pathology, University of Messina, Messina, Italy
| | - C Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| | - S Zummo
- Department of Human Pathology, University of Messina, Messina, Italy
| | - C Biondo
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Alosaimi B, Mubarak A, Hamed ME, Almutairi AZ, Alrashed AA, AlJuryyan A, Enani M, Alenzi FQ, Alturaiki W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front Immunol 2021; 12:668725. [PMID: 34276659 PMCID: PMC8281279 DOI: 10.3389/fimmu.2021.668725] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 severity due to innate immunity dysregulation accounts for prolonged hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections involve the complement pathway activation for cytokine storm development. Nevertheless, the role of complement in COVID-19 immunopathology, complement-modulating treatment strategies against COVID-19, and the complement and SARS-CoV-2 interaction with clinical disease outcomes remain elusive. This study investigated the potential changes in complement signaling, and the associated inflammatory mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of 53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild cases), and additional 18 healthy control patients were also included. Complement proteins and inflammatory cytokines and chemokines were measured in the sera of patients with COVID-19 as well as healthy controls by specific enzyme-linked immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IgM antibody levels, were higher in critical COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild patients compared to critical patients. Furthermore, the critical COVID-19 intra-group analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19 non-survival group than in the survival group. Additionally, IL-1β, IL-6, and IL-8 were significantly upregulated in the critical COVID-19 non-survival group compared to the survival group. Finally, C5a, C3a, factor P, and serum IL-1β, IL-6, and IL-8 levels positively correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential prognostic utility of the complement system for predicting COVID-19 severity and mortality while suggesting that complement anaphylatoxins and inflammatory cytokines are potential treatment targets against COVID-19.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- College of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed A. Alrashed
- Pharmaceutical Service Department, Main Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah AlJuryyan
- Pathology and Clinical Laboratory Management, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Faris Q. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
25
|
Rahman MM, Ahmed M, Islam MT, Khan MR, Sultana S, Maeesa SK, Hasan S, Hossain MA, Ferdous KS, Mathew B, Rauf A, Uddin MS. Nanotechnology-Based Approaches and Investigational Therapeutics against COVID-19. Curr Pharm Des 2021; 28:948-968. [PMID: 34218774 DOI: 10.2174/1381612827666210701150315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus which is currently responsible for the global pandemic since December 2019. This class of coronavirus has affected 217 countries around the world. Most of the countries have taken some non-remedial preventive actions like country lockdown, work from home, travel bans, and the most significant one is social isolation. Pharmacists, doctors, nurses, technologists, and all other healthcare professionals are playing a pivotal role during this pandemic. Unluckily, there is no specific drug that can treat patients who are confirmed with COVID-19, though favipiravir and remdesivir have appeared as favorable antiviral drugs. Some vaccines have already developed, and vaccination has started worldwide. Different nanotechnologies are in the developing stage in many countries for preventing SARS-COV-2 and treating COVID-19 conditions. In this article, we review the COVID-19 pandemic situation as well as the nanotechnology-based approaches and investigational therapeutics against COVID-19.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Md Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka. Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Sakib Hasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Kazi Sayma Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa. Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| |
Collapse
|
26
|
Krupp K, Madhivanan P, Killgore WD“S, Ruiz JM, Carvajal S, Coull BM, Grandner MA. Neurological Manifestations in COVID-19: An Unrecognized Crisis in Our Elderly? ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2021; 3:e210013. [PMID: 34268500 PMCID: PMC8279204 DOI: 10.20900/agmr20210013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As of December 2020, there were more than 900,000 COVID-19 hospitalizations in the US with about 414,000 among individuals aged 65 years and older. Recent evidence suggests a growing number of older patients continue to suffer serious neurological comorbidities including polyneuropathy, cerebrovascular disease, central nervous system infection, cognitive deficits, and fatigue following discharge. Studies suggest that complaints manifest late in disease and persist beyond resolution of acute COVID-19 symptoms. Recent research reports that neurocognitive symptoms are correlated with severe disease, older age, male gender, and comorbidities including hypertension, renal failure, and neoplastic disease. The underlying causes are unclear, but current hypotheses include hypoxic-ischemic brain injury, immunopathological mechanisms, and neurotropism of SARS-CoV-2 infection. There is a pressing need for more research into the underlying mechanisms of post-COVID-19 neurological sequela, particularly in the elderly, a population already burdened with neurocognitive disorders.
Collapse
Affiliation(s)
- Karl Krupp
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
- Public Health Research Institute of India, Mysore, Karnataka 560020, India
| | - Purnima Madhivanan
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
- Public Health Research Institute of India, Mysore, Karnataka 560020, India
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - John M. Ruiz
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Scott Carvajal
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
| | - Bruce M. Coull
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
27
|
Grabherr S, Ludewig B, Pikor NB. Insights into coronavirus immunity taught by the murine coronavirus. Eur J Immunol 2021; 51:1062-1070. [PMID: 33687066 PMCID: PMC8250324 DOI: 10.1002/eji.202048984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS‐CoV‐2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS‐CoV‐2, a beta‐CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS‐CoV‐2 learned from murine CoVs.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
28
|
Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias SDSG, Fintelman-Rodrigues N, Sacramento CQ, Mattos M, de Freitas CS, Temerozo JR, Teixeira L, Damaceno Hottz E, Barreto EA, Pão CRR, Palhinha L, Miranda M, Bou-Habib DC, Bozza FA, Bozza PT, Souza TML. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 2021; 7:43. [PMID: 33649297 PMCID: PMC7919254 DOI: 10.1038/s41420-021-00428-w] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.
Collapse
Affiliation(s)
- André C Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.
- Laboratório de Pesquisa Pré-clínica-Universidade Iguaçu - UNIG, Nova Iguaçu, RJ, Brazil.
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Suelen da Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Carolina Q Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Mayara Mattos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Caroline S de Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jairo R Temerozo
- Laboratório de Pesquisas sobre o Timo, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Lívia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Eugenio Damaceno Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratório de Imunotrombose, Departamento de Bioquímica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ester A Barreto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Camila R R Pão
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Lohanna Palhinha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Milene Miranda
- Laboratório de Vírus Respiratório e do Sarampo, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratório de Pesquisas sobre o Timo, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Fernando A Bozza
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil
- Instituto D'or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Abstract
Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.
Collapse
|
30
|
Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 - a computational modeling. J Biomol Struct Dyn 2021; 40:5769-5784. [PMID: 33491580 DOI: 10.1080/07391102.2021.1873190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unavailability of vaccine and medicines raised serious issues during COVID-19 pandemic and peoples from different parts of world relied on traditional medicine for their immediate recovery from COVID-19 and it found effective also. The current research aims to target COVID-19 immunological human host receptors i.e. angiotensin-converting enzyme (ACE)-2, interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α) and protease-activated receptor (PAR)-1 using curcumin derivatives to prevent viral infection and control overproduction of early clinical responses of COVID-19. Targeting these host proteins will mitigate the infection and will filter out many complications caused by these proteins in COVID-19 patients. It is proven through computer-aided computational modeling approaches, total 30 compounds of curcumin and its derivatives were chosen. Drug-likeness parameters were calculated for curcumin and its derivatives and 20 curcumin analogs were selected for docking analysis. From docking analysis of 20 curcumin analogs against five chosen human host receptor targets reveals 11 curcumin analogs possess least binding affinity and best interaction at active sites subjected to absorption, distribution, metabolism, excretion (ADME) analysis. Density functional theory (DFT) analysis of five final shortlisted curcumin derivatives was done to show least binding affinity toward chosen host target protein. Molecular dynamics simulation (MDS) was performed to observe behavior and interaction of potential drug hydrazinocurcumin against target proteins ACE-2 and PAR-1. It was performed at 100 nanoseconds and showed satisfactory results. Finally, our investigation reveals that hydrazinocurcumin possesses immunomodulatory and anti-cytokine therapeutic potential against COVID-19 and it can act as COVID-19 warrior drug molecule and promising choice of drug for COVID-19 treatment, however, it needs further in vivo clinical evaluation to commercialize as COVID-19 drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hasnat Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | | | - Muhammad Nasir Iqbal
- Department of Biosciences, COMSATS University, Islamabad Campus, Islamabad, Pakistan
| | - Zohaib Bashir
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
31
|
Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö, Erbaş G, Aygencel G, Guzel Tunccan O, Öztürk MA, Dizbay M, Tufan A. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine 2021; 137:155302. [PMID: 33002740 PMCID: PMC7522034 DOI: 10.1016/j.cyto.2020.155302] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The effectual immune response is crucial to defeat viral infections. However, exuberant immune response with features of macrophage activation syndrome (MAS) lead detrimental consequences in COVID-19 patients. Interleukin (IL)-18 is one of the leading cytokines in MAS which has not been studied in COVID-19. OBJECTIVE To investigate the association of IL-18 with the other inflammatory markers and disease severity in COVID-19 for predicting disease prognosis. METHODS Patients with COVID-19 who had confirmed diagnosis with SARS-CoV-2 nucleic acid RT-PCR were enrolled into the study. Data on demographic and clinical characteristics, and laboratory values of CRP, ferritin, d-dimer and procalcitonin were measured on admission. Patients were followed up prospectively with a standardized approach until hospital discharge or death. Individuals were classified as asymptomatic, mild and severe pneumonia according to their clinical, laboratory and radiological characteristics. Worse outcome was defined as requirement of intensive care unit (ICU) admission or death. Blood samples were collected at enrollment and serum levels of IL-6 and IL-18 were determined by ELISA. Association between IL-18 and other inflammatory markers and prognosis were analyzed. RESULTS There were 58 COVID-19 patients (50% male) with a median age of 43 (min 22-max 81) years. Twenty age and sex matched healthy subjects were served as control group. The study population was divided into three groups according to disease severity: asymptomatic (n = 20), mild pneumonia group (n = 27) and a severe group (n = 11). During follow up nine (15.5%) patients required ICU admission and three of them were died eventually. Serum IL-18 were correlated with other inflammatory markers and biochemical markers of organ injury; creatinine, liver enzymes and troponin. Serum IL-18 levels were remarkably higher in COVID-19 patients compared to healthy subjects with being highest in severe pneumonia group (p < 0.001). IL-18 serum concentrations were almost four-fold higher in patients with worse outcome compared to good outcome (p < 0.001). Serum IL-18 above the cut off value of 576 pg/mL on admission was associated with 11.7 fold increased risk of ICU admission. CONCLUSIONS The serum concentrations of IL-18 correlate with other inflammatory markers and reflect disease severity. Results of the present study shed light on role of IL-18 on COVID-19 pathogenesis and might provide an evidence for the clinical trials on IL-18 antagonists for the treatment of severe COVID-19 patients.
Collapse
Affiliation(s)
- Hasan Satış
- Gazi University, Faculty of Medicine, Hospital Rheumatology Department, Ankara, Turkey.
| | - Hasan Selçuk Özger
- Gazi University, Faculty of Medicine, Hospital Infectious Disease Department, Ankara, Turkey
| | - Pınar Aysert Yıldız
- Gazi University, Faculty of Medicine, Hospital Infectious Disease Department, Ankara, Turkey
| | - Kenan Hızel
- Gazi University, Faculty of Medicine, Hospital Infectious Disease Department, Ankara, Turkey
| | - Özlem Gulbahar
- Gazi University, Faculty of Medicine, Hospital Biochemistry Department, Ankara, Turkey
| | - Gonca Erbaş
- Gazi University, Faculty of Medicine, Hospital Radiology Department, Ankara, Turkey
| | - Gülbin Aygencel
- Gazi University, Faculty of Medicine, Hospital Intensive Care Unit Department, Ankara, Turkey
| | - Ozlem Guzel Tunccan
- Gazi University, Faculty of Medicine, Hospital Infectious Disease Department, Ankara, Turkey
| | - Mehmet Akif Öztürk
- Gazi University, Faculty of Medicine, Hospital Rheumatology Department, Ankara, Turkey
| | - Murat Dizbay
- Gazi University, Faculty of Medicine, Hospital Infectious Disease Department, Ankara, Turkey
| | - Abdurrahman Tufan
- Gazi University, Faculty of Medicine, Hospital Rheumatology Department, Ankara, Turkey
| |
Collapse
|
32
|
Gautret P, Million M, Jarrot PA, Camoin-Jau L, Colson P, Fenollar F, Leone M, La Scola B, Devaux C, Gaubert JY, Mege JL, Vitte J, Melenotte C, Rolain JM, Parola P, Lagier JC, Brouqui P, Raoult D. Natural history of COVID-19 and therapeutic options. Expert Rev Clin Immunol 2020; 16:1159-1184. [PMID: 33356661 DOI: 10.1080/1744666x.2021.1847640] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: COVID-19 presents benign forms in young patients who frequently present with anosmia. Infants are rarely infected, while severe forms occur in patients over 65 years of age with comorbidities, including hypertension and diabetes. Lymphopenia, eosinopenia, thrombopenia, increased lactate dehydrogenase, troponin, C-reactive protein, D-dimers and low zinc levels are associated with severity.Areas covered: The authors review the literature and provide an overview of the current state of knowledge regarding the natural history of and therapeutic options for COVID-19. Expert opinion: Diagnosis should rely on PCR and not on clinical presumption. Because of discrepancies between clinical symptoms, oxygen saturation or radiological signs on CT scans, pulse oximetry, and radiological investigation should be systematic. The disease evolves in successive phases: an acute virological phase, and, in some patients, a cytokine storm phase; an uncontrolled coagulopathy; and an acute respiratory distress syndrome. Therapeutic options include antivirals, oxygen therapy, immunomodulators, anticoagulants and prolonged mechanical treatment. Early diagnosis, care, and implementation of an antiviral treatment; the use of immunomodulators at a later stage; and the quality of intensive care are critical regarding mortality rates. The higher mortality observed in Western countries remains unexplained. Pulmonary fibrosis may occur in some patients. Its future is unpredictable.
Collapse
Affiliation(s)
- Philippe Gautret
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Ssa, Vitrome, Aix Marseille Univ , Marseille, France
| | - Matthieu Million
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | | | - Laurence Camoin-Jau
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France.,Laboratoire d'Hématologie, Hôpital De La Timone, APHM, Boulevard Jean- Moulin , Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Florence Fenollar
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Ssa, Vitrome, Aix Marseille Univ , Marseille, France
| | - Marc Leone
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France.,Service d'Anesthésie Et De Réanimation, Hôpital Nord, APHM , Marseille, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Christian Devaux
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France.,CNRS , Marseille, France
| | - Jean Yves Gaubert
- Department of Radiology and Cardiovascular Imaging, Aix Marseille Univ, LIIE , Marseille, France
| | - Jean-Louis Mege
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Joana Vitte
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Cléa Melenotte
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Jean-Marc Rolain
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Ssa, Vitrome, Aix Marseille Univ , Marseille, France
| | - Jean-Christophe Lagier
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Philippe Brouqui
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France.,Ird, Ap-hm, Mephi, Aix Marseille Univ , Marseille, France
| |
Collapse
|
33
|
Carvelli J, Le Saux A, Bourenne J, Gainnier M, Kaplanski G. Evolution Toward Severe Covid-19 From Biological Monitoring to Therapeutic Considerations. Front Immunol 2020; 11:562038. [PMID: 33384683 PMCID: PMC7770161 DOI: 10.3389/fimmu.2020.562038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julien Carvelli
- Réanimation des Urgences, CHU Timone, AP-HM, Aix-Marseille Université, Marseille, France
- Marseille Immunopôle, CHU Timone, AP-HM, Marseille, France
| | - Audrey Le Saux
- Réanimation des Urgences, CHU Timone, AP-HM, Aix-Marseille Université, Marseille, France
| | - Jeremy Bourenne
- Réanimation des Urgences, CHU Timone, AP-HM, Aix-Marseille Université, Marseille, France
| | - Marc Gainnier
- Réanimation des Urgences, CHU Timone, AP-HM, Aix-Marseille Université, Marseille, France
| | - Gilles Kaplanski
- Médecine Interne et Immunologie clinique, CHU Conception, AP-HM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
34
|
García M, Kokkinou E, Carrasco García A, Parrot T, Palma Medina LM, Maleki KT, Christ W, Varnaitė R, Filipovic I, Ljunggren H, Björkström NK, Folkesson E, Rooyackers O, Eriksson LI, Sönnerborg A, Aleman S, Strålin K, Gredmark‐Russ S, Klingström J, Mjösberg J. Innate lymphoid cell composition associates with COVID-19 disease severity. Clin Transl Immunology 2020; 9:e1224. [PMID: 33343897 PMCID: PMC7734472 DOI: 10.1002/cti2.1224] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The role of innate lymphoid cells (ILCs) in coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unknown. Understanding the immune response in COVID-19 could contribute to unravel the pathogenesis and identification of treatment targets. Here, we describe the phenotypic landscape of circulating ILCs in COVID-19 patients and identified ILC phenotypes correlated to serum biomarkers, clinical markers and laboratory parameters relevant in COVID-19. METHODS Blood samples collected from moderately (n = 11) and severely ill (n = 12) COVID-19 patients, as well as healthy control donors (n = 16), were analysed with 18-parameter flow cytometry. Using supervised and unsupervised approaches, we examined the ILC activation status and homing profile. Clinical and laboratory parameters were obtained from all COVID-19 patients, and serum biomarkers were analysed with multiplex immunoassays. RESULTS Innate lymphoid cells were largely depleted from the circulation of COVID-19 patients compared with healthy controls. Remaining circulating ILCs revealed decreased frequencies of ILC2 in severe COVID-19, with a concomitant decrease of ILC precursors (ILCp) in all patients, compared with controls. ILC2 and ILCp showed an activated phenotype with increased CD69 expression, whereas expression levels of the chemokine receptors CXCR3 and CCR4 were significantly altered in ILC2 and ILCp, and ILC1, respectively. The activated ILC profile of COVID-19 patients was associated with soluble inflammatory markers, while frequencies of ILC subsets were correlated with laboratory parameters that reflect the disease severity. CONCLUSION This study provides insights into the potential role of ILCs in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.
Collapse
Affiliation(s)
- Marina García
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Efthymia Kokkinou
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Carrasco García
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Tiphaine Parrot
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Laura M Palma Medina
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Kimia T Maleki
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Wanda Christ
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Renata Varnaitė
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Iva Filipovic
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Hans‐Gustaf Ljunggren
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Niklas K Björkström
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Elin Folkesson
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
- Department of Medicine SolnaDivision of Infectious DiseasesKarolinska InstitutetStockholmSweden
| | - Olav Rooyackers
- Department of Clinical Science, Technology and InterventionDivision of Anesthesiology and Intensive CareKarolinska InstitutetHuddingeSweden
- Function Perioperative Medicine and Intensive CareKarolinska University HospitalStockholmSweden
| | - Lars I Eriksson
- Function Perioperative Medicine and Intensive CareKarolinska University HospitalStockholmSweden
- Department of Physiology and PharmacologySection for Anesthesiology and Intensive CareKarolinska InstitutetStockholmSweden
| | - Anders Sönnerborg
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
- Division of Infectious Diseases and DermatologyDepartment of Medicine HuddingeKarolinska InstitutetStockholmSweden
| | - Soo Aleman
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
- Division of Infectious Diseases and DermatologyDepartment of Medicine HuddingeKarolinska InstitutetStockholmSweden
| | - Kristoffer Strålin
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
- Division of Infectious Diseases and DermatologyDepartment of Medicine HuddingeKarolinska InstitutetStockholmSweden
| | - Sara Gredmark‐Russ
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
| | - Jonas Klingström
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Jenny Mjösberg
- Department of Medicine HuddingeCenter for Infectious MedicineKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | | |
Collapse
|
35
|
de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020; 11:583373. [PMID: 33149733 PMCID: PMC7580384 DOI: 10.3389/fimmu.2020.583373] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are members of the genus Betacoronavirus and the Coronaviridiae family responsible for infections such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and more recently, coronavirus disease-2019 (COVID-19). CoV infections present mainly as respiratory infections that lead to acute respiratory distress syndrome (ARDS). However, CoVs, such as COVID-19, also present as a hyperactivation of the inflammatory response that results in increased production of inflammatory cytokines such as interleukin (IL)-1β and its downstream molecule IL-6. The inflammasome is a multiprotein complex involved in the activation of caspase-1 that leads to the activation of IL-1β in a variety of diseases and infections such as CoV infection and in different tissues such as lungs, brain, intestines and kidneys, all of which have been shown to be affected in COVID-19 patients. Here we review the literature regarding the mechanism of inflammasome activation by CoV infection, the role of the inflammasome in ARDS, ventilator-induced lung injury (VILI), and Disseminated Intravascular Coagulation (DIC) as well as the potential mechanism by which the inflammasome may contribute to the damaging effects of inflammation in the cardiac, renal, digestive, and nervous systems in COVID-19 patients.
Collapse
Affiliation(s)
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
36
|
Roy U. Insight into the structures of Interleukin-18 systems. Comput Biol Chem 2020; 88:107353. [PMID: 32769049 PMCID: PMC7392904 DOI: 10.1016/j.compbiolchem.2020.107353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Structure-based molecular designs play a critical role in the context of next generation drug development. Besides their fundamental scientific aspects, the findings established in this approach have significant implications in the expansions of target-based therapies and vaccines. Interleukin-18 (IL-18), also known as interferon gamma (IFN-γ) inducing factor, is a pro-inflammatory cytokine. The IL-18 binds first to the IL-18α receptor and forms a lower affinity complex. Upon binding with IL-18β a hetero-trimeric complex with higher affinity is formed that initiates the signal transduction process. The present study, including structural and molecular dynamics simulations, takes a close look at the structural stabilities of IL-18 and IL-18 receptor-bound ligand structures as functions of time. The results help to identify the conformational changes of the ligand due to receptor binding, as well as the structural orders of the apo and holo IL-18 protein complexes.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5820, United States.
| |
Collapse
|
37
|
Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020; 11:2163. [PMID: 32983181 PMCID: PMC7485091 DOI: 10.3389/fimmu.2020.02163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.
Collapse
Affiliation(s)
- Inmaculada Sanclemente-Alaman
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology, CIATEJ-CONACYT, Guadalajara, Mexico
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
38
|
Vecchié A, Bonaventura A, Toldo S, Dagna L, Dinarello CA, Abbate A. IL-18 and infections: Is there a role for targeted therapies? J Cell Physiol 2020; 236:1638-1657. [PMID: 32794180 DOI: 10.1002/jcp.30008] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023]
Abstract
Interleukin (IL)-18 is a pro-inflammatory cytokine belonging to the IL-1 family, first identified for its interferon-γ-inducing properties. IL-18 regulates both T helper (Th) 1 and Th2 responses. It acts synergistically with IL-12 in the Th1 paradigm, whereas with IL-2 and without IL-12 it can induce Th2 cytokine production from cluster of differentation (CD)4+ T cells, natural killer (NK cells, NKT cells, as well as from Th1 cells. IL-18 also plays a role in the hemophagocytic lymphohistiocytosis, a life-threatening condition characterized by a cytokine storm that can be secondary to infections. IL-18-mediated inflammation was largely studied in animal models of bacterial, viral, parasitic, and fungal infections. These studies highlight the contribution of either IL-18 overproduction by the host or overresponsiveness of the host to IL-18 causing an exaggerated inflammatory burden and leading to tissue injury. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19). The damage in the later phase of the disease appears to be driven by a cytokine storm, including interleukin IL-1 family members and secondary cytokines like IL-6. IL-18 may participate in this hyperinflammation, as it was previously found to be able to cause injury in the lung tissue of infected animals. IL-18 blockade has become an appealing therapeutic target and has been tested in some IL-18-mediated rheumatic diseases and infantile-onset macrophage activation syndrome. Given its role in regulating the immune response to infections, IL-18 blockade might represent a therapeutic option for COVID-19, although further studies are warranted to investigate more in detail the exact role of IL-18 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra Vecchié
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Aldo Bonaventura
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Charles A Dinarello
- Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
39
|
Buckley LF, Wohlford GF, Ting C, Alahmed A, Van Tassell BW, Abbate A, Devlin JW, Libby P. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0178. [PMID: 32832913 PMCID: PMC7419062 DOI: 10.1097/cce.0000000000000178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The causative agent for coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2, appears exceptional in its virulence and immunopathology. In some patients, the resulting hyperinflammation resembles a cytokine release syndrome. Our knowledge of the immunopathogenesis of coronavirus disease 2019 is evolving and anti-cytokine therapies are under active investigation. This narrative review summarizes existing knowledge of the immune response to coronavirus infection and highlights the current and potential future roles of therapeutic strategies to combat the hyperinflammatory response of patients with coronavirus disease 2019. DATA SOURCES Relevant and up-to-date literature, media reports, and author experiences were included from Medline, national newspapers, and public clinical trial databases. STUDY SELECTION The authors selected studies for inclusion by consensus. DATA EXTRACTION The authors reviewed each study and selected approrpriate data for inclusion through consensus. DATA SYNTHESIS Hyperinflammation, reminiscent of cytokine release syndromes such as macrophage activation syndrome and hemophagocytic lymphohistiocytosis, appears to drive outcomes among adults with severe coronavirus disease 2019. Cytokines, particularly interleukin-1 and interleukin-6, appear to contribute importantly to such systemic hyperinflammation. Ongoing clinical trials will determine the efficacy and safety of anti-cytokine therapies in coronavirus disease 2019. In the interim, anti-cytokine therapies may provide a treatment option for adults with severe coronavirus disease 2019 unresponsive to standard critical care management, including ventilation. CONCLUSIONS This review provides an overview of the current understanding of the immunopathogenesis of coronavirus disease 2019 in adults and proposes treatment considerations for anti-cytokine therapy use in adults with severe disease.
Collapse
Affiliation(s)
- Leo F Buckley
- Department of Pharmacy Services, Brigham and Women's Hospital, Boston, MA
| | - George F Wohlford
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Clara Ting
- Department of Pharmacy Services, Brigham and Women's Hospital, Boston, MA
| | - Abdullah Alahmed
- Department of Pharmacy Services, Brigham and Women's Hospital, Boston, MA
- Department of Pharmacy Practice, Qassim University, Buraydah, Saudi Arabia
| | - Benjamin W Van Tassell
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Antonio Abbate
- Division of Cardiology, Virginia Commonwealth University, Richmond, VA
| | - John W Devlin
- School of Pharmacy, Northeastern University, Boston, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
40
|
Lizardo-Thiebaud MJ, Cervantes-Alvarez E, Limon-de la Rosa N, Tejeda-Dominguez F, Palacios-Jimenez M, Méndez-Guerrero O, Delaye-Martinez M, Rodriguez-Alvarez F, Romero-Morales B, Liu WH, Huang CA, Kershenobich D, Navarro-Alvarez N. Direct or Collateral Liver Damage in SARS-CoV-2-Infected Patients. Semin Liver Dis 2020; 40:321-330. [PMID: 32886936 DOI: 10.1055/s-0040-1715108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver injury can result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with more than one-third of COVID-19 patients exhibiting elevated liver enzymes. Microvesicular steatosis, inflammation, vascular congestion, and thrombosis in the liver have been described in autopsy samples from COVID-19 patients. Several factors, including direct cytopathic effect of the virus, immune-mediated collateral damage, or an exacerbation of preexisting liver disease may contribute to liver pathology in COVID-19. Due to its immunological functions, the liver is an organ likely to participate in the viral response against SARS-CoV-2 and this may predispose it to injury. A better understanding of the mechanism contributing to liver injury is needed to develop and implement early measures to prevent serious liver damage in patients suffering from COVID-19. This review summarizes current reports of SARS-CoV-2 with an emphasis on how direct infection and subsequent severe inflammatory response may contribute to liver injury in patients with and without preexisting liver disease.
Collapse
Affiliation(s)
- Maria J Lizardo-Thiebaud
- Department of Molecular Biology, Universidad Panamericana, School of Medicine, Campus México, Mexico City
| | - Eduardo Cervantes-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nathaly Limon-de la Rosa
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Farid Tejeda-Dominguez
- Department of Molecular Biology, Universidad Panamericana, School of Medicine, Campus México, Mexico City
| | - Mildred Palacios-Jimenez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Medicine, Universidad Veracruzana, Veracruz, Mexico
| | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marco Delaye-Martinez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fatima Rodriguez-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Medicine, Universidad Veracruzana, Veracruz, Mexico
| | - Beatriz Romero-Morales
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Wei-Hui Liu
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Christene A Huang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - David Kershenobich
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nalu Navarro-Alvarez
- Department of Molecular Biology, Universidad Panamericana, School of Medicine, Campus México, Mexico City.,Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
41
|
Abstract
At the present state of COVID-19 we may propose some preliminary thoughts on its direct and distant sequels. In our review we propose that novel virus SARS-CoV-2, as well as other members of Coronaviridae family, may possess neurotropic and neuroinvasive features; it may enter the nervous system via the intranasal way and directly infect human brain, causing lesions in the brainstem nuclei of the cardiorespiratory center. We propose, that such a lesion may worsen the respiratory distress and lead to the respiratory failure in some patients. Taking this into the consideration, immunomodulating and antiviral drugs that utilize the intranasal way of delivery may help in prophylactic and treatment of the COVID-19. All these proposals are preliminary; we call for the wide range of experimental and clinical investigations to prove or disprove them.
Collapse
|
42
|
Martínez-Sánchez G, Schwartz A, Di Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants (Basel) 2020; 9:antiox9050389. [PMID: 32384798 PMCID: PMC7278582 DOI: 10.3390/antiox9050389] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κB/Nrf2 pathways and IL-6/IL-1β expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κB/Nrf2 balance and IL-6 and IL-1β expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Collapse
|
43
|
Sanches RCO, Souza C, Marinho FV, Mambelli FS, Morais SB, Guimarães ES, Oliveira SC. NLRP6 Plays an Important Role in Early Hepatic Immunopathology Caused by Schistosoma mansoni Infection. Front Immunol 2020; 11:795. [PMID: 32431709 PMCID: PMC7214731 DOI: 10.3389/fimmu.2020.00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis is a debilitating parasitic disease that affects more than 200 million people worldwide and causes approximately 280,000 deaths per year. Inside the definitive host, eggs released by Schistosoma mansoni lodge in the intestine and especially in the liver where they induce a granulomatous inflammatory process, which can lead to fibrosis. The molecular mechanisms initiating or promoting hepatic granuloma formation remain poorly understood. Inflammasome activation has been described as an important pathway to induce pathology mediated by NLRP3 receptor. Recently, other components of the inflammasome pathway, such as NLRP6, have been related to liver diseases and fibrotic processes. Nevertheless, the contribution of these components in schistosomiasis-associated pathology is still unknown. In the present study, using dendritic cells, we demonstrated that NLRP6 sensor is important for IL-1β production and caspase-1 activation in response to soluble egg antigens (SEA). Furthermore, the lack of NLRP6 has been shown to significantly reduce periovular inflammation, collagen deposition in hepatic granulomas and mRNA levels of α-SMA and IL-13. Livers of Nlrp6–/– mice showed reduced levels of CXCL1/KC, CCL2, CCL3, IL-5, and IL-10 as well as Myeloperoxidase (MPO) and Eosinophilic Peroxidase (EPO) enzymatic activity. Consistently, the frequency of macrophage and neutrophil populations were lower in the liver of NLRP6 knockout mice, after 6 weeks of infection. Finally, it was further demonstrated that the onset of hepatic granuloma and collagen deposition were also compromised in Caspase-1–/–, IL-1R–/– and Gsdmd–/– mice. Our findings suggest that the NLRP6 inflammasome is an important component for schistosomiasis-associated pathology.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabio Vitarelli Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fábio Silva Mambelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suellen B Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
44
|
Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience 2020; 14:1022. [PMID: 32256705 PMCID: PMC7105343 DOI: 10.3332/ecancer.2020.1022] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer and transplant patients with COVID-19 have a higher risk of developing severe and even fatal respiratory diseases, especially as they may be treated with immune-suppressive or immune-stimulating drugs. This review focuses on the effects of these drugs on host immunity against COVID-19. Methods Using Ovid MEDLINE, we reviewed current evidence for immune-suppressing or -stimulating drugs: cytotoxic chemotherapy, low-dose steroids, tumour necrosis factorα (TNFα) blockers, interlukin-6 (IL-6) blockade, Janus kinase (JAK) inhibitors, IL-1 blockade, mycophenolate, tacrolimus, anti-CD20 and CTLA4-Ig. Results 89 studies were included. Cytotoxic chemotherapy has been shown to be a specific inhibitor for severe acute respiratory syndrome coronavirus in in vitro studies, but no specific studies exist as of yet for COVID-19. No conclusive evidence for or against the use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of COVID-19 patients is available, nor is there evidence indicating that TNFα blockade is harmful to patients in the context of COVID-19. COVID-19 has been observed to induce a pro-inflammatory cytokine generation and secretion of cytokines, such as IL-6, but there is no evidence of the beneficial impact of IL-6 inhibitors on the modulation of COVID-19. Although there are potential targets in the JAK-STAT pathway that can be manipulated in treatment for coronaviruses and it is evident that IL-1 is elevated in patients with a coronavirus, there is currently no evidence for a role of these drugs in treatment of COVID-19. Conclusion The COVID-19 pandemic has led to challenging decision-making about treatment of critically unwell patients. Low-dose prednisolone and tacrolimus may have beneficial impacts on COVID-19. The mycophenolate mofetil picture is less clear, with conflicting data from pre-clinical studies. There is no definitive evidence that specific cytotoxic drugs, low-dose methotrexate for auto-immune disease, NSAIDs, JAK kinase inhibitors or anti-TNFα agents are contraindicated. There is clear evidence that IL-6 peak levels are associated with severity of pulmonary complications.
Collapse
Affiliation(s)
- Beth Russell
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Charlotte Moss
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Gincy George
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Aida Santaolalla
- Translational Oncology and Urology Research, King's College London, London, UK.,All authors contributed equally
| | - Andrew Cope
- Guy's and St. Thomas NHS Foundation Trust, London, UK.,Centre for Rheumatic Diseases, King's College London, London, UK
| | - Sophie Papa
- Guy's and St. Thomas NHS Foundation Trust, London, UK.,School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.,Both senior authors contributed equally
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research, King's College London, London, UK.,Both senior authors contributed equally
| |
Collapse
|
45
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
46
|
Cai SY, Ge M, Mennone A, Hoque R, Ouyang X, Boyer JL. Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct-Ligated Mouse. Cell Mol Gastroenterol Hepatol 2019; 9:679-688. [PMID: 31887435 PMCID: PMC7160576 DOI: 10.1016/j.jcmgh.2019.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Inflammation plays an important role in the pathogenesis of cholestatic liver injury, but it is unclear whether the inflammasome is involved and is the objective of this study. METHODS Gene expression was analyzed in the livers of patients with primary biliary cholangitis (n = 15) and primary sclerosing cholangitis (n = 15). Bile duct ligation (BDL) or sham operation was performed in wild-type (WT) and Caspase-1-/- (Casp1-/-) mice for 7 days. Mouse hepatocytes and macrophages were treated with bile acids. RESULTS Caspase-1, NLRP1, NLRP3 and IL-1β were significantly increased in the livers of cholestatic patients when compared to healthy control subjects (n = 9). Significantly higher levels of plasma IL-1β (826 vs 345 pg/ml), ALT (674 vs 482 U/L) and ALP (900 vs 622 U/L) were seen in WT BDL mice compared to Casp1-/- BDL mice. Caspase-1 cleavage was found only in WT BDL livers. Assessment of liver histology indicated more fibrosis in Casp1-/- BDL mice than in WT BDL mice, confirmed by analyses of liver hydroxyproline content and the expression of fibrotic genes. Profiling of immune cells revealed that there were more macrophages in Casp1-/- BDL livers than in WT BDL livers. Further macrophage phenotype characterization indicated that Casp1-/- BDL livers had more M2 anti-inflammatory macrophages evidenced by more CD206 positive cells and higher expression of IL-4, CD163, Fizz1 and IL-33. When mouse hepatocytes and peritoneal macrophages were exposed to cholestatic levels of major endogenous bile acids (300μM TCA), neither IL-1β induction nor procaspase-1 cleavage were detected. CONCLUSIONS The inflammasome exacerbates cholestatic liver injury, but bile acids do not directly activate the inflammasome.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Correspondence Address correspondence to: Shi-Ying Cai, PhD, Liver Center, Yale University School of Medicine, 333 Cedar Street, 1080 LMP, New Haven, Connecticut 06520. fax: (203) 785-7273.
| | | | | | | | | | - James L. Boyer
- James L. Boyer, MD, Ensign Professor of Medicine, Liver Center, Yale University School of Medicine, 333 Cedar Street, 1080 LMP, New Haven, Connecticut 06520-8019. fax: (203) 785-7273.
| |
Collapse
|
47
|
Luan J, Ju D. Inflammasome: A Double-Edged Sword in Liver Diseases. Front Immunol 2018; 9:2201. [PMID: 30319645 PMCID: PMC6167446 DOI: 10.3389/fimmu.2018.02201] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes have emerged as critical innate sensors of host immune that defense against pathogen infection, metabolism syndrome, cellular stress and cancer metastasis in the liver. The assembly of inflammasome activates caspase-1, which promotes the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and initiates pyroptotic cell death (pyroptosis). IL-18 exerts pleiotropic effects on hepatic NK cells, priming FasL-mediated cytotoxicity, and interferon-γ (IFN-γ)-dependent responses to prevent the development of liver diseases. However, considerable attention has been attracted to the pathogenic role of inflammasomes in various acute and chronic liver diseases, including viral hepatitis, nanoparticle-induced liver injury, alcoholic and non-alcoholic steatohepatitis. In this review, we summarize the latest advances on the physiological and pathological roles of inflammasomes for further development of inflammasome-based therapeutic strategies for human liver diseases.
Collapse
Affiliation(s)
- Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Sepehri Z, Kiani Z, Afshari M, Kohan F, Dalvand A, Ghavami S. Inflammasomes and type 2 diabetes: An updated systematic review. Immunol Lett 2017; 192:97-103. [DOI: 10.1016/j.imlet.2017.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
|