1
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
2
|
Loucera-Muñecas C, Canal-Rivero M, Ruiz-Veguilla M, Carmona R, Bostelmann G, Garrido-Torres N, Dopazo J, Crespo-Facorro B. Aripiprazole as protector against COVID-19 mortality. Sci Rep 2024; 14:12362. [PMID: 38811612 PMCID: PMC11137032 DOI: 10.1038/s41598-024-60297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/21/2024] [Indexed: 05/31/2024] Open
Abstract
The relation of antipsychotics with severe Coronavirus Disease 19 (COVID-19) outcomes is a matter of debate since the beginning of the pandemic. To date, controversial results have been published on this issue. We aimed to prove whether antipsychotics might exert adverse or protective effects against fatal outcomes derived from COVID-19. A population-based retrospective cohort study (January 2020 to November 2020) comprising inpatients (15,968 patients) who were at least 18 years old and had a laboratory-confirmed COVID-19 infection. Two sub-cohorts were delineated, comprising a total of 2536 inpatients: individuals who either had no prescription medication or were prescribed an antipsychotic within the 15 days preceding hospitalization. We conducted survival and odds ratio analyses to assess the association between antipsychotic use and mortality, reporting both unadjusted and covariate-adjusted results. We computed the average treatment effects, using the untreated group as the reference, and the average treatment effect on the treated, focusing solely on the antipsychotic-treated population. Among the eight antipsychotics found to be in use, only aripiprazole showed a significant decrease in the risk of death from COVID-19 [adjusted odds ratio (OR) = 0.86; 95% CI, 0.79-0.93, multiple-testing adjusted p-value < 0.05]. Importantly, these findings were consistent for both covariate-adjusted and unadjusted analyses. Aripiprazole has been shown to have a differentiated beneficial effect in protecting against fatal clinical outcome in COVID-19 infected individuals. We speculate that the differential effect of aripiprazole on controlling immunological pathways and inducible inflammatory enzymes, that are critical in COVID19 illness, may be associated with our findings herein.
Collapse
Affiliation(s)
- C Loucera-Muñecas
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - M Canal-Rivero
- Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Sevilla, Spain.
- Centro Investigación Biomédica en Red Salud Mental, CIBERSAM, Madrid, Spain.
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Seville, Spain.
| | - M Ruiz-Veguilla
- Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Sevilla, Spain
- Centro Investigación Biomédica en Red Salud Mental, CIBERSAM, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Psychiatry, Universidad de Sevilla, Seville, Spain
| | - R Carmona
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - G Bostelmann
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - N Garrido-Torres
- Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Sevilla, Spain
- Centro Investigación Biomédica en Red Salud Mental, CIBERSAM, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Seville, Spain
| | - J Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
- FPS, ELIXIR-Es, Hospital Virgen del Rocío, Seville, Spain
| | - B Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Sevilla, Spain
- Centro Investigación Biomédica en Red Salud Mental, CIBERSAM, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Psychiatry, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
González-Castro TB, Tovilla-Zárate CA, Juárez-Rojop IE, Hernández-Díaz Y, López-Narváez ML, Ortiz-Ojeda RF. Effects of IL-6/IL-6R axis alterations in serum, plasma and cerebrospinal fluid with the schizophrenia: an updated review and meta-analysis of 58 studies. Mol Cell Biochem 2024; 479:525-537. [PMID: 37103677 DOI: 10.1007/s11010-023-04747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Studies investigating the association between IL-6/IL-6R axis and schizophrenia (SZ) susceptibility found inconsistent data. To reconcile the results, a systematic review followed by a meta-analysis was performed to assess the associations. This study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of the literature was carried out in July 2022 using electronic databases PubMed, EBSCO, Science Direct, PsychInfo, and Scopus. Study quality was assessed by the Newcastle-Ottawa scale. Pooled standard mean difference (SMD) with 95% confidence interval (CI) was calculated by fixed-effect or random-effect model analysis. Fifty-eight studies were identified, including 4,200 SZ patients and 4,531 controls. Our meta-analysis results showed an increase of IL-6 levels in plasma, serum, or CSF and decreased IL-6R levels in serum in patients under treatment. Further studies are needed to better elucidate the correlation between the IL-6/IL-6R axis and the schizophrenia.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México.
| | | | - Rosa Felicita Ortiz-Ojeda
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| |
Collapse
|
4
|
Matuleviciute R, Akinluyi ET, Muntslag TAO, Dewing JM, Long KR, Vernon AC, Tremblay ME, Menassa DA. Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathol 2023; 146:663-683. [PMID: 37656188 PMCID: PMC10564830 DOI: 10.1007/s00401-023-02629-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elizabeth T Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado Ekiti, Nigeria
| | - Tim A O Muntslag
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Katherine R Long
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - David A Menassa
- Department of Neuropathology & The Queen's College, University of Oxford, Oxford, UK.
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
5
|
Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:42. [PMID: 37429882 DOI: 10.1038/s41537-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Cognitive impairment is a core clinical feature of schizophrenia, exerting profound adverse effects on social functioning and quality of life in a large proportion of patients with schizophrenia. However, the mechanisms underlying the pathogenesis of schizophrenia-related cognitive impairment are not well understood. Microglia, the primary resident macrophages in the brain, have been shown to play important roles in psychiatric disorders, including schizophrenia. Increasing evidence has revealed excessive microglial activation in cognitive deficits related to a broad range of diseases and medical conditions. Relative to that about age-related cognitive deficits, current knowledge about the roles of microglia in cognitive impairment in neuropsychiatric disorders, such as schizophrenia, is limited, and such research is in its infancy. Thus, we conducted this review of the scientific literature with a focus on the role of microglia in schizophrenia-associated cognitive impairment, aiming to gain insight into the roles of microglial activation in the onset and progression of such impairment and to consider how scientific advances could be translated to preventive and therapeutic interventions. Research has demonstrated that microglia, especially those in the gray matter of the brain, are activated in schizophrenia. Upon activation, microglia release key proinflammatory cytokines and free radicals, which are well-recognized neurotoxic factors contributing to cognitive decline. Thus, we propose that the inhibition of microglial activation holds potential for the prevention and treatment of cognitive deficits in patients with schizophrenia. This review identifies potential targets for the development of new treatment strategies and eventually the improvement of care for these patients. It might also help psychologists and clinical investigators in planning future research.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, 300222, Tianjin, China.
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| |
Collapse
|
6
|
Kübler R, Ormel PR, Sommer IEC, Kahn RS, de Witte LD. Gene expression profiling of monocytes in recent-onset schizophrenia. Brain Behav Immun 2023; 111:334-342. [PMID: 37149105 DOI: 10.1016/j.bbi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Immune-related mechanisms have been suggested to be involved in schizophrenia. Various studies have shown changes in monocytes isolated from the blood of schizophrenia patients, including changes in monocyte numbers, as well as altered protein and transcript levels of important markers. However, validation of these findings and understanding how these results are related to immune-related changes in the brain and schizophrenia genetic risk factors, is limited. The goal of this study was to better understand changes observed in monocytes of patients with early-onset schizophrenia. Using RNA sequencing, we analyzed gene expression profiles of monocytes isolated from twenty patients with early-onset schizophrenia and seventeen healthy controls. We validated expression changes of 7 out of 29 genes that were differentially expressed in previous studies including TNFAIP3, DUSP2, and IL6. At a transcriptome-wide level, we found 99 differentially expressed genes. Effect sizes of differentially expressed genes were moderately correlated with differential expression in brain tissue (Pearson's r = 0.49). Upregulated genes were enriched for genes in NF-κB and LPS signaling pathways. Downregulated genes were enriched for glucocorticoid response pathways. These pathways have been implicated in schizophrenia before and play a role in regulating the activation of myeloid cells. Interestingly, they are also involved in several non-inflammatory processes in the central nervous system, such as neurogenesis and neurotransmission. Future studies are needed to better understand how dysregulation of the NF-κB and glucocorticoid pathways affects inflammatory and non-inflammatory processes in schizophrenia. The fact that dysregulation of these pathways is also seen in brain tissue, provides potential possibilities for biomarker development.
Collapse
Affiliation(s)
- Raphael Kübler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul R Ormel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Iris E C Sommer
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Williams MR, Macdonald CM, Turkheimer FE. Histological examination of choroid plexus epithelia changes in schizophrenia. Brain Behav Immun 2023; 111:292-297. [PMID: 37150267 DOI: 10.1016/j.bbi.2023.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The choroid plexus (CP) produces and secretes most of the cerebrospinal fluid (CSF) of the central nervous system. The CP is suggested to be regulated by descending neurons and by circulating factors and is involved in the interaction between central and peripheral inflammation. Quantitative imaging has demonstrated volumetric CP changes in psychosis, schizophrenia and depression. This study histologically examines CP epithelial cell morphology in these illnesses to identify the biological source of such volumetric changes. METHODS Formalin-fixed paraffin-embedded (FFPE) blocks were obtained bilaterally from the lateral ventricles of 13 cases of sex- and age-matched brains from each of schizophrenia (SZ) with psychosis, major depressive disorder (MDD) and matched controls (NPD). FFPE blocks were sectioned at 7 μm and routinely stained for H&E. Morphological analysis of 180 CP epithelia/case was conducted blindly on digital images collected at x600 magnification. Calcification was assessed in all CP regions manually. RESULTS Analysis with a General Linear Model demonstrated a significant effect of diagnosis on somal width (p = 0.006, R2 = 0.33 R2(adj) = 0.25) demonstrating increased somal width in SZ without psychotic medication versus controls (p = 0.032), but not in medicated SZ cases. No effects were observed in calcification. DISCUSSION The epithelial cells that were examined were attached to the CP fibrous surface, so width expansion describes the primary methods for these cells to expand with adherence to this surface in SZ. The interaction of antipsychotic medication and diagnosis demonstrates that this is an illness-specific change mediated through the DA-system with likely neuronal origin. CP alterations were not found in MDD where they are instead generally associated with heightened allostatic load that was unknown in this cohort.
Collapse
Affiliation(s)
- M R Williams
- Segmentum Analysis, St John's Innovation Park, Cambridge Science Park, UK
| | | | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
8
|
Fridman J, Bloemhof-Bris E, Weizman S, Kessler T, Porat D, Ivry A, Wolf A, Stryjer R, Shelef A. Inflammation Markers Among Schizophrenia Patients Who Use Cannabis. Clin Neuropharmacol 2023; Publish Ahead of Print:00002826-990000000-00053. [PMID: 37335845 DOI: 10.1097/wnf.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVES The mechanism of inflammation of the immune system, for example, such circulatory markers as the neutrophil-to-lymphocyte ratio (NLR) and mean platelet volume (MPV), has been shown in many studies to be associated with schizophrenia. In addition, it has been shown that the cannabidiol component reduces the activation of the acquired immune system. This study examined the differences in the levels of NLR and MPV among schizophrenia patients with cannabis use versus those without. METHODS In 2019 to 2020, a retrospective cross-sectional study was conducted based on digital medical records. Demographic, clinical, and complete blood cell count data were collected from records of rehospitalization of active psychotic schizophrenia inpatients. Data on NLR, MPV values, and demographic and clinical characteristics were compared between the groups and according to the degree of prevalence of cannabis use. RESULTS No differences were found in the NLR and MPV values between the groups. CONCLUSION The results were contrary to our expectations. These results may be explained by the presentation of a "pseudo-balanced" picture created when multiple processes affect inflammatory indices.
Collapse
|
9
|
Schulmann A, Marenco S, Vawter MP, Akula N, Limon A, Mandal A, Auluck PK, Patel Y, Lipska BK, McMahon FJ. Antipsychotic drug use complicates assessment of gene expression changes associated with schizophrenia. Transl Psychiatry 2023; 13:93. [PMID: 36932057 PMCID: PMC10023659 DOI: 10.1038/s41398-023-02392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not. APD exposure was associated with numerous changes in the brain transcriptome, especially among SCZ patients on atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. Co-expression modules enriched for synaptic function showed convergent patterns between SCZ and some of the APD effects, while those associated with inflammation and glucose metabolism exhibited predominantly divergent patterns between SCZ and APD effects. In contrast, major cell-type shifts inferred in SCZ were primarily unaffected by APD use. These results show that APDs may confound SCZ-associated gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of SCZ.
Collapse
Affiliation(s)
- Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Agenor Limon
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Yash Patel
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Barbara K Lipska
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| |
Collapse
|
10
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
11
|
North HF, Weissleder C, Fullerton JM, Webster MJ, Weickert CS. Increased immune cell and altered microglia and neurogenesis transcripts in an Australian schizophrenia subgroup with elevated inflammation. Schizophr Res 2022; 248:208-218. [PMID: 36108465 DOI: 10.1016/j.schres.2022.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
We previously identified a subgroup of schizophrenia cases (~40 %) with heightened inflammation in the neurogenic subependymal zone (SEZ) (North et al., 2021b). This schizophrenia subgroup had changes indicating reduced microglial activity, increased peripheral immune cells, increased stem cell dormancy/quiescence and reduced neuronal precursor cells. The present follow-up study aimed to replicate and extend those novel findings in an independent post-mortem cohort of schizophrenia cases and controls from Australia. RNA was extracted from SEZ tissue from 20 controls and 22 schizophrenia cases from the New South Wales Brain Tissue Resource Centre, and gene expression analysis was performed. Cluster analysis of inflammation markers (IL1B, IL1R1, SERPINA3 and CXCL8) revealed a high-inflammation schizophrenia subgroup comprising 52 % of cases, which was a significantly greater proportion than the 17 % of high-inflammation controls. Consistent with our previous report (North et al., 2021b), those with high-inflammation and schizophrenia had unchanged mRNA expression of markers for steady-state and activated microglia (IBA1, HEXB, CD68), decreased expression of phagocytic microglia markers (P2RY12, P2RY13), but increased expression of markers for macrophages (CD163), monocytes (CD14), natural killer cells (FCGR3A), and the adhesion molecule ICAM1. Similarly, the high-inflammation schizophrenia subgroup emulated increased quiescent stem cell marker (GFAPD) and decreased neuronal progenitor (DLX6-AS1) and immature neuron marker (DCX) mRNA expression; but also revealed a novel increase in a marker of immature astrocytes (VIM). Replicating primary results in an independent cohort demonstrates that inflammatory subgroups in the SEZ in schizophrenia are reliable, robust and enhance understanding of neuropathological heterogeneity when studying schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
12
|
Ozdamar Unal G, Hekimler Ozturk K, Inci HE. Increased NLRP3 inflammasome expression in peripheral blood mononuclear cells of patients with schizophrenia: a case-control study. Int J Psychiatry Clin Pract 2022:1-7. [PMID: 35938405 DOI: 10.1080/13651501.2022.2106245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVE This study aimed to evaluate the gene expression of the P2X purinoceptor 7 (P2X7R)- nod-like receptor pyrin domain-containing protein 3 (NLRP3) signal pathway in peripheral blood mononuclear cells (PBMCs) between schizophrenia (SCZ) patients and healthy controls (HC) to reveal its relationship with clinical variables. METHODS Thirty-two SCZ patients and 41 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS), The Global Assessment of Functioning (GAF) scale and the Functioning Assessment Short Test (FAST) scales were applied. P2X7R, NLRP3, IL-1β and IL-18 gene expression levels were evaluated by real-time polymerase chain reaction in PBMCs. RESULTS NLRP3, P2RX7, IL-1β and IL-18 expression levels were significantly higher in PBMCs of SCZ patients than in HC subjects. Negative correlations were found between NLRP3 gene expression levels and GAF and FAST scales scores. There was a negative correlation between IL-18 expression levels and the GAF and FAST scales scores and a positive correlation with the SAPS scale scores. CONCLUSIONS Systemic inflammation is implicated in SCZ pathogenesis, according to our findings, which suggest that the NLRP3 pathway may be involved. The NLRP3 inflammasome may serve as a biomarker for SCZ, and its pharmacological regulation may be a promising treatment approach.Key pointsWe hypothesised that the NLRP3 pathway may contribute to the etiopathogenesis of schizophrenia.NLRP3, IL-1β and IL-18 mRNA levels were higher in patients with schizophrenia compared to healthy controls.Negative correlations were found between NLRP3 gene expression levels and GAF and FAST scales scores.There was a negative correlation between IL-18 expression levels and the GAF and FAST scales scores.The SAPS scale scores and IL-18 expression levels had a positive correlation.Given all these findings, it can be stated that NLRP3 inflammasome may play a role in the pathogenesis and symptoms of schizophrenia.
Collapse
Affiliation(s)
- Gulin Ozdamar Unal
- Department of Psychiatry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Kuyas Hekimler Ozturk
- Department of Medical Genetics, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Huseyin Emre Inci
- Department of Psychiatry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
13
|
Su J, Feng X, Chen K, Fang Z, Zhang H. Plasma complement component 4 alterations in patients with schizophrenia before and after antipsychotic treatment. Asian J Psychiatr 2022; 73:103110. [PMID: 35430500 DOI: 10.1016/j.ajp.2022.103110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023]
Abstract
This study was performed to investigate the plasma C4 level and the influence of antipsychotic medication in schizophrenic patients. Thirty-six schizophrenic patients were followed-up for a mean of four weeks. The plasma level of C4 in schizophrenia was significantly higher than that in healthy controls at baseline, and was significantly decreased after antipsychotic treatment. CRP at both baseline and follow-up in patients were comparable to that in healthy controls. Our findings indicate that the plasma level of C4 is increased in schizophrenia patients at the acute stage of illness and can be decreased by antipsychotic medication.
Collapse
Affiliation(s)
- Jingfeng Su
- Shantou University Mental Health Center, Taishan North Road, Shantou 515065, China
| | - Xia Feng
- Shantou University Mental Health Center, Taishan North Road, Shantou 515065, China
| | - Kaiyuan Chen
- Shantou University Mental Health Center, Taishan North Road, Shantou 515065, China
| | - Zeman Fang
- Shantou University Mental Health Center, Taishan North Road, Shantou 515065, China
| | - Handi Zhang
- Shantou University Mental Health Center, Taishan North Road, Shantou 515065, China.
| |
Collapse
|
14
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
15
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
16
|
North HF, Weissleder C, Fullerton JM, Sager R, Webster MJ, Weickert CS. A schizophrenia subgroup with elevated inflammation displays reduced microglia, increased peripheral immune cell and altered neurogenesis marker gene expression in the subependymal zone. Transl Psychiatry 2021; 11:635. [PMID: 34911938 PMCID: PMC8674325 DOI: 10.1038/s41398-021-01742-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation regulates neurogenesis, and the brains of patients with schizophrenia and bipolar disorder have reduced expression of neurogenesis markers in the subependymal zone (SEZ), the birthplace of inhibitory interneurons. Inflammation is associated with cortical interneuron deficits, but the relationship between inflammation and reduced neurogenesis in schizophrenia and bipolar disorder remains unexplored. Therefore, we investigated inflammation in the SEZ by defining those with low and high levels of inflammation using cluster analysis of IL6, IL6R, IL1R1 and SERPINA3 gene expression in 32 controls, 32 schizophrenia and 29 bipolar disorder cases. We then determined whether mRNAs for markers of glia, immune cells and neurogenesis varied with inflammation. A significantly greater proportion of schizophrenia (37%) and bipolar disorder cases (32%) were in high inflammation subgroups compared to controls (10%, p < 0.05). Across the high inflammation subgroups of psychiatric disorders, mRNAs of markers for phagocytic microglia were reduced (P2RY12, P2RY13), while mRNAs of markers for perivascular macrophages (CD163), pro-inflammatory macrophages (CD64), monocytes (CD14), natural killer cells (FCGR3A) and adhesion molecules (ICAM1) were increased. Specific to high inflammation schizophrenia, quiescent stem cell marker mRNA (GFAPD) was reduced, whereas neuronal progenitor (ASCL1) and immature neuron marker mRNAs (DCX) were decreased compared to low inflammation control and schizophrenia subgroups. Thus, a heightened state of inflammation may dampen microglial response and recruit peripheral immune cells in psychiatric disorders. The findings elucidate differential neurogenic responses to inflammation within psychiatric disorders and highlight that inflammation may impair neuronal differentiation in the SEZ in schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel Sager
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
17
|
Bonnet U, Claus B, Schaefer M, Kuhn J, Nyhuis P, Scherbaum N, Brüne M, Wakili V, Juckel G. Impact of Psychiatric and Related Somatic Medications on the Duration and Severity of COVID-19: A Retrospective Explorative Multi-center Study from the German Metropolitan Ruhr-area. PHARMACOPSYCHIATRY 2021; 55:30-39. [PMID: 34530483 DOI: 10.1055/a-1559-3904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several psychiatric and somatic medications are assumed to improve COVID-19-symptoms. These include antidepressants, antipsychotics, and anticonvulsants as well as anticoagulants, statins, and renin-angiotensin-aldosterone-system (RAAS)-inhibitors for somatic comorbid conditions. All these agents may reduce the hyperinflammatory response to SARS/CoV-2 or the related negative cardio-cerebrovascular outcomes. METHODS In a retrospective longitudinal, multi-center inpatient study, we sought to explore the influence of psychiatric medications on COVID-19, comprising the period from diagnosing SARS/CoV-2-infection via PCR (nasopharyngeal swab) up to the next 21 days. Ninety-six psychiatric inpatients (mean age [SD] 65.5 (20.1), 54% females) were included. The primary outcome was the COVID-19-duration. Secondary outcomes included symptom severity and the presence of residual symptoms. RESULTS COVID-19-related symptoms emerged in 60 (62.5%) patients, lasting 6.5 days on average. Six (6.3%) 56-95 years old patients died from or with COVID-19. COVID-19-duration and residual symptom-presence (n=22, 18%) were not significantly related to any substance. Respiratory and neuro-psychiatric symptom-load was significantly and negatively related to prescription of antidepressants and anticoagulants, respectively. Fatigue was negatively and positively related to RAAS-inhibitors and proton-pump-inhibitors, respectively. These significant relationships disappeared with p-value adjustment owed to multiple testing. The mean total psychiatric burden was not worsened across the study. DISCUSSION None of the tested medications was significantly associated with the COVID-19-duration and -severity up to the end of post-diagnosing week 3. However, there were a few biologically plausible and promising relationships with antidepressants, anticoagulants, and RAAS-inhibitors before p-value adjustment. These should encourage larger and prospective studies to re-evaluate the influence of somatic and psychiatric routine medications on COVID-19-related health outcomes.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany.,LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - BenediktBernd Claus
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany.,PedScience, Datteln, Germany
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychoso-matics and Addiction Medicine, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Jens Kuhn
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | | | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Brüne
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Velat Wakili
- Department of Psychiatry, Psychotherapy, Psychoso-matics and Addiction Medicine, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| |
Collapse
|
18
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J Clin Med 2021; 10:jcm10112488. [PMID: 34199832 PMCID: PMC8200072 DOI: 10.3390/jcm10112488] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Cytokines have a major impact on the neurotransmitter networks that are involved in schizophrenia pathophysiology. First Episode Psychosis (FEP) patients exhibit abnormalities in cytokines levels prior to the start of treatment. Previous studies showed that antipsychotic treatment modulates cytokines levels. The aim of this meta-analysis is to further investigate this relationship. Methods: Several online databases were searched. For meta-analysis of selected studies, we analysed variables containing the number of cases, mean and standard deviation of IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α, IFN-γ levels before, and after, antipsychotic treatment. Results: 12 studies were included in the meta-analysis. Our main results demonstrate that, in FEP patients, antipsychotic treatment is related to decreased concentrations of pro-inflammatory IL-1β, IL-6, IFN-γ, TNF-α and anti-inflammatory IL-4, IL-10 cytokines. On the other hand, levels of pro-inflammatory IL-2 and IL-17 remain unaffected. Conclusions: When compared with other meta-analyses of studies involving FEP individuals, results we obtained are consistent regarding decrease in IL-1β, IL-6. Comparing outcomes of our study with meta-analyses of schizophrenic subjects, in general, our results are consistent in IL-1β, IL-6, TNF-α, IFN-γ, IL-2. Our meta-analysis is the only one which indicates a decrease in anti-inflammatory IL-10 in FEP patients after antipsychotic treatment.
Collapse
|
20
|
Gebicke-Haerter PJ, Leonardi-Essmann F, Haerter JO, Rossner MJ, Falkai P, Schmitt A, Raabe FJ. Differential gene regulation in the anterior cingulate cortex and superior temporal cortex in schizophrenia: A molecular network approach. Schizophr Res 2021; 232:1-10. [PMID: 34004381 DOI: 10.1016/j.schres.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022]
Abstract
The closely connected anterior cingulate cortex (ACC) and superior temporal cortex (STC) are important for higher cognitive functions. Both brain regions are disturbed in schizophrenia, i.e., functional and structural alterations have been reported. This postmortem investigation in brains from patients with schizophrenia and controls compared gene expression in the left ACC and left STC. Most differentially expressed genes were unique to each brain region, but some clusters of genes were equally dysregulated in both, giving rise to a more general disease-specific pattern of gene regulation. The data was used to construct a molecular network of the genes identically expressed in both regions as primary nodes and the metabolically connected genes as secondary nodes. The network analysis identified downregulated clusters of immune-associated gene products and upregulated clusters belonging to the ubiquitin-proteasome system. These findings could help to identify new potential therapeutic targets for future approaches.
Collapse
Affiliation(s)
- Peter J Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago, Chile; Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, J 5, 68159 Mannheim, Germany
| | - Fernando Leonardi-Essmann
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, J 5, 68159 Mannheim, Germany
| | - Jan O Haerter
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstrasse 7, 80336 Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstrasse 7, 80336 Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstrasse 7, 80336 Munich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 05453-010 São Paulo, SP, Brazil.
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstrasse 7, 80336 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
21
|
Jankowska U, Skupien-Rabian B, Swiderska B, Prus G, Dziedzicka-Wasylewska M, Kedracka-Krok S. Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochem Res 2021; 46:2097-2111. [PMID: 34024016 PMCID: PMC8254727 DOI: 10.1007/s11064-021-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells’ proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-β1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.
Collapse
Affiliation(s)
- Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Gabriela Prus
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| |
Collapse
|
22
|
Boiko AS, Mednova IA, Kornetova EG, Gerasimova VI, Kornetov AN, Loonen AJM, Bokhan NA, Ivanova SA. Cytokine Level Changes in Schizophrenia Patients with and without Metabolic Syndrome Treated with Atypical Antipsychotics. Pharmaceuticals (Basel) 2021; 14:ph14050446. [PMID: 34065135 PMCID: PMC8150759 DOI: 10.3390/ph14050446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
The present study aims at comparing the change in cytokine levels in schizophrenia patients treated with atypical antipsychotics, with or without metabolic syndrome (MetS). The study included 101 patients with schizophrenia, 38 with and 63 without MetS, who received risperidone, quetiapine, olanzapine or aripiprazole for six weeks. We analyzed the concentration of 21 cytokines in the serum patients. The treatment with atypical antipsychotics changed some proinflammatory cytokine levels. It led to increased IFN-α2 (p = 0.010), IL-1α (p = 0.024) and IL-7 (p = 0.017) levels in patients with MetS, whereas the same treatment led to decreased levels of IFN-γ (p = 0.011), IL-1β (p = 0.035), IL-12р40 (p = 0.011), IL-17A (p = 0.031), IL-6 (p = 0.043) and TNF-α (p = 0.012) in individuals without MetS. Our results demonstrated the effects of atypical antipsychotics on the immune–inflammatory parameters, depending on the metabolic disturbances in schizophrenia patients.
Collapse
Affiliation(s)
- Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
| | - Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
- University Hospital, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
- Correspondence:
| | - Valeria I. Gerasimova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
| | - Alexander N. Kornetov
- Fundamental Psychology and Behavioral Medicine Department, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia;
| | - Anton J. M. Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands;
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia; (A.S.B.); (I.A.M.); (V.I.G.); (N.A.B.); (S.A.I.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
23
|
Bonnet U, Juckel G, Scherbaum N, Schaefer M, Kis B, Cohen S, Kuhn J. Are Persons Treated with Antidepressants and/or Antipsychotics Possibly Better Protected against Severe COVID 19? PHARMACOPSYCHIATRY 2021; 54:142-143. [PMID: 33733436 DOI: 10.1055/a-1408-8298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany.,LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Evang. Kliniken Essen-Mitte, Essen, Germany.,Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Germany
| | - Bernhard Kis
- Department of Psychiatry, Psychotherapy and Psychosomatics, St. Elisabeth Hospital Niederwenigern, Contilia Group, Hattingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Simon Cohen
- Klinik für Psychiatrie, Psychotherapie und Gerontopsychiatrie, HELIOS Marien Klinik, Duisburg, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| |
Collapse
|
24
|
Crespo-Facorro B, Ruiz-Veguilla M, Vázquez-Bourgon J, Sánchez-Hidalgo AC, Garrido-Torres N, Cisneros JM, Prieto C, Sainz J. Aripiprazole as a Candidate Treatment of COVID-19 Identified Through Genomic Analysis. Front Pharmacol 2021; 12:646701. [PMID: 33762960 PMCID: PMC7982825 DOI: 10.3389/fphar.2021.646701] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Antipsychotics modulate expression of inflammatory cytokines and inducible inflammatory enzymes. Elopiprazole (a phenylpiperazine antipsychotic drug in phase 1) has been characterized as a therapeutic drug to treat SARS-CoV-2 infection in a repurposing study. We aim to investigate the potential effects of aripiprazole (an FDA approved phenylpiperazine) on COVID-19-related immunological parameters. Methods: Differential gene expression profiles of non-COVID-19 vs. COVID-19 RNA-Seq samples (CRA002390 project in GSA database) and drug-naïve patients with non-affective psychosis at baseline and after three months of aripiprazole treatment were identified. An integrative transcriptomic analyses of aripiprazole effects on differentially expressed genes in COVID-19 patients was performed. Findings: 82 out the 377 genes (21.7%) with expression significantly altered by aripiprazole have also their expression altered in COVID-19 patients and in 93.9% of these genes their expression is reverted by aripiprazole. The number of common genes with expression altered in both analyses is significantly higher than expected (Fisher's Exact Test, two tail; p value = 3.2e-11). 11 KEGG pathways were significantly enriched with genes with altered expression both in COVID-19 patients and aripiprazole medicated non-affective psychosis patients (p adj<0.05). The most significant pathways were associated to immune responses and mechanisms of hyperinflammation-driven pathology (i.e.,"inflammatory bowel disease (IBD)" (the most significant pathway with a p adj of 0.00021), "Th1 and Th2 cell differentiation" and "B cell receptor signaling pathway") that have been also associated with COVID19 clinical outcome. Interpretation: This exploratory investigation may provide further support to the notion that a protective effect is exerted by aripiprazole (phenylpiperazine) by modulating the expression of genes that have shown to be altered in COVID-19 patients. Along with many ongoing studies and clinical trials, repurposing available medications could be of use in countering SARS-CoV-2 infection, but require further studies and trials.
Collapse
Affiliation(s)
- Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
| | - Miguel Ruiz-Veguilla
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
| | - Javier Vázquez-Bourgon
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
- Department of Psychiatry, University Hospital Marques de Valdecilla - Instituto de Investigacion Marques de Valdecilla (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Ana C. Sánchez-Hidalgo
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
- Seville Biomedical Research Centre (IBiS), Sevilla, Spain
| | - Nathalia Garrido-Torres
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
| | - Jose M. Cisneros
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocio, University of Seville, Salamanca, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Jesus Sainz
- Spanish National Research Council (CSIC), Institute of Biomedicine and Biotechnology of Cantabria, Santander, Spain
| |
Collapse
|
25
|
Agarwal SM, Vernon AC, Venkatasubramanian G, Hahn MK. Editorial: Cardiovascular and Physical Health in Severe Mental Illness. Front Psychiatry 2021; 12:760250. [PMID: 34650460 PMCID: PMC8505810 DOI: 10.3389/fpsyt.2021.760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Anthony Christopher Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ganesan Venkatasubramanian
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Margaret K Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|