1
|
Palmieri C, Moscara L, Tafuri S, Stefanizzi P. Policies for the immunization against serogroup B meningococcus for adolescents immunized during the first two years of life: A mini review. Hum Vaccin Immunother 2024; 20:2396220. [PMID: 39263919 PMCID: PMC11404578 DOI: 10.1080/21645515.2024.2396220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Two vaccines are available to prevent serogroup B meningococcal disease, i.e. the four-component meningococcal serogroup B vaccine (4CMenB) and the bivalent-factor-H-binding-protein meningococcal serogroup B vaccine (MenB-fHbp). Currently, 4CMenB is offered as part of routine infant immunization schedules. Available immunogenicity data showed a progressive decline in protective serum bactericidal antibodies (SBA) titers, with a re-enhancement following a booster dose during infancy. Responses did not seem to be long-lasting and vaccinated individuals might be at risk of meningococcal diseases duriṇg adolescence. Only one study evaluated the possibility to administer a single booster dose to immunocompetent adolescents who received a primary series during infancy. Despite a high proportion of enrollees achieving protective SBA levels 28 days post-booster, titers tended to decrease 1 year after. Immunocompetent adolescents who received a primary series and a booster during the first two years of life might rather benefit from re-vaccination against MenB; current evidence does not support the possibility of a booster.
Collapse
Affiliation(s)
- Claudia Palmieri
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Lorenza Moscara
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Silvio Tafuri
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, Hygiene Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03702-7. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
3
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
4
|
Bitto NJ, Kaparakis-Liaskos M. Methods of Bacterial Membrane Vesicle Production, Purification, Quantification, and Examination of Their Immunogenic Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2523:43-61. [PMID: 35759190 DOI: 10.1007/978-1-0716-2449-4_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bacterial membrane vesicles (BMVs) released by Gram-negative and Gram-positive bacteria are a bona fide secretion system that enable the dissemination of bacterial effector molecules, and can trigger a range of responses in the host. The study of BMV production, composition, and functions can give insights into their roles in mediating bacterial survival, pathogenesis, and disease. Furthermore, BMVs can be harnessed to develop cutting-edge nano-therapeutics including targeted chemotherapy delivery, antimicrobials, and novel vaccines. Here we describe routine methods that can be used for small- or large-scale production, isolation, and purification of outer membrane vesicles produced by Gram-negative bacteria, and membrane vesicles produced by Gram-positive bacteria, which we collectively refer to as BMVs. We discuss methods that can be used to visualize BMVs by electron microscopy, and to quantify their DNA, RNA, and protein cargo. We outline a method for the fluorescent labeling of BMVs that can be applied to examine their ability to interact with and enter host cells using a range of in vitro and in vivo biological assays. Finally, we provide a cell culture-based method that can be used to examine a range of immunogenic properties of BMVs, including their cytotoxicity, ability to activate pathogen-recognition receptors (PRRs), induce autophagy and cytokine responses, and modulate cellular pathways.
Collapse
Affiliation(s)
- Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia. .,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
6
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Jiang L, Luirink J, Kooijmans SAA, van Kessel KPM, Jong W, van Essen M, Seinen CW, de Maat S, de Jong OG, Gitz-François JFF, Hennink WE, Vader P, Schiffelers RM. A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochim Biophys Acta Gen Subj 2020; 1865:129763. [PMID: 33065252 DOI: 10.1016/j.bbagen.2020.129763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are nanoparticles which are released by cells from all three domains of life: Archaea, Bacteria and Eukarya. They can mediate cell-cell communication by transferring cargoes such as proteins and nucleic acids between cells. EVs receive great interest in both academia and industry as they have the potential to be natural drug carriers or vaccine candidates. However, limitations to their clinical translation exist as efficient isolation, loading, labelling and surface-engineering methods are lacking. In this article, we investigate a 'post-insertion' approach, which is commonly used in the functionalization of liposomes in the pharmaceutical field, on two different EV types: mammalian cell-derived EVs and bacteria-derived EVs. We aimed to find an easy and flexible approach to functionalize EVs, thereby improving the labelling, isolation, and surface-engineering.
Collapse
Affiliation(s)
- Linglei Jiang
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands; Abera Bioscience AB, Solna, Sweden
| | - Sander A A Kooijmans
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | - Max van Essen
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Cor W Seinen
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Steven de Maat
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Olivier G de Jong
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jerney F F Gitz-François
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands
| | - Wim E Hennink
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int J Mol Sci 2020; 21:ijms21186859. [PMID: 32962107 PMCID: PMC7555813 DOI: 10.3390/ijms21186859] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.
Collapse
|
9
|
Khosravi M, Mirsamadi ES, Mirjalali H, Zali MR. Isolation and Functions of Extracellular Vesicles Derived from Parasites: The Promise of a New Era in Immunotherapy, Vaccination, and Diagnosis. Int J Nanomedicine 2020; 15:2957-2969. [PMID: 32425527 PMCID: PMC7196212 DOI: 10.2147/ijn.s250993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Experimental and epidemiological evidence shows that parasites, particularly helminths, play a central role in balancing the host immunity. It was demonstrated that parasites can modulate immune responses via their excretory/secretory (ES) and some specific proteins. Extracellular vesicles (EVs) are nano-scale particles that are released from eukaryotic and prokaryotic cells. EVs in parasitological studies have been mostly employed for immunotherapy of autoimmune diseases, vaccination, and diagnosis. EVs can carry virulence factors and play a central role in the development of parasites in host cells. These molecules can manipulate the immune responses through transcriptional changes. Moreover, EVs derived from helminths modulate the immune system via provoking anti-inflammatory cytokines. On the other hand, EVs from parasite protozoa can induce efficient immunity, that makes them useful for probable next-generation vaccines. In addition, it seems that EVs from parasites may provide new diagnostic approaches for parasitic infections. In the current study, we reviewed isolation methods, functions, and applications of parasite's EVs in immunotherapy, vaccination, and diagnosis.
Collapse
Affiliation(s)
- Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Safety and tolerability of Meningococcus B vaccine in patients with chronical medical conditions (CMC). Ital J Pediatr 2019; 45:133. [PMID: 31666107 PMCID: PMC6822447 DOI: 10.1186/s13052-019-0730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive meningococcal disease is a serious global health threat in the world; in 2016, the European Centre for Disease Control and Prevention reported 3280 confirmed cases (including 304 deaths) of Invasive Meningococcal Diseases in Europe. In Italy, in 2017 were reported 200 cases 41% of which due to menB serogroup. From January 2013 the European Medicines Agency (EMA) has authorized the marketing of the meningococcal B vaccine 4CMenB. METHODS The study aimed to evaluate and complement the safety profile of 4CMenB in high risk children accessing the vaccine service of the Bambino Gesù Children's Hospital. All individuals aged six weeks or more receiving the meningococcal 4CMenB (Bexsero®) vaccine that approached the vaccine Centre at the Bambino Gesù Children's Hospital in Rome, were asked to participate. All parents or caregivers of vaccinated individuals in the study period, were recruited and requested to answer to a questionnaire on adverse events following immunization (AEFI) observed after 7 days, starting from the date of vaccination. RESULTS During the study period (October 2016-October 2017), we collected 157 completed questionnaires (out of 200 distributed). Of those 132 were first doses and 25 were booster administered doses. The median age of the study population was 4.5 years (range 0.29 to 26.8 years), the majority of subjects were high-risk individuals (64%) with chronic health conditions. Overall, 311 adverse events were reported in the 7 days after vaccine administration. In particular 147 events (47%) after administration of first dose and 58 (19%) after the booster doses. A large majority of those events, were of little clinical importance and concentrated in the 24 h after vaccine administration. No hospitalizations or Emergency Department access were reported. CONCLUSIONS Results of our study demonstrated that the Bexsero® vaccine is almost well tolerated, with a low incidence of severe AEFIs. Our results also shown that the occurrence of AEFIs is similar within healthy and high risk children.
Collapse
|
11
|
Rivero-Calle I, Raguindin PF, Gómez-Rial J, Rodriguez-Tenreiro C, Martinón-Torres F. Meningococcal Group B Vaccine For The Prevention Of Invasive Meningococcal Disease Caused By Neisseria meningitidis Serogroup B. Infect Drug Resist 2019; 12:3169-3188. [PMID: 31632103 PMCID: PMC6793463 DOI: 10.2147/idr.s159952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a major public health concern because of its high case fatality, long-term morbidity, and potential to course with outbreaks. IMD caused by Nesseira meningitidis serogroup B has been predominant in different regions of the world like Europe and only recently broadly protective vaccines against B serogroup have become available. Two protein-based vaccines, namely 4CMenB (Bexsero®) and rLP2086 (Trumenba®) are currently licensed for use in different countries against MenB disease. These vaccines came from a novel technology on vaccine design (or antigen selection) using highly specific antigen targets identified through whole-genome sequence analysis. Moreover, it has the potential to confer protection against non-B meningococcus and against other Neisserial species such as gonococcus. Real-world data on the vaccine-use are rapidly accumulating from the UK and other countries which used the vaccine for control of outbreak or as part of routine immunization program, reiterating its safety and efficacy. Additional data on real-life effectiveness, long-term immunity, and eventual herd effects, including estimates on vaccine impact for cost-effectiveness assessment are further needed. Given the predominance of MenB in Europe and other parts of the world, these new vaccines are crucial for the prevention and public health control of the disease, and should be considered.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Peter Francis Raguindin
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| |
Collapse
|
12
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
13
|
Awareness, Attitudes, and Practices Toward Meningococcal B Vaccine among Pediatricians in Italy. ACTA ACUST UNITED AC 2018; 54:medicina54060100. [PMID: 30513993 PMCID: PMC6306744 DOI: 10.3390/medicina54060100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023]
Abstract
Background and objectives: Vaccination against bacterial pathogens is decisive for preventing invasive meningococcal disease and pediatricians play a pivotal role in vaccination compliance and coverage. The aim of this study was to investigate awareness, attitude, and practices toward the vaccine against Meningococcal B serogroup (4CMenB) among a sample of Italian pediatricians. Materials and Methods: A cross-sectional study was carried out using an online questionnaire from March to May 2015. Three multivariate logistic regression models were built to identify factors associated with the outcomes of interest. Results: The data showed that 95.5% of the interviewees correctly responded about the availability of 4CMenB vaccine in Italy, while only 28.0% knew the vaccination schedule for children aged two years or under. This knowledge was significantly higher in younger pediatricians and in those who worked a higher number of hours per week. Pediatricians self-reported a positive attitude toward the utility and safety of 4CMenB vaccine. Those pediatricians with a strong positive attitude toward the utility of the vaccine, who knew the vaccination schedules for children of two years or under, and who declared a satisfactory or good knowledge about the vaccine were more likely to inform parents about its availability in Italy, recommend the vaccination, and verify patients’ vaccination status, in their daily practice. Conclusions: The study highlights factors that currently influence pediatricians’ practices regarding the 4CMenB vaccine. The results showed the possible actions recommended to improve physicians’ awareness and behaviors in order to improve the vaccination compliance and invasive meningococcal diseases prevention.
Collapse
|
14
|
Abstract
The majority of invasive meningococcal disease (IMD) in the developed world is caused by capsular group B Neisseria meningitidis, however success with vaccination against organisms bearing this capsule has previously been restricted to control of geographically limited clonal outbreaks. As we enter a new era, with the first routine program underway to control endemic group B meningococcal disease for infants in the UK, it is timely to review the key landmarks in group B vaccine development, and discuss the issues determining whether control of endemic group B disease will be achieved. Evidence of a reduction in carriage acquisition of invasive group B meningococcal strains, after vaccination among adolescents, is imperative if routine immunization is to drive population control of disease beyond those who are vaccinated (i.e. through herd immunity). The need for multiple doses to generate a sufficiently protective response and reactogenicity remain significant problems with the new generation of vaccines. Despite these limitations, early data from the UK indicate that new group B meningococcal vaccines have the potential to have a major impact on meningococcal disease, and to provide new insight into how we might do better in the future.
Collapse
Affiliation(s)
- N Y Wang
- a School of Medicine , Monash University , Melbourne , Australia.,b Department of Paediatrics , Oxford Vaccine Group , Oxford , UK
| | - A J Pollard
- b Department of Paediatrics , Oxford Vaccine Group , Oxford , UK.,c NIHR Oxford Biomedical Research Centre, University of Oxford , Oxford , UK
| |
Collapse
|
15
|
Shi F, Zhang A, Zhu B, Gao Y, Xu L, Li Y, Yin Z, Li J, Xie N, Shao Z. Prevalence of factor H Binding Protein sub-variants among Neisseria meningitidis in China. Vaccine 2017; 35:2343-2350. [PMID: 28351732 DOI: 10.1016/j.vaccine.2017.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To study the prevalence of the fHbp genes in Neisseria meningitidis (N. meningitidis) isolates for further evaluation and development of serogroup B meningococcal vaccines in China. METHODS A panel of 1012 N. meningitidis strains was selected from the national culture collection from 1956 to 2016, according to the years of isolation, locations, and strain sources. These were tested by FHbp variant typing. Multi-locus sequence typing (MLST) was performed on 822 of these samples, including 242 strains from clinical strains and 580 carrier-derived strains. Analysis based on sequence types, serogroups, and FHbp variations were used to summarize the prevalence and characteristics of N. meningitidis. RESULTS There were 8 serogroups of N. meningitidis as well as a collection of nongroupable strains in this study. 1008 of 1012 N. meningitidis strains tested were positive for the fHbp gene. Serogroup A N. meningitidis (MenA) strains belonging to ST-1 and ST-5 clonal complexes harbored genes only encoding variant 1 (v1) FHbp. All MenW strains encoded v2 FHbp. 61.9% of clinical MenB strains were positive for v2 FHbp vs. 32.1% that were positive for v1. Among fHbp-positive carrier-derived MenB strains, v2 FHbp accounted for 90.8%. 79.7% of clinical MenC strains were positive for v1 FHbp and 20.3% were positive for v2 FHbp. Among carrier-derived MenC strains, v2 FHbp predominated. The number of major serogroups of N. meningitidis analyzed by MLST was 822, and the encoded FHbp showed CC- or ST-specific characteristics. CONCLUSION fHbp genes were detected in almost all N. meningitidis strains in this study. Therefore, it is possible that a vaccine against MenB or meningococci irrespective of serogroups, which includes FHbp, could be developed. Meningococcal vaccine development for China is a complex issue and these findings warrant further attention with respect to vaccine development.
Collapse
Affiliation(s)
- Fenglin Shi
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Aiyu Zhang
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yixing Li
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zundong Yin
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Junhong Li
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Na Xie
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China; Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Alashkar F, Vance C, Herich-Terhürne D, Preising N, Dührsen U, Röth A. Serologic response to meningococcal vaccination in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with the terminal complement inhibitor eculizumab. Ann Hematol 2017; 96:589-596. [DOI: 10.1007/s00277-017-2924-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
|
17
|
Abstract
Neisseria meningitidis, a devastating pathogen exclusive to humans, expresses capsular polysaccharides that are the major meningococcal virulence determinants and the basis for successful meningococcal vaccines. With rare exceptions, the expression of capsule (serogroups A, B, C, W, X, Y) is required for systemic invasive meningococcal disease. Changes in capsule expression or structure (e.g. hypo- or hyper-encapsulation, capsule "switching", acetylation) can influence immunologic diagnostic assays or lead to immune escape. The loss or down-regulation of capsule is also critical in meningococcal biology facilitating meningococcal attachment, microcolony formation and the carriage state at human mucosal surfaces. Encapsulated meningococci contain a cps locus with promoters located in an intergenic region between the biosynthesis and the conserved capsule transport operons. The cps intergenic region is transcriptionally regulated (and thus the amount of capsule expressed) by IS element insertion, by a two-component system, MisR/MisS and through sequence changes that result in post-transcriptional RNA thermoregulation. Reversible on-off phase variation of capsule expression is controlled by slipped strand mispairing of homo-polymeric tracts and by precise insertion and excision of IS elements (e.g. IS1301) in the biosynthesis operon. Capsule structure can be altered by phase-variable expression of capsular polymer modification enzymes or "switched" through transformation and homologous recombination of different polymerases. Understanding the complex regulation of meningococcal capsule has important implications for meningococcal biology, pathogenesis, diagnostics, current and future vaccine development and vaccine strategies.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - Jennifer Thomas
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - David S Stephens
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| |
Collapse
|
18
|
Godlewska R, Kuczkowski M, Wyszyńska A, Klim J, Derlatka K, Woźniak-Biel A, Jagusztyn-Krynicka EK. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs. Appl Microbiol Biotechnol 2016; 100:8855-64. [PMID: 27383607 PMCID: PMC5035662 DOI: 10.1007/s00253-016-7699-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 01/08/2023]
Abstract
Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Joanna Klim
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Katarzyna Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
19
|
Piccini G, Torelli A, Gianchecchi E, Piccirella S, Montomoli E. FightingNeisseria meningitidis: past and current vaccination strategies. Expert Rev Vaccines 2016; 15:1393-1407. [DOI: 10.1080/14760584.2016.1187068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Fais S, O'Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, Carvalho J, Cordeiro da Silva A, Del Portillo H, El Andaloussi S, Ficko Trček T, Furlan R, Hendrix A, Gursel I, Kralj-Iglic V, Kaeffer B, Kosanovic M, Lekka ME, Lipps G, Logozzi M, Marcilla A, Sammar M, Llorente A, Nazarenko I, Oliveira C, Pocsfalvi G, Rajendran L, Raposo G, Rohde E, Siljander P, van Niel G, Vasconcelos MH, Yáñez-Mó M, Yliperttula ML, Zarovni N, Zavec AB, Giebel B. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS NANO 2016; 10:3886-99. [PMID: 26978483 DOI: 10.1021/acsnano.5b08015] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.
Collapse
Affiliation(s)
- Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2, Ireland
| | - Francesc E Borras
- IVECAT-Group, Germans Trias i Pujol Research Institute (IGTP), and Nephrology Service, Germans Trias i Pujol University Hospital , Campus Can Ruti, 08916 Badalona, Spain
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , 1085 Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin , 8 Turin, Italy
| | - Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo , and Euro-Mediterranean Institute of Science and Technology, 90133 Palermo, Italy
| | | | - Anabela Cordeiro da Silva
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
- Institute for Molecular and Cell Biology , Rua Campo Alegre, 4150-180 Porto, Portugal
| | - Hernando Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic de Universitat de Barcelona , 08036 Barcelona, Spain
- ICREA at Institut d'Investigació Germans Trias i Pujol (IGTP) , 08916 Badalona, Spain
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet , 17177 Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford OX13QX, United Kingdom
| | - Tanja Ficko Trček
- Sandoz Biopharmaceuticals-Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital , 9000 Gent, Belgium
| | - Ihsan Gursel
- Science Faculty, Molecular Biology and Genetics Department, THORLAB- Therapeutic Oligonucleotide Research Lab, Bilkent University , 06800 Bilkent, Turkey
| | - Veronika Kralj-Iglic
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana , 1000 Ljubljana, Slovenia
| | | | - Maja Kosanovic
- Department of Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy, INEP, Univeristy of Belgrade , 11000 Belgrade, Serbia
| | - Marilena E Lekka
- Chemistry Department, University of Ioannina , 45110 Ioannina, Greece
| | - Georg Lipps
- University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Mariantonia Logozzi
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | | | - Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel 2161002, Israel
| | - Alicia Llorente
- Dept. of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital , 0379 Oslo, Norway
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control, Medical Center University of Freiburg , 79106 Freiburg am Breisgau, Germany
| | - Carla Oliveira
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto , 4200-319 Porto, Portugal
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, University of Zurich , 8006 Zurich, Switzerland
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU) , 5020 Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), 5020 Salzburg, Austria
| | | | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - M Helena Vasconcelos
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Sta Cristina, IIS-IP, Departamento Biología Molecular/CBM-SO, UAM, 28009 Madrid, Spain
| | | | | | - Apolonija Bedina Zavec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen , 45147 Essen, Germany
| |
Collapse
|
21
|
Eton V, Tsang RSW, Ulanova M. Paediatric meningococcaemia in northwestern Ontario, Canada: a case for publicly funded meningococcal B vaccination. JMM Case Rep 2016; 3:e005017. [PMID: 28348748 PMCID: PMC5343130 DOI: 10.1099/jmmcr.0.005017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Neisseria meningitidis serogroup B is an important infectious agent in developed countries, including Canada. Infants are particularly susceptible to infection with serogroup B because of immature immune systems, pathogen virulence factors and changing serogroup dynamics in the post-vaccination era. Currently, the Ontario provincial government does not include serogroup B in its routine publicly funded meningococcal vaccination program. CASE PRESENTATION A formerly well 14-month-old male presented to a tertiary hospital emergency department with fever, minor respiratory problems, diffuse purpuric rash, distended abdomen, tachycardia, and history of one episode of vomiting and melena each. Meningococcaemia was immediately suspected, and he was treated with ceftriaxone, cefotaxime and vancomycin before transfer to a different acute care facility within 12 h. N. meningitidis serogroup B, sensitive to ceftriaxone and penicillin, was identified in his blood. The patient developed gangrene of the lower legs and underwent bilateral below-knee amputation 8 days post-admission. CONCLUSION This instance of meningococcaemia with extensive sequelae is an example of the various serious outcomes of meningococcal infection. It provides persuasive reason for routine publicly funded vaccination against N. meningitidis serogroup B in Ontario.
Collapse
Affiliation(s)
- Vic Eton
- Northern Ontario School of Medicine , Thunder Bay, Ontario , Canada
| | - Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory , Winnipeg, Manitoba , Canada
| | - Marina Ulanova
- Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada; Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
22
|
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [PMID: 26725829 PMCID: PMC4698466 DOI: 10.3402/jev.v4.30087] [Citation(s) in RCA: 1004] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Collapse
Affiliation(s)
- Thomas Lener
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US23 Inserm, Villejuif, France
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
| | - Devasis Chatterjee
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Felipe A Court
- Department of Physiology, Faculty of Biology, Pontificia-Universidad Católica de Chile, Santiago, Chile
| | - Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Juan M Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ursula Felderhoff-Mueser
- Department of Paediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris W Kramer
- Experimental Perinatology/Neonatology, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - Sandra Laner-Plamberger
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Saara Laitinen
- Research and Cell Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tommaso Leonardi
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magdalena J Lorenowicz
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casey A Maguire
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Marcilla
- Dpto. Biología Celular y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shona Pedersen
- Centre for Cardiovascular Research, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Quesenberry
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilona G Reischl
- BASG - Bundesamt für Sicherheit im Gesundheitswesen - Federal Office for Safety in Health Care, AGES - Agentur für Gesundheit und Ernährungssicherheit - Austrian Agency for Health and Food Safety, Institut Überwachung - Institute Surveillance, Wien, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Ralf Sanzenbacher, Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ineke Slaper-Cortenbach
- Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clotilde Théry
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
- INSERM U932, Institut Curie, Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria;
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| |
Collapse
|
23
|
Perez-Casal J, Prysliak T, Maina T, Wang Y, Townsend H, Berverov E, Nkando I, Wesonga H, Liljander A, Jores J, Naessens J, Gerdts V, Potter A. Analysis of immune responses to recombinant proteins from strains of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia. Vet Immunol Immunopathol 2015; 168:103-10. [PMID: 26384697 DOI: 10.1016/j.vetimm.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Current contagious bovine pleuropneumonia (CBPP) vaccines are based on live-attenuated strains of Mycoplasma mycoides subsp. mycoides (Mmm). These vaccines have shortcomings in terms of efficacy, duration of immunity and in some cases show severe side effects at the inoculation site; hence the need to develop new vaccines to combat the disease. Reverse vaccinology approaches were used and identified 66 candidate Mycoplasma proteins using available Mmm genome data. These proteins were ranked by their ability to be recognized by serum from CBPP-positive cattle and thereafter used to inoculate naïve cattle. We report here the inoculation of cattle with recombinant proteins and the subsequent humoral and T-cell-mediated immune responses to these proteins and conclude that a subset of these proteins are candidate molecules for recombinant protein-based subunit vaccines for CBPP control.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada.
| | - Tracy Prysliak
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Teresa Maina
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Yejun Wang
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Hugh Townsend
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Emil Berverov
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Isabel Nkando
- Kenya Agricultural and Livestock Research Organisation (KALRO), Kaptagat Rd, Loresho, P.O. Box 57811, Nairobi, Kenya
| | - Hezron Wesonga
- Kenya Agricultural and Livestock Research Organisation (KALRO), Kaptagat Rd, Loresho, P.O. Box 57811, Nairobi, Kenya
| | - Anne Liljander
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Joerg Jores
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Jan Naessens
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Volker Gerdts
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| | - Andrew Potter
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
24
|
Leca M, Bornet C, Montana M, Curti C, Vanelle P. Meningococcal vaccines: Current state and future outlook. ACTA ACUST UNITED AC 2015; 63:144-51. [DOI: 10.1016/j.patbio.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
25
|
Abstract
Public health vaccination guidelines cannot be easily transferred to elite athletes. An enhanced benefit from preventing even mild diseases is obvious but stronger interference from otherwise minor side effects has to be considered as well. Thus, special vaccination guidelines for adult elite athletes are required. In most of them, protection should be strived for against tetanus, diphtheria, pertussis, influenza, hepatitis A, hepatitis B, measles, mumps and varicella. When living or traveling to endemic areas, the athletes should be immune against tick-borne encephalitis, yellow fever, Japanese encephalitis, poliomyelitis, typhoid fever, and meningococcal disease. Vaccination against pneumococci and Haemophilus influenzae type b is only relevant in athletes with certain underlying disorders. Rubella and papillomavirus vaccination might be considered after an individual risk–benefit analysis. Other vaccinations such as cholera, rabies, herpes zoster, and Bacille Calmette–Guérin (BCG) cannot be universally recommended for athletes at present. Only for a very few diseases, a determination of antibody titers is reasonable to avoid unnecessary vaccinations or to control efficacy of an individual’s vaccination (especially for measles, mumps, rubella, varicella, hepatitis B and, partly, hepatitis A). Vaccinations should be scheduled in a way that possible side effects are least likely to occur in periods of competition. Typically, vaccinations are well tolerated by elite athletes, and resulting antibody titers are not different from the general population. Side effects might be reduced by an optimal selection of vaccines and an appropriate technique of administration. Very few discipline-specific considerations apply to an athlete’s vaccination schedule mainly from the competition and training pattern as well as from the typical geographical distribution of competitive sites.
Collapse
Affiliation(s)
- Barbara C Gärtner
- Institute for Microbiology and Hygiene, Saarland University, Faculty of Medicine and Medical Center, Building 43, 66421, Homburg/Saar, Germany,
| | | |
Collapse
|
26
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
27
|
Bager RJ, Kudirkiene E, da Piedade I, Seemann T, Nielsen TK, Pors SE, Mattsson AH, Boyce JD, Adler B, Bojesen AM. In silico prediction of Gallibacterium anatis pan-immunogens. Vet Res 2014; 45:80. [PMID: 25223320 PMCID: PMC4423631 DOI: 10.1186/s13567-014-0080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in commercial egg-layers, leading to reduced egg production and increased mortality. Unfortunately, widespread multidrug resistance and antigenic diversity makes it difficult to control infections and novel prevention strategies are urgently needed. In this study, a pan-genomic reverse vaccinology (RV) approach was used to identify potential vaccine candidates. Firstly, the genomes of 10 selected Gallibacterium strains were analyzed and proteins selected on the following criteria; predicted surface-exposure or secretion, none or one transmembrane helix (TMH), and presence in six or more of the 10 genomes. In total, 42 proteins were selected. The genes encoding 27 of these proteins were successfully cloned in Escherichia coli and the proteins expressed and purified. To reduce the number of vaccine candidates for in vivo testing, each of the purified recombinant proteins was screened by ELISA for their ability to elicit a significant serological response with serum from chickens that had been infected with G. anatis. Additionally, an in silico prediction of the protective potential was carried out based on a protein property prediction method. Of the 27 proteins, two novel putative immunogens were identified; Gab_1309 and Gab_2312. Moreover, three previously characterized virulence factors; GtxA, FlfA and Gab_2156, were identified. Thus, by combining the pan-genomic RV approach with subsequent in vitro and in silico screening, we have narrowed down the pan-proteome of G. anatis to five vaccine candidates. Importantly, preliminary immunization trials indicated an in vivo protective potential of GtxA-N, FlfA and Gab_1309.
Collapse
Affiliation(s)
- Ragnhild J Bager
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Isabelle da Piedade
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Tine K Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susanne E Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Andreas H Mattsson
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark. .,Evaxion Biotech North America LLC, Wilmington, USA.
| | - John D Boyce
- Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
28
|
Esposito S, Castellazzi L, Bosco A, Musio A, Stoddard J. Use of a multicomponent, recombinant, meningococcal serogroup B vaccine (4CMenB) for bacterial meningitis prevention. Immunotherapy 2014; 6:395-408. [DOI: 10.2217/imt.14.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developing effective vaccines against Neisseria meningitidis serogroup B has been challenging for several reasons, including the fact that the capsular polysaccharide of N. meningitidis serogroup B is a poor antigen. Therefore, studies have focused on developing vaccines that target capsular protein meningococcal antigens using reverse vaccinology, a technique that predicts likely vaccine candidates using computational analysis of the whole bacterial genome. This has resulted in a multicomponent, recombinant, meningococcal serogroup B vaccine: 4CMenB (Bexsero®, Novartis Vaccines & Diagnostics, NC, USA), containing four main immunogenic components: two recombinant fusion proteins (Neisseria heparin-binding antigen-GNA1030 and factor H-binding protein-GNA2091); recombinant Neisserial adhesion A; and detergent-treated outer membrane vesicles derived from the meningococcal NZ98/254 strain, where porin A 1.4 is the major immunodominant antigen. In this article, we summarize the available clinical data on 4CMenB in healthy infants, adolescents and adults, and discuss the methods available for assessing vaccine efficacy.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Castellazzi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Bosco
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Musio
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
29
|
Rose WE. Meningococcal serogroup B outbreaks and use of 4CMenB vaccine. J Am Pharm Assoc (2003) 2014; 54:198-201. [DOI: 10.1331/japha.2014.14512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Parker MJ, Gomery K, Richard G, MacKenzie CR, Cox AD, Richards JC, Evans SV. Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis†,‡. Glycobiology 2014; 24:442-9. [DOI: 10.1093/glycob/cwu009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|