1
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Torres J, Silva R, Farias G, Sousa Lobo JM, Ferreira DC, Silva AC. Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. Pharmaceutics 2024; 16:1297. [PMID: 39458626 PMCID: PMC11510892 DOI: 10.3390/pharmaceutics16101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT1B/1D receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - José Manuel Sousa Lobo
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos Carvalho Ferreira
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
3
|
Ha WS, Nguyen VK, Chu MK. Epidemiological linkage between migraine and diabetes mellitus: a systematic review and meta-analysis. J Headache Pain 2024; 25:158. [PMID: 39333866 PMCID: PMC11438040 DOI: 10.1186/s10194-024-01868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This study aimed to elucidate the nature and extent of the associations between diabetes mellitus (DM) and migraine through a systematic review and meta-analysis. METHODS We searched the PubMed, Web of Science, and Scopus databases without a specified start date until June 2, 2024. Cross-sectional and cohort studies analyzing the risk of migraine in individuals with DM and vice versa were included. Studies without at least age and sex adjustments were excluded. Data were extracted to calculate odds ratios (ORs) and hazard ratios (HRs). Risk of bias was assessed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS Eight cross-sectional studies (131,361 patients with DM and 1,005,604 patients with migraine) and four cohort studies (103,205 patients with DM patients and 32,197 patients with migraine) were included. Meta-analyses of the cross-sectional studies showed no significant overall association between DM and migraine. Subgroup analyses revealed that type 1 diabetes reduced the odds of having migraine (OR 0.48, 95% confidence interval [CI] 0.30-0.77), while migraine without aura (MO) increased the odds of having DM (OR 1.19, 95% CI 1.02-1.39). The cohort studies indicated that DM decreased the risk of developing migraine (HR 0.83, 95% CI 0.76-0.90), and a history of migraine increased the risk of developing DM (HR 1.09, 95% CI 1.01-1.17). CONCLUSIONS DM, particularly type 1 diabetes, is negatively associated with migraine occurrence, whereas migraine, especially MO, is positively associated with DM occurrence. However, most of the results remained at a low or very low level of evidence, indicating the need for further research.
Collapse
Affiliation(s)
- Woo-Seok Ha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Vinh Khang Nguyen
- Department of Neurology, University Medical Center HCMC, Ho Chi Minh City, Vietnam
| | - Min Kyung Chu
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Neurology, Severance Hospital Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Lee DA, Lee HJ, Kim J, Park KM. Association between patients with migraine and sarcopenia: A retrospective study. Medicine (Baltimore) 2024; 103:e38941. [PMID: 38996151 PMCID: PMC11245205 DOI: 10.1097/md.0000000000038941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, interest in sarcopenia has been increasing in patients with various neurological diseases. Thus, we investigated the presence of sarcopenia in patients with episodic migraine (EM) based on temporal muscle thickness (TMT). This was a retrospectively observational study following STROBE guidelines. We enrolled patients with EM and healthy controls. Both groups underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We calculated the TMT using T1-weighted imaging, which is a marker for sarcopenia. We compared TMT between patients with EM and healthy controls, and analyzed it according to presence of migraine aura. We retrospectively enrolled 82 patients with EM and 53 healthy controls. TMT was not different between patients with EM and healthy controls (10.804 ± 2.045 mm in patients with EM vs 10.721 ± 1.547 mm in healthy controls, P = .801). Furthermore, TMT was not different according to presence of migraine aura in patients with EM (10.994 ± 2.016 mm in patients with migraine aura vs 10.716 ± 2.071 mm in those without, P = .569). There were no correlations between TMT and clinical characteristics in patients with EM, including age, age of onset, duration of migraine, headache intensity, and headache frequency. This study found no statistical difference in TMT between patients with EM and healthy controls or between patients with EM with and without aura. These findings suggest that there is no evidence of sarcopenia in patients with EM.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
5
|
Tanaka M, Tuka B, Vécsei L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells 2024; 13:1098. [PMID: 38994951 PMCID: PMC11240811 DOI: 10.3390/cells13131098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Migraine is a debilitating neurological disorder characterized by recurring episodes of throbbing headaches that are frequently accompanied by sensory disturbances, nausea, and sensitivity to light and sound [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bernadett Tuka
- Department of Radiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Sun M, Rong J, Zhou M, Liu Y, Sun S, Liu L, Cai D, Liang F, Zhao L. Astrocyte-Microglia Crosstalk: A Novel Target for the Treatment of Migraine. Aging Dis 2024; 15:1277-1288. [PMID: 37450927 PMCID: PMC11081170 DOI: 10.14336/ad.2023.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Migraine is a pervasive neurologic disease closely related to neurogenic inflammation. The astrocytes and microglia in the central nervous system are vital in inducing neurogenic inflammation in migraine. Recently, it has been found that there may be a crosstalk phenomenon between microglia and astrocytes, which plays a crucial part in the pathology and treatment of Alzheimer's disease and other central nervous system diseases closely related to inflammation, thus becoming a novel hotspot in neuroimmune research. However, the role of the crosstalk between microglia and astrocytes in the pathogenesis and treatment of migraine is yet to be discussed. Based on the preliminary literature reports, we have reviewed relevant evidence of the crosstalk between microglia and astrocytes in the pathogenesis of migraine and summarized the crosstalk pathways, thereby hoping to provide novel ideas for future research and treatment.
Collapse
Affiliation(s)
- Mingsheng Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengdi Zhou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiqi Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingjun Cai
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Zhao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zhong C, Zhang X, Sun Y, Shen Z, Mao Y, Liu T, Wang R, Nie L, Shavandi A, Yunusov KE, Jiang G. Rizatriptan benzoate-loaded dissolving microneedle patch for management of acute migraine therapy. J Biomater Appl 2024; 38:989-999. [PMID: 38427917 DOI: 10.1177/08853282241237323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In this study, dissolving microneedles (MNs) using polyvinyl alcohol (PVA) and poly (1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VA)) as matrix materials were developed for transdermal delivery of rizatriptan benzoate (RB) for acute migraine treatment. In-vitro permeation studies were conducted to assess the feasibility of the as-fabricated dissolving MNs to release RB. Drug skin penetration were tested by Franz diffusion cells, showing an increase of the transdermal flux compared to passive diffusion due to the as-fabricated dissolving MNs having a sufficient mechanical strength to penetrate the skin and form microchannels. The pharmacological study in vivo showed that RB-loaded dissolving MNs significantly alleviated migraine-related response by up-regulating the level of 5-hydroxytryptamine (5-HT) and down-regulating the levels of calcitonin gene-related peptide (CGRP) and substance P (SP). In conclusion, the RB-loaded dissolving MNs have advantages of safety, convenience, and high efficacy over conventional administrations, laying a foundation for the transdermal drug delivery system treatment for acute migraine.
Collapse
Affiliation(s)
- Chao Zhong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Xiufeng Zhang
- Department of Anorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhong Shen
- Department of Anorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yanan Mao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Amin Shavandi
- École polytechnique de Bruxelles, 3BIO-BioMatter, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| |
Collapse
|
8
|
Spekker E, Fejes-Szabó A, Nagy-Grócz G. Models of Trigeminal Activation: Is There an Animal Model of Migraine? Brain Sci 2024; 14:317. [PMID: 38671969 PMCID: PMC11048078 DOI: 10.3390/brainsci14040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- HUN-REN–SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári Krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
10
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
11
|
Maqoud F, Zizzo N, Attimonelli M, Tinelli A, Passantino G, Antonacci M, Ranieri G, Tricarico D. Immunohistochemical, pharmacovigilance, and omics analyses reveal the involvement of ATP-sensitive K + channel subunits in cancers: role in drug-disease interactions. Front Pharmacol 2023; 14:1115543. [PMID: 37180726 PMCID: PMC10167295 DOI: 10.3389/fphar.2023.1115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background: ATP-sensitive-K+ channels (KATP) are involved in diseases, but their role in cancer is poorly described. Pituitary macroadenoma has been observed in Cantu' syndrome (C.S.), which is associated with the gain-of-function mutations of the ABCC9 and KCNJ8 genes. We tested the role of the ABCC8/Sur1, ABCC9/Sur2A/B, KCNJ11/Kir6.2, and KCNJ8/Kir6.1 genes experimentally in a minoxidil-induced renal tumor in male rats and in the female canine breast cancer, a spontaneous animal model of disease, and in the pharmacovigilance and omics databases. Methods: We performed biopsies from renal tissues of male rats (N = 5) following a sub-chronic high dosing topical administration of minoxidil (0.777-77.7 mg/kg/day) and from breast tissues of female dogs for diagnosis (N = 23) that were analyzed by immunohistochemistry. Pharmacovigilance and omics data were extracted from EudraVigilance and omics databases, respectively. Results: An elevated immunohistochemical reactivity to Sur2A-mAb was detected in the cytosol of the Ki67+/G3 cells other than in the surface membrane in the minoxidil-induced renal tumor and the breast tumor samples. KCNJ11, KCNJ8, and ABCC9 genes are upregulated in cancers but ABCC8 is downregulated. The Kir6.2-Sur2A/B-channel opener minoxidil showed 23 case reports of breast cancer and one case of ovarian cancer in line with omics data reporting, respectively, and the negative and positive prognostic roles of the ABCC9 gene in these cancers. Sulfonylureas and glinides blocking the pancreatic Kir6.2-Sur1 subunits showed a higher risk for pancreatic cancer in line with the positive prognostic role of the ABCC8 gene but low risks for common cancers. Glibenclamide, repaglinide, and glimepiride show a lower cancer risk within the KATP channel blockers. The Kir6.2-Sur1 opener diazoxide shows no cancer reactions. Conclusion: An elevated expression of the Sur2A subunit was found in proliferating cells in two animal models of cancer. Immunohistochemistry/omics/pharmacovigilance data reveal the role of the Kir6.1/2-Sur2A/B subunits as a drug target in breast/renal cancers and in C.S.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology Saverio de Bellis, I.R.C.C.S. Research Hospital, Milan, Italy
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University "Aldo Moro" Bari, Bari, Italy
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Girolamo Ranieri
- Department of Interventional Radiology and Integrated Medical Oncology, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Kokoti L, Al-Karagholi MAM, Waldorff Nielsen CA, Ashina M. Glibenclamide Posttreatment Does Not Inhibit Levcromakalim Induced Headache in Healthy Participants: A Randomized Clinical Trial. Neurotherapeutics 2023; 20:389-398. [PMID: 36763326 PMCID: PMC10121935 DOI: 10.1007/s13311-023-01350-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Intravenous infusion of ATP-sensitive potassium channel (KATP) opener levcromakalim causes headache in humans and implicates KATP channels in headache pathophysiology. Whether KATP channel blocker glibenclamide inhibits levcromakalim-induced headache has not yet been elucidated. We aimed to investigate the effect of posttreatment with glibenclamide on levcromakalim-induced headache in healthy participants. In a double blind, randomized, three-arm, placebo-controlled, crossover study, 20 healthy participants were randomized to receive 20 mL of levcromakalim (0.05 mg/min (50 mg/mL)) or 20 mL placebo (isotonic saline) intravenously over 20 min followed by oral administration of 10 mg glibenclamide or placebo. Fifteen participants completed all three study days. The primary endpoint was the difference in incidence of headache (0-12 h) between glibenclamide and placebo. More participants developed headache on levcromakalim-placebo day (15/15, 100%) (P = 0.013) and levcromakalim-glibenclamide day (13/15, 86%) compared to placebo-placebo day (7/15, 46%) (P = 0.041). We found no difference in headache incidence between levcromakalim-placebo day and levcromakalim-glibenclamide day (P = 0.479). The AUC0-12 h for headache intensity was significantly larger in levcromakalim-placebo day and levcromakalim-glibenclamide day compared to placebo-placebo day (106.3 ± 215.8) (P < 0.01). There was no difference in the AUC0-12 h for headache intensity between the levcromakalim-placebo day (494 ± 336.6) and the levcromakalim-glibenclamide day (417 ± 371.6) (P = 0.836). We conclude that non-specific KATP channel inhibitor glibenclamide did not attenuate levcromakalim-induced headache in healthy volunteers. Future studies should clarify the involvement of the distinct isoforms of sulfonylurea receptor subunits of KATP channels in the pathogenesis of headache and migraine.
Collapse
Affiliation(s)
- Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet – Glostrup, Glostrup, Denmark
| |
Collapse
|
14
|
Motwani DN, Vignesh A, Raja K, Selvakumar S, Vasanth K. Exploration of phytochemicals and probing potential effects of Priva cordifolia active extract on PACAP 38 and its nociceptor in the human trigeminovascular system. 3 Biotech 2023; 13:39. [PMID: 36636579 PMCID: PMC9829943 DOI: 10.1007/s13205-023-03462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
Several tribal medicinal systems assert anti-migraine and common headache-remedying properties in all parts of Priva cordifolia (L.f.) Druce. Therefore, there are no clear scientific references to the validated traditional use of this plant. The present study provides a scientific basis for the ethnobotanical utility of P. cordifolia whose whole-plant extracts were evaluated against target proteins (PACAP 38 and PAC1-R) that cause migraine. Understanding the polarity-based distribution and oxidative stress scavenging ability was reported higher in ethyl acetate extracts due to the moderate distribution of secondary metabolites. Based on the preliminary analysis anti-migraine activity in the wet and dry lab experiments was compared with a commercial drug Sumatriptan. The GC-MS analysis revealed that two lead volatile compounds Bicyclo(3.2.1)oct-3-en-2-one,3,8-Dihydroxy-1-methoxy-7-(7-methoxy-1,3- and -Hexyl-2-nitrocyclohexane, present in the ethyl acetate extract showed favourable in silico anti-migraine efficiency. Notably, the ex-vivo results also showed considerable downregulation of the extract-induced mRNA expression of PACAP38. The conclusion of our study justifies that P. cordifolia has valuable plant metabolites that portray it as an efficient anti-oxidant and anti-migraine source. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03462-w.
Collapse
Affiliation(s)
- Dipshika. N Motwani
- Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, 641 046 India
| | - Arumugam Vignesh
- Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, 641 046 India
| | - Kannan Raja
- Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, 641 046 India
| | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Tamil Nadu, Coimbatore, 641 046 India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Tamil Nadu, Coimbatore, 641 046 India
| |
Collapse
|
15
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
16
|
Hemasian H, Abedini F, Arab A, Khorvash F. A novel technique of botulinum toxin injection around skull sutures for chronic migraine: A randomized controlled clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:85. [PMID: 36685024 PMCID: PMC9854915 DOI: 10.4103/jrms.jrms_372_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Background Migraine is a chronic headache manifested with attacks. Here we aimed to evaluate and compare the efficacy of 15-point Dysport injection with 31-point Xeomin injections. Materials and Methods This is a randomized clinical trial performed in 2020-2021 in Isfahan on patients with refractory chronic migraine. A total number of 60 patients entered the study. The pain of patients was also determined using headache impact test (HIT) questionnaire. Patients were randomized into two groups: Group 1 underwent 31-point Xeomin injection and Group 2 underwent 1 vial of Dysport injection into 15 points of the scalp. Results Our study revealed that the data regarding aura, nausea, vomit, photosensitivity, sensitivity to sounds and smells did not change significantly between two groups compared to the beginning of the study. Frequency, duration, intensity of headaches, and the mean HIT score of all patients improved significantly within 3 months after interventions. Comparing both groups showed no significant differences (P > 0.05). HIT score was decreased from 21.26 ± 3.58 before intervention to 15.51 ± 4.58 after 3 months in Group 1 and 22.23 ± 2.59-10.33 ± 2.26 in Group 2. In both groups, these changes were statistically significant (P < 0.001). Although we found more decrease of HIT score in Group 2 comparing with Group 1 (10.33 ± 2.26 vs. 15.51 ± 4.58), this difference was not statistically significant (P = 0.12). Conclusion Although Xeomin and Dysport injections are both effective and reduced pain in patients with chronic migraine, our new technique is probably better than the standard technique. Because the injection points are halved, increase patients comfort and reduce overall cost.
Collapse
Affiliation(s)
- Helia Hemasian
- Department of Neurology, School of Medicine, Firouzgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Faezeh Abedini
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Firouzgar Hospital, Iran University of Medical Science, Tehran, Iran,Address for correspondence: Dr. Fariborz Khorvash, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
17
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Neuroprotective effects of Lasmiditan and Sumatriptan in an experimental model of post-stroke seizure in mice: Higher effects with concurrent opioid receptors or K ATP channels inhibitors. Toxicol Appl Pharmacol 2022; 454:116254. [PMID: 36155770 DOI: 10.1016/j.taap.2022.116254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Early post-stroke seizure frequently occurs in stroke survivors within the first few days and is associated with poor functional outcomes. Therefore, efficient treatments of such complications with less adverse effects are pivotal. In this study, we investigated the possible beneficial effects of lasmiditan and sumatriptan against post-stroke seizures in mice and explored underlying mechanisms in their effects. METHODS Stroke was induced by double ligation of the right common carotid artery in mice. Immediately after the ligation, lasmiditan (0.1 mg/kg, intraperitoneally [i.p.]) or sumatriptan (0.03 mg/kg, i.p.) were administered. Twenty-four hours after the stroke induction, seizure susceptibility was evaluated using the pentylenetetrazole (PTZ)-induced clonic seizure model. In separate experiments, naltrexone (a non-specific opioid receptor antagonist) and glibenclamide (a KATP channel blocker) were administered 15 min before lasmiditan or sumatriptan injection. To evaluate the underlying signaling pathways, ELISA analysis of inflammatory cytokines (TNF-α and IL-1β) and western blot analysis of anti- and pro-apoptotic markers (Bcl-2 and Bax) were performed on mice isolated brain tissues. RESULTS Lasmiditan (0.1 mg/kg, i.p.) and sumatriptan (0.03 mg/kg, i.p.) remarkably decreased seizure susceptibility in stroke animals by reducing inflammatory cytokines and neuronal apoptosis. Concurrent administration of naltrexone (10 mg/kg, i.p.) or glibenclamide (0.3 mg/kg, i.p.) with lasmiditan or sumatriptan resulted in a higher neuroprotection against clonic seizures and efficiently reduced the inflammatory and apoptotic markers. CONCLUSION Lasmiditan and sumatriptan significantly increased post-stroke seizure thresholds in mice by suppressing inflammatory cytokines and neuronal apoptosis. Lasmiditan and sumatriptan seem to exert higher effects on seizure threshold with concurrent administration of the opioid receptors or KATP channels modulators.
Collapse
|
19
|
Duan S, Ren Z, Xia H, Wang Z, Zheng T, Liu Z. Association between sleep quality, migraine and migraine burden. Front Neurol 2022; 13:955298. [PMID: 36090858 PMCID: PMC9459411 DOI: 10.3389/fneur.2022.955298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe relationship between sleep and migraine is well known to be bidirectional. However, few studies have systematically assessed the association between sleep quality and the risk of developing migraine, and its gender and age differences are unclear. And there is currently limited evidence on the associations between sleep quality and migraine-related burdens.ObjectiveThe objectives of this study were to: (1) explore the association between sleep quality and the risk of developing migraine, and its gender and age differences; (2) investigate the associations between sleep quality and the total pain burden, severity, disability, headache impact, quality of life, anxiety, and depression of migraine patients.MethodsThis study consecutively enrolled 134 migraine patients and 70 sex- and age-matched healthy control subjects. Sleep quality was assessed through the Pittsburgh Sleep Quality Index (PSQI). Logistic regression and linear regression analyses were used to explore the associations between sleep quality with the risk of developing migraine and the migraine-related burdens.ResultsThe prevalence of poor sleep quality in migraine patients was significantly higher than that in subjects without migraine (P < 0.001). After adjusting for various confounding factors, the risk of migraine with poor sleep quality remained 3.981 times that of those with good sleep quality. The subgroup analysis showed that there were significant additive interactions between poor sleep quality and the risk of migraine in gender, age, and education level (P for interaction < 0.05), and the stronger correlations were found in females, populations with ages more than 35 years old, and with lower education levels. In addition, multivariate linear regression analysis showed that poor sleep quality was significantly and independently associated with the total pain burden, severity, headache impact, quality of life, anxiety, and depression in migraine patients (P trend < 0.05).ConclusionPoor sleep quality was significantly independently associated with an increased risk of developing migraine and the migraine-related burdens. Strengthening PSQI assessment is valuable for the early prevention and treatment of migraine patients.
Collapse
Affiliation(s)
- Shaojie Duan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zhiying Ren
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Xia
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Ziyao Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Tao Zheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Department of Neurology, Peking University People's Hospital, Beijing, China
- *Correspondence: Zunjing Liu
| |
Collapse
|
20
|
Reducha PV, Edvinsson L, Haanes KA. Could Experimental Inflammation Provide Better Understanding of Migraines? Cells 2022; 11:cells11152444. [PMID: 35954288 PMCID: PMC9368653 DOI: 10.3390/cells11152444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Migraines constitute a common neurological and headache disorder affecting around 15% of the world’s population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.
Collapse
Affiliation(s)
- Philip Victor Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 221 00 Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
21
|
Investigation of the correlation between diabetic retinopathy and prevalent and incident migraine in a national cohort study. Sci Rep 2022; 12:12443. [PMID: 35859157 PMCID: PMC9300720 DOI: 10.1038/s41598-022-16793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Migraine is a disease characterized by cerebral vasodilation. While diabetes has previously been associated with a lower risk of migraine, it is not known if diabetic retinopathy (DR), a retinal peripheral vascular occlusive disease, is a potential biomarker of protection against migraine. Therefore, we aimed to examine diabetic retinopathy as a marker of prevalent and 5-year incident migraine. In a national cohort, we compared patients with diabetes attending DR screening from The Danish National Registry of Diabetic Retinopathy (cases, n = 205,970) to an age- and gender-matched group of patients without diabetes (controls, n = 1,003,170). In the cross-sectional study, a multivariable model demonstrated a lower prevalence of migraine among cases compared with controls (OR 0.83, 95% CI 0.81–0.85), with a lower risk in cases with DR than in those without (OR 0.69, 95% CI 0.65–0.72). In the prospective study, a lower risk of incident migraine was found in a multivariable model in cases (HR 0.76, 95% CI 0.70–0.82), but this did not depend upon the presence of DR. To conclude, in a national study of more than 1.2 million people, patients screened for DR had a lower risk of present migraine, but DR was not a protective marker of incident migraine.
Collapse
|
22
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Rota E, Aguggia M, Immovilli P, Morelli N, Renosio D, Barbanera A. Change in the second exteroceptive suppression period of the temporalis muscle during erenumab treatment. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:607-611. [PMID: 35179620 DOI: 10.1007/s00210-022-02216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Comparative studies on the second exteroceptive suppression period (ES2) of the masseter or temporalis muscle in migraineurs and controls have provided conflicting results. As the interneurons responsible for ES2 are probably close to the trigeminal nucleus caudalis and receive afferents also from the anti-nociceptive system, the study of ES2 could provide information on neural circuits involved in migraine pathophysiology. The aim of this observational, pilot study was to assess whether erenumab treatment may affect the exteroceptive suppression reflex of the temporalis muscle activity in migraineurs. The exteroceptive suppression reflex of the temporalis muscle activity was previously studied in a small case series of three chronic female migraineurs and after 4 months of beneficial erenumab treatment, administered according to current clinical indications. There was a statistically significant decrease in ES2 latency (p-value 0.039) and duration (p-value 0.030) after treatment. The change observed in the temporalis ES2 during erenumab treatment indicates that ES2 may play some kind of role as a neurophysiological marker and that this monoclonal antibody can modulate the brainstem circuits involved in migraine pathophysiology, at least indirectly. Further studies are required to confirm this intriguing hypothesis.
Collapse
Affiliation(s)
- Eugenia Rota
- Neurology Unit, San Giacomo Hospital, ASLAL, Via E. Raggio 12, 15067, Novi Ligure, AL, Italy.
| | - Marco Aguggia
- Neurology Unit, Cardinal Massaia Hospital, ASLAT, Asti, Italy
| | - Paolo Immovilli
- Neurology Unit, Guglielmo da Saliceto Hospital, AUSL, Piacenza, PC, Italy
| | - Nicola Morelli
- Neurology Unit, Guglielmo da Saliceto Hospital, AUSL, Piacenza, PC, Italy
| | - Davide Renosio
- Neurology Unit, San Giacomo Hospital, ASLAL, Via E. Raggio 12, 15067, Novi Ligure, AL, Italy
| | - Andrea Barbanera
- Neurosurgery Unit, San Biagio e Arrigo Hospital, Alessandria, Italy
| |
Collapse
|
24
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
25
|
Zhu Z, Wu S, Wang Y, Wang J, Zhang Y. Reveal the Antimigraine Mechanism of Chuanxiong Rhizoma and Cyperi Rhizoma Based on the Integrated Analysis of Metabolomics and Network Pharmacology. Front Pharmacol 2022; 13:805984. [PMID: 35401159 PMCID: PMC8987590 DOI: 10.3389/fphar.2022.805984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Migraine is a common neurological disorder that manifests as recurrent attacks of unilateral and throbbing headache. Conioselinum anthriscoides “Chuanxiong” (Apiaceae; Chuanxiong rhizoma) and Cyperus rotundus L. (Cyperaceae; Cyperi rhizoma) (CRCR), is a classic prescription for treating migraine. This study aimed to reveal the potential mechanisms of CRCR extract against migraine using integrated analysis of metabolomics and network pharmacology. Behavioral changes in the nitroglycerin rat migraine model were determined from von Frey withdrawal response. Untargeted serum metabolomics was used to identify the differentially expressed metabolites and metabolic pathways. The differentially expressed metabolites were analyzed to obtain the corresponding targets by a compound–reaction–enzyme–gene network. Network pharmacology was used to construct a compound–target–pathway network. The common targets of metabolomics and network pharmacology were further analyzed. Metabolomics analysis identified 96 differentially expressed metabolites and 77 corresponding targets. Network pharmacology analysis identified 201 potential targets for CRCR against migraine. By intersecting 77 targets with 201 targets, monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), and catechol-O-methyltransferase (COMT) were identified as the common targets, and MAO-A, MAO-B, and COMT were involved in the tyrosine metabolism pathway. Further experiments demonstrated that the contents of MAO-A and COMT were significantly increased in serum and brainstem tissue of the migraine rats. CRCR extract significantly decreased the contents of MAO-A and COMT, while no significant difference was found in MAO-B. Metabolomics analysis indicated that the contents of 3,4-dihydroxyphenylacetate (DOPAC) and 3-(4-hydroxyphenyl)pyruvate (HPP) were significantly increased in the migraine rats, and CRCR extract caused significant decreases in DOPAC and HPP. Interestingly, DOPAC and HPP were two differentially expressed metabolites involved in the tyrosine metabolism pathway. Correlation analysis showed that DOPAC and HPP were highly positively correlated with MAO-A and COMT. Taken together, two key differentially expressed metabolites (DOPAC and HPP), two key targets (MAO-A and COMT), and one relevant metabolic pathway (tyrosine metabolism) showed great importance in the treatment of migraine. This research could provide a new understanding of the potential mechanism of CRCR against migraine. More attentions should be paid into the tyrosine metabolism pathway in future studies.
Collapse
Affiliation(s)
- Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Sha Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, China
- *Correspondence: Sha Wu,
| | - Yuxuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jiayi Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yujia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Sokolov AY, Osipchuk AV, Skiba IB, Amelin AV. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Magnesium as an Important Factor in the Pathogenesis and Treatment of Migraine—From Theory to Practice. Nutrients 2022; 14:nu14051089. [PMID: 35268064 PMCID: PMC8912646 DOI: 10.3390/nu14051089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
So far, no coherent and convincing theory has been developed to fully explain the pathogenesis of migraine, although many researchers and experts emphasize its association with spreading cortical depression, oxidative stress, vascular changes, nervous excitement, neurotransmitter release, and electrolyte disturbances. The contribution of magnesium deficiency to the induction of cortical depression or abnormal glutamatergic neurotransmission is a likely mechanism of the magnesium–migraine relationship. Hence, there is interest in various methods of assessing magnesium ion deficiency and attempts to study the relationship of its intra- and extracellular levels with the induction of migraine attacks. At the same time, many clinicians believe that magnesium supplementation in the right dose and form can be a treatment to prevent migraine attacks, especially in those patients who have identified contraindications to standard medications or their different preferences. However, there are no reliable publications confirming the role of magnesium deficiency in the diet as a factor causing migraine attacks. It also seems interesting to deepen the research on the administration of high doses of magnesium intravenously during migraine attacks. The aim of the study was to discuss the probable mechanisms of correlation of magnesium deficiency with migraine, as well as to present the current clinical proposals for the use of various magnesium preparations in complementary or substitute pharmacotherapy of migraine. The summary of the results of research and clinical observations to date gives hope of finding a trigger for migraine attacks (especially migraine with aura), which may turn out to be easy to diagnose and eliminate with pharmacological and dietary supplementation.
Collapse
|
28
|
Christiansen IM, Edvinsson JCA, Reducha PV, Edvinsson L, Haanes KA. Dual action of the cannabinoid receptor 1 ligand arachidonyl-2′-chloroethylamide on calcitonin gene-related peptide release. J Headache Pain 2022; 23:30. [PMID: 35189809 PMCID: PMC8903492 DOI: 10.1186/s10194-022-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2′-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition. Methods The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG. Results CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura. Conclusions Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01399-8.
Collapse
|
29
|
Edvinsson JCA, Maddahi A, Christiansen IM, Reducha PV, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA. Lasmiditan and 5-Hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT 1 receptors. J Headache Pain 2022; 23:26. [PMID: 35177004 PMCID: PMC8903724 DOI: 10.1186/s10194-022-01394-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F). METHODS Utilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release. RESULTS 5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition. CONCLUSION This study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Aida Maddahi
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Isabella M Christiansen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Philip V Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Zhang L, Lu C, Kang L, Li Y, Tang W, Zhao D, Yu S, Liu R. Temporal characteristics of astrocytic activation in the TNC in a mice model of pain induced by recurrent dural infusion of inflammatory soup. J Headache Pain 2022; 23:8. [PMID: 35033010 PMCID: PMC8903672 DOI: 10.1186/s10194-021-01382-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Astrocytic activation might play a significant role in the central sensitization of chronic migraine (CM). However, the temporal characteristics of the astrocytic activation in the trigeminal nucleus caudalis (TNC) and the molecular mechanism under the process remain not fully understood. Therefore, this study aims to investigate the duration and levels change of astrocytic activation and to explore the correlation between astrocytic activation and the levels change of cytokines release. Methods We used a mice model induced by recurrent dural infusion of inflammatory soup (IS). The variation with time of IS-induced mechanical thresholds in the periorbital and hind paw plantar regions were evaluated using the von Frey filaments test. We detected the expression profile of glial fibrillary acidic protein (GFAP) in the TNC through immunofluorescence staining and western blot assay. We also investigated the variation with time of the transcriptional levels of GFAP and ionized calcium binding adapter molecule 1 (Iba1) through RNAscope in situ hybridization analysis. Then, we detected the variation with time of cytokines levels in the TNC tissue extraction and serum, including c-c motif chemokine ligand 2 (CCL2), c-c motif chemokine ligand 5 (CCL5), c-c motif chemokine ligand 7 (CCL7), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 1 (CXCL1), c-x-c motif chemokine ligand 13 (CXCL13), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), macrophage colony-stimulating factor (M-CSF), interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 17A (IL-17A). Results Recurrent IS infusion resulted in cutaneous allodynia in both the periorbital region and hind paw plantar, ranging from 5 d (after the second IS infusion) to 47 d (28 d after the last infusion) and 5 d to 26 d (7 d after the last infusion), respectively. The protein levels of GFAP and messenger ribonucleic acid (mRNA) levels of GFAP and Iba1 significantly increased and sustained from 20 d to 47 d (1 d to 28 d after the last infusion), which was associated with the temporal characteristics of astrocytic activation in the TNC. The CCL7 levels in the TNC decreased from 20 d to 47 d. But the CCL7 levels in serum only decreased on 20 d (1 d after the last infusion). The CCL12 levels in the TNC decreased on 22 d (3 d after the last infusion) and 33 d (14 d after the last infusion). In serum, the CCL12 levels only decreased on 22 d. The IL-10 levels in the TNC increased on 20 d. Conclusions Our results indicate that the astrocytic activation generated and sustained in the IS-induced mice model from 1 d to 28 d after the last infusion and may contribute to the pathology through modulating CCL7, CCL12, and IL-10 release.
Collapse
Affiliation(s)
- Leyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China.,Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenglong Lu
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China.,Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Li Kang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Yingji Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| | - Ruozhuo Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
31
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
32
|
Blumenfeld A, Durham PL, Feoktistov A, Hay DL, Russo AF, Turner I. Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor. Neurol Ther 2021; 10:469-497. [PMID: 34076848 PMCID: PMC8571459 DOI: 10.1007/s40120-021-00250-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine involves brain hypersensitivity with episodic dysfunction triggered by behavioral or physiological stressors. During an acute migraine attack the trigeminal nerve is activated (peripheral sensitization). This leads to central sensitization with activation of the central pathways including the trigeminal nucleus caudalis, the trigemino-thalamic tract, and the thalamus. In episodic migraine the sensitization process ends with the individual act, but with chronic migraine central sensitization may continue interictally. Increased allostatic load, the consequence of chronic, repeated exposure to stressors, leads to central sensitization, lowering the threshold for future neuronal activation (hypervigilance). Ostensibly innocuous stressors are then sufficient to trigger an attack. Medications that reduce sensitization may help patients who are hypervigilant and help to balance allostatic load. Acute treatments and drugs for migraine prevention have traditionally been used to reduce attack duration and frequency. However, since many patients do not fully respond, an unmet treatment need remains. Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide involved in nociception and in the sensitization of peripheral and central neurons of the trigeminovascular system, which is implicated in migraine pathophysiology. Elevated CGRP levels are associated with dysregulated signaling in the trigeminovascular system, leading to maladaptive responses to behavioral or physiological stressors. CGRP may, therefore, play a key role in the underlying pathophysiology of migraine. Increased understanding of the role of CGRP in migraine led to the development of small-molecule antagonists (gepants) and monoclonal antibodies (mAbs) that target either CGRP or the receptor (CGRP-R) to restore homeostasis, reducing the frequency, duration, and severity of attacks. In clinical trials, US Food and Drug Administration-approved anti-CGRP-R/CGRP mAbs were well tolerated and effective as preventive migraine treatments. Here, we explore the role of CGRP in migraine pathophysiology and the use of gepants or mAbs to suppress CGRP-R signaling via inhibition of the CGRP ligand or receptor.
Collapse
Affiliation(s)
- Andrew Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA.
| | - Paul L Durham
- Department of Biology, Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | | | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Departments of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Ira Turner
- Island Neurological Associates, Plainview, NY, USA
| |
Collapse
|
33
|
Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT 3 receptor in the context of established therapeutic effect of metabotropic 5-HT 1 subtypes. Br J Pharmacol 2021; 179:400-415. [PMID: 34643938 DOI: 10.1111/bph.15710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
5-hydroxytryptamine (5-HT; serotonin) is traditionally considered as a key mediator implicated in migraine. Multiple 5-HT receptor subtypes contribute to a variety of region-specific functional effects. The raphé nuclei control nociceptive inputs by releasing 5-HT in the brainstem, whereas dural mast cells provide the humoral source of 5-HT in the meninges. Triptans (5-HT1B/D agonists) and ditans (5-HT1F agonists) are the best established 5-HT anti-migraine agents. However, activation of meningeal afferents via ionotropic 5-HT3 receptors results in long-lasting excitatory drive suggesting a pro-nociceptive role for these receptors in migraine. Nevertheless, clinical data do not clearly support the applicability of currently available 5-HT3 antagonists to migraine treatment. The reasons for this might be the presence of 5-HT3 receptors on inhibitory interneurons dampening the excitatory drive, a lack of 5-HT3 A-E subunit-selective antagonists and gender/age-dependent effects. This review is focusing on the controversial role of 5-HT3 receptors in migraine pathology and related pharmacological perspectives of 5-HT ligands.
Collapse
Affiliation(s)
- Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
34
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
35
|
Zhu P, Dong X, Xu H, Wan Q, Guo Q, Wang J, Xiao H, Yan L. Microglial P2Y14 receptor contributes to central sensitization following repeated inflammatory dural stimulation. Brain Res Bull 2021; 177:119-128. [PMID: 34543689 DOI: 10.1016/j.brainresbull.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have indicated that P2Y receptors in spinal microglia play a role in the development of neuropathic and inflammatory pain. However, it remains unclear whether P2Y receptors in microglia are involved in the pathogenesis of migraine. Therefore, the aim of this study was to investigate the role of microglial P2Y14 receptor in trigeminal cervical complex (TCC) in migraine. METHODS We used a rat model of migraine induced by repeated inflammatory stimulation of the dura and examined the expression of P2Y14 receptor in the TCC in migraine rats by Western Blotting and immunofluorescence staining. Then, we determined the effect of P2Y14 antagonist PPTN on inflammatory soup (IS)-induced mechanical allodynia, microglial activation and ERK expression in TCC. RESULTS The expression level of P2Y14 receptor increased significantly in microglia in TCC after 4 or 7 days of repeated IS stimulation of the dura. Application of PPTN significantly attenuated the decrease of periorbital pain threshold in migraine model rats. In addition, repeated IS stimulation of the dura induced the activation of microglia and the phosphorylation of the ERK1/2 in microglia in TCC, which were abolished by the application of PPTN. CONCLUSION Our findings suggest that the increased P2Y14 receptor in microglia in TCC play a crucial role in the generation of mechanical allodynia in migraine rat model. Furthermore, the activation of the P2Y14 receptor is involved in microglial activation and ERK phosphorylation as well. The P2Y14 receptor in microglia might be used as a potential target for migraine treatment.
Collapse
Affiliation(s)
- Pinhuan Zhu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| | - Xin Dong
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| | - Huan Xu
- Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Qi Wan
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| | - Qiqi Guo
- Nanjing Jiangbei People's Hospital, 552 Geguan Road, China.
| | - Jun Wang
- Department of Physiology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu Province 210029, China.
| | - Hang Xiao
- Department of Physiology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu Province 210029, China.
| | - Lanyun Yan
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
36
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
37
|
The HCN channel as a pharmacological target: Why, where, and how to block it. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:173-181. [PMID: 34303730 DOI: 10.1016/j.pbiomolbio.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, expressed in a variety of cell types and in all tissues, control excitation and rhythm. Since their discovery in neurons and cardiac pacemaker cells, they attracted the attention of medicinal chemistry and pharmacology as novel targets to shape (patho)physiological mechanisms. To date, ivabradine represents the first-in-class drug as specific bradycardic agent in cardiac diseases; however, new applications are emerging in parallel with the demonstration of the involvement of different HCN isoforms in central and peripheral nervous system. Hence, the possibility to target specific isoforms represents an attractive development in this field; indeed, HCN1, HCN2 or HCN4 specific blockers have shown promising features in vitro and in vivo, with remarkable pharmacological differences likely depending on the diverse functional role and tissue distribution. Here, we show a recently developed compound with high potency as HCN2-HCN4 blocker; because of its unique profile, this compound may deserve further investigation.
Collapse
|
38
|
Guo X, Yu C, Wang L, Zhang F, Wang K, Huang J, Wang J. Development and validation of a reporter gene assay for bioactivity determination of Anti-CGRP monoclonal antibodies. Anal Biochem 2021; 634:114291. [PMID: 34161831 DOI: 10.1016/j.ab.2021.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is critical for the pathophysiology of migraine, and four therapeutic antibodies targeting CGRP and its corresponding receptors have been approved by the Food and Drug Administration (FDA), while many others are in the different stages of clinical trials. Bioactivity determination is essential for the quality control and clinical application of therapeutic monoclonal antibodies (mAbs). However, no bioassay has been reported to date. In this study, we developed a reporter gene assay (RGA) based on SK-N-MC cells stably expressing firefly luciferase driven by cAMP response element (CRE). The key assay parameters were optimized according to signal-to-noise (SNR), the response value, and the fitted dose-response curve. Validation of the RGA in accordance with ICH-Q2 guidelines showed that the method had good specificity, accuracy, linearity, and precision. The established RGA can be utilized as a reference method for release testing and stability studies of relevant antibodies.
Collapse
Affiliation(s)
- Xiao Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Feng Zhang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Kaiqin Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Jing Huang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No.31, Huatuo Road, Biomedical Base, Daxing District, Beijing, 102629, China.
| |
Collapse
|
39
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Evidence of Potential Mechanisms of Acupuncture from Functional MRI Data for Migraine Prophylaxis. Curr Pain Headache Rep 2021; 25:49. [PMID: 34036477 DOI: 10.1007/s11916-021-00961-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW To summarize the clinical neuroimaging evidence pertaining to the potential mechanisms of acupuncture for migraine prophylaxis. RECENT FINDINGS From a descriptive perspective, converging evidence from recent neuroimaging studies, mainly from functional MRI (fMRI) studies, has demonstrated that when compared with sham acupuncture, verum acupuncture could normalize the decrease of the functional connectivity of the rostral ventromedial medulla-trigeminocervical complex (RVM/TCC) network, frontal-parietal network, cingulo-opercular networks, and default mode network and could normalize sensorimotor network connectivity with sensory-, affective-, and cognitive-related brain areas. These areas overlap with those of the pain matrix. Verum acupuncture works in a more targeted and unique manner compared with sham acupuncture in patients with migraine. These findings from neuroimaging studies may provide new perspectives on the validation of acupoints specificity and confirm the central modulating effects of acupuncture as a migraine prevention treatment. However, the exact mechanism by which acupuncture works for migraine prophylaxis remains unclear and warrants investigation. Future studies with larger sample sizes are still needed to confirm the current results and to further evaluate the complex and specific effects of acupuncture by analyzing different stimulus conditions, such as verum vs. sham acupuncture, deqi vs. no deqi, different acupuncture points or meridians, and different manipulation methods. Moreover, instead of focusing on the changes in a single area of the brain, researchers should focus more on the relationships among the functional connectivity network of brain areas such as the RVM/TCC, thalamus, anterior cingulate cortex (ACC), superior temporal gyrus (STG), and supplementary motor area (SMA) to explore the underlying mechanism of the effects of acupuncture.
Collapse
|
41
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Chen R, Yin C, Fang J, Liu B. The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation 2021; 18:84. [PMID: 33785039 PMCID: PMC8008529 DOI: 10.1186/s12974-021-02131-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain affects the life quality of the suffering patients and posts heavy problems to the health care system. Conventional medications are usually insufficient for chronic pain management and oftentimes results in many adverse effects. The NLRP3 inflammasome controls the processing of proinflammatory cytokine interleukin 1β (IL-1β) and is implicated in a variety of disease conditions. Recently, growing number of evidence suggests that NLRP3 inflammasome is dysregulated under chronic pain condition and contributes to pathogenesis of chronic pain. This review provides an up-to-date summary of the recent findings of the involvement of NLRP3 inflammasome in chronic pain and discussed the expression and regulation of NLRP3 inflammasome-related signaling components in chronic pain conditions. This review also summarized the successful therapeutic approaches that target against NLRP3 inflammasome for chronic pain treatment.
Collapse
Affiliation(s)
- Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
44
|
Ferrari A, Rustichelli C. Rational Use of Lasmiditan for Acute Migraine Treatment in Adults: A Narrative Review. Clin Ther 2021; 43:654-670. [PMID: 33608115 DOI: 10.1016/j.clinthera.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE This narrative review provides an update on the research that led to the development of ditans and lasmiditan for the acute treatment of migraine in adults and discusses the potential advantages and disadvantages of lasmiditan in clinical use. METHODS The electronic databases PubMed, Scopus, and ClinicalTrials.gov were searched from database inception through January 9, 2021, to identify relevant studies. Search results were assessed for their overall relevance to this review. FINDINGS Because part of the effect of the triptans is mediated by the serotonin 1F receptors, which are not present in the smooth muscle, a pure agonist of these receptors, lasmiditan, was developed. Lasmiditan is hypothesized to act on antinociceptive pathways and inhibit the calcitonin gene-related peptide release. Lasmiditan was approved by the US Food and Drug Administration in 2019 based on the results of 2 pivotal trials that found a significant difference from placebo in the percentage of patients who achieved freedom from pain and most bothersome symptom at 2 h. The main concern of lasmiditan derives from its central nervous system-related adverse effects, mainly dizziness and paraesthesia, probably attributable to its high blood brain barrier penetration. These central nervous system adverse effects impair driving performance for hours and might be suboptimal for individuals with migraine who want to quickly stop the migraine attack to resume their activities as soon as possible. IMPLICATIONS Despite the advantage of being beneficial in the acute treatment of migraine without vasocostrictive action, lasmiditan also presents limitations, in particular the central nervous system adverse effects. Moreover, head-to-head trials against triptans and gepants are indispensable to determine the better option for patients.
Collapse
Affiliation(s)
- Anna Ferrari
- Unit of Medical Toxicology, Headache Centre and Drug Abuse, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
45
|
Dolgorukova A, Isaeva JE, Verbitskaya E, Lyubashina OA, Giniatullin RА, Sokolov AY. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol 2021; 339:113634. [PMID: 33549548 DOI: 10.1016/j.expneurol.2021.113634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
Migraine is associated with the activation and sensitisation of the trigeminovascular system and is often accompanied by mechanical hyperalgesia and allodynia. The mechanisms of mechanotransduction during a migraine attack are yet unknown. We have proposed that the ion channel Piezo1 may be involved, since it is expressed in endothelial cells as well as in trigeminal ganglion neurons, and thus, may contribute to the activation of both the vascular and neuronal component of the trigeminovascular system. We took advantage of extracellular recordings from the trigeminocervical complex - a key relay centre in the migraine pain pathway, to directly assess the impact of the differently applied Piezo1 agonist Yoda1 on the sensory processing at the spinal level. At a low dose, Yoda1 slightly facilitated the ongoing firing of central trigeminovascular neurons, however, at a high dose, this substance contributed to the suppression of their activity. Using intravital microscopy, we have revealed that Yoda1 at high dose can also induce the dilation of meningeal arteries innervated by trigeminal afferents. Collectively, here we have identified both neuronal and vascular modulation via selective activation of mechanosensitive Piezo1 channels, which provide new evidence in favour of the Piezo1 role in migraine pathogenesis. We propose several mechanisms that may underlie the revealed effects of Yoda1.
Collapse
Affiliation(s)
- Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia.
| | - Julia E Isaeva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Elena Verbitskaya
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Olga A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Rashid А Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
46
|
Della Pietra A, Giniatullin R, Savinainen JR. Distinct Activity of Endocannabinoid-Hydrolyzing Enzymes MAGL and FAAH in Key Regions of Peripheral and Central Nervous System Implicated in Migraine. Int J Mol Sci 2021; 22:ijms22031204. [PMID: 33530477 PMCID: PMC7865507 DOI: 10.3390/ijms22031204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
In migraine pain, cannabis has a promising analgesic action, which, however, is associated with side psychotropic effects. To overcome these adverse effects of exogenous cannabinoids, we propose migraine pain relief via activation of the endogenous cannabinoid system (ECS) by inhibiting enzymes degrading endocannabinoids. To provide a functional platform for such purpose in the peripheral and central parts of the rat nociceptive system relevant to migraine, we measured by activity-based protein profiling (ABPP) the activity of the main endocannabinoid-hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). We found that in trigeminal ganglia, the MAGL activity was nine-fold higher than that of FAAH. MAGL activity exceeded FAAH activity also in DRG, spinal cord and brainstem. However, activities of MAGL and FAAH were comparably high in the cerebellum and cerebral cortex implicated in migraine aura. MAGL and FAAH activities were identified and blocked by the selective and potent inhibitors JJKK-048/KML29 and JZP327A, respectively. The high MAGL activity in trigeminal ganglia implicated in the generation of nociceptive signals suggests this part of ECS as a priority target for blocking peripheral mechanisms of migraine pain. In the CNS, both MAGL and FAAH represent potential targets for attenuation of migraine-related enhanced cortical excitability and pain transmission.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (R.G.); (J.R.S.)
| | - Juha R. Savinainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence: (R.G.); (J.R.S.)
| |
Collapse
|
47
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
48
|
Ceruti S. From astrocytes to satellite glial cells and back: A 25 year-long journey through the purinergic modulation of glial functions in pain and more. Biochem Pharmacol 2020; 187:114397. [PMID: 33382970 DOI: 10.1016/j.bcp.2020.114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
Fundamental progresses have been made in pain research with a comprehensive understanding of the neuronal pathways which convey painful sensations from the periphery and viscera to the central nervous system and of the descending modulating pathways. Nevertheless, many patients still suffer from various painful conditions, which are often associated to other primary pathologies, and get no or poor relief from available painkillers. Thus, the interest of many researchers has concentrated on new and promising cellular targets and biochemical pathways. This is the case of glia cells, both in the peripheral and in the central nervous system, and of purinergic receptors. Starting from many intuitions and hypotheses raised by Prof. Geoffrey Burnstock, data have accumulated which clearly highlight the fundamental role exerted by several nucleotide and nucleoside receptors in the modulation of glial cell reaction to pain triggers and of their cross-talk with sensory neurons which significantly contributes to the transition from acute to chronic pain. The purinergic system has therefore become an appealing pharmacological target in pain research, also based on the quite unexpected discovery that purines are involved in ancient analgesic techniques such as acupuncture. A more in-depth understanding of the complex and intricated purine-orchestrated scenario in pain conditions will hopefully lead to the identification and clinical development of new and effective analgesics.
Collapse
Affiliation(s)
- Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy.
| |
Collapse
|
49
|
Tekgol Uzuner G, Yalın OO, Uluduz D, Ozge A, Uzuner N. Migraine and cardiovascular risk factors: A clinic-based study. Clin Neurol Neurosurg 2020; 200:106375. [PMID: 33260087 DOI: 10.1016/j.clineuro.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The relation between migraine and vascular risk factors is an unclear issue. Furthermore, the reasons for chronification are still unknown. Probably, the age-related risk and other factors leading to migraine progression will also change in the future. Under these questions, we aimed to investigate whether or not there is a specific association with vascular risk factors between several age groups and subtypes of migraine and also in their families. METHODS A dataset (the Turkish Headache Database) from four tertiary headache centres in Turkey was used. This database included headache-defining features according to ICHD criteria based on face-to-face interviews and examinations by a Neurologist. Vascular risk factors of migraine without aura (MwoA), migraine with aura (MwA) and chronic migraine (CM) were compared between three age groups (under 30 years, 30-50 years and over 50 years) and in first-degree relatives of the patients. Our study included 2712 patients comprising 1868 (68.9 %), 246 (9.1 %) and 598 (22.1 %) subjects with MwoA, MwA and CH, respectively. RESULTS This study showed that both the patients and the first-degree relatives were more frequently associated with vascular risk factors in CM than episodic MwA and MwoA. MwoA showed a weaker association with vascular risk factors than MwA and CM. CONCLUSION Chronic migraine was associated with vascular risk factors at all ages and first-degree relatives as well. Vascular risk factors should be investigated with greater focus on chronic migraine.
Collapse
Affiliation(s)
- Gulnur Tekgol Uzuner
- Department of Neurology and Algology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Osman Ozgur Yalın
- Neurology Clinic, Istanbul Education and Research Hospital, Istanbul, Turkey.
| | - Derya Uluduz
- Department of Neurology and Algology, Istanbul University, Istanbul, Turkey.
| | - Aynur Ozge
- Department of Neurology and Algology, Mersin University, Mersin, Turkey.
| | - Nevzat Uzuner
- Department of Neurology and Cerebrovascular Disease, Eskisehir Osmangazi University, Eskisehir, Turkey.
| |
Collapse
|
50
|
Warfvinge K, Krause DN, Maddahi A, Edvinsson JCA, Edvinsson L, Haanes KA. Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects. J Headache Pain 2020; 21:131. [PMID: 33167864 PMCID: PMC7653779 DOI: 10.1186/s10194-020-01197-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Migraine occurs 2-3 times more often in females than in males and is in many females associated with the onset of menstruation. The steroid hormone, 17β-estradiol (estrogen, E2), exerts its effects by binding and activating several estrogen receptors (ERs). Calcitonin gene-related peptide (CGRP) has a strong position in migraine pathophysiology, and interaction with CGRP has resulted in several successful drugs for acute and prophylactic treatment of migraine, effective in all age groups and in both sexes. METHODS Immunohistochemistry was used for detection and localization of proteins, release of CGRP and PACAP investigated by ELISA and myography/perfusion arteriography was performed on rat and human arterial segments. RESULTS ERα was found throughout the whole brain, and in several migraine related structures. ERβ was mainly found in the hippocampus and the cerebellum. In trigeminal ganglion (TG), ERα was found in the nuclei of neurons; these neurons expressed CGRP or the CGRP receptor in the cytoplasm. G-protein ER (GPER) was observed in the cell membrane and cytoplasm in most TG neurons. We compared TG from males and females, and females expressed more ER receptors. For neuropeptide release, the only observable difference was a baseline CGRP release being higher in the pro-estrous state as compared to estrous state. In the middle cerebral artery (MCA), we observed similar dilatory ER-responses between males and females, except for vasodilatory ERβ which we observed only in female arteries. CONCLUSION These data reveal significant differences in ER receptor expression between male and female rats. This contrasts to CGRP and PACAP release where we did not observe discernable difference between the sexes. Together, this points to a hypothesis where estrogen could have a modulatory role on the trigeminal neuron function in general rather than on the acute CGRP release mechanisms and vasomotor responses.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Aida Maddahi
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
- Department of Internal Medicine, Lund University Hospital, S-22185, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|