1
|
Zhao QG, Song ZT, Ma XL, Xu Q, Bu F, Li K, Zhang L, Pei YF. Human brain proteome-wide association study provides insights into the genetic components of protein abundance in obesity. Int J Obes (Lond) 2024; 48:1603-1612. [PMID: 39025989 DOI: 10.1038/s41366-024-01592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUNDS Genome-wide association studies have identified multiple genetic variants associated with obesity. However, most obesity-associated loci were waiting to be translated into new biological insights. Given the critical role of brain in obesity development, we sought to explore whether obesity-associated genetic variants could be mapped to brain protein abundances. METHODS We performed proteome-wide association studies (PWAS) and colocalization analyses to identify genes whose cis-regulated brain protein abundances were associated with obesity-related traits, including body fat percentage, trunk fat percentage, body mass index, visceral adipose tissue, waist circumference, and waist-to-hip ratio. We then assessed the druggability of the identified genes and conducted pathway enrichment analysis to explore their functional relevance. Finally, we evaluated the effects of the significant PWAS genes at the brain transcriptional level. RESULTS By integrating human brain proteomes from discovery (ROSMAP, N = 376) and validation datasets (BANNER, N = 198) with genome-wide summary statistics of obesity-related phenotypes (N ranged from 325,153 to 806,834), we identified 51 genes whose cis-regulated brain protein abundance was associated with obesity. These 51 genes were enriched in 11 metabolic processes, e.g., small molecule metabolic process and metabolic pathways. Fourteen of the 51 genes had high drug repurposing value. Ten of the 51 genes were also associated with obesity at the transcriptome level, suggesting that genetic variants likely confer risk of obesity by regulating mRNA expression and protein abundance of these genes. CONCLUSIONS Our study provides new insights into the genetic component of human brain protein abundance in obesity. The identified proteins represent promising therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Qi-Gang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Zi-Tong Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Xin-Ling Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Fan Bu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Kuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China.
| | - Yu-Fang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Lin YW, Cheng SW, Liu WC, Zailani H, Wu SK, Hung MC, Su KP. Chemogenetic targeting TRPV1 in obesity-induced depression: Unveiling therapeutic potential of eicosapentaenoic acid and acupuncture. Brain Behav Immun 2024; 123:771-783. [PMID: 39454693 DOI: 10.1016/j.bbi.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
The comorbidity of obesity and depression has major public health impacts, highlighting the need to understand their shared mechanisms. This study explored the connection between obesity and depression through the transient receptor potential V1 (TRPV1) signaling pathway, using obese/depressed murine models and clinical data. Mice fed a high-fat diet showed altered TRPV1 pathway expression in brain regions of the mice: downregulated in the medial prefrontal cortex (mPFC) and hippocampus, and upregulated in the hypothalamus and amygdala, influencing depression-like behaviors and inflammation. Treatments like eicosapentaenoic acid (EPA) and acupoint catgut embedding (ACE) reversed these effects, similar to observations in Trpv1-/- mice. Furthermore, chemogenetic activation in the ventral mPFC also alleviated depression via TRPV1. In our clinical validation, single nucleotide polymorphisms (SNPs) in TRPV1-related genes (PIK3C2A and PRKCA) were linked to interferon-induced depression. These findings underscore the potential of targeting TRPV1 as a therapeutic approach for obesity-related depression.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Szu-Wei Cheng
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Suet-Kei Wu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
3
|
Chen X, Ai C, Liu Z, Wang G. Neuroimaging studies of resting-state functional magnetic resonance imaging in eating disorders. BMC Med Imaging 2024; 24:265. [PMID: 39375605 PMCID: PMC11460144 DOI: 10.1186/s12880-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED), and pica, are psychobehavioral conditions characterized by abnormal eating behaviors and an excessive preoccupation with weight and body shape. This review examines changes in brain regions and functional connectivity in ED patients over the past decade (2013-2023) using resting-state functional magnetic resonance imaging (rs-fMRI). Key findings highlight alterations in brain networks such as the default mode network (DMN), central executive network (CEN), and emotion regulation network (ERN). In individuals with AN, there is reduced functional connectivity in areas associated with facial information processing and social cognition, alongside increased connectivity in regions linked to sensory stimulation, aesthetic judgment, and social anxiety. Conversely, BED patients show diminished connectivity in the dorsal anterior cingulate cortex within the salience network and increased connectivity in the posterior cingulate cortex and medial prefrontal cortex within the DMN. These findings suggest that rs-fMRI could serve as a valuable biomarker for assessing brain function and predicting treatment outcomes in EDs, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiong Chen
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chunqi Ai
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhongchun Liu
- RenMin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gang Wang
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China.
| |
Collapse
|
4
|
Alptekin İM, Çakıroğlu FP, Reçber T, Nemutlu E. Inulin may prevent the high-fat diet induced-obesity via suppressing endocannabinoid system in the prefrontal cortex in Wistar rats. Int J Food Sci Nutr 2024:1-12. [PMID: 39363521 DOI: 10.1080/09637486.2024.2408545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
High-fat diets contribute to various metabolic disorders. Inulin supplementation has been shown to reduce appetite, lower food intake, and promote weight loss. Although there is evidence that the endocannabinoid system has metabolic effects in the prefrontal cortex, studies investigating the effects of inulin on the endocannabinoid system are limited. This study investigated the impact of inulin on obesity through the endocannabinoid system in the prefrontal cortex. Twenty-four male Wistar rats were fed one of four diets over 12 weeks. Findings indicated that a high-fat diet led to obesity, whereas inulin reduced food intake and supported weight loss. Consequently, inulin supplementation both prevented obesity and significantly decreased the expressions of Adrb3 and Adcy1, and anandamide and 2-arachidonylglycerol levels in the prefrontal cortex. Additionally, inulin lowered leptin in circulation and stimulated Trpv1. Thus, inulin may mitigate obesity development, possibly by modulating gene expressions linked to obesity in the prefrontal cortex via endocannabinoids.
Collapse
Affiliation(s)
- İsmail Mücahit Alptekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Türkiye
| | - Funda Pınar Çakıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
5
|
Ferracci S, Manippa V, D'Anselmo A, Bolovon L, Guagnano MT, Brancucci A, Porcelli P, Conti C. The role of impulsivity and binge eating in outpatients with overweight or obesity: an EEG temporal discounting study. J Eat Disord 2024; 12:130. [PMID: 39227881 PMCID: PMC11373217 DOI: 10.1186/s40337-024-01080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Binge eating (BE) is associated with a range of cognitive control deficits related to impulsivity, including lower response inhibition, preference for immediate gratification, and maladaptive decision-making. The aim was to investigate whether impulsivity and BE may interact with the decision process and underlying brain activity in outpatients with overweight or obesity who are starting a treatment to achieve weight loss. METHODS A sample of 26 treatment-seeking outpatients with overweight or obesity was evaluated for impulsivity, BE, and temporal discounting rates. Impulsivity was measured with the Barratt Impulsiveness Scale (BIS-11), according to which two groups were composed: high BIS and low BIS; BE was assessed with the eating disorders module of the Structured Clinical Interview for DSM5-Research Version, according to which two groups were composed: with (BE group) or without BE (NBE group). Changes in subjective value of rewards were measured with the Temporal Discounting Task (TDt) where participants had to choice between sooner but smaller vs. later but larger monetary rewards. These choices were made in two differently delayed conditions ("Now" and "Not-now"). Brain rhythms were recorded through high-density electroencephalogram (hd-EEG) during the TDt. RESULTS Patients with BE reported more impulsive tendencies and perceived sooner rewards as more gratifying when both options were delayed (Not-now condition, p = 0.02). The reward choice in the TDt was accompanied by a general EEG alpha band desynchronization in parietal areas observed without differences between experimental conditions and patients groups. No effects were observed within the Now condition or in the other EEG bands. CONCLUSIONS The tendency to favor immediate rewards may constitute an obstacle to adhering to treatment plans and achieving weight loss goals for outpatients with overweight or obesity. Clinicians are therefore encouraged to include psychological factors, such as impulsivity and dysfunctional eating behaviors, when designing weight loss programs. By addressing these psychological aspects, clinicians can better support patients in overcoming barriers to adherence and achieving sustainable weight loss. TRIAL REGISTRATION This study was approved by the Ethics Committee of the Department of Psychological, Health, and Territorial Sciences of the University G. d'Annunzio of Chieti-Pescara (Prot. n. 254 of 03/14/2017).
Collapse
Affiliation(s)
- Sara Ferracci
- Department of Communication Sciences, Humanities and International Studies, University "Carlo Bo", Urbino, Italy
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Valerio Manippa
- Department of Education, Psychology and Communication, University "Aldo Moro", Bari, Italy
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Bolovon
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Maria Teresa Guagnano
- Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Alfredo Brancucci
- Department of Motor, Human and Health Sciences, University "Foro Italico", Rome, Italy
| | - Piero Porcelli
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Chiara Conti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy.
| |
Collapse
|
6
|
Gaeta G, Gunasekara N, Pinti P, Levy A, Parkkinen E, Kontaris E, Tachtsidis I. Naturalistic approach to investigate the neural correlates of a laundry cycle with and without fragrance. BIOMEDICAL OPTICS EXPRESS 2024; 15:5461-5478. [PMID: 39296381 PMCID: PMC11407240 DOI: 10.1364/boe.528275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
Advancements in brain imaging technologies have facilitated the development of "real-world" experimental scenarios. In this study, participants engaged in a household chore - completing a laundry cycle - while their frontal lobe brain activity was monitored using fNIRS. Participants completed this twice using both fragranced and unfragranced detergent, to explore if fNIRS is able to identify any differences in brain activity in response to subtle changes in stimuli. Analysis was conducted using Automatic IDentification of functional Events (AIDE) software and fNIRS correlation-based signal improvement (CBSI). Results indicated that brain activity, particularly in the right frontopolar and occasionally the left dorsolateral prefrontal cortex, was more pronounced and frequent with the unfragranced detergent than the fragranced. This suggests that completing tasks in an environment where a pleasant and relaxing fragrance is present might be less effortful compared to an odourless environment.
Collapse
Affiliation(s)
- Giuliano Gaeta
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, UK
| | - Natalie Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Paola Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Metabolight Ltd, Croydon, UK
| | | | - Emilia Parkkinen
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, UK
| | - Emily Kontaris
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Metabolight Ltd, Croydon, UK
| |
Collapse
|
7
|
Sudo Y, Ota J, Takamura T, Kamashita R, Hamatani S, Numata N, Chhatkuli RB, Yoshida T, Takahashi J, Kitagawa H, Matsumoto K, Masuda Y, Nakazato M, Sato Y, Hamamoto Y, Shoji T, Muratsubaki T, Sugiura M, Fukudo S, Kawabata M, Sunada M, Noda T, Tose K, Isobe M, Kodama N, Kakeda S, Takahashi M, Takakura S, Gondo M, Yoshihara K, Moriguchi Y, Shimizu E, Sekiguchi A, Hirano Y. Comprehensive elucidation of resting-state functional connectivity in anorexia nervosa by a multicenter cross-sectional study. Psychol Med 2024; 54:2347-2360. [PMID: 38500410 DOI: 10.1017/s0033291724000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
BACKGROUND Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.
Collapse
Affiliation(s)
- Yusuke Sudo
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- Department of Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Junko Ota
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tsunehiko Takamura
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rio Kamashita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Sayo Hamatani
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Center for Child Mental Development, Fukui University, Eiheizi, Japan
| | - Noriko Numata
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Ritu Bhusal Chhatkuli
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Jumpei Takahashi
- Department of Psychiatry, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Hitomi Kitagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Michiko Nakazato
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Yasuhiro Sato
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yumi Hamamoto
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, UK
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomotaka Shoji
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Internal Medicine, Nagamachi Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomohiko Muratsubaki
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Cognitive Sciences Lab, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shin Fukudo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momo Sunada
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Kodama
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masatoshi Takahashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Center for Eating Disorder Research and Information, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| |
Collapse
|
8
|
Ma K, Zhou T, Pu C, Cheng Z, Han X, Yang L, Yu X. The Bidirectional Relationship between Weight Gain and Cognitive Function in First-Episode Schizophrenia: A Longitudinal Study in China. Brain Sci 2024; 14:310. [PMID: 38671962 PMCID: PMC11048552 DOI: 10.3390/brainsci14040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with schizophrenia often encounter notable weight gain during their illness, heightening the risk of metabolic diseases. While previous studies have noted a correlation between obesity and cognitive impairment in schizophrenia, many were cross-sectional, posing challenges in establishing a causal relationship between weight gain and cognitive function. The aim of this longitudinal study is to examine the relationship between weight gain and cognitive function in patients with first-episode schizophrenia (FES) during the initial 6-month antipsychotic treatments. Employing linear and logistic regression analyses, the study involved 337 participants. Significantly, baseline scores in processing speed (OR = 0.834, p = 0.007), working memory and attention (OR = 0.889, p = 0.043), and executive function (OR = 0.862, p = 0.006) were associated with clinically relevant weight gain (CRW, defined as an increase in body weight > 7%) at the 6-month endpoint. On the other hand, CRW correlated with improvements in the Brief Visuospatial Memory Test (p = 0.037). These findings suggest that patients with lower baseline cognitive performance undergo more substantial weight gain. Conversely, weight gain was correlated with cognitive improvements, particularly in the domain of visual learning and memory. This suggested a potential bidirectional relationship between weight gain and cognitive function in first-episode schizophrenia patients.
Collapse
Affiliation(s)
- Ke Ma
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tianhang Zhou
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Chengcheng Pu
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Zhang Cheng
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xue Han
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Lei Yang
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xin Yu
- Peking University Sixth Hospital, Beijing 100191, China
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| |
Collapse
|
9
|
Hu Y, Li G, Zhang W, Wang J, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow N, Ji G, Wang GJ, Zhang Y. Obesity is associated with alterations in anatomical connectivity of frontal-corpus callosum. Cereb Cortex 2024; 34:bhae014. [PMID: 38300178 PMCID: PMC11486688 DOI: 10.1093/cercor/bhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Haoyi Wang
- College of Westa, Southwest University, 2 Tiansheng Road, Chongqing 400715, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Nora Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| |
Collapse
|
10
|
Camacho-Barcia L, Lucas I, Miranda-Olivos R, Jiménez-Murcia S, Fernández-Aranda F. Applying psycho-behavioural phenotyping in obesity characterization. Rev Endocr Metab Disord 2023; 24:871-883. [PMID: 37261609 PMCID: PMC10492697 DOI: 10.1007/s11154-023-09810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Individual differences in obesity, beyond being explained by metabolic and medical complications, are understood by alterations in eating behaviour which underlie psychological processes. From this psychological perspective, studies have identified several potential characteristic features at the psycho-behavioural level that could additionally explain the maintenance of chronic excess weight or the unsuccessful results of current treatments. To date, despite the growing evidence, the heterogeneity of the psychological evidence associated with obesity has made it challenging to generate consensus on whether these psycho-behavioural phenotypes can be a complement to improve outcomes of existing interventions. For this reason, this narrative review is an overview focused on summarizing studies describing the psycho-behavioural phenotypes associated with obesity. Based on the literature, three psychological constructs have emerged: reward dependence, cognitive control, and mood and emotion. We discuss the clinical implications of stratifying and identifying these psycho-behavioural profiles as potential target for interventions which may ensure a better response to treatment in individuals with obesity. Our conclusions pointed out a considerable overlap between these psycho-behavioural phenotypes suggesting bidirectional interactions between them. These findings endorse the complexity of the psycho-behavioural features associated with obesity and reinforce the need to consider them in order to improve treatment outcomes.
Collapse
Affiliation(s)
- Lucía Camacho-Barcia
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ignacio Lucas
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Romina Miranda-Olivos
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain.
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain.
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Beaumont JD, Dalton M, Davis D, Finlayson G, Nowicky A, Russell M, Barwood MJ. No effect of prefrontal transcranial direct current stimulation (tDCS) on food craving, food reward and subjective appetite in females displaying mild-to-moderate binge-type behaviour. Appetite 2023; 189:106997. [PMID: 37574640 DOI: 10.1016/j.appet.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Previous work suggests there may be an effect of transcranial direct current stimulation (tDCS) on appetite control in people at risk of overconsumption, however findings are inconsistent. This study aimed to further understand the potential eating behaviour trait-dependent effect of tDCS, specifically in those with binge-type behaviour. Seventeen females (23 ± 7 years, 25.4 ± 3.8 kg m-2) with mild-to-moderate binge eating behaviour completed two sessions of double-blind, randomised and counterbalanced anodal and sham tDCS applied over the right dorsolateral prefrontal cortex at 2.0 mA for 20 min. Subjective appetite visual analogue scales (VAS), the Food Craving Questionnaire-State (FCQ-S), and Leeds Food Preference Questionnaire (LFPQ) were completed pre- and post-tDCS. Participants then consumed a fixed-energy meal, followed by the VAS, FCQ-S and LFPQ. No difference between pre- and post-tDCS scores were found across fullness (p = 0.275, BF10 = 0.040), prospective consumption (p = 0.127, BF10 = 0.063), desire to eat (p = 0.247, BF10 = 0.054) or FCQ-S measures (p = 0.918, BF10 = 0.040) when comparing active and sham protocols. Only explicit liking and wanting for high-fat sweet foods were significantly different between conditions, with increased scores following active tDCS. When controlling for baseline hunger, the significant differences were removed (p = 0.138 to 0.161, BF10 = 0.810 to 1.074). The present data does not support the eating behaviour trait dependency of tDCS in a specific cohort of female participants with mild-to-moderate binge eating scores, and results align with those from individuals with healthy trait scores. This suggests participants with sub-clinical binge eating behaviour do not respond to tDCS. Future work should further explore effects in clinical and sub-clinical populations displaying susceptibility to overconsumption and weight gain.
Collapse
Affiliation(s)
- Jordan D Beaumont
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK; Food and Nutrition Group, Sheffield Business School, Sheffield Hallam University, Sheffield, S1 1WB, UK.
| | - Michelle Dalton
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Danielle Davis
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Graham Finlayson
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, LS2 9JU, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mark Russell
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Martin J Barwood
- Faculty of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| |
Collapse
|
12
|
Cui J, Li G, Zhang M, Xu J, Qi H, Ji W, Wu F, Zhang Y, Jiang F, Hu Y, Zhang W, Wei X, Manza P, Volkow ND, Gao X, Wang GJ, Zhang Y. Associations between body mass index, sleep-disordered breathing, brain structure, and behavior in healthy children. Cereb Cortex 2023; 33:10087-10097. [PMID: 37522299 PMCID: PMC10656948 DOI: 10.1093/cercor/bhad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023] Open
Abstract
Pediatric overweight/obesity can lead to sleep-disordered breathing (SDB), abnormal neurological and cognitive development, and psychiatric problems, but the associations and interactions between these factors have not been fully explored. Therefore, we investigated the associations between body mass index (BMI), SDB, psychiatric and cognitive measures, and brain morphometry in 8484 children 9-11 years old using the Adolescent Brain Cognitive Development dataset. BMI was positively associated with SDB, and both were negatively correlated with cortical thickness in lingual gyrus and lateral orbitofrontal cortex, and cortical volumes in postcentral gyrus, precentral gyrus, precuneus, superior parietal lobule, and insula. Mediation analysis showed that SDB partially mediated the effect of overweight/obesity on these brain regions. Dimensional psychopathology (including aggressive behavior and externalizing problem) and cognitive function were correlated with BMI and SDB. SDB and cortical volumes in precentral gyrus and insula mediated the correlations between BMI and externalizing problem and matrix reasoning ability. Comparisons by sex showed that obesity and SDB had a greater impact on brain measures, cognitive function, and mental health in girls than in boys. These findings suggest that preventing childhood obesity will help decrease SDB symptom burden, abnormal neurological and cognitive development, and psychiatric problems.
Collapse
Affiliation(s)
- Jianqi Cui
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Minmin Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jiayu Xu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Haowen Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaorong Wei
- Kindergarten, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute for Brain, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
13
|
Mou Y, Blok E, Barroso M, Jansen PW, White T, Voortman T. Dietary patterns, brain morphology and cognitive performance in children: Results from a prospective population-based study. Eur J Epidemiol 2023:10.1007/s10654-023-01012-5. [PMID: 37155025 DOI: 10.1007/s10654-023-01012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Dietary patterns in childhood have been associated with child neurodevelopment and cognitive performance, while the underlying neurobiological pathway is unclear. We aimed to examine associations of dietary patterns in infancy and mid-childhood with pre-adolescent brain morphology, and whether diet-related differences in brain morphology mediate the relation with cognition. We included 1888 and 2326 children with dietary data at age one or eight years, respectively, and structural neuroimaging at age 10 years in the Generation R Study. Measures of brain morphology were obtained using magnetic resonance imaging. Dietary intake was assessed using food-frequency questionnaires, from which we derived diet quality scores based on dietary guidelines and dietary patterns using principal component analyses. Full scale IQ was estimated using the Wechsler Intelligence Scale for Children-Fifth Edition at age 13 years. Children with higher adherence to a dietary pattern labeled as 'Snack, processed foods and sugar' at age one year had smaller cerebral white matter volume at age 10 (B = -4.3, 95%CI -6.9, -1.7). At age eight years, higher adherence to a 'Whole grains, soft fats and dairy' pattern was associated with a larger total brain (B = 8.9, 95%CI 4.5, 13.3), and larger cerebral gray matter volumes at age 10 (B = 5.2, 95%CI 2.9, 7.5). Children with higher diet quality and better adherence to a 'Whole grains, soft fats and dairy' dietary pattern at age eight showed greater brain gyrification and larger surface area, clustered primarily in the dorsolateral prefrontal cortex. These observed differences in brain morphology mediated associations between dietary patterns and IQ. In conclusion, dietary patterns in early- and mid-childhood are associated with differences in brain morphology which may explain the relation between dietary patterns and neurodevelopment in children.
Collapse
Affiliation(s)
- Yuchan Mou
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Elisabet Blok
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Monica Barroso
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Section on Social and Cognitive Developmental Neuroscience, National Institutes of Mental Health, Bethesda, MD, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Kaltenhauser S, Weber CF, Lin H, Mozayan A, Malhotra A, Constable RT, Acosta JN, Falcone GJ, Taylor SN, Ment LR, Sheth KN, Payabvash S. Association of Body Mass Index and Waist Circumference With Imaging Metrics of Brain Integrity and Functional Connectivity in Children Aged 9 to 10 Years in the US, 2016-2018. JAMA Netw Open 2023; 6:e2314193. [PMID: 37200030 PMCID: PMC10196880 DOI: 10.1001/jamanetworkopen.2023.14193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Importance Aside from widely known cardiovascular implications, higher weight in children may have negative associations with brain microstructure and neurodevelopment. Objective To evaluate the association of body mass index (BMI) and waist circumference with imaging metrics that approximate brain health. Design, Setting, and Participants This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study to examine the association of BMI and waist circumference with multimodal neuroimaging metrics of brain health in cross-sectional and longitudinal analyses over 2 years. From 2016 to 2018, the multicenter ABCD study recruited more than 11 000 demographically representative children aged 9 to 10 years in the US. Children without any history of neurodevelopmental or psychiatric disorders were included in this study, and a subsample of children who completed 2-year follow-up (34%) was included for longitudinal analysis. Exposures Children's weight, height, waist circumference, age, sex, race and ethnicity, socioeconomic status, handedness, puberty status, and magnetic resonance imaging scanner device were retrieved and included in the analysis. Main Outcomes and Measures Association of preadolescents' BMI z scores and waist circumference with neuroimaging indicators of brain health: cortical morphometry, resting-state functional connectivity, and white matter microstructure and cytostructure. Results A total of 4576 children (2208 [48.3%] female) at a mean (SD) age of 10.0 years (7.6 months) were included in the baseline cross-sectional analysis. There were 609 (13.3%) Black, 925 (20.2%) Hispanic, and 2565 (56.1%) White participants. Of those, 1567 had complete 2-year clinical and imaging information at a mean (SD) age of 12.0 years (7.7 months). In cross-sectional analyses at both time points, higher BMI and waist circumference were associated with lower microstructural integrity and neurite density, most pronounced in the corpus callosum (fractional anisotropy for BMI and waist circumference at baseline and second year: P < .001; neurite density for BMI at baseline: P < .001; neurite density for waist circumference at baseline: P = .09; neurite density for BMI at second year: P = .002; neurite density for waist circumference at second year: P = .05), reduced functional connectivity in reward- and control-related networks (eg, within the salience network for BMI and waist circumference at baseline and second year: P < .002), and thinner brain cortex (eg, for the right rostral middle frontal for BMI and waist circumference at baseline and second year: P < .001). In longitudinal analysis, higher baseline BMI was most strongly associated with decelerated interval development of the prefrontal cortex (left rostral middle frontal: P = .003) and microstructure and cytostructure of the corpus callosum (fractional anisotropy: P = .01; neurite density: P = .02). Conclusions and Relevance In this cross-sectional study, higher BMI and waist circumference among children aged 9 to 10 years were associated with imaging metrics of poorer brain structure and connectivity as well as hindered interval development. Future follow-up data from the ABCD study can reveal long-term neurocognitive implications of excess childhood weight. Imaging metrics that had the strongest association with BMI and waist circumference in this population-level analysis may serve as target biomarkers of brain integrity in future treatment trials of childhood obesity.
Collapse
Affiliation(s)
- Simone Kaltenhauser
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- University of Regensburg, Regensburg, Germany
| | - Clara F. Weber
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Huang Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ali Mozayan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julián N. Acosta
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Guido J. Falcone
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Taylor
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Kevin N. Sheth
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Gundogdu U, Gurer G, Eroglu M. Executive function, behavioral problems, and insulin resistance in adolescents with obesity. J Pediatr Endocrinol Metab 2023:jpem-2022-0510. [PMID: 37071665 DOI: 10.1515/jpem-2022-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES In this study, we examined executive function (EF) abilities, behavioral and emotional (BE) issues, and overall quality of life (QoL) of adolescents with obesity and compared them with a control group and also aimed to investigate whether the presence of insulin resistance (IR) is associated with these problems. METHODS This cross-sectional study included a sample of 50 adolescents aged 11-18 years with obesity and age- and gender-matched 50 normal weight adolescents who had attended and were treated at the pediatric outpatient clinic. Sociodemographic data were collected through personal interviews with the adolescents and their parents. Measurements of the height and weight, fasting blood glucose, and insulin levels of all adolescents were assessed. In addition, the participants and their parents completed the Kiddo-KINDL, the Strengths and Difficulties Questionnaire, and the Behavior Rating Inventory Scale from Executive Function. RESULTS Of the 50 adolescents with obesity, 27 (54.0 %) were girls, and 23 (46.0 %) were boys, with a mean age of 14.06 ± 1.83 years. Adolescents with obesity have more EF deficiencies, BE difficulties, more problems in peer relationships and lower QoL scores than those without obesity. The QoL was worse in girls, adolescents with obesity, and those with IR. Adolescents with obesity and those with and without IR did not differ about EF deficiencies and BE problems. CONCLUSIONS Addressing these EF deficits and BE problems in interventions for adolescents who have difficulty adapting to lifestyle changes, an essential part of obesity treatment in clinical practice, may contribute to treatment success.
Collapse
Affiliation(s)
- Ummugulsum Gundogdu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Guliz Gurer
- Child Health and Disease Department, Balıkesir City Hospital, Balıkesir, Türkiye
| | - Mehtap Eroglu
- Department of Child and Adolescent Psychiatry, Hatay Training and Research Hospital, Nigde, Türkiye
| |
Collapse
|
16
|
Parker MN, Burton Murray H, Piers AD, Muratore A, Lowe MR, Manasse SM, Ayaz H, Juarascio AS. Prefrontal cortex activation by binge-eating status in individuals with obesity while attempting to reappraise responses to food using functional near infrared spectroscopy. Eat Weight Disord 2023; 28:34. [PMID: 36995567 PMCID: PMC10063505 DOI: 10.1007/s40519-023-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
PURPOSE Difficulty reappraising drives to consume palatable foods may promote poorer inhibition and binge eating (BE) in adults with obesity, but neural underpinnings of food-related reappraisal are underexamined. METHODS To examine neural correlates of food-related reappraisal, adults with obesity with and without BE wore a portable neuroimaging tool, functional near-infrared spectroscopy (fNIRS). fNIRS measured activity in the prefrontal cortex while participants watched videos of food and attempt to "resist" the food stimuli (i.e., "consider the negative consequences of eating the food"). RESULTS Participants (N = 32, 62.5% female; BMI 38.6 [Formula: see text] 7.1; 43.5 [Formula: see text] 13.4 y) had a BMI > 30 kg/m2. Eighteen adults (67.0% female; BMI 38.2 [Formula: see text] 7.6) reported BE (≥ 12 BE-episodes in preceding 3 months). The control group comprised 14 adults who denied BE (64.0% female; BMI 39.2 [Formula: see text] 6.6). Among the entire sample, mixed models showed significant, small hyperactivation during crave and resist compared to watch (relax) condition bilaterally in the medial superior frontal gyrus, dorsolateral areas, and middle frontal gyrus (optodes 5, 7, 9, 10, 11, and 12) in the total sample. No statistically significant differences in neural activation were observed between the BE and control group. Moreover, there were no significant group by condition interactions on neural activation. CONCLUSION Among adults with obesity, BE status was not linked to differential activation in inhibitory prefrontal cortex areas during a food-related reappraisal task. Future research is needed with larger samples, adults without obesity, and inhibition paradigms with both behavioral and cognitive components. LEVEL OF EVIDENCE Level III: Evidence obtained from well-designed cohort or case-control analytic studies. TRIAL REGISTRATION # NCT03113669, date April 13, 2017.
Collapse
Affiliation(s)
- Megan N Parker
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- The WELL Center, Drexel University, Philadelphia, PA, USA
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Helen Burton Murray
- Department of Psychology, Drexel University, Philadelphia, PA, USA.
- The WELL Center, Drexel University, Philadelphia, PA, USA.
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Amani D Piers
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | | | - Michael R Lowe
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | | | - Hasan Ayaz
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrienne S Juarascio
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- The WELL Center, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Jiang F, Li G, Ji W, Zhang Y, Wu F, Hu Y, Zhang W, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Obesity is associated with decreased gray matter volume in children: a longitudinal study. Cereb Cortex 2023; 33:3674-3682. [PMID: 35989308 PMCID: PMC10068275 DOI: 10.1093/cercor/bhac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.
Collapse
Affiliation(s)
- Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
18
|
Barone J, Oliveri M, Bonaventura RE, Mangano GR. Reduction of drive for thinness and body dissatisfaction in people with self-reported dysregulated eating behaviors after intermittent theta burst stimulation (iTBS) of the left dorsolateral prefrontal cortex. Front Hum Neurosci 2023; 17:1108869. [PMID: 37007674 PMCID: PMC10063796 DOI: 10.3389/fnhum.2023.1108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
Aim This study aimed to explore the effect of intermittent theta burst stimulation (iTBS) of the right and left dorsolateral prefrontal cortex (DLPFC) in people with self-reported dysregulated eating behaviors but without a diagnosis of eating disorders (EDs). Methods Participants were randomly divided into two equivalent groups according to the side (right or left) of the hemisphere to be stimulated and they were tested before and after a single iTBS session. Outcome measurements were scores on self-report questionnaires assessing psychological dimensions related to eating behaviors (EDI-3), anxiety (STAI-Y), and tonic electrodermal activity. Results The iTBS interfered with both psychological and neurophysiological measures. Significant variations of physiological arousal after iTBS of both the right and left DLPFC were witnessed by increased mean amplitude of non-specific skin conductance responses. With regard to the psychological measures, the iTBS on the left DLPFC significantly reduced the scores of the EDI-3 subscales drive for thinness and body dissatisfaction. Interestingly, these two scales are two of the three EDI-3 clinic scales (drive for thinness, body dissatisfaction, and bulimia) used as specific markers to assess the onset and/or maintenance of eating disorders. Conclusion Our results show that the left DLPFC iTBS has an impact on the psychological dimensions that are risk factors for the onset of eating disorders, suggesting that an altered hemispheric asymmetry similar to that encountered in clinical populations is present in normal subjects even in the absence of clinical symptoms.
Collapse
Affiliation(s)
- Jennifer Barone
- Neuropsychology Lab, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Sicily, Italy
| | - Massimiliamo Oliveri
- Neuropsychology Lab, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Sicily, Italy
| | - Rosario Emanuele Bonaventura
- Neuropsychology Lab, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Sicily, Italy
| | - Giuseppa Renata Mangano
- Neuropsychology Lab, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Sicily, Italy
| |
Collapse
|
19
|
Hall PA, Best JR, Beaton EA, Sakib MN, Danckert J. Morphology of the prefrontal cortex predicts body composition in early adolescence: cognitive mediators and environmental moderators in the ABCD Study. Soc Cogn Affect Neurosci 2023; 18:nsab104. [PMID: 34471927 PMCID: PMC11305164 DOI: 10.1093/scan/nsab104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
Morphological features of the lateral prefrontal cortex (PFC) in late childhood and early adolescence may provide important clues as to the developmental etiology of clinical conditions such as obesity. Body composition measurements and structural brain imaging were performed on 11 226 youth at baseline (age 9 or 10 years) and follow-up (age 11 or 12 years). Baseline morphological features of the lateral PFC were examined as predictors of body composition. Findings revealed reliable associations between middle frontal gyrus volume, thickness and surface area and multiple indices of body composition. These findings were consistent across both time points and remained significant after covariate adjustment. Cortical thicknesses of the inferior frontal gyrus and lateral orbitofrontal cortex were also reliable predictors. Morphology effects on body composition were mediated by performance on a non-verbal reasoning task. Modest but reliable moderation effects were observed with respect to environmental self-regulatory demand after controlling for sex, race/ethnicity, income and methodological variables. Overall findings suggest that PFC morphology is a reliable predictor of body composition in early adolescence, as mediated through select cognitive functions and partially moderated by environmental characteristics.
Collapse
Affiliation(s)
- Peter A Hall
- School of Public Health Sciences, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser
University, Burnaby, BC V6B 5K3, Canada
| | - Elliott A Beaton
- Department of Psychology, University of New
Orleans, New Orleans, LA 70148, USA
| | - Mohammad N Sakib
- School of Public Health Sciences, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| | - James Danckert
- Department of Psychology, University of
Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
20
|
Moraga-Amaro R, Muñoz P, Villalobos T, Linsambarth S, Maldonado F, Meirone V, Femopase B, Stehberg J. Real-world data of non-invasive stimulation of the human insula-prefrontal cortices using deep TMS to treat anxiety for occupational stress and generalized anxiety disorder. Psychiatry Res 2023; 320:115036. [PMID: 36586377 DOI: 10.1016/j.psychres.2022.115036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 12/26/2022]
Abstract
Activation of the insula is found in all anxiety-related disorders and increased insular-prefrontal cortex (PFC) functional connectivity is associated with reduced anxiety. In this study, the combined stimulation of the insula and PFC using the dTMS H4 (insula+LPFC) and H2 (PFC) coils were used to reduce anxiety in 13 subjects experiencing occupational stress, and 55 participants suffering from generalized anxiety disorder (GAD). The combined HF stimulation of the insula and PFC significantly decreased anxiety scores according to the HARS, CAS, and STAI anxiety scales, leading to a reduction in anxiety according to HARS of 88.7% and 70.7% in participants with occupational stress and the clinical sample of participants diagnosed with GAD, respectively. The findings suggest that the prefrontal-insular axis is critical for the regulation of anxiety and its stimulation can be used for the treatment of anxiety in people suffering from occupational stress and GAD.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | - Paula Muñoz
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Tomás Villalobos
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | | | - Francisco Maldonado
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | - Valeria Meirone
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Bruno Femopase
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
21
|
Fu Y, Gu M, Wang R, Xu J, Sun S, Zhang H, Huang D, Zhang Z, Peng F, Lin P. Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus. Front Aging Neurosci 2023; 14:1055172. [PMID: 36688158 PMCID: PMC9846649 DOI: 10.3389/fnagi.2022.1055172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with an increased incidence of cognitive and emotional disorders. Previous studies have indicated that the frontostriatal circuits play a significant role in brain disorders. However, few studies have investigated functional connectivity (FC) abnormalities in the frontostriatal circuits in T2DM. Objective We aimed to investigate the abnormal functional connectivity (FC) of the frontostriatal circuits in patients with T2DM and to explore the relationship between abnormal FC and diabetes-related variables. Methods Twenty-seven patients with T2DM were selected as the patient group, and 27 healthy peoples were selected as the healthy controls (HCs). The two groups were matched for age and sex. In addition, all subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological evaluation. Seed-based FC analyses were performed by placing six bilateral pairs of seeds within a priori defined subdivisions of the striatum. The functional connection strength of subdivisions of the striatum was compared between the two groups and correlated with each clinical variable. Results Patients with T2DM showed abnormalities in the FC of the frontostriatal circuits. Our findings show significantly reduced FC between the right caudate nucleus and left precentral gyrus (LPCG) in the patients with T2DM compared to the HCs. The FC between the prefrontal cortex (left inferior frontal gyrus, left frontal pole, right frontal pole, and right middle frontal gyrus) and the right caudate nucleus has a significant positive correlation with fasting blood glucose (FBG). Conclusion The results showed abnormal FC of the frontostriatal circuits in T2DM patients, which might provide a new direction to investigate the neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Yingxia Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Meiling Gu
- Department of Psychology, Nanjing Normal University, Nanjing, China
| | - Rui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shenglu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huifeng Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zongjun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fei Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Fei Peng, ; Pan Lin,
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Hunan, China,*Correspondence: Fei Peng, ; Pan Lin,
| |
Collapse
|
22
|
de Sousa Fernandes MS, Aidar FJ, da Silva Pedroza AA, de Andrade Silva SC, Santos GCJ, dos Santos Henrique R, Clemente FM, Silva AF, de Souza RF, Ferreira DJ, Badicu G, Lagranha C, Nobari H. Effects of aerobic exercise training in oxidative metabolism and mitochondrial biogenesis markers on prefrontal cortex in obese mice. BMC Sports Sci Med Rehabil 2022; 14:213. [PMID: 36527152 PMCID: PMC9758933 DOI: 10.1186/s13102-022-00607-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND To evaluate the effects of 8 weeks of Aerobic Physical Training (AET) on the mitochondrial biogenesis and oxidative balance in the Prefrontal Cortex (PFC) of leptin deficiency-induced obese mice (ob/ob mice). METHODS Then, the mice were submitted to an 8-week protocol of aerobic physical training (AET) at moderate intensity (60% of the maximum running speed). In the oxidative stress, we analyzed Malonaldehyde (MDA) and Carbonyls, the enzymatic activity of Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione S Transferase (GST), non-enzymatic antioxidant system: reduced glutathione (GSH), and Total thiols. Additionally, we evaluated the gene expression of PGC-1α SIRT-1, and ATP5A related to mitochondrial biogenesis and function. RESULTS In our study, we did not observe a significant difference in MDA (p = 0.2855), Carbonyl's (p = 0.2246), SOD (p = 0.1595), and CAT (p = 0.6882) activity. However, the activity of GST (p = 0.04), the levels of GSH (p = 0.001), and Thiols (p = 0.02) were increased after 8 weeks of AET. Additionally, there were high levels of PGC-1α (p = 0.01), SIRT-1 (p = 0.009), and ATP5A (p = 0.01) gene expression after AET in comparison with the sedentary group. CONCLUSIONS AET for eight weeks can improve antioxidant defense and increase the expression of PGC-1α, SIRT-1, and ATP5A in PFC of ob/ob mice.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco Brazil
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão, Sergipe Brazil
| | - Anderson Apolônio da Silva Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE Brazil
| | - Severina Cássia de Andrade Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE Brazil
| | | | | | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisbon, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | | | - Diorginis José Ferreira
- Department of Physical Education, Federal University of São Francisco Valley, Petrolina, Pernambuco Brazil
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania
| | - Claudia Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE Brazil
| | - Hadi Nobari
- Department of Motor Performance, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Brasov, Romania
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367 Iran
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
23
|
Feng Z, Duren Z, Xin J, Yuan Q, He Y, Su B, Wong WH, Wang Y. Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification. eLife 2022; 11:82535. [PMID: 36525361 PMCID: PMC9810332 DOI: 10.7554/elife.82535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs through gene regulatory networks derived from comprehensive multi-omics data of cell types, tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene expression data into context-specific regulatory network atlas and regulatory categories, conduct heritability enrichment analysis with genome-wide association studies (GWAS) summary statistics, identify relevant tissues, and estimate relevance correlation to depict common genetic factors acting in the shared regulatory networks between traits. Our method improves power upon existing approaches by associating SNPs with context-specific regulatory elements to assess heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. Ablation studies, independent data validation, and comparison experiments with existing methods on GWAS of six phenotypes show that SpecVar can improve heritability enrichment, accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates the relevance patterns for pairs of phenotypes and better reveals shared SNP-associated regulations of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK Biobank demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize phenotypes' relevant tissues and shared heritability for biological and therapeutic insights. SpecVar provides a powerful way to interpret SNPs via context-specific regulatory networks and is available at https://github.com/AMSSwanglab/SpecVar, copy archived at swh:1:rev:cf27438d3f8245c34c357ec5f077528e6befe829.
Collapse
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Zhana Duren
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson UniversityGreenwoodUnited States
| | - Jingxue Xin
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford UniversityStanfordUnited States
| | - Qiuyue Yuan
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson UniversityGreenwoodUnited States
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford UniversityStanfordUnited States
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
24
|
Hasegawa Y, Sakuramoto A, Suzuki T, Sakagami J, Shiramizu M, Tachibana Y, Kishimoto H, Ono Y, Ono T. Emotional modulation of cortical activity during gum chewing: A functional near-infrared spectroscopy study. Front Neurosci 2022; 16:964351. [DOI: 10.3389/fnins.2022.964351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Distinct brain regions are known to be associated with various emotional states. Cortical activity may be modulated by emotional states that are triggered by flavors during food intake. We examined cortical activity during chewing with different flavors and assessed the emotional modulation of cortical activity using multichannel near-infrared spectroscopy. Thirty-six right-handed volunteers participated in this crossover trial. The participants experienced positive and negative emotions from chewing flavorful (palatable) or less flavorful (unpalatable) gums, respectively for 5 min. Participants rated the taste, odor, and deliciousness of each gum using a visual analog scale. Bilateral hemodynamic responses in the frontal and parietal lobes, bilateral masseter muscle activation, and heart rate were measured during gum chewing. Changes in all measured data during gum chewing were also evaluated. The ratings of the tastes and odors of each gum significantly differed among the participants (P < 0.001). Hemodynamic response changes were significantly elevated in the bilateral primary sensorimotor cortex during gum-chewing, in comparison to resting. The difference in hemodynamic responses between palatable and unpalatable gum conditions was detected in the left frontopolar/dorsolateral prefrontal cortex. Muscle activation and heart rate were not significantly different between different gum types. Our findings indicate that differential processing in the left prefrontal cortex might be responsible for the emotional states caused by palatable and unpalatable foods.
Collapse
|
25
|
Ljubisavljevic M, Basha J, Ismail FY. The effects of prefrontal vs. parietal cortex transcranial direct current stimulation on craving, inhibition, and measures of self-esteem. Front Neurosci 2022; 16:998875. [DOI: 10.3389/fnins.2022.998875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
While prefrontal cortex dysfunction has been implicated in high food cravings, other cortical regions, like the parietal cortex, are potentially also involved in regulating craving. This study explored the effects of stimulating the inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) on food craving state and trait. Transcranial direct current stimulation (tDCS) was administered at 1.5 mA for 5 consecutive days. Participants received 20 min of IPL, DLPFC, or sham stimulation (SHAM) each day which consisted of two rounds of 10-min stimulation, divided by a 10-min mindfulness task break. In addition, we studied inhibition and subjective psychological aspects like body image and self-esteem state and trait. To decompose immediate and cumulative effects, we measured the following on days 1 and 5: inhibition through the Go/No-go task; and food craving, self-esteem, and body appreciation through a battery of questionnaires. We found that false alarm errors decreased in the participants receiving active stimulation in the DLPFC (DLPFC-group). In contrast, false alarm errors increased in participants receiving active stimulation in the IPL (IPL-group). At the same time, no change was found in the participants receiving SHAM (SHAM-group). There was a trending reduction in craving trait in all groups. Momentary craving was decreased in the DLPFC-group and increased in IPL-group, yet a statistical difference was not reached. According to time and baseline, self-esteem and body perception improved in the IPL-group. Furthermore, self-esteem trait significantly improved over time in the DLPFC-group and IPL-group. These preliminary results indicate that tDCS modulates inhibition in frontoparietal areas with opposite effects, enhancing it in DLPFC and impairing it in IPL. Moreover, craving is moderately linked to inhibition, self-esteem, and body appreciation which seem not to be affected by neuromodulation but may rely instead on broader regions as more complex constructs. Finally, the fractionated protocol can effectively influence inhibition with milder effects on other constructs.
Collapse
|
26
|
Acute Effects of Different Electroacupuncture Point Combinations to Modulate the Gut-Brain Axis in the Minipig Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4384693. [PMID: 36310617 PMCID: PMC9613379 DOI: 10.1155/2022/4384693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to compare the gut-brain axis responses to acute electroacupuncture (EA) at different acupoint combinations in the minipig model. Four adult Yucatan minipigs were subjected twice to four acute EA treatments (25-minute acute sessions) including sham (false acupoints) and control (no EA), during anesthesia and according to a Latin-square design paradigm. Acupoint combinations (4 loci each) are head-abdomen (#70 Dafengmen, #35 Sanwan), back (bilateral #27 Pishu, #28 Weishu), leg (bilateral #79 Hangou, #63 Housanli), and sham (2 bilateral points that are not acupoints). Electrocardiograms were performed to explore heart rate variability (HRV). Infrared thermography was used to measure skin temperature at the stimulation points. Saliva (cortisol) and blood samples (leptin, total/active ghrelin, insulin, and glucose) were collected for further analyses before and after acute EA. All animals were also subjected to BOLD fMRI to investigate the brain responses to EA. Acute EA significantly modulated several physiological and metabolic parameters compared to basal, sham, and/or control conditions, with contrasting effects in terms of BOLD responses in brain regions involved in the hedonic and cognitive control of food intake. The head-abdomen combination appeared to be the most promising combination in terms of brain modulation of the corticostriatal circuit, with upregulation of the dorsolateral prefrontal cortex, dorsal striatum, and anterior cingulate cortex. It also induced significantly lower plasma ghrelin levels compared to sham, suggesting anorectic effects, as well as no temperature drop at the stimulation site. This study opens the way to a further preclinical trial aimed at investigating chronic EA in obese minipigs.
Collapse
|
27
|
Stinson EJ, Travis KT, Magerowski G, Alonso-Alonso M, Krakoff J, Gluck ME. Improved food Go/No-Go scores after transcranial direct current stimulation (tDCS) to prefrontal cortex in a randomized trial. Obesity (Silver Spring) 2022; 30:2005-2013. [PMID: 36052819 DOI: 10.1002/oby.23529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Reduced dorsolateral prefrontal cortex (dlPFC) activity and inhibitory control may contribute to obesity. The study objective was to assess effects of repeated transcranial direct current stimulation (tDCS) on food Go/No-Go (GNG), food Stroop performance, and snack food intake. METHODS Twenty-nine individuals with obesity (12 male; mean [SD], age 42 [11] years; BMI 39 [8]) participated in a combined inpatient/outpatient randomized parallel-design trial and received 15 sessions of anodal or sham tDCS to the left dlPFC. Food-related inhibitory control (GNG), attentional bias (Stroop), and snack food intake were assessed at baseline, completion of inpatient sessions (day 7), and follow-up (day 31). RESULTS GNG performance improved in the anodal group by day 31, compared with sham (p = 0.01), but Stroop scores did not differ by intervention. Greater snack food intake was associated with lower GNG scores (p = 0.01), driven by the sham group (p < 0.001) and higher food and palatable bias scores on the Stroop (all p = 0.02) across both groups. Changes on tasks were not associated with changes in intake. CONCLUSIONS Anodal tDCS to the left dlPFC improved performance on a food-related inhibitory control task, providing evidence of potential for therapeutic benefit of neuromodulation in areas controlling executive function. Results showed that tDCS to the dlPFC reduced snack food intake and hunger; however, underlying neurocognitive mechanisms remain uncertain.
Collapse
Affiliation(s)
- Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Katherine T Travis
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Greta Magerowski
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Miguel Alonso-Alonso
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| |
Collapse
|
28
|
Bini J, Parikh L, Lacadie C, Hwang JJ, Shah S, Rosenberg SB, Seo D, Lam K, Hamza M, De Aguiar RB, Constable T, Sherwin RS, Sinha R, Jastreboff AM. Stress-level glucocorticoids increase fasting hunger and decrease cerebral blood flow in regions regulating eating. Neuroimage Clin 2022; 36:103202. [PMID: 36126514 PMCID: PMC9486604 DOI: 10.1016/j.nicl.2022.103202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
CONTEXT The neural regulation of appetite and energy homeostasis significantly overlaps with the neurobiology of stress. Frequent exposure to repeated acute stressors may cause increased allostatic load and subsequent dysregulation of the cortico-limbic striatal system leading to inefficient integration of postprandial homeostatic and hedonic signals. It is therefore important to understand the neural mechanisms by which stress generates alterations in appetite that may drive weight gain. OBJECTIVE To determine glucocorticoid effects on metabolic, neural and behavioral factors that may underlie the association between glucocorticoids, appetite and obesity risk. METHODS A randomized double-blind cross-over design of overnight infusion of hydrocortisone or saline followed by a fasting morning perfusion magnetic resonance imaging to assess regional cerebral blood flow (CBF) was completed. Visual Analog Scale (VAS) hunger, cortisol and metabolic hormones were also measured. RESULTS Hydrocortisone relative to saline significantly decreased whole brain voxel based CBF responses in the hypothalamus and related cortico-striatal-limbic regions. Hydrocortisone significantly increased hunger VAS pre-scan, insulin, glucose and leptin, but not other metabolic hormones versus saline CBF groups. Hydrocortisone related increases in hunger were predicted by less reduction of CBF (hydrocortisone minus saline) in the medial OFC, medial brainstem and thalamus, left primary sensory cortex and right superior and medial temporal gyrus. Hunger ratings were also positively associated with plasma insulin on hydrocortisone but not saline day. CONCLUSIONS Increased glucocorticoids at levels akin to those experienced during psychological stress, result in increased fasting hunger and decreased regional cerebral blood flow in a distinct brain network of prefrontal, emotional, reward, motivation, sensory and homeostatic regions that underlie control of food intake.
Collapse
Affiliation(s)
- Jason Bini
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Lisa Parikh
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Janice J Hwang
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Saloni Shah
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel B Rosenberg
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Katherine Lam
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Muhammad Hamza
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Renata Belfort De Aguiar
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Robert S Sherwin
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Ania M Jastreboff
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
29
|
La Marra M, Messina A, Ilardi CR, Verde G, Amato R, Esposito N, Troise S, Orlando A, Messina G, Monda V, Di Maio G, Villano I. The Neglected Factor in the Relationship between Executive Functioning and Obesity: The Role of Motor Control. Healthcare (Basel) 2022; 10:1775. [PMID: 36141387 PMCID: PMC9498752 DOI: 10.3390/healthcare10091775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The association between obesity and executive functions (EFs) is highly controversial. It has been suggested that waist circumference (WC), compared to body mass index (BMI), is a better indicator of fat mass and EFs in obesity. Moreover, according to the viewpoint that the brain's functional architecture meets the need for interactive behavior, we hypothesize that the relationship between EFs and body weight might be mediated by the motor performance. METHODS General executive functioning (frontal assessment battery-15), additional cognitive subdomains (trail making test and digit span backward), and motor performance (finger tapping task) were assessed in a sample that included 330 volunteers (192 females, M age = 45.98 years, SD = 17.70, range = 18-86 years). RESULTS Hierarchical multiple regression analysis indicated that the FAB15 score and FTT negatively predicted WC but not BMI. A subsequent mediation analysis highlighted that the indirect effect of FAB15 on WC through finger tapping was statistically significant. CONCLUSIONS Our results suggest that WC, as compared to BMI, is a more effective measure for studying the association between EFs and body weight. Still, we found that the motor domain partially mediates the dynamics of such a relationship.
Collapse
Affiliation(s)
- Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giuseppe Verde
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaella Amato
- Neurological Unit, CTO Hospital, AORN “Ospedali dei Colli”, 80131 Naples, Italy
| | - Nadia Esposito
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Troise
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonella Orlando
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
30
|
Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci 2022; 12:brainsci12081080. [PMID: 36009143 PMCID: PMC9405914 DOI: 10.3390/brainsci12081080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 12/16/2022] Open
Abstract
In the last decades, it has been proposed that executive functions may be particularly vulnerable to weight-related issues. However, evidence on the matter is mixed, especially when the effects of sociodemographic variables are weighted. Thus, the current study aimed at further examining the relationship between executive functions and obesity. To this aim, we compared treatment-seeking overweight, obese, and morbidly obese patients with normal-weight control participants. We examined general executive functioning (Frontal Assessment Battery−15) and different executive subdomains (e.g., inhibitory control, verbal fluency, and psychomotor speed) in a clinical sample including 208 outpatients with different degrees of BMI (52 overweight, BMI 25−30, M age = 34.38; 76 obese, BMI 30−40, M age = 38.00; 80 morbidly obese, BMI > 40, M age = 36.20). Ninety-six normal-weight subjects served as controls. No difference on executive scores was detected when obese patients were compared with over- or normal-weight subjects. Morbidly obese patients reported lower performance on executive scores than obese, overweight, and normal-weight subjects. Between-group difference emerged also when relevant covariates were taken into account. Our results support the view that morbid obesity is associated with lower executive performance, also considering the critical role exerted by sociodemographic (i.e., sex, age, and education) variables. Our results support the view that executive functioning should be accounted into the management of the obese patient because of non-negligible clinical relevance in diagnostic, therapeutic, and prognostic terms.
Collapse
|
31
|
Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Larsen IB, Knudsen GM, Klein AB, Clemmensen C. Acute and long-term effects of psilocybin on energy balance and feeding behavior in mice. Transl Psychiatry 2022; 12:330. [PMID: 35953488 PMCID: PMC9372155 DOI: 10.1038/s41398-022-02103-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Psilocybin and other serotonergic psychedelics have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to 'addictive-like' behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism, and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Wollesen Breum
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella Beck Larsen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.4973.90000 0004 0646 7373Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Luckhoff HK, Asmal L, Scheffler F, Phahladira L, Smit R, van den Heuvel L, Fouche JP, Seedat S, Emsley R, du Plessis S. Associations between BMI and brain structures involved in food intake regulation in first-episode schizophrenia spectrum disorders and healthy controls. J Psychiatr Res 2022; 152:250-259. [PMID: 35753245 DOI: 10.1016/j.jpsychires.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Structural brain differences have been described in first-episode schizophrenia spectrum disorders (FES), and often overlap with those evident in the metabolic syndrome (MetS). We examined the associations between body mass index (BMI) and brain structures involved in food intake regulation in minimally treated FES patients (n = 117) compared to healthy controls (n = 117). The effects of FES diagnosis, BMI and their interactions on our selected prefrontal cortical thickness and subcortical gray matter volume regions of interest (ROIs) were investigated with hierarchical multivariate regressions, followed by post-hoc regressions for the individual ROIs. In a secondary analysis, we examined the relationships of other MetS risk factors and psychopathology with the brain ROIs. Both illness and BMI significantly predicted the grouped prefrontal cortical thickness ROIs, whereas only BMI predicted the grouped subcortical volume ROIs. For the individual ROIs, schizophrenia diagnosis predicted thinner left and right frontal pole and right lateral OFC thickness, and increased BMI predicted thinner left and right caudal ACC thickness. There were no significant main or interaction effects for diagnosis and BMI on any of the individual subcortical volume ROIs. Secondary analyses suggest associations between several brain ROIs and individual MetS risk factors, but not with psychopathology. Our findings indicate differential, independent effects for FES diagnosis and BMI on brain structures. Limited evidence suggests that the BMI effects are more prominent in FES. Exploratory analyses suggest associations between other MetS risk factors and some brain ROIs.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa.
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L van den Heuvel
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - J P Fouche
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| |
Collapse
|
33
|
Li CM, Song JR, Zhao J, Wang CF, Zhang CS, Wang HD, Zhang Q, Liu DF, Ma ZY, Yuan JH, Dong J. The Effects of Bariatric Surgery on Cognition in Patients with Obesity: a Systematic Review and Meta-Analysis. Surg Obes Relat Dis 2022; 18:1323-1338. [DOI: 10.1016/j.soard.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
|
34
|
Effective Transcranial Direct Current Stimulation Parameters for the Modulation of Eating Behavior: A Systematic Literature Review and Meta-Analysis. Psychosom Med 2022; 84:646-657. [PMID: 35412517 DOI: 10.1097/psy.0000000000001074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to consider the effect of differing transcranial direct current stimulation (tDCS) parameters on eating-related measures and how issues with experimental design (e.g., inadequate blinding) or parameters variation may drive equivocal effects. METHODS Literature searches were conducted across MEDLINE, PsycINFO, Scopus, and Science Direct. Studies using conventional sham-controlled tDCS to modify eating-related measures in adult human participants were included. A total of 1135 articles were identified and screened by two independent authors. Study quality was assessed using the Risk of Bias tool. Random-effects meta-analyses were performed, with subgroup analyses to determine differences between parameter sets. RESULTS We identified 28 eligible studies; 7 showed low risk of bias, with the remaining studies showing bias arising from issues implementing or reporting blinding protocols. Large variation in applied parameters was found, including montage, current intensity and density, participant and researcher blinding, and the use of online or offline tasks. The application of differing parameters seemed to alter the effects of tDCS on eating-related measures, particularly for current density ( g = -0.25 to 0.31), and when comparing single-session ( g = -0.08 to 0.01) versus multisession protocols ( g = -0.34 to -0.29). Some parameters result in null effects. CONCLUSIONS The absence of tDCS-mediated change in eating-related measures may be driven by variation in applied parameters. Consistent application of parameters that seem to be effective for modulating eating behavior is important for identifying the potential impact of tDCS. Using the findings of this review, we propose a series of parameters that researchers should apply in their work.
Collapse
|
35
|
Wagner L, Veit R, Fritsche L, Häring HU, Fritsche A, Birkenfeld AL, Heni M, Preissl H, Kullmann S. Sex differences in central insulin action: Effect of intranasal insulin on neural food cue reactivity in adults with normal weight and overweight. Int J Obes (Lond) 2022; 46:1662-1670. [PMID: 35715625 PMCID: PMC9395264 DOI: 10.1038/s41366-022-01167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
Background/Objectives Central insulin action influences cognitive processes, peripheral metabolism, and eating behavior. However, the contribution of obesity and sex on central insulin-mediated neural food cue processing still remains unclear. Subjects/Methods In a randomized within-participant design, including two visits, 60 participants (30 women, BMI 18–32 kg/m2, age 21–69 years) underwent a functional MRI task measuring blood oxygen level-dependent (BOLD) signal in response to visual food cues after intranasal insulin or placebo spray administration. Central insulin action was defined as the neural BOLD response to food cues after insulin compared to placebo administration. Afterwards, participants were asked to rate the food cues for desire to eat (i.e., wanting rating). For statistical analyses, participants were grouped according to BMI and sex. Results Food cue reactivity in the amygdala showed higher BOLD activation in response to central insulin compared to placebo. Furthermore, women with overweight and obesity and men of normal weight showed higher BOLD neural food cue responsivity to central insulin compared to placebo. Higher central insulin action in the insular cortex was associated with better peripheral insulin sensitivity and higher cognitive control. Moreover, central insulin action in the dorsolateral prefrontal cortex (DLPFC) revealed significant sex differences. In response to central insulin compared to placebo, men showed lower DLPFC BOLD activity, whereas women showed higher DLPFC activity in response to highly desired food cues. On behavioral level, central insulin action significantly reduced hunger, whereas the desire to eat, especially for low caloric food cues was significantly higher with central insulin than with placebo. Conclusions Obesity and sex influenced the central insulin-mediated neural BOLD activity to visual food cues in brain regions implicated in reward and cognitive control. These findings show that central insulin action regulates food response differentially in men and women, which may have consequences for metabolism and eating behavior.
Collapse
Affiliation(s)
- Lore Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany. .,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Nutritional and Preventive Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.,Department of Internal Medicine I, Division of Endocrinology and Diabetology, Ulm University Hospital, Ulm, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Executive Functions in Overweight and Obese Treatment-Seeking Patients: Cross-Sectional Data and Longitudinal Perspectives. Brain Sci 2022; 12:brainsci12060777. [PMID: 35741662 PMCID: PMC9220982 DOI: 10.3390/brainsci12060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent evidence suggests that a higher body weight may be linked to cognitive impairment in different domains involving executive/frontal functioning. However, challenging results are also available. Accordingly, our study was designed to verify whether (i) poor executive functions are related to a higher body weight and (ii) executive functioning could contribute to weight loss in treatment-seeking overweight and obese patients. METHODS We examined general executive functioning, inhibitory control, verbal fluency, and psychomotor speed in a sample including 104 overweight and obese patients. Forty-eight normal-weight subjects participated in the study as controls. RESULTS Univariate Analysis of Variance showed that obese patients obtained lower scores than overweight and normal-weight subjects in all executive measures, except for errors in the Stroop test. However, when sociodemographic variables entered the model as covariates, no between-group difference was detected. Furthermore, an adjusted multiple linear regression model highlighted no relationship between weight loss and executive scores at baseline. CONCLUSIONS Our results provide further evidence for the lack of association between obesity and the executive domains investigated. Conflicting findings from previous literature may likely be due to the unchecked confounding effects exerted by sociodemographic variables and inclusion/exclusion criteria.
Collapse
|
37
|
Borkertienė V, Valonytė-Burneikienė L. Normal Weight 6-12 Years Boys Demonstrate Better Cognitive Function and Aerobic Fitness Compared to Overweight Peers. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030423. [PMID: 35334599 PMCID: PMC8953475 DOI: 10.3390/medicina58030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Background and Objectives: This study evaluated and compared the cognitive function (CF) and aerobic fitness (AF) of 15 normal-weight (NW) and 15 overweight (OW) children, aged 6−12 years. In addition, the relationship between CF and AF was evaluated. Materials and Methods: The ANAM4 battery was used to evaluate CF, and a constant treadmill walking exercise (6 km/h for 6 min) and a progressive treadmill exercise (modified Balke test) were used to assess pulmonary oxygen uptake (VO2). Results: The OW children displayed worse attention and visual tracking (88.95 ± 4.45% and 93.75 ± 3.16%), response inhibition (90.27 ± 1.54% and 93.67 ± 2%), and speed of processing (93.65 ± 1.5% and 94.4 ± 1.54%) than the NW children (p < 0.05). The VO2 max was higher and the time constant of VO2 kinetics was shorter in NW children (56.23 ± 3.53 mL/kg/min and 21.73 ± 1.57 s, respectively) than in OW children (45.84 ± 1.89 mL/kg/min and 33.46 ± 2.9 s, respectively; p < 0.05). Conclusion: The OW children aged 6−12 years demonstrated poorer CF and lower AF than their NW peers. An association between AF and CF indicators was identified in both groups.
Collapse
Affiliation(s)
- Vaida Borkertienė
- Department of Health and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6111-0072
| | | |
Collapse
|
38
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
39
|
Beaumont JD, Smith NC, Starr D, Davis D, Dalton M, Nowicky A, Russell M, Barwood MJ. Modulating eating behavior with transcranial direct current stimulation (tDCS): A systematic literature review on the impact of eating behavior traits. Obes Rev 2022; 23:e13364. [PMID: 34786811 DOI: 10.1111/obr.13364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) is becoming an increasingly popular technique for altering eating behaviors. Recent research suggests a possible eating behavior trait-dependent effect of tDCS. However, studies recruit participant populations with heterogeneous trait characteristics, including "healthy" individuals who do not present with eating behavior traits suggesting susceptibility to overconsumption. The present review considers the effects of tDCS across eating-related measures and explores whether a trait-dependent effect is evident across the literature. A literature search identified 28 articles using sham-controlled tDCS to modify eating-related measures. Random effects meta-analyses were performed, with subgroup analyses to identify differences between "healthy" and trait groups. Trivial overall effects (g = -0.12 to 0.09) of active versus sham tDCS were found. Subgroup analyses showed a more consistent effect for trait groups, with small and moderate effect size (g = -1.03 to 0.60), suggesting tDCS is dependent on participants' eating behavior traits. Larger effect sizes were found for those displaying traits associated with study outcomes (e.g., heightened food cravings). "Healthy" individuals appear to be unresponsive to stimulation. Based on this meta data, future work should recruit those with eating behavior trait susceptibilities to overconsumption, focusing on those who present with traits associated with the outcome of interest.
Collapse
Affiliation(s)
- Jordan D Beaumont
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Natalie C Smith
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - David Starr
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Danielle Davis
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Michelle Dalton
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Martin J Barwood
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| |
Collapse
|
40
|
Muscatello MRA, Torre G, Celebre L, Dell'Osso B, Mento C, Zoccali RA, Bruno A. 'In the night kitchen': A scoping review on the night eating syndrome. Aust N Z J Psychiatry 2022; 56:120-136. [PMID: 34169752 DOI: 10.1177/00048674211025714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND First described in 1955, night eating syndrome refers to an abnormal eating behavior clinically defined by the presence of evening hyperphagia (>25% of daily caloric intake) and/or nocturnal awaking with food ingestion occurring ⩾ 2 times per week. AIMS Although the syndrome is frequently comorbid with obesity, metabolic and psychiatric disorders, its etiopathogenesis, diagnosis, assessment and treatment still remain not fully understood. METHODS This review was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines; PubMed database was searched until 31 October 2020, using the key terms: 'Night Eating Syndrome' AND 'complications' OR 'diagnosis' OR 'drug therapy' OR 'epidemiology' OR 'etiology' OR 'physiology' OR 'physiopathology' OR 'psychology' OR 'therapy'. RESULTS From a total of 239 citations, 120 studies assessing night eating syndrome met the inclusion criteria to be included in the review. CONCLUSION The inclusion of night eating syndrome into the Diagnostic and Statistical Manual of Mental Disorders-5 'Other Specified Feeding or Eating Disorders' category should drive the attention of clinician and researchers toward this syndrome that is still defined by evolving diagnostic criteria. The correct identification and assessment of NES could facilitate the detection and the diagnosis of this disorder, whose bio-psycho-social roots support its multifactorial nature. The significant rates of comorbid illnesses associated with NES and the overlapping symptoms with other eating disorders require a focused clinical attention. Treatment options for night eating syndrome include both pharmacological (selective serotonin reuptake inhibitors, topiramate and melatonergic drugs) and non-pharmachological approaches; the combination of such strategies within a multidisciplinary approach should be addressed in future, well-sized and long-term studies.
Collapse
Affiliation(s)
- Maria Rosaria Anna Muscatello
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| | - Giovanna Torre
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| | - Laura Celebre
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy.,CRC 'Aldo Ravelli' for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Carmela Mento
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| | - Rocco Antonio Zoccali
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University Hospital of Messina 'G. Martino', University of Messina, Messina, Italy
| |
Collapse
|
41
|
Grigorian A, Kennedy KG, Luciw NJ, MacIntosh BJ, Goldstein BI. Obesity and Cerebral Blood Flow in the Reward Circuitry of Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2022; 25:448-456. [PMID: 35092432 PMCID: PMC9211014 DOI: 10.1093/ijnp/pyac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is associated with elevated body mass index (BMI) and increased rates of obesity. Obesity among individuals with BD is associated with more severe course of illness. Motivated by previous research on BD and BMI in youth as well as brain findings in the reward circuit, the current study investigates differences in cerebral blood flow (CBF) in youth BD with and without comorbid overweight/obesity (OW/OB). METHODS Participants consisted of youth, ages 13-20 years, including BD with OW/OB (BDOW/OB; n = 25), BD with normal weight (BDNW; n = 55), and normal-weight healthy controls (HC; n = 61). High-resolution T1-weighted and pseudo-continuous arterial spin labeling images were acquired using 3 Tesla magnetic resonance imaging. CBF differences were assessed using both region of interest and whole-brain voxel-wise approaches. RESULTS Voxel-wise analysis revealed significantly higher CBF in reward-associated regions in the BDNW group relative to the HC and BDOW/OB groups. CBF did not differ between the HC and BDOW/OB groups. There were no significant region of interest findings. CONCLUSIONS The current study identified distinct CBF levels relating to BMI in BD in the reward circuit, which may relate to underlying differences in cerebral metabolism, compensatory effects, and/or BD severity. Future neuroimaging studies are warranted to examine for changes in the CBF-OW/OB link over time and in relation to treatment.
Collapse
Affiliation(s)
- Anahit Grigorian
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada,Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Correspondence: Benjamin I. Goldstein, MD, PhD, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, Canada, M6J 1H4 ()
| |
Collapse
|
42
|
Scarpina F, Paschino C, Scacchi M, Mauro A, Sedda A. EXPRESS: Does physical weight alter the mental representation of the body? Evidence from motor imagery in obesity. Q J Exp Psychol (Hove) 2022; 75:2349-2365. [PMID: 35001709 DOI: 10.1177/17470218221075038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Obesity is a clinical condition that impacts severely the physical body. However, evidence related to the mental representation of the body in action is scarce. The few available studies only focus on avoiding obstacles, rather than participants imagining their own body. METHOD To advance knowledge in this field, we assessed the performance of twenty-two individuals with obesity compared to thirty individuals with a healthy weight in two tasks that implied different motor (more implicit vs. more explicit) imagery strategies. Two tasks were also administered to control for visual imagery skills, to rule out confounding factors. Moreover, we measured body uneasiness, through a standard questionnaire, as body image negativity could impact on other body representation components. RESULTS Our findings do not show differences in the motor imagery tasks between individuals with obesity and individuals with healthy weight. On the other hand, some differences emerge in visual imagery skills. Crucially, individuals with obesity did report a higher level of body uneasiness. CONCLUSIONS Despite a negative body image and visual imagery differences, obesity per se does not impact on the representation of the body in action. Importantly, this result is independent from the level of awareness required to access the mental representation of the body.
Collapse
Affiliation(s)
- Federica Scarpina
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Italy 9314.,I.R.C.C.S. Istituto Auxologico Italiano, U.O. di Neurologia e Neuroriabilitazione, Ospedale San Giuseppe, Piancavallo (VCO), Italy
| | - Clara Paschino
- I.R.C.C.S. Istituto Auxologico Italiano, U.O. di Neurologia e Neuroriabilitazione, Ospedale San Giuseppe, Piancavallo (VCO), Italy 9354
| | - Massimo Scacchi
- I.R.C.C.S. Istituto Auxologico Italiano, Divisione di Endocrinologia e Malattie Metaboliche, Ospedale San Giuseppe, Piancavallo (VCO), Italy 155032.,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Alessandro Mauro
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Italy 155032.,I.R.C.C.S. Istituto Auxologico Italiano, U.O. di Neurologia e Neuroriabilitazione, Ospedale San Giuseppe, Piancavallo (VCO), Italy
| | - Anna Sedda
- Psychology Department, School of Social Sciences, Heriot-Watt University, Edinburgh, UK 3120.,Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University
| |
Collapse
|
43
|
Ames GE, Koball AM, Clark MM. Behavioral Interventions to Attenuate Driven Overeating and Weight Regain After Bariatric Surgery. Front Endocrinol (Lausanne) 2022; 13:934680. [PMID: 35923629 PMCID: PMC9339601 DOI: 10.3389/fendo.2022.934680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Weight regain after bariatric surgery is associated with problematic eating behaviors that have either recurred after a period of improvement or are new-onset behaviors. Problematic eating behaviors after bariatric surgery have been conceptualized in different ways in the literature, such as having a food addiction and experiencing a loss of control of eating. The intersection of these constructs appears to be driven overeating defined as patients' experiences of reduced control of their eating which results in overeating behavior. The purpose of this review is to define patient experiences of driven overeating through the behavioral expression of emotion-based eating, reward-based eating, and executive functioning deficits-namely impulsivity-which is associated with weight regain after having bariatric surgery. Delineating concepts in this way and determining treatment strategies accordingly may reduce distress related to the inevitable return of increased hunger, cravings, portion sizes, and tolerance for highly palatable foods after surgery. Along with standard behavioral weight maintenance strategies, topics including acceptance, motivation, emotion-based eating, reward-based/impulsive eating, physical activity, and self-compassion are discussed. These concepts have been adapted for patients experiencing weight regain after having bariatric surgery and may be particularly helpful in attenuating driven overeating and weight regain.
Collapse
Affiliation(s)
- Gretchen E. Ames
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Gretchen E. Ames,
| | - Afton M. Koball
- Department of Behavioral Health, Gundersen Health System, La Crosse, WI, United States
| | - Matthew M. Clark
- Department of Psychiatry and Psychology and Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
|
45
|
La Marra M, Ilardi CR, Villano I, Polito R, Sibillo MR, Franchetti M, Caggiano A, Strangio F, Messina G, Monda V, Di Maio G, Messina A. Higher general executive functions predicts lower body mass index by mitigating avoidance behaviors. Front Endocrinol (Lausanne) 2022; 13:1048363. [PMID: 36440204 PMCID: PMC9681800 DOI: 10.3389/fendo.2022.1048363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The present study examines the relationship between obesity, executive functions, and body image in a nonclinical population from southern Italy. METHODS General executive functioning (Frontal Assessment Battery-15), and body image disturbances (Body Uneasiness Test) were assessed in a sample including 255 participants (138 females, M age = 43.51 years, SD = 17.94, range = 18-86 years; M body mass index (BMI) = 26.21, SD = 4.32, range = 18.03-38.79). FINDINGS Multiple Linear Regression Analysis indicated that age, years of education, FAB15 score, body image concerns, and avoidance predicted the variance of BMI. A subsequent mediation analysis highlighted that the indirect effect of FAB15 on BMI through avoidance was statistically significant. INTERPRETATION Our results suggest that more performing executive functioning predicts a decrease in BMI that is partially due to the mitigation of avoidance behaviors.
Collapse
Affiliation(s)
- Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Ines Villano,
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Raffella Sibillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Franchetti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Angela Caggiano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Strangio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
46
|
Han XD, Zhang HW, Xu T, Liu L, Cai HT, Liu ZQ, Li Q, Zheng H, Xu T, Yuan TF. How Impulsiveness Influences Obesity: The Mediating Effect of Resting-State Brain Activity in the dlPFC. Front Psychiatry 2022; 13:873953. [PMID: 35619620 PMCID: PMC9127259 DOI: 10.3389/fpsyt.2022.873953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Impulsiveness is a stable personal characteristic that contributes to obesity and may interact with it. Specifically, obesity is caused by unrestrained impulse eating that is not consciously controlled and leads to a hormonal imbalance that also can impair impulse control. However, the mechanism of this relationship is unclear. In our study, 35 obese individuals (body mass index, BMI > 28) were recruited and matched with 31 healthy controls (BMI < 24) in age and education level. All the participants underwent a resting-state fMRI and completed the Barratt Impulsiveness Scale-11. The results showed that patients with obesity had a significantly lower fractional amplitude of low-frequency fluctuations (fALFF) in the bilateral dorsolateral prefrontal cortex (dlPFC) and higher fALFF in the left fusiform cortex. In addition, non-planning impulsiveness was positively correlated with BMI. Importantly, we found that the right dlPFC completely mediated the relationship between non-planning impulsiveness and BMI. Our findings suggest that impulsivity is statistically more likely to precede obesity than to precede impulsivity and contributes to obesity by downregulating spontaneous activity in the dlPFC. This suggests that the dlPFC, which is associated with executive control, may be able a potential target for treating obesity.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Wei Zhang
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Xu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Liu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ting Cai
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Qi Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Xu
- Department of Anaesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anaesthesiology, Tongzhou People's Hospital, Nantong, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Foldi CJ, Morris MJ, Oldfield BJ. Executive function in obesity and anorexia nervosa: Opposite ends of a spectrum of disordered feeding behaviour? Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110395. [PMID: 34217755 DOI: 10.1016/j.pnpbp.2021.110395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023]
Abstract
Higher-order executive functions such as decision-making, cognitive flexibility and behavioural control are critical to adaptive success in all aspects of life, including the maintenance of a healthy body weight by regulating food intake. Performance on tasks designed to assess these aspects of cognition is impaired in individuals with obesity and anorexia nervosa (AN); conditions at either end of a spectrum of body weight disturbance. While the conceptualisation of obesity and AN as mirror images of each other makes some sense from a metabolic point of view, whether or not these conditions also reflect opposing states of executive function is less clear. Here, we review evidence from neurocognitive and neuroimaging studies to compare the direction and extent of executive dysfunction in subjects with obesity and AN and how these are underpinned by changes in structure and function of subregions of the prefrontal cortex (PFC). Both conditions of extreme body weight disturbance are associated with impaired decision-making and cognitive inflexibility, however, impulsive behaviour presents in opposing directions; obesity being associated with reduced behavioural control and AN being associated with elevated control over behaviour with respect to food and feeding. Accordingly, the subregions of the PFC that guide inhibitory control and valuation of action outcomes (dorsolateral prefrontal cortex and orbitofrontal cortex) show opposite patterns of activation in subjects with obesity compared to those with AN, whereas the subregions implicated in cognitive and behavioural flexibility (ventromedial prefrontal cortex and anterior cingulate cortex) show alterations in the same direction in both conditions but with differential extent of dysfunction. We synthesise these findings in the context of the utility of animal models of obesity and AN to interrogate the detail of the neurobiological contributions to cognition in patient populations and the utility of such detail to inform future treatment strategies that specifically target executive dysfunction.
Collapse
Affiliation(s)
- Claire J Foldi
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton 3800, Australia; Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton 3800, Australia.
| | - Margaret J Morris
- School of Medical Sciences, UNSW Sydney, High Street, Randwick 2052, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton 3800, Australia; Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton 3800, Australia
| |
Collapse
|
48
|
Luzi L, Gandini S, Massarini S, Bellerba F, Terruzzi I, Senesi P, Macrì C, Ferrulli A. Reduction of impulsivity in patients receiving deep transcranial magnetic stimulation treatment for obesity. Endocrine 2021; 74:559-570. [PMID: 34173157 PMCID: PMC8571225 DOI: 10.1007/s12020-021-02802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/13/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Aims of the present study were to investigate a wide array of psychological symptoms through validated psychometric tests, before and after 5 weeks of deep Transcranial Magnetic Stimulation (dTMS) in individuals with obesity, and to identify possible relationships with neuroendocrine parameters. METHODS Forty-five patients with obesity (33 F, 12 M; age 48.8 ± 9.9 years; body wt 97.6 ± 14.2 Kg; BMI 36.2 ± 4.2) were randomized into two groups: 26 received high frequency (HF) dTMS and 19 Sham stimulation for 5 weeks. At baseline and after the 5-week treatment, all patients underwent the following psychometric evaluations: Food Cravings Questionnaire-Trait (FCQ-T) and its subscales, Barratt Impulsiveness Scale-11 (BIS-11), State and Trait Anxiety Inventory (STAI-y1 and STAI-y2), and Beck Depression Inventory (BDI). Hormonal and neuroendocrine markers were assessed at the first and last dTMS session. RESULTS By adjusting for baseline variables and treatment arms, a significant decrease in body wt and BMI was found in HF group, both with univariate (p = 0.019) and multivariate analyses (p = 0.012). Impulsivity significantly decreased in HF group, both with univariate (p = 0.031) and multivariate analyses (p = 0.011). A positive association between the impulsivity score change and the leptin level variation (p = 0.031) was found. CONCLUSION The decrease of impulsivity together with the BMI reduction in individuals with obesity, treated with real stimulation, suggests that impulsivity may be a risk factor for obesity. Treatment with dTMS revealed to be effective in reducing both BMI and impulsivity by enhancing inhibitory capacity of Pre-Frontal Cortex (PFC), and modulating neuroendocrine system, especially leptin.
Collapse
Affiliation(s)
- Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy.
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Pamela Senesi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Concetta Macrì
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
49
|
Liu X, Turel O, Xiao Z, He J, He Q. Impulsivity and neural mechanisms that mediate preference for immediate food rewards in people with vs without excess weight. Appetite 2021; 169:105798. [PMID: 34774966 DOI: 10.1016/j.appet.2021.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
People with excess weight (overweight or obese; body mass index [BMI]>25) are generally characterized as impulsive with regards to food. However, the underlying brain mechanisms of this impulsivity are not fully understood. As such, this study aims at understanding the neural mechanisms underlying impulsivity toward food rewards, as well as differences in delay discounting patterns for hypothetical food between people with vs without excess weight. To this end, participants (79 college students, 33 with excess weight and 46 without) performed a food delay discounting task and completed questionnaires related to food addiction and impulsivity. In the task, we manipulated the magnitude of immediate and delayed rewards and employed event-related fMRI design to measure brain activity. The results showed that people with excess weight, compared to those without, were more impulsive and presented a lower probability of choosing delayed rewards. The higher the BMI was, the lower the probability of choosing delayed rewards was. People with excess weight also had higher impulsivity scores than people with no excess weight. Moreover, people with excess weight had less activation in executive function areas such as the anterior cingulate gyrus, the frontal pole, and the inferior frontal gyrus in both difficult and easy decision-making conditions. These results suggest that hypo-activation of executive function areas may contribute to the progression of decision impulsivity in relation to food, which in turn is associated with excess weight.
Collapse
Affiliation(s)
- Xing Liu
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Zhibing Xiao
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China
| | - Jinbo He
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, Hubei, China.
| | - Qinghua He
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China; Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Chongqing, China.
| |
Collapse
|
50
|
Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Mol Metab 2021; 54:101391. [PMID: 34767997 PMCID: PMC8640109 DOI: 10.1016/j.molmet.2021.101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Cav3.2, a T-type low voltage-activated calcium channel widely expressed throughout the central nervous system, plays a vital role in neuronal excitability and various physiological functions. However, the effects of Cav3.2 on energy homeostasis remain unclear. Here, we examined the role of Cav3.2 expressed by hypothalamic GABAergic neurons in the regulation of food intake and body weight in mice and explored the underlying mechanisms. METHODS Male congenital Cana1h (the gene coding for Cav3.2) global knockout (Cav3.2KO) mice and their wild type (WT) littermates were first used for metabolic phenotyping studies. By using the CRISPR-Cas9 technique, Cav3.2 was selectively deleted from GABAergic neurons in the arcuate nucleus of the hypothalamus (ARH) by specifically overexpressing Cas9 protein and Cav3.2-targeting sgRNAs in ARH Vgat (VgatARH) neurons. These male mutants (Cav3.2KO-VgatARH) were used to determine whether Cav3.2 expressed by VgatARH neurons is required for the proper regulation of energy balance. Subsequently, we used an electrophysiological patch-clamp recording in ex vivo brain slices to explore the impact of Cav3.2KO on the cellular excitability of VgatARH neurons. RESULTS Male Cav3.2KO mice had significantly lower food intake than their WT littermate controls when fed with either a normal chow diet (NCD) or a high-fat diet (HFD). This hypophagia phenotype was associated with increased energy expenditure and decreased fat mass, lean mass, and total body weight. Selective deletion of Cav3.2 in VgatARH neurons resulted in similar feeding inhibition and lean phenotype without changing energy expenditure. These data provides an intrinsic mechanism to support the previous finding on ARH non-AgRP GABA neurons in regulating diet-induced obesity. Lastly, we found that naringenin extract, a predominant flavanone found in various fruits and herbs and known to act on Cav3.2, decreased the firing activity of VgatARH neurons and reduced food intake and body weight. These naringenin-induced inhibitions were fully blocked in Cav3.2KO-VgatARH mice. CONCLUSION Our results identified Cav3.2 expressed by VgatARH neurons as an essential intrinsic modulator for food intake and energy homeostasis, which is a potential therapeutic target in the treatment of obesity.
Collapse
|