1
|
Huang Y, Guan Q, Zhang Z, Wang P, Li C. Oleacein: A comprehensive review of its extraction, purification, absorption, metabolism, and health effects. Food Chem 2024; 433:137334. [PMID: 37660602 DOI: 10.1016/j.foodchem.2023.137334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Extra virgin olive oil (EVOO) consumption reduces the risk of cardiovascular disease in high-risk groups and the polyphenols in EVOO play an important health effect on it. As one of the most abundant polyphenols in EVOO, oleacein (OLEA) has many health benefits. However, there is no review article that focus comprehensively on OLEA, and most articles have limited data and information on OLEA. The purpose of this review is to summarize the results of all available studies, to present and compare the main traditional and novel techniques for the extraction and isolation and purification of OLEA, to elucidate the absorption and metabolic pathways of OLEA, and finally, to illustrate the health-promoting properties. Hopefully, this review can promote the use of OLEA in functional foods and therapeutic fields.
Collapse
Affiliation(s)
- Yunfei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuoya Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxiang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Miscioscia A, Treaba CA, Barletta VT, Herranz E, Sloane JA, Barbuti E, Mainero C. White matter paramagnetic rim and non-rim lesions share a periventricular gradient in multiple sclerosis: A 7-T imaging study. Mult Scler 2024; 30:166-176. [PMID: 38279672 PMCID: PMC10922980 DOI: 10.1177/13524585231224681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- University of Padova, Padova, Italy
| | - Constantina A. Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T. Barletta
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jacob A. Sloane
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elena Barbuti
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Ospedale Sant’Andrea, University La Sapienza, Rome, Italy
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
4
|
Meyer-Arndt L, Kerkering J, Kuehl T, Infante AG, Paul F, Rosiewicz KS, Siffrin V, Alisch M. Inflammatory Cytokines Associated with Multiple Sclerosis Directly Induce Alterations of Neuronal Cytoarchitecture in Human Neurons. J Neuroimmune Pharmacol 2023; 18:145-159. [PMID: 36862362 PMCID: PMC10485132 DOI: 10.1007/s11481-023-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived (H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quantitative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key signalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on neuronal cytoarchitecture and function.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Tess Kuehl
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ana Gil Infante
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| |
Collapse
|
5
|
Sharma S, Borski C, Hanson J, Garcia MA, Link CD, Hoeffer C, Chatterjee A, Nagpal P. Identifying an Optimal Neuroinflammation Treatment Using a Nanoligomer Discovery Engine. ACS Chem Neurosci 2022; 13:3247-3256. [PMID: 36410860 DOI: 10.1021/acschemneuro.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1β or IL-1β, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κβ) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κβ (SB.201.17D.8_NF-κβ1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jessica Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| |
Collapse
|
6
|
Courtney CM, Sharma S, Fallgren C, Weil MM, Chatterjee A, Nagpal P. Reversing radiation-induced immunosuppression using a new therapeutic modality. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:127-139. [PMID: 36336358 DOI: 10.1016/j.lssr.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 06/16/2023]
Abstract
Radiation-induced immune suppression poses significant health challenges for millions of patients undergoing cancer chemotherapy and radiotherapy treatment, and astronauts and space tourists travelling to outer space. While a limited number of recombinant protein therapies, such a Sargramostim, are approved for accelerating hematologic recovery, the pronounced role of granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2) as a proinflammatory cytokine poses additional challenges in creating immune dysfunction towards pathogenic autoimmune diseases. Here we present an approach to high-throughput drug-discovery, target validation, and lead molecule identification using nucleic acid-based molecules. These Nanoligomer™ molecules are rationally designed using a bioinformatics and an artificial intelligence (AI)-based ranking method and synthesized as a single-modality combining 6-different design elements to up- or downregulate gene expression of target gene, resulting in elevated or diminished protein expression of intended target. This method additionally alters related gene network targets ultimately resulting in pathway modulation. This approach was used to perturb and identify the most effective upstream regulators and canonical pathways for therapeutic intervention to reverse radiation-induced immunosuppression. The lead Nanoligomer™ identified in a screen of human donor derived peripheral blood mononuclear cells (PBMCs) upregulated Erythropoietin (EPO) and showed the greatest reversal of radiation induced cytokine changes. It was further tested in vivo in a mouse radiation-model with low-dose (3 mg/kg) intraperitoneal administration and was shown to regulate gene expression of epo in lung tissue as well as counter immune suppression. These results point to the broader applicability of our approach towards drug-discovery, and potential for further investigation of our lead molecule as reversible gene therapy to treat adverse health outcomes induced by radiation exposure.
Collapse
Affiliation(s)
- Colleen M Courtney
- Colorado Technology Center, Sachi Bioworks, 685 S Arthur Avenue, Louisville, CO 80027 United States
| | - Sadhana Sharma
- Colorado Technology Center, Sachi Bioworks, 685 S Arthur Avenue, Louisville, CO 80027 United States
| | - Christina Fallgren
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Michael M Weil
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Anushree Chatterjee
- Colorado Technology Center, Sachi Bioworks, 685 S Arthur Avenue, Louisville, CO 80027 United States
| | - Prashant Nagpal
- Colorado Technology Center, Sachi Bioworks, 685 S Arthur Avenue, Louisville, CO 80027 United States.
| |
Collapse
|
7
|
Balagopal S, Sasaki K, Kaur P, Nikolaidi M, Ishihara J. Emerging approaches for preventing cytokine release syndrome in CAR-T cell therapy. J Mater Chem B 2022; 10:7491-7511. [PMID: 35912720 PMCID: PMC9518648 DOI: 10.1039/d2tb00592a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated remarkable anti-tumor efficacy against hematological malignancies, such as leukemia and lymphoma. However, patients treated with CAR-T cells frequently experience cytokine release syndrome (CRS), one of the most life-threatening adverse events of the therapy induced by systemic concentrations of pro-inflammatory cytokines throughout the body. Immunosuppressants such as tocilizumab are currently administered to treat the onset and progression of CRS symptoms. In order to reduce the risk of CRS, newly designed next-generation CAR-T treatments are being developed for both hematopoietic malignancies and solid tumors. In this review, we discuss six classes of interesting approaches that control cytokine production of CAR-T cell therapy: adaptor-based strategies, orthogonal cytokine-receptor pairs, regulation of macrophage cytokine activity, autonomous neutralization of key cytokines, kill switches and methods of reversible suppression of CARs. With these strategies, future CAR-T cell therapies will be designed to preemptively inhibit CRS, minimize the patients' suffering, and maximize the number of benefiting patients.
Collapse
Affiliation(s)
- Srinivas Balagopal
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Koichi Sasaki
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Pooja Kaur
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Maria Nikolaidi
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
8
|
Castro C, Oyamada HAA, Cafasso MOSD, Lopes LM, Monteiro C, Sacramento PM, Alves-Leon SV, da Fontoura Galvão G, Hygino J, de Souza JPBM, Bento CAM. Elevated proportion of TLR2- and TLR4-expressing Th17-like cells and activated memory B cells was associated with clinical activity of cerebral cavernous malformations. J Neuroinflammation 2022; 19:28. [PMID: 35109870 PMCID: PMC8808981 DOI: 10.1186/s12974-022-02385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent evidences have suggested the involvement of toll-like receptor (TLR)-4 in the pathogenesis of cerebral cavernous malformations (CCM). Elevated frequency of TLR+T-cells has been associated with neurological inflammatory disorders. As T-cells and B-cells are found in CCM lesions, the objective of the present study was to evaluate the cytokine profile of T-cells expressing TLR2 and TLR4, as well as B-cell subsets, in asymptomatic (CCMAsympt) and symptomatic (CCMSympt) patients. METHODS For our study, the cytokine profile from TLR2+ and TLR4+ T-cell and B-cell subsets in CCMAsympt and CCMSympt patients was investigated using flow cytometry and ELISA. T-cells were stimulated in vitro with anti-CD3/anti-CD28 beads or TLR2 (Pam3C) and TLR4 (LPS) ligands. RESULTS CCMSymptc patients presented a higher frequency of TLR4+(CD4+ and CD8+) T-cells and greater density of TLR4 expression on these cells. With regard to the cytokine profile, the percentage of TLR2+ and TLR4+ Th17 cells was higher in CCMSympt patients. In addition, an elevated proportion of TLR4+ Tc-1 cells, as well as Tc-17 and Th17.1 cells expressing TLR2 and TLR4, was observed in the symptomatic patients. By contrast, the percentage of TLR4+ IL-10+CD4+ T cells was higher in the CCMAsympt group. Both Pam3C and LPS were more able to elevate the frequency of IL-6+CD4+T cells and Th17.1 cells in CCMSympt cell cultures. Furthermore, in comparison with asymptomatic patients, purified T-cells from the CCMSympt group released higher levels of Th17-related cytokines in response to Pam3C and, mainly, LPS, as well as after activation via TCR/CD28. Concerning the B-cell subsets, a higher frequency of memory and memory activated B-cells was observed in CCMSympt patients. CONCLUSIONS Our findings reveal an increase in circulating Th17/Tc-17 cell subsets expressing functional TLR2 and, mainly, TLR4 molecules, associated with an increase in memory B-cell subsets in CCM patients with clinical activity of the disease.
Collapse
Affiliation(s)
- Camilla Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo A A Oyamada
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Octávio S D Cafasso
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
| | - Lana M Lopes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M Sacramento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Translational Neuroscience Laboratory (LabNet), University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo da Fontoura Galvão
- Service of Neurosurgery, University Hospital of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joana Hygino
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Paes Barreto Marcondes de Souza
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Service of Neurosurgery, University Hospital of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Post-Graduate Program of Surgical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil.
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Pignataro G, Cataldi M, Taglialatela M. Neurological risks and benefits of cytokine-based treatments in coronavirus disease 2019: from preclinical to clinical evidence. Br J Pharmacol 2021; 179:2149-2174. [PMID: 33512003 DOI: 10.1111/bph.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Immunodeficiency and hyperinflammation are responsible for the most frequent and life-threatening forms of coronavirus disease 2019 (COVID-19). Therefore, cytokine-based treatments targeting immuno-inflammatory mechanisms are currently undergoing clinical scrutiny in COVID-19-affected patients. In addition, COVID-19 patients also exhibit a wide range of neurological manifestations (neuro-COVID), which may also benefit from cytokine-based treatments. In fact, such drugs have shown some clinical efficacy also in neuroinflammatory diseases. On the other hand, anti-cytokine drugs are endowed with significant neurological risks, mainly attributable to their immunodepressant effects. Therefore, the aim of the present manuscript is to briefly describe the role of specific cytokines in neuroinflammation, to summarize the efficacy in preclinical models of neuroinflammatory diseases of drugs targeting these cytokines and to review the clinical data regarding the neurological effects of these drugs currently being investigated against COVID-19, in order to raise awareness about their potentially beneficial and/or detrimental neurological consequences.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
Gutiérrez-Miranda B, Gallardo I, Melliou E, Cabero I, Álvarez Y, Magiatis P, Hernández M, Nieto ML. Oleacein Attenuates the Pathogenesis of Experimental Autoimmune Encephalomyelitis through Both Antioxidant and Anti-Inflammatory Effects. Antioxidants (Basel) 2020; 9:antiox9111161. [PMID: 33233421 PMCID: PMC7700216 DOI: 10.3390/antiox9111161] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and proinflammatory cytokines are factors affecting multiple sclerosis (MS) disease progression. Oleacein (OLE), an olive secoiridoid, possesses powerful antioxidant and anti-inflammatory activities, which suggests its potential application to treat neuroinflammatory disorders. Herein, we investigated the impact of OLE on the main clinic-pathological features of experimental autoimmune encephalomyelitis (EAE), an animal model for MS, including paralysis, demyelination, central nervous system (CNS) inflammation/oxidative stress and blood-brain barrier (BBB) breakdown. METHODS Mice were immunized with the myelin oligodendrocyte glycoprotein peptide, MOG35-55, to induce EAE, and OLE was administrated from immunization day. Serum, optic nerve, spinal cord and cerebellum were collected to evaluate immunomodulatory activities at a systemic level, as well as within the CNS. Additionally, BV2 microglia and the retinal ganglion cell line RGC-5 were used to confirm the direct effect of OLE on CNS-resident cells. RESULTS We show that OLE treatment effectively reduced clinical score and histological signs typical of EAE. Histological evaluation confirmed a decrease in leukocyte infiltration, demyelination, BBB disruption and superoxide anion accumulation in CNS tissues of OLE-treated EAE mice compared to untreated ones. OLE significantly decreased expression of proinflammatory cytokines (IL-13, TNFα, GM-CSF, MCP-1 and IL-1β), while it increased the anti-inflammatory cytokine IL-10. Serum levels of anti-MOG35-55 antibodies were also lower in OLE-treated EAE mice. Further, OLE significantly diminished the presence of oxidative system parameters, while upregulated the ROS disruptor, Sestrin-3. Mechanistically, OLE prevented NLRP3 expression, phosphorylation of p65-NF-κB and reduced the synthesis of proinflammatory mediators induced by relevant inflammatory stimuli in BV2 cells. OLE did not affect viability or the phagocytic capabilities of BV2 microglia. In addition, apoptosis of RGC-5 induced by oxidative stressors was also prevented by OLE. CONCLUSION Altogether, our results show that the antioxidant and anti-inflammatory OLE has neuroprotective effects in the CNS of EAE mice, pointing out this natural product as a candidate to consider for research on MS treatments.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Miranda
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Isabel Cabero
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Yolanda Álvarez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Marita Hernández
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47001 Valladolid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Correspondence: ; Tel.: +34-983-1848-36; Fax: +34-983-1848-00
| |
Collapse
|
11
|
The many-sided contributions of NF-κB to T-cell biology in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:245-300. [PMID: 34074496 DOI: 10.1016/bs.ircmb.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cells (or T lymphocytes) exhibit a myriad of functions in immune responses, ranging from pathogen clearance to autoimmunity, cancer and even non-lymphoid tissue homeostasis. Therefore, deciphering the molecular mechanisms orchestrating their specification, function and gene expression pattern is critical not only for our comprehension of fundamental biology, but also for the discovery of novel therapeutic targets. Among the master regulators of T-cell identity, the functions of the NF-κB family of transcription factors have been under scrutiny for several decades. However, a more precise understanding of their pleiotropic functions is only just emerging. In this review we will provide a global overview of the roles of NF-κB in the different flavors of mature T cells. We aim at highlighting the complex and sometimes diverging roles of the five NF-κB subunits in health and disease.
Collapse
|
12
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
14
|
Aharoni R, Eilam R, Schottlender N, Radomir L, Leistner-Segal S, Feferman T, Hirsch D, Sela M, Arnon R. Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. J Neuroimmunol 2020; 345:577281. [DOI: 10.1016/j.jneuroim.2020.577281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
|
15
|
Manngo PM, Gutschmidt A, Snyders CI, Mutavhatsindi H, Manyelo CM, Makhoba NS, Ahlers P, Hiemstra A, Stanley K, McAnda S, Kidd M, Malherbe ST, Walzl G, Chegou NN. Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. J Infect 2019; 79:228-235. [PMID: 31319143 DOI: 10.1016/j.jinf.2019.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is an urgent need for new tools for the diagnosis of TB. We evaluated the usefulness recently described host biomarkers in supernatants from the newest generation of the QuantiFERON test (QuantiFERON Plus) as tools for the diagnosis of active TB. METHODS We recruited individuals presenting at primary health care clinics in Cape Town, South Africa with symptoms requiring investigation for TB disease, prior to the establishment of a clinical diagnosis. Participants were later classified as TB or other respiratory diseases (ORD) based on the results of clinical and laboratory tests. Using a multiplex platform, we evaluated the concentrations of 37 host biomarkers in QuantiFERON Plus supernatants from study participants as tools for the diagnosis of TB. RESULTS Out of 120 study participants, 35(29.2%) were diagnosed with active TB, 69(57.5%) with ORD whereas 16(13.3%) were excluded. 14(11.6%) of the study participants were HIV infected. Although individual host markers showed potential as diagnostic candidates, the main finding of the study was the identification of a six-marker biosignature in unstimulated supernatants (Apo-ACIII, CXCL1, CXCL9, CCL8, CCL-1, CD56) which diagnosed TB with sensitivity and specificity of 73.9%(95% CI; 51.6-87.8) and 87.6%(95% CI; 77.2-94.5), respectively, after leave-one-out cross validation. Combinations between TB-antigen specific biomarkers also showed potential (sensitivity of 77.3% and specificity of 69.2%, respectively), with multiple biomarkers being significantly different between TB patients, Quantiferon Plus Positive and Quantiferon Plus negative individuals with ORD, regardless of HIV status. CONCLUSIONS Biomarkers detected in QuantiFERON Plus supernatants may contribute to adjunctive diagnosis of TB.
Collapse
Affiliation(s)
- Portia M Manngo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andrea Gutschmidt
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Candice I Snyders
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Hygon Mutavhatsindi
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Charles M Manyelo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Nonjabulo S Makhoba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Petri Ahlers
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andriette Hiemstra
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Kim Stanley
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Shirley McAnda
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Novel N Chegou
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
16
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|