1
|
Lopes AJ, Campos MJ, Rosado F, Rama L, Ribeiro AS, Martinho D, Teixeira A, Massart A. Analysis of Hydration Habits Before and During a Specific Training Session in Male Padel Athletes Aged over 65: Physiological and Psychological Implications. Nutrients 2024; 16:3513. [PMID: 39458506 PMCID: PMC11510502 DOI: 10.3390/nu16203513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Since older adults are more susceptible to dehydration and there is a lack of information on older athletes, this study observed a group of 12 male padel players in this age group (70.42 ± 3.50 years) to characterize their hydration habits, physiological demands, and psychological responses before and during a 90 min padel training (PT). (2) Methods: After approval from the Ethics Committee (CE/FCDEF-UC/00022023) and the provision of signed informed consent, participants' body mass, height, waist and hip circumferences, body mass index, waist-to-hip ratio, and waist-to-height ratio were measured. Habitual fluid intake was monitored by diary from the evening until before the PT; the subjects completed a Profile of Mood States questionnaire (POMS) and a satiety scale (SLIM). To assess hydration levels at different moments, we used a portable osmometer and an eight-point urine color chart and weighed the participants immediately before and after the PT. During the PT, heart rate (HR) and hydration were monitored. After the PT, subjects completed another POMS and SLIM. (3) Results: Subjects trained at 73.2 ± 12.3% of their maximum HR, with brief peaks at the anaerobic threshold or higher (130.00 ± 18.78 bpm). The mean urine osmolality indicated normal hydration or minimal dehydration. However, the urine color values indicated dehydration after the training. Subjects drank 438 mL of liquids at night, 333 mL before PT, and 900 mL during the PT, with a good repartition of the liquids. POMS and SLIM were not affected by the training. (4) Conclusions: Older male padel athletes achieved challenging yet safe training, staying within healthy intensity zones; their hydration patterns nearly met the recommendations for exercise and should be slightly increased.
Collapse
Affiliation(s)
- Ana Júlia Lopes
- Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (A.J.L.); (F.R.)
| | - Maria João Campos
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| | - Fátima Rosado
- Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (A.J.L.); (F.R.)
| | - Luís Rama
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| | - Alex Silva Ribeiro
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| | - Diogo Martinho
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| | - Ana Teixeira
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| | - Alain Massart
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; (L.R.); (A.S.R.); (D.M.); (A.T.); (A.M.)
| |
Collapse
|
2
|
Armstrong LE, Johnson EC, Adams WM, Jardine JF. Hyperthermia and Exertional Heatstroke During Running, Cycling, Open Water Swimming, and Triathlon Events. Open Access J Sports Med 2024; 15:111-127. [PMID: 39345935 PMCID: PMC11438465 DOI: 10.2147/oajsm.s482959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Few previous epidemiological studies, sports medicine position statements, and expert panel consensus reports have evaluated the similarities and differences of hyperthermia and exertional heatstroke (EHS) during endurance running, cycling, open water swimming, and triathlon competitions. Accordingly, we conducted manual online searches of the PubMed and Google Scholar databases using pre-defined inclusion criteria. The initial manual screenings of 1192 article titles and abstracts, and subsequent reviews of full-length pdf versions identified 80 articles that were acceptable for inclusion. These articles indicated that event medical teams recognized hyperthermia and EHS in the majority of running and triathlon field studies (range, 58.8 to 85.7%), whereas few reports of hyperthermia and EHS appeared in cycling and open water swimming field studies (range, 0 to 20%). Sports medicine position statements and consensus reports also exhibited these event-specific differences. Thus, we proposed mechanisms that involved physiological effector responses (sweating, increased skin blood flow) and biophysical heat transfer to the environment (evaporation, convection, radiation, and conduction). We anticipate that the above information will help race directors to distribute pre-race safety advice to athletes and will assist medical directors to better allocate medical resources (eg, staff number and skill sets, medical equipment) and optimize the management of hyperthermia and EHS.
Collapse
Affiliation(s)
- Lawrence E Armstrong
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Evan C Johnson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, USA
| | - William M Adams
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine (NCSEM), Loughborough, UK
| | - John F Jardine
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Francisco R, Jesus F, Di Vincenzo O, Nunes CL, Alvim M, Sardinha LB, Mendonca GV, Lukaski H, Silva AM. Assessment of exercise-induced dehydration in underhydrated athletes: Which method shows the most promise? Clin Nutr 2024; 43:2139-2148. [PMID: 39137516 DOI: 10.1016/j.clnu.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND & AIMS Athletes are commonly exposed to exercise-induced dehydration. However, the best method to detect dehydration under this circumstance is not clear. This study aimed to analyze pre- and post-dehydration measurements of biomarkers, including saliva osmolality (SOsm), urine osmolality (UOsm), urine-specific gravity (USG), urine color (Ucolor), serum osmolality (SeOsm), serum arginine vasopressin (AVP), serum sodium (Na+), and thirst sensation in underhydrated athletes, using the body mass loss (BML) as the reference method. METHODS In this clinical trial (NCT05380089), a total of 38 athletes (17 females) with a regular low water intake (<35 mL/kg/day) were submitted to exercise-induced dehydration with a heat index of 29.8 ± 3.1 °C and an individualized running intensity (80-90% of first ventilatory threshold). RESULTS ROC curve analysis revealed significant discriminative abilities of SOsm, with AUC values of 0.76 at 1.5% BML, 0.75 at 1.75% BML, and 0.87 at 2% BML, while Na+ and SeOsm showed the highest AUC of 0.87 and 0.91 at 2% BML, respectively. SOsm showed high sensitivity at 1.5% of BML, while SeOsm and Na+ demonstrated high sensitivity at 2% of BML. CONCLUSION This study highlights SOsm as a potential indicator of hydration status across different levels of BML. Additionally, Na+ and SeOsm emerged as accurate dehydration predictors at 1.75% and 2% of BML. Notably, the accuracy of urinary indices and thirst sensation for detecting hydration may be limited.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | | | - Catarina L Nunes
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036, Barcarena, Portugal
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Goncalo V Mendonca
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal; Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
McCubbin AJ, Irwin CG, Costa RJS. Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress. Curr Nutr Rep 2024; 13:399-411. [PMID: 38995600 PMCID: PMC11327203 DOI: 10.1007/s13668-024-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia.
| | - Christopher G Irwin
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia
| |
Collapse
|
5
|
Bloomer RJ, Pence J, Hellenbrand J, Davis A, Davis S, Stockton M, Martin KR. Randomized Trial to Assess the Safety and Tolerability of Daily Intake of an Allulose Amino Acid-Based Hydration Beverage in Men and Women. Nutrients 2024; 16:1766. [PMID: 38892699 PMCID: PMC11174401 DOI: 10.3390/nu16111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Maintaining adequate hydration is critical to optimal health, well-being, and performance. Those who are physically active in stressful environments, such as warm and/or humid scenarios, may be at particular risk for dehydration with ensuing loss of electrolytes, leading to sluggishness and impaired physical performance. METHODS We evaluated an electrolyte and amino acid product containing L-alanine and L-glutamine, as well as select vitamins [B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B12 (cobalamin), and vitamin C (ascorbic acid)]. Subjects (n = 40; four groups, n = 10) were randomized to consume either a placebo packet or one, two, or three packets daily of the test product for 4 weeks with site visits at 0, 2, and 4 weeks. We tested safety and tolerability by analyzing hematological parameters (complete blood counts), metabolic parameters (hepatic, renal, acid-base balance), urinalysis end products, thyroid status [T3 (triiodothyronine), T4 (thyroxine), TSH (thyroid-stimulating hormone)], tolerability (via questionnaire), vital signs, and dietary intake. RESULTS Statistical analyses displayed ten significant main effects (p < 0.05) with white blood cells, lymphocytes, neutrophils, urinary pH, thyroxine, urination frequency, calcium, calories, fat, and cholesterol. Interactions for time and group (p < 0.05) were observed for MCV, eGFR, potassium, overall tolerability, bloating, and cramping-demonstrating mild GA disturbances. Little to no change of physiological relevance was noted for any outcome variable, regardless of dosing level. CONCLUSIONS Our results indicate the product was well-tolerated at all dosing levels and no significant adverse changes occurred in any of the test parameters compared to the placebo group, indicating relative safety of ingestion over a 4-week treatment period, at the volumes used, and outside the context of physical stress.
Collapse
Affiliation(s)
- Richard J. Bloomer
- Center for Nutraceutical and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (J.P.); (J.H.); (A.D.); (S.D.); (M.S.); (K.R.M.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Taggart SM, Girard O, Landers GJ, Ecker UKH, Wallman KE. A seasonal comparison of a 14-day swing on cognitive function and psycho-physiological responses in mine service workers. APPLIED ERGONOMICS 2024; 117:104241. [PMID: 38354553 DOI: 10.1016/j.apergo.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
This study assessed the effect of season on cognitive function and psycho-physiological responses during a 14-day swing in mine-service workers. Cognitive function, thermal sensation and comfort, rating of perceived exertion, fatigue, hydration, core temperature and heart rate were assessed throughout a shift, on three separate days over a swing. Working memory and processing efficiency did not differ between seasons (p > 0.05), however counting and recall latencies improved throughout the swing (p < 0.05). Participants reported greater fatigue post-shift compared to pre-shift (p < 0.05). Thermal sensation, thermal comfort, and hydration were significantly elevated in summer compared to winter (p < 0.05). Specifically, workers were significantly/minimally dehydrated in summer/winter (urinary specific gravity = 1.025 ± 0.007/1.018 ± 0.007). Although cognitive function and thermal strain were not impaired in summer compared to winter, it is essential to reinforce worker's knowledge regarding hydration requirements. Additional education and/or incorporating scheduled rest breaks for hydration should be considered to ensure the health and safety of mine workers.
Collapse
Affiliation(s)
- Sarah M Taggart
- School of Human Sciences (Sport Science, Exercise and Health), The University of Western Australia, Crawley, WA 6009, Australia.
| | - Olivier Girard
- School of Human Sciences (Sport Science, Exercise and Health), The University of Western Australia, Crawley, WA 6009, Australia
| | - Grant J Landers
- School of Human Sciences (Sport Science, Exercise and Health), The University of Western Australia, Crawley, WA 6009, Australia
| | - Ullrich K H Ecker
- School of Psychological Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Karen E Wallman
- School of Human Sciences (Sport Science, Exercise and Health), The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Robayo-Amortegui H, Quintero-Altare A, Florez-Navas C, Serna-Palacios I, Súarez-Saavedra A, Buitrago-Bernal R, Casallas-Barrera JO. Fluid dynamics of life: exploring the physiology and importance of water in the critical illness. Front Med (Lausanne) 2024; 11:1368502. [PMID: 38745736 PMCID: PMC11092983 DOI: 10.3389/fmed.2024.1368502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Water acknowledged as a vital component for life and the universal solvent, is crucial for diverse physiological processes in the human body. While essential for survival, the human body lacks the capacity to produce water, emphasizing the need for regular ingestion to maintain a homeostatic environment. The human body, predominantly composed of water, exhibits remarkable biochemical properties, playing a pivotal role in processes such as protein transport, thermoregulation, the cell cycle, and acid–base balance. This review delves into comprehending the molecular characteristics of water and its interactions within the human body. The article offers valuable insights into the intricate relationship between water and critical illness. Through a comprehensive exploration, it seeks to enhance our understanding of water’s pivotal role in sustaining overall human health.
Collapse
Affiliation(s)
- Henry Robayo-Amortegui
- Department of Critical Care Medicine, Fundación Clínica Shaio, Bogotá, DC, Colombia
- Department of Medicine, Critical Care Resident, Universidad de La Sabana, Chía Cundinamarca, Colombia
| | - Alejandro Quintero-Altare
- Department of Critical Care Medicine, Fundación Clínica Shaio, Bogotá, DC, Colombia
- Department of Medicine, Critical Care Resident, Universidad de La Sabana, Chía Cundinamarca, Colombia
| | - Catalina Florez-Navas
- Department of Critical Care Medicine, Fundación Clínica Shaio, Bogotá, DC, Colombia
- Department of Medicine, Critical Care Resident, Universidad de La Sabana, Chía Cundinamarca, Colombia
| | - Isacio Serna-Palacios
- Department of Medicine, Critical Care Resident, Universidad de La Sabana, Chía Cundinamarca, Colombia
| | | | - Ricardo Buitrago-Bernal
- Department of Critical Care Medicine, Fundación Clínica Shaio, Bogotá, DC, Colombia
- Exploratorium group, Fundación Clínica Shaio, Bogotá, DC, Colombia
| | | |
Collapse
|
8
|
Eifling KP, Gaudio FG, Dumke C, Lipman GS, Otten EM, Martin AD, Grissom CK. Wilderness Medical Society Clinical Practice Guidelines for the Prevention and Treatment of Heat Illness: 2024 Update. Wilderness Environ Med 2024; 35:112S-127S. [PMID: 38425235 DOI: 10.1177/10806032241227924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The Wilderness Medical Society (WMS) convened an expert panel in 2011 to develop a set of evidence-based guidelines for the recognition, prevention, and treatment of heat illness. The current panel retained 5 original members and welcomed 2 new members, all of whom collaborated remotely to provide an updated review of the classifications, pathophysiology, evidence-based guidelines for planning and preventive measures, and recommendations for field- and hospital-based therapeutic management of heat illness. These recommendations are graded based on the quality of supporting evidence and the balance between the benefits and risks or burdens for each modality. This is an updated version of the WMS clinical practice guidelines for the prevention and treatment of heat illness published in Wilderness & Environmental Medicine. 2019;30(4):S33-S46.
Collapse
Affiliation(s)
- Kurt P Eifling
- Department of Emergency Medicine, University of Arkansas for Medical Sciences, Fayetteville, AR
| | - Flavio G Gaudio
- Department of Emergency Medicine, New York-Presbyterian Hospital / Weill Cornell Medical College, New York, NY
| | - Charles Dumke
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | | | - Edward M Otten
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH
| | - August D Martin
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Fayetteville, AR
| | - Colin K Grissom
- Pulmonary and Critical Care Division, Intermountain Medical Center and the University of Utah, Salt Lake City, UT
| |
Collapse
|
9
|
Białek-Dratwa A, Krzywak Z, Staśkiewicz-Bartecka W, Velecký J, Cirocki A, Grajek M, Kowalski O. Comparison of Nutrition among Female Floorball Players of Extra-Class Teams from Poland and the Czech Republic during the Preparation Period for the League Season. Nutrients 2024; 16:544. [PMID: 38398869 PMCID: PMC10893303 DOI: 10.3390/nu16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The study aimed to assess the frequency of food intake and to compare the consumption of female extramural players training floorball in Poland and the Czech Republic during the preparation period for the league season. In total, 43 players training floorball in senior clubs participated in the study, including 21 from the Polish and 22 from the Czech clubs. The research tool was based on the standardised questionnaire for the Examination of Eating Behaviours and Opinions on Food and Nutrition (QEB). The study also analysed body composition using the Bioelectrical Impedance Analysis (BIA) method, and the research tool was a TANITA MC-780 S MA body composition analyser (Tanita Corporation, Tokyo, Japan). The Polish women's floorball players had lower results in body fat percentage (FM) and muscle mass (MM) than the Czech team. The mean FM in the players of the Polish team was 18.6% ± 5.4, and the mean MM was 45.8 kg ± 4.2. In the Czech team players, these figures were 19.8% ± 5.4 and 47.8 kg ± 4.2. Despite the similar value of mean BMI in both teams, the highest BMI in the case of female athletes from Poland (17.7), indicating underweight, and the highest BMI in female athletes from the Czech Republic (26.9), indicating overweight, were significant. The study showed differences in both body composition analysis and dietary patterns of the Czech and Polish players. The Czech women's floorball players had a higher muscle mass and body fat percentage than Polish floorball players. Furthermore, differences in diet were observed among the players of the Czech team compared to the players of the Polish team. The Czech women's floorball players consumed a slightly higher amount of healthier products, such as whole-grain products. The Polish players took in more meat, processed products and fruit juices. This study is one of the first to assess the nutrition of those involved in floorball. There is a need for further research that focuses on the specifics of the discipline, the exercise capacity of the players and points during the season that require nutritional support. This knowledge would help develop effective nutritional strategies and plan and implement appropriate nutrition education for this group of athletes.
Collapse
Affiliation(s)
- Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Zuzanna Krzywak
- SUS Travel Jedynka Trzebiatów, ul.Kamieniecka 16, 72-320 Trzebiatów, Poland
| | - Wiktoria Staśkiewicz-Bartecka
- Department of Food Technology and Quality Evaluation, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
| | - Jiří Velecký
- 1. SC Tempish Vitkovice (Ostrava), 708 00 Ostrava, Czech Republic
| | - Artur Cirocki
- SUS Travel Jedynka Trzebiatów, ul.Kamieniecka 16, 72-320 Trzebiatów, Poland
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Piekarska 18, 41-902 Bytom, Poland;
| | - Oskar Kowalski
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
10
|
Andrade MT, Wanner SP, Santos WME, Mendes TT, Nunes-Leite MMS, de Oliveira GGA, Carmo AAL, Carvalho MV, Silami Garcia E, Soares DD. Ad libitum ice slurry ingestion and half-marathon performance in a hot environment: A study comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C. J Therm Biol 2024; 119:103781. [PMID: 38232473 DOI: 10.1016/j.jtherbio.2023.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Ice slurry ingestion during prolonged exercises may improve performance in hot environments; however, the ideal amount and timing of ingestion are still uncertain. We determined whether ad libitum ice slurry ingestion influences physiological and perceptual variables and half-marathon performance while comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C. Ten trained participants (28 ± 2 years; mean and SD) were required to run two half marathons while consuming either ice slurry (-1 °C; Ad-1) or water (37 °C; 37 CE) ad libitum. They then performed two other half marathons where, during one, they were required to ingest an amount of water equivalent to the amount consumed during the Ad-1 trial (Pro37), and in the other, to ingest ice slurry in the amount consumed during the 37 CE trial (Pro-1). During the half marathons, dry-bulb temperature and relative humidity were controlled at 33.1 ± 0.3 °C and 60 ± 3%, respectively. Ad-1 ingestion (349.6 ± 58.5 g) was 45% less than 37 CE ingestion (635.5 ± 135.8 g). Physical performance, heart rate, perceived exertion, body temperatures, and thermal perception were not influenced by the temperature or amount of beverage ingestion. However, a secondary analysis suggested that lower beverage ingestion was associated with improved performance (Ad-1 + Pro37 vs. 37 CE + Pro-1: -4.0 min, Cohen's d = 0.39), with a significant relationship between lower beverage ingestion and faster running time (b = 0.02, t = 4.01, p < 0.001). In conclusion, ice slurry ingestion does not affect performance or physiological or perceptual variables during a half marathon in a hot environment. Preliminary evidence suggests that lower beverage ingestion (ice slurry or warm water) is associated with improved performance compared to higher ingestion.
Collapse
Affiliation(s)
- Marcelo T Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil; Psychology Program, Belo Horizonte, (MG), Brazil.
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Weslley M E Santos
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Thiago T Mendes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil; Department of Physical Education, Universidade Federal da Bahia, Salvador, (BA), Brazil
| | - Matheus M S Nunes-Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Gustavo G A de Oliveira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Adriano A L Carmo
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Moisés V Carvalho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil; Department of Human Movement Sciences, Universidade Do Estado de Minas Gerais, Ibirité, (MG), Brazil
| | - Emerson Silami Garcia
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, (MG), Brazil
| |
Collapse
|
11
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming. Pharmacol Rev 2023; 75:1140-1166. [PMID: 37328294 DOI: 10.1124/pharmrev.122.000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Collapse
Affiliation(s)
- Jericho Wee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Xiang Ren Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Melvin Khee Shing Leow
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Doreen Su-Yin Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Johan G Eriksson
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| |
Collapse
|
13
|
Porto AA, Benjamim CJR, da Silva Sobrinho AC, Gomes RL, Gonzaga LA, da Silva Rodrigues G, Vanderlei LCM, Garner DM, Valenti VE. Influence of Fluid Ingestion on Heart Rate, Cardiac Autonomic Modulation and Blood Pressure in Response to Physical Exercise: A Systematic Review with Meta-Analysis and Meta-Regression. Nutrients 2023; 15:4534. [PMID: 37960187 PMCID: PMC10650885 DOI: 10.3390/nu15214534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 11/15/2023] Open
Abstract
A systematic review was undertaken to investigate the involvement of hydration in heart rate (HR), HR variability (HRV) and diastolic (DBP) and systolic (SBP) blood pressure in response to exercise. Data synthesis: The EMBASE, MEDLINE, Cochrane Library, CINAHL, LILACS and Web of Science databases were searched. In total, 977 studies were recognized, but only 36 were included after final screening (33 studies in meta-analysis). This study includes randomized controlled trials (RCTs) and non-RCTs with subjects > 18 years old. The hydration group consumed water or isotonic drinks, while the control group did not ingest liquids. For the hydration protocol (before, during and after exercise), the HR values during the exercise were lower compared to the controls (-6.20 bpm, 95%CI: -8.69; -3.71). In the subgroup analysis, "water ingested before and during exercise" showed lower increases in HR during exercise (-6.20, 95%CI: 11.70 to -0.71), as did "water was ingested only during exercise" (-6.12, 95%CI: -9.35 to -2.89). Water intake during exercise only revealed a trend of avoiding greater increases in HR during exercise (-4,60, 95%CI: -9.41 to 0.22), although these values were not significantly different (p = 0.06) from those of the control. "Isotonic intake during exercise" showed lower HRs than the control (-7.23 bpm, 95% CI: -11.68 to -2.79). The HRV values following the exercise were higher in the hydration protocol (SMD = 0.48, 95%CI: 0.30 to 0.67). The values of the SBP were higher than those of the controls (2.25 mmHg, 95%CI: 0.08 to 4.42). Conclusions: Hydration-attenuated exercise-induced increases in HR during exercise, improved autonomic recovery via the acceleration of cardiac vagal modulation in response to exercise and caused a modest increase in SBP values, but did not exert effects on DBP following exercise.
Collapse
Affiliation(s)
- Andrey A. Porto
- Department of Movement Sciences, São Paulo State University, UNESP, Presidente Prudente 19060-900, SP, Brazil; (L.A.G.); (V.E.V.)
| | - Cicero Jonas R. Benjamim
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.J.R.B.); (A.C.d.S.S.); (G.d.S.R.)
| | - Andressa Crystine da Silva Sobrinho
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.J.R.B.); (A.C.d.S.S.); (G.d.S.R.)
| | - Rayana Loch Gomes
- Department of Nutrition, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Luana A. Gonzaga
- Department of Movement Sciences, São Paulo State University, UNESP, Presidente Prudente 19060-900, SP, Brazil; (L.A.G.); (V.E.V.)
| | - Guilherme da Silva Rodrigues
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.J.R.B.); (A.C.d.S.S.); (G.d.S.R.)
| | | | - David M. Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Vitor E. Valenti
- Department of Movement Sciences, São Paulo State University, UNESP, Presidente Prudente 19060-900, SP, Brazil; (L.A.G.); (V.E.V.)
| |
Collapse
|
14
|
Goulet EDB, Claveau P, Simoneau IL, Deshayes TA, Jolicoeur-Desroches A, Aloui F, Hoffman MD. Repeatability of Ad Libitum Water Intake during Repeated 1 h Walking/Jogging Exercise Sessions Conducted under Hot Ambient Conditions. Nutrients 2023; 15:4500. [PMID: 37960153 PMCID: PMC10650651 DOI: 10.3390/nu15214500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
A drinking strategy aiming to replace a given percentage of the sweat losses incurred during exercise should result in reproducible fluid intake volume and, hence, fluid balance from one exercise session to the other performed under similar scenarios. Whether this may also be the case with ad libitum drinking during exercise is unclear. We characterized the repeatability of ad libitum water intake during repeated 1 h exercise sessions and examined its effect over time on fluid balance and selected physiological functions and perceptual sensations. Twelve (3 women) healthy individuals participated in this study. At weekly intervals, they completed four 2 × 30 min walking/jogging exercise bouts (55% V˙O2max, 40 °C, 20-30% relative humidity) interspersed by a 3 min recovery period. During exercise, participants consumed water (20 °C) ad libitum. There were no significant differences among the four exercise sessions for absolute water intake volume (~1000 mL·h-1), percent body mass loss (~0.4%), sweat rate (~1300 mL·h-1) and percent of sweat loss replaced by water intake (~80%). Heart rate, rectal temperature, and perceived thirst and heat stress did not differ significantly between the first and fourth exercise sessions. Perceived exertion was significantly lower during the fourth vs. the first exercise session, but the difference was trivial (<1 arbitrary unit). In conclusion, ad libitum water intake during four successive identical 1 h walking/jogging sessions conducted in the heat will result in similar water intake volumes and perturbations in fluid balance, heart rate, rectal temperature, and perceived thirst, heat stress and exertion.
Collapse
Affiliation(s)
- Eric D. B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada; (P.C.); (T.A.D.); (A.J.-D.); (F.A.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, PQ J1H 4C4, Canada
| | - Pascale Claveau
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada; (P.C.); (T.A.D.); (A.J.-D.); (F.A.)
| | - Ivan L. Simoneau
- Centre de Recherche et de Formation par Simulation, Cégep of Sherbrooke, Sherbrooke, PQ J1E 4K1, Canada;
| | - Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada; (P.C.); (T.A.D.); (A.J.-D.); (F.A.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, PQ J1H 4C4, Canada
| | - Antoine Jolicoeur-Desroches
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada; (P.C.); (T.A.D.); (A.J.-D.); (F.A.)
| | - Fedi Aloui
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada; (P.C.); (T.A.D.); (A.J.-D.); (F.A.)
| | | |
Collapse
|
15
|
Orysiak J, Młynarczyk M, Tomaszewski P. Fluid intake at work in foresters working in different thermal conditions. Sci Rep 2023; 13:15870. [PMID: 37741879 PMCID: PMC10518000 DOI: 10.1038/s41598-023-41652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
The primary aim of this study was to assess the impact of fluid intake on hydration status indices in men at work. The secondary aim was to determine the type of fluids drunk at work in different thermal conditions. Fifty-nine male foresters were examined before and after one working day during summer, autumn, and winter. Before and after work, urine and blood samples were obtained from foresters. Immediately after a shift, participants completed a questionnaire regarding fluid intake during one working day. The amount of fluid consumed affects the hydration urine indices. Urine specific gravity and urine osmolality significantly decreased with increasing fluid intake (r = - 0.385 and r = - 0.405, respectively). Moreover, an impact of season on the type of fluids consumed by workers was observed. Tea was significantly more often chosen by workers to drink in winter (68%) than in summer (32%) (p = 0.026). The consumption of any non-alcoholic fluids contributes to the daily total water intake, but it is necessary to create individualized fluid replacement plans. Workers should know how much and what types of drinks to consume at work.
Collapse
Affiliation(s)
- J Orysiak
- Department of Ergonomics, Central Institute for Labour Protection-National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland.
| | - M Młynarczyk
- Department of Ergonomics, Central Institute for Labour Protection-National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland
| | - P Tomaszewski
- Department of Tourism and Recreation, Józef Piłsudski University of Physical Education, Marymoncka St. 34, 00-968, Warsaw, Poland
| |
Collapse
|
16
|
Pryor RR, Larson JR, Vandermark LW, Johnson BD, Schlader ZJ. Water consumption patterns impact hydration markers in males working in accordance with the National Institute for Occupational Safety and Health recommendations. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:414-425. [PMID: 37267511 DOI: 10.1080/15459624.2023.2221713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The impact of water consumption bolus volume and frequency on hydration biomarkers during work in the heat is unknown. In a randomized, crossover fashion, eight males consumed either 500 mL of water every 40 min or 237 mL of water every 20 min during 2 hr of continuous walking at 6.4 kph, 1.0% grade in a 34 °C/30% relative humidity environment, followed by 2 hr of rest. Hydration biomarkers and variables were assessed pre-work, post-work, and after the 2 hr recovery. There were no differences in body mass between trials at any time point (all p > 0.05). Percent change in plasma volume during work was not different when 237 mL of water was repeatedly consumed (-1.6 ± 8.2%) compared to 500 mL of water (-1.3 ± 3.0%, p = 0.92). Plasma osmolality was maintained over time (p = 0.55) with no difference between treatments (p = 0.21). When consuming 500 mL of water repeatedly, urine osmolality was lower at recovery (205 ± 108 mOsmo/L) compared to pre-work (589 ± 95 mOsmo/L, p < 0.01), different from repeatedly consuming 237 mL of water which maintained urine osmolality from pre-work (548 ± 144 mOsmo/L) through recovery (364 ± 261 mOsmo/L, p = 0.14). Free water clearance at recovery was greater with repeated consumption of 500 mL of water (1.2 ± 1.0 mL/min) compared to 237 mL of water (0.4 ± 0.8 mL/min, p = 0.02). Urine volume was not different between treatments post-work (p = 0.62), but greater after 2 hr of recovery when repeatedly consuming 500 mL of water compared to 237 mL (p = 0.01), leading to greater hydration efficiency upon recovery with repeated consumption of 237 mL of water (68 ± 12%) compared to 500 mL (63 ± 14%, p = 0.01). Thirst and total gastrointestinal symptom scores were not different between treatments at any time point (all p > 0.05). Body temperatures and heart rate were not different between treatments at any time point (all p > 0.05). Drinking larger, less frequent water boluses or drinking smaller, more frequent water boluses are both reasonable strategies to promote adequate hydration and limit changes in body mass in males completing heavy-intensity work in the heat.
Collapse
Affiliation(s)
- Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Jonathan R Larson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Lesley W Vandermark
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
17
|
Laurino MJL, da Silva AKF, Santos LA, Vanderlei LCM. Water drinking during aerobic exercise improves the recovery of non-linear heart rate dynamics in coronary artery disease: crossover clinical trial. Front Neurosci 2023; 17:1147299. [PMID: 37424997 PMCID: PMC10323825 DOI: 10.3389/fnins.2023.1147299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The post-exercise recovery is a period of vulnerability of the cardiovascular system in which autonomic nervous system plays a key role in cardiovascular deceleration. It is already known that individuals with coronary artery disease (CAD) are at greater risk due to delayed vagal reactivation in this period. Water ingestion has been studied as a strategy to improve autonomic recovery and mitigate the risks during recovery. However, the results are preliminary and need further confirmation. Therefore, our aim was to investigate the influence of individualized water drinking on the non-linear dynamics of heart rate during and after aerobic exercise in CAD subjects. Methods 30 males with CAD were submitted to a control protocol composed of initial rest, warming up, treadmill exercise, and passive recovery (60 min). After 48 hours they performed the hydration protocol, composed of the same activities, however, with individualized water drinking proportional to the body mass lost in the control protocol. The non-linear dynamics of heart rate were assessed by indices of heart rate variability extracted from the recurrence plot, detrended fluctuation analysis, and symbolic analysis. Results and discussion During exercise, the responses were physiological and similar in both protocols, indicating high sympathetic activity and reduced complexity. During recovery, the responses were also physiological, indicating the rise of parasympathetic activity and the return to a more complex state. However, during hydration protocol, the return to a more complex physiologic state occurred sooner and non-linear HRV indices returned to resting values between the 5th and 20th minutes of recovery. In contrast, during the control protocol, only a few indices returned to resting values within 60 minutes. Despite that, differences between protocols were not found. We conclude that the water drinking strategy accelerated the recovery of non-linear dynamics of heart rate in CAD subjects but did not influence responses during exercise. This is the first study to characterize the non-linear responses during and after exercise in CAD subjects.
Collapse
|
18
|
Spence C. Encouraging (Nudging) People to Increase Their Fluid Intake. Nutrients 2023; 15:2702. [PMID: 37375606 DOI: 10.3390/nu15122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This narrative historical review considers the various routes to nudging consumers towards drinking more, given self-reported evidence that many people are often not adequately hydrated. This review builds on the related notion of 'visual hunger'. Interestingly, however, while many desirable foods are associated with distinctive sensory qualities (such as an appetizing smell), that may capture the consumer's (visual) attention, it is less clear that there is an equivalent sensory attentional capture by hydration-related cues. One of the other important differences between satiety and thirst is that people tend to overconsume if they use interoceptive satiety cues to decide when to stop eating, while the evidence suggests that people typically stop drinking prior to being adequately hydrated. What is more, the increasing amount of time we spend in consistently warm indoor environments may also be exacerbating our need to drink more. A number of concrete suggestions are made concerning how people may be encouraged (or nudged) to imbibe sufficient water.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford OX2 6GG, UK
| |
Collapse
|
19
|
Nye NS, Grubic T, Kim M, O'Connor F, Deuster PA. Universal Training Precautions: A Review of Evidence and Recommendations for Prevention of Exercise-Related Injury, Illness, and Death in Warfighters and Athletes. J Athl Train 2023; 58:232-243. [PMID: 35724358 PMCID: PMC10176841 DOI: 10.4085/1062-6050-0400.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facing pressure to train for victory, warfighters and athletes encounter numerous health risks that are directly related to their regular physical training. The concept of universal training precautions (UTPs) signifies universal processes designed to prevent unnecessary bodily harm, including injury, illness, and death, during physical training programs. Although no formal guidelines exist for collectively implementing a defined set of UTPs to address a broad scope of exercise-related health risks, recommendations and guidelines have been published relating to preventing sudden death during high school sports and collegiate conditioning sessions. A long list of critical topics must be considered as UTPs, including physical fitness factors, transition-period accommodation, hydration, environmental factors and acclimatization, appropriate recovery, use of medications and dietary supplements, and importantly, leadership. In this article, we outline in detail, with corresponding Strength of Recommendation Taxonomy ratings, what should be considered universal recommendations to minimize the risk of warfighters and athletes coming to harm when participating in group physical activities.
Collapse
Affiliation(s)
| | - Tyler Grubic
- Aviation Survival Training Center, NAS Patuxent River, MD
| | - Michael Kim
- Sports Medicine Clinic, Fort Belvoir Community Hospital, VA
| | | | - Patricia A. Deuster
- USU/MEM Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Silver Spring, MD
| |
Collapse
|
20
|
Looney DP, Potter AW, Arcidiacono DM, Santee WR, Friedl KE. Body surface area equations for physically active men and women. Am J Hum Biol 2023; 35:e23823. [PMID: 36285812 DOI: 10.1002/ajhb.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To improve predictive formulae for estimating body surface area (BSA) in healthy men and women using a modern three-dimensional scanner technology. METHODS Body surface areas were obtained from a convenience sample of 1267 US Marines (464 women and 803 men) using a whole body surface scanner (Size Stream SS20). The reliability of SS20 measures of total and regional BSA within participants was compared across triplicate scans. We then derived a series of formulae to estimate SS20-measured BSA using various combinations of sex, height, and mass. We also assessed relationships between percent body fat measured by dual-energy x-ray absorptiometry and sex-specific formulae errors in Marines. RESULTS Body surface areas recorded by the SS20 were highly reliable whether measured for the total body or by region (ICC ≥ .962). Formulae estimates of BSA from sex, height, and mass were precise (root-mean-square deviation, 0.031 m2 ). Errors from the Marine Corps formulae were positively associated with percent body fat for men (p = .001) but not women (p = .843). CONCLUSIONS Clinicians, military leaders, and researchers can use the newly developed BSA formulae for precise estimates in healthy physically active men and women. Users should be aware that height- and mass-based BSA estimates are less accurate for individuals with extremely low or high percent body fat.
Collapse
Affiliation(s)
- David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Adam W Potter
- Thermal and Mountain Medicine Division, USARIEM, Natick, Massachusetts, USA
| | - Danielle M Arcidiacono
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - William R Santee
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Karl E Friedl
- Office of the Senior Scientist, USARIEM, Natick, Massachusetts, USA
| |
Collapse
|
21
|
Benjamin CL, Dobbins LW, Sullivan SG, Rogers RR, Williams TD, Marshall MR, Ballmann CG. The Effect of Fluid Availability on Consumption and Perceptual Measures during Aerobic Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1310. [PMID: 36674064 PMCID: PMC9858706 DOI: 10.3390/ijerph20021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Fluid availability may alter drinking behavior; however, it is currently unknown if the availability of fluid impacts behavior and gastrointestinal issues (GI) that are often associated with increased fluid intake. The purpose of this study was to determine if ad libitum (AL) versus periodic (PER) fluid intake influences fluid consumption and GI distress during exercise in trained athletes. Male and female Division I NCAA Cross Country athletes (n = 11; age = 20 ± 1 years) participated in this counterbalanced crossover study. Each participant completed a moderate intensity 10 km run on two separate occasions. In one trial, participants had unlimited availability to fluid to consume AL. In the other trial, participants consumed PER fluid at stations placed every 3.2 km. Assurance of euhydration prior to each trial was confirmed via urine specific gravity (USG) and urine color. Subjective perceptions of thirst and gastric fullness were assessed pre- and post-exercise via Likert questioning and a visual analog scale, respectively. Participants started each trial euhydrated (AL = 1.009 USG ± 0.009; PER = 1.009 USG ± 0.009; urine color AL, 3 ± 1; urine color PER, 2 ± 1). Fluid volume consumption was significantly higher during the AL condition compared to PER (p = 0.050). Thirst significantly increased from pre- to post-run regardless of treatment (p < 0.001); however, there was no significant difference between the groups (p = 0.492). Feelings of fullness did not change pre-post trial (p = 0.304) or between trials (p = 0.958). Increased fluid availability allows for increased fluid consumption without the negative experience of GI discomfort.
Collapse
Affiliation(s)
| | - Luke W. Dobbins
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
| | | | - Rebecca R. Rogers
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
- SHP Research Collaborative, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Tyler D. Williams
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
| | | | | |
Collapse
|
22
|
Wijering LAJ, Cotter JD, Rehrer NJ. A randomized, cross-over trial assessing effects of beverage sodium concentration on plasma sodium concentration and plasma volume during prolonged exercise in the heat. Eur J Appl Physiol 2023; 123:81-89. [PMID: 36173481 PMCID: PMC9813217 DOI: 10.1007/s00421-022-05025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This study assessed whether increasing sodium in a sports drink above that typical (~ 20 mmol L-1) affects plasma sodium and volume responses during prolonged exercise in the heat. METHODS Endurance trained males (N = 11, 36 ± 14 y, 75.36 ± 5.30 kg, [Formula: see text]O2max 60 ± 3 mL min-1 kg-1) fulfilled requirements of the study including one 1-h exercise pre-trial, to estimate fluid losses (to prescribe fluid intake), and two, experimental trials (3-h or until tolerance), in random order, cycling (55% [Formula: see text]O2max, 34 °C, 65% RH). Beverages contained 6% carbohydrate and either 21 mmol L-1 (Low Na+) or 60 mmol L-1 sodium (High Na+). Analyses included linear mixed models and t-tests. RESULTS Cycling time was similar 176 ± 9 min (Low Na+); 176 ± 7 min (High Na+). Fluid intake was 1.12 ± 0.19 L h-1; 1.14 ± 0.21 L h-1, resp. Body mass change was - 0.53 ± 0.40%; - 0.30 ± 0.45%, resp. Sodium intake was 69 ± 12 mmol; 201 ± 40 mmol, resp. Plasma sodium concentration was greater in High Na+ than Low Na+ (p < 0.001); decreasing in Low Na+ (- 1.5 ± 2.2 mmol L-1), increasing in High Na+ (0.8 ± 2.4 mmol L-1) (p = 0.048, 95% CI [- 4.52, - 0.02], d = 0.99). Plasma volume decreased in Low Na+ (- 2 ± 2%) but remained unchanged in High Na+ (0 ± 3%) (p = 0.01, 95% CI [- 3.2, - 0.5], d = 0.80). CONCLUSIONS When conducting prolonged exercise in the heat, those who fully hydrate would benefit by increased sodium content of the beverage by improved plasma volume and sodium maintenance. Australian New Zealand Clinical Trials Registry (ACTRN12616000239460) 22/02/16.
Collapse
Affiliation(s)
- L A J Wijering
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand
| | - J D Cotter
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand
| | - N J Rehrer
- School of Physical Education Sport and Exercise Sciences, Otago University, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
23
|
Racinais S, Hosokawa Y, Akama T, Bermon S, Bigard X, Casa DJ, Grundstein A, Jay O, Massey A, Migliorini S, Mountjoy M, Nikolic N, Pitsiladis YP, Schobersberger W, Steinacker JM, Yamasawa F, Zideman DA, Engebretsen L, Budgett R. IOC consensus statement on recommendations and regulations for sport events in the heat. Br J Sports Med 2023; 57:8-25. [PMID: 36150754 PMCID: PMC9811094 DOI: 10.1136/bjsports-2022-105942] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
This document presents the recommendations developed by the IOC Medical and Scientific Commission and several international federations (IF) on the protection of athletes competing in the heat. It is based on a working group, meetings, field experience and a Delphi process. The first section presents recommendations for event organisers to monitor environmental conditions before and during an event; to provide sufficient ice, shading and cooling; and to work with the IF to remove regulatory and logistical limitations. The second section summarises recommendations that are directly associated with athletes' behaviours, which include the role and methods for heat acclimation; the management of hydration; and adaptation to the warm-up and clothing. The third section explains the specific medical management of exertional heat stroke (EHS) from the field of play triage to the prehospital management in a dedicated heat deck, complementing the usual medical services. The fourth section provides an example for developing an environmental heat risk analysis for sport competitions across all IFs. In summary, while EHS is one of the leading life-threatening conditions for athletes, it is preventable and treatable with the proper risk mitigation and medical response. The protection of athletes competing in the heat involves the close cooperation of the local organising committee, the national and international federations, the athletes and their entourages and the medical team.
Collapse
Affiliation(s)
- Sebastien Racinais
- Research and Scientific Support Department, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Takao Akama
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | - Xavier Bigard
- Union Cycliste Internationale (UCI), Aigle, Switzerland
| | - Douglas J Casa
- Korey Stringer Institiute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew Grundstein
- Department of Geography, University of Georgia, Athens, Georgia, USA
| | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew Massey
- Medical Department, Federation Internationale de Football Association, Zurich, Switzerland
| | | | | | | | | | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine & Health Tourism (ISAG), UMIT Tirol – Private University for Health Sciences and technology, Hall, Austria,University Hospital/Tirol Kliniken, Innsbruck, Austria
| | | | | | - David Anthony Zideman
- International Olympic Committee Medical and Scientific Games Group, Pinner, Middlesex, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | | |
Collapse
|
24
|
Capitán-Jiménez C, Aragón-Vargas LF. Post-Exercise Voluntary Drinking Cessation Is Associated with the Normalization of Plasma Osmolality and Thirst Perception, but Not of Urine Indicators or Net Fluid Balance. Nutrients 2022; 14:nu14194188. [PMID: 36235840 PMCID: PMC9572470 DOI: 10.3390/nu14194188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Post-exercise rehydration has been widely studied, with particular emphasis on retention of ingested fluid; comparatively little research has been conducted on why we drink more or less. To identify physiological values corresponding to voluntary drinking cessation (VDC), nine males exercised intermittently at 70−80% HRmax in the heat (WBGT = 28.1 ± 0.7 °C) to achieve a dehydration of approximately 4.0% body mass (BM). After exercise, participants were instructed to drink water as long and as much as they needed. Urine color (Ucolor), specific gravity (USG), osmolality (Uosm), plasma osmolality (Posm), fullness, BM, and thirst perception (TP) were measured pre- and post-exercise and at VDC. Each variable was compared for the three points in time with a one-way ANOVA. Participants reached dehydration of −3.6 ± 0.3% BM. Pre-exercise USG (1.022 ± 0.004) was lower than at VDC (1.029 ± 0.004, p = 0.022), Uosm did not change over time (p = 0.217), and Ucolor was lower pre-exercise (3.4 ± 0.7) vs. post-exercise (5.5 ± 1.23, p = 0.0008) and vs. VDC (6.3 ± 1.1, p < 0.0001). Posm showed a difference between pre-exercise (289.5 ± 2.3) and post-exercise (297.8 ± 3.9, p = 0.0006) and between post-exercise and VDC (287.3 ± 5.4, p < 0.0001). TP post-exercise (96.4 ± 4.34) was significantly higher than pre-exercise (36.2 ± 19.1) and VDC (25.0 ± 18.2, p < 0.0001). At VDC, participants had recovered 58.7 ± 12.1% of BM loss. At the point of voluntary drinking cessation, Posm and thirst perception had returned to their pre-exercise values, while rehydration relative to initial BM was still incomplete.
Collapse
Affiliation(s)
- Catalina Capitán-Jiménez
- Department of Nutrition, Universidad Hispanoamericana, San Jose 10101, Costa Rica
- Human Movement Science Research Center, Universidad de Costa Rica, San Pedro 11501, Costa Rica
- Correspondence: ; Tel.: +506-88749572
| | | |
Collapse
|
25
|
Bartman NE, Larson JR, Looney DP, Johnson BD, Schlader ZJ, Hostler D, Pryor RR. Do the National Institute for Occupational Safety and Health recommendations for working in the heat prevent excessive hyperthermia and body mass loss in unacclimatized males? JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:596-602. [PMID: 36083153 DOI: 10.1080/15459624.2022.2123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The National Institute for Occupational Safety and Health recommendations for work in the heat suggest workers consume 237 mL of water every 15-20 min and allow for continuous work at heavy intensities in hot environments up to 34 °C and 30% relative humidity. The goal was to determine whether the National Institute for Occupational Safety and Health recommendations prevented core temperature from exceeding 38.0 °C and greater than 2% body mass loss during heavy-intensity work in the heat. Eight males consumed 237 mL of water every 20 min during 2 hr of continuous heavy-intensity walking (6.4 kph, 1% grade) in a 34 °C/30% relative humidity environment, in accordance with the National Institute for Occupational Safety and Health recommendations. Projected core temperature and percent body mass loss were calculated for 4 and 8 hr of continuous work. Core temperature rose from baseline (36.8 ± 0.3 °C) to completion of 2 hr of work (38.1 ± 0.6 °C, p < 0.01), with two participants reaching the 38.0 °C threshold. Projected core temperatures remained elevated from baseline (p < 0.01), did not change from 2 to 4 hr (38.1 ± 0.7 °C, p > 0.99) and 4 to 8 hr (38.1 ± 0.8 °C, p > 0.99), respectively, and one participant exceeded 38.0 °C at 4 to 8 hr. There was no change in body mass loss over time (p > 0.99). During 2 hr of continuous heavy-intensity work in the heat, 75% of participants did not reach 38 °C core temperature and 88% did not reach 2% body mass loss when working to National Institute for Occupational Safety and Health recommendations.
Collapse
Affiliation(s)
- Nathan E Bartman
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, SUNY, Buffalo, New York
| | - Jonathan R Larson
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, SUNY, Buffalo, New York
| | - David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Blair D Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, SUNY, Buffalo, New York
| | - Riana R Pryor
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, SUNY, Buffalo, New York
| |
Collapse
|
26
|
Acevedo OG, Aragón-Vela J, De la Cruz Márquez JC, Marín MM, Casuso RA, Huertas JR. Seawater Hydration Modulates IL-6 and Apelin Production during Triathlon Events: A Crossover Randomized Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159581. [PMID: 35954937 PMCID: PMC9368587 DOI: 10.3390/ijerph19159581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/11/2022]
Abstract
A triathlon is an endurance event in which athletes need an efficient hydration strategy since hydration is restricted at different stages. However, it seems that seawater intake can be a suitable hydration alternative for this type of endurance event. Therefore, the aim of this study was to evaluate the efficacy of seawater hydration during a triathlon on cytokine production. Fifteen trained male triathletes (age = 38.8 ± 5.62 years old; BMI = 22.58 ± 2.51 kg/m2) randomly performed three triathlons, one of them consuming seawater (Totum SPORT, Laboratories Quinton International, S.L., Valencia, Spain), the other one consuming tap water ad libitum, and the last a physiologic saline solution as placebo. The triathlon consisted of an 800 m swim, a 90 km bike ride, and a 10 km run. Blood samples were taken at rest and after training, where markers of inflammation, hemoglobin, and hematocrit concentration were assessed. While the seawater was not ergogenic, it significantly increased the release of IL-6 and apelin post-exercise. However, no differences were found between the fractalkine, IL-15, EPO, osteonectin, myostatin, oncostatin, irisin, FSTL1, osteocrin, BDNF, and FGF-21 values over those of the placebo group. The present study demonstrates that hydration with seawater stimulates myokine production, which could lead to improved performance recovery after exercise.
Collapse
Affiliation(s)
- Olivia González Acevedo
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
| | - Jerónimo Aragón-Vela
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Correspondence: (J.A.-V.); (J.R.H.)
| | | | - Manuel Martínez Marín
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18001 Granada, Spain
| | - Rafael A. Casuso
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Health Sciences, Loyola Andalucía University, 41704 Sevilla, Spain
| | - Jesús R. Huertas
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Correspondence: (J.A.-V.); (J.R.H.)
| |
Collapse
|
27
|
Hess HW, Tarr ML, Baker TB, Hostler D, Schlader ZJ. Ad libitum drinking prevents dehydration during physical work in the heat when adhering to occupational heat stress recommendations. Temperature (Austin) 2022; 9:292-302. [PMID: 36211944 PMCID: PMC9542357 DOI: 10.1080/23328940.2022.2094160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022] Open
Abstract
Government entities issue recommendations that aim to maintain core temperature below 38.0°C and prevent dehydration [>2% body mass loss] in unacclimated workers exposed to heat. Hydration recommendations suggest drinking 237 mL of a cool sport drink every 15-20 min. This is based on the premise that ad libitum drinking results in dehydration due to inadequate fluid replacement, but this has never been examined in the background of recommendation compliant work in the heat. Therefore, we tested the hypothesis that ad libitum drinking results in >2% body mass loss during heat stress recommendation compliant work. Ten subjects completed four trials consisting of 4 hours of exposure to wet bulb globe temperatures (WBGT) of 24.1 ± 0.3°C (A), 26.6 ± 0.2°C (B), 28.5 ± 0.2°C (C), 29.3 ± 0.6°C (D). Subjects walked on a treadmill and work-rest ratios were prescribed as a function of WBGT [work:rest per hour - A: 60:0, B: 45:15, C: 30:30, D: 15:45] and were provided 237 mL of a cool sport drink every 15 min to drink ad libitum. Mean core temperature was higher in Trial A (37.8 ± 0.4°C; p = 0.03) and Trial B (37.6 ± 0.3°C; p = 0.01) versus Trial D (37.3 ± 0.3°C) but did not differ between the other trials (p ≥ 0.20). Body mass loss (A: -0.9 ± 0.7%, B: -0.7 ± 0.5%, C: -0.3 ± 0.5%, D: -0.4 ± 0.6%) was greater in Trial A compared to Trial D (p = 0.04) and was different from 2% body mass loss in all trials (p ≤ 0.01). Ad libitum drinking during recommendation compliant work in the heat rarely resulted in dehydration. Registered Clinical Trial (NCT04767347).
Collapse
Affiliation(s)
- Hayden W. Hess
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Macie L. Tarr
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Tyler B. Baker
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary J. Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
28
|
Hydration Strategies for Physical Activity and Endurance Events at High (>2500 m) Altitude: A Practical Management Article. Clin J Sport Med 2022; 32:407-413. [PMID: 33852437 DOI: 10.1097/jsm.0000000000000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
A growing number of adventurous athletes are seeking new challenges through endurance events or physical activities held at high altitude (>2500 m). This coincides with a significant increase in the numbers of trekkers who ascend into the world's mountains. Altitude itself influences and complicates the athlete's effective and safe hydration. This article considers the physiology of adaptation to altitude and the effects on hydration at altitude compared with sea level, reviews the "ad libitum versus programmed hydration" controversy in conventional endurance event hydration, examines the evidence for extrapolation of sea level hydration strategies to the high-altitude environment, and synthesizes these disparate factors into a set of practical recommendations for hydration management during high-altitude physical activity. The guidelines will be relevant to participants of physical activity at altitude and health care staff who may care for them in the preparation or performance phases of their adventure.
Collapse
|
29
|
Habitual Total Drinking Fluid Intake Did Not Affect Plasma Hydration Biomarkers among Young Male Athletes in Beijing, China: A Cross-Sectional Study. Nutrients 2022; 14:nu14112311. [PMID: 35684112 PMCID: PMC9182946 DOI: 10.3390/nu14112311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
The purposes of this study were to explore the drinking patterns, and urinary and plasma hydration biomarkers of young adults with different levels of habitual total drinking fluid intake. A cross-sectional study was conducted among 111 young male athletes in Beijing, China. Total drinking fluids and water from food were assessed by a 7-day, 24-h fluid intake questionnaire and the duplicate portion method, respectively. The osmolality and electrolyte concentrations of the 24-h urine and fasting blood samples were tested. Differences in groups LD1 (low drinker), LD2, HD1, and HD2 (high drinker), divided according to the quartiles of total drinking fluids, were compared using one-way ANOVA, Kruskal−Wallis H-tests, and chi-squared tests. A total of 109 subjects completed the study. The HD2 group had greater amounts of TWI (total water intake) and higher and lower contributions of total drinking fluids and water from food to TWI, respectively, than the LD1, LD2, and HD1 groups (p < 0.05), but the amounts of water from food did not differ significantly among the four groups (all p > 0.05). Participants in the HD2 group had higher amounts of water than participants in the LD1, LD2, and HD1 groups (p < 0.05); SSBs were the second top contributor of total drinking fluids, ranging from 24.0% to 31.8%. The percentage of subjects in optimal hydration status increased from 11.8% in the LD1 group to 58.8% in the HD2 group (p < 0.05). The HD2 and HD1 groups had 212−227 higher volumes of urine than the LD1 and LD2 groups (p < 0.05). No significant differences were found in the plasma biomarkers (p > 0.05), with the exception of higher concentrations of K in the HD1 group than in the LD1 group (p < 0.05). Subjects with higher amounts of total drinking fluids had better hydration status than those with lower total drinking fluids, but not better drinking patterns. Habitual total drinking fluids did not affect the plasma biomarkers.
Collapse
|
30
|
Orysiak J, Młynarczyk M, Tomaszewski P. Hydration Status in Men Working in Different Thermal Environments: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095627. [PMID: 35565019 PMCID: PMC9104106 DOI: 10.3390/ijerph19095627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023]
Abstract
The aim of this study was to determine the effects of different seasons of the year and the time of day (before work vs. after work) on hydration status in men. The study involved sixty foresters who spent most of the work outdoors. During three seasons of the year (summer, autumn, and winter), indices of hydration status (body mass (BM) and percentage change of BM, total body water (TBW) and percentage change of TBW, serum osmolality (Sosm) and percentage change of Sosm, urine osmolality, urine-specific gravity (USG), urine color, and thirst) were determined before work on the first day (time point 1 used as baseline), immediately after work on the first day (time point 2), and before work on the following day (time point 3). USG decreased at time point 2 compared to time point 1 (p < 0.001) and time point 3 (p = 0.03). At time point 2 (p = 0.002) in winter and time point 3 in autumn (p = 0.049), serum osmolality was higher than in summer. In conclusion, the differences in hydration status depended on the time of day and season. A large percentage of foresters come to work inadequately hydrated, especially in colder seasons compared to summer.
Collapse
Affiliation(s)
- Joanna Orysiak
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland;
- Correspondence:
| | - Magdalena Młynarczyk
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland;
| | - Paweł Tomaszewski
- Department of Tourism and Recreation, Józef Piłsudski University of Physical Education, Marymoncka St. 34, 00-968 Warsaw, Poland;
| |
Collapse
|
31
|
Effect of Rapid Weight Loss on Hydration Status and Performance in Elite Judo Athletes. BIOLOGY 2022; 11:biology11040500. [PMID: 35453700 PMCID: PMC9031997 DOI: 10.3390/biology11040500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Background: This study aimed to investigate the effect of 5% rapid weight loss on hydration status and judo performance in highly trained judo athletes. Methods: Eighteen male judo athletes participated in the study and were divided into two groups: control and rapid weight loss (RWL). RWL athletes were given 48 h to cut 5% of their body mass while the control group followed their routines. Athletes performed three measurements, including hydration, body mass and three consecutive special judo fitness tests (SJFTs). At the 1st and 6th minutes following each SJFT and 1st, 6th and 15th minutes following the last SJFT, blood lactate and heart rate (HR) was monitored. Results: The effect of RWL on variables was tested with split-plot ANOVA. RWL significantly affected urine specific gravity with a higher value following weight loss compared to baseline and recovery (F2-32 = 13.2, p < 0.001). In addition, athletes’ SJFT total throw numbers differed among measurements (F2-32 = 7.70, p < 0.001). Athletes presented worse SJFT index after weight loss (F2-32 = 8.05, p = 0.01; F1-16 = 6.43, p = 0.02, respectively). HR changed significantly among measurements days and times (F28-448 = 143.10, p < 0.001). Conclusion: RWL induced dehydration and impaired heart rate recovery in highly trained judo athletes, and they could not rehydrate between competition simulated weigh-in and 15 h of recovery.
Collapse
|
32
|
Mitrosz-Gołębiewska K, Rydzewska-Rosołowska A, Kakareko K, Zbroch E, Hryszko T. Water - A life-giving toxin - A nephrological oxymoron. Health consequences of water and sodium balance disorders. A review article. Adv Med Sci 2022; 67:55-65. [PMID: 34979423 DOI: 10.1016/j.advms.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/24/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND This article aims to reveal misconceptions about methods of assessment of hydration status and impact of the water disorders on the progression of kidney disease or renal dysfunction. MATERIALS AND METHODS The PubMed database was searched for reviews, meta-analyses and original articles on hydration, volume depletion, fluid overload and diagnostic methods of hydration status, which were published in English. RESULTS Based on the results of available literature the relationship between the amount of fluid consumed, and the rate of progression of chronic kidney disease, autosomal dominant polycystic kidney disease, and kidney stones disease was discussed. Selected aspects of the assessment of the hydration level in clinical practice based on physical examination, laboratory tests, and imaging are presented. The subject of in-hospital fluid therapy is discussed. Based on available randomized studies, an attempt was made to assess, which fluids should be selected for intravenous treatment. CONCLUSIONS There is some evidence for the beneficial effect of increased water intake in preventing recurrent cystitis and kidney stones, but there are still no convincing data for chronic kidney disease and autosomal dominant polycystic kidney disease. Further studies are needed to clarify the aforementioned issues and establish a reliable way to assess the volemia and perform suitable fluid therapy.
Collapse
Affiliation(s)
- Katarzyna Mitrosz-Gołębiewska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland.
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University od Bialystok, Bialystok, Poland
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
33
|
Personalized Hydration Requirements of Runners. Int J Sport Nutr Exerc Metab 2022; 32:233-237. [DOI: 10.1123/ijsnem.2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
This study sought to (a) estimate how the duration of running influences sweat losses and contributes to the daily fluid requirement, and (b) empirically estimate the drinking rates required to prevent significant dehydration (≥2% body weight as body water). Individual sweating data and running duration were obtained from male (n = 83) and female (n = 36) runners (n = 146 total observations) performing under highly heterogeneous conditions and over a range of exercise durations (33–280 min). Running <60 min/day increased daily fluid needs by a factor of 1.3, whereas running >60 min/day increased the daily fluid need by a factor of 1.9–2.3. Running <60 min/day generally required no fluid intake to prevent significant dehydration before run completion (31/35 runners). In contrast, running >60 min/day required more than 50% replacement of sweating rates to prevent the same (65/111 runners). Overall sweat losses ranged from ∼0.2 to ∼5.0 L/day, whereas the drinking rates required to prevent significant dehydration ranged from 0 to 1.4 L/hr. The characterization of sweat losses, sweat rate, and required drinking among runners in this study indicate wide individual variability that warrants personalized hydration practices, particularly when running is prolonged (>60 min) and performance is important. This study may serve as a useful guidepost for sports dietitians when planning and communicating fluid needs to athletes, as well as complement guidance related to both personalized programmed and thirst-driven drinking strategies.
Collapse
|
34
|
Capitán-Jiménez C, Aragón-Vargas LF. Awareness of Fluid Losses Does Not Impact Thirst during Exercise in the Heat: A Double-Blind, Cross-Over Study. Nutrients 2021; 13:nu13124357. [PMID: 34959909 PMCID: PMC8705747 DOI: 10.3390/nu13124357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Thirst has been used as an indicator of dehydration; however, as a perception, we hypothesized that it could be affected by received information related to fluid losses. The purpose of this study was to identify whether awareness of water loss can impact thirst perception during exercise in the heat. Methods: Eleven males participated in two sessions in random order, receiving true or false information about their fluid losses every 30 min. Thirst perception (TP), actual dehydration, stomach fullness, and heat perception were measured every 30 min during intermittent exercise until dehydrated by ~4% body mass (BM). Post exercise, they ingested water ad libitum for 30 min. Results: Pre-exercise BM, TP, and hydration status were not different between sessions (p > 0.05). As dehydration progressed during exercise, TP increased significantly (p = 0.001), but it was the same for both sessions (p = 0.447). Post-exercise water ingestion was almost identical (p = 0.949) in the two sessions. Conclusion: In this study, thirst was a good indicator of fluid needs during exercise in the heat when no fluid was ingested, regardless of receiving true or false water loss information.
Collapse
Affiliation(s)
- Catalina Capitán-Jiménez
- Human Movement Science Research Center, University of Costa Rica, Montes de Oca, San José 11-501-2060, Costa Rica;
- Department of Nutrition, Hispanoamerican University, El Carmen, San José 10101, Costa Rica
- Correspondence:
| | - Luis F. Aragón-Vargas
- Human Movement Science Research Center, University of Costa Rica, Montes de Oca, San José 11-501-2060, Costa Rica;
| |
Collapse
|
35
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
36
|
Berry CW, Wolf ST, Cottle RM, Kenney WL. Hydration Is More Important Than Exogenous Carbohydrate Intake During Push-to-the-Finish Cycle Exercise in the Heat. Front Sports Act Living 2021; 3:742710. [PMID: 34746777 PMCID: PMC8568039 DOI: 10.3389/fspor.2021.742710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Dehydration ≥2% loss of body mass is associated with reductions in performance capacity, and carbohydrate (CHO)-electrolyte solutions (CES) are often recommended to prevent dehydration and provide a source of exogenous carbohydrate during exercise. It is also well established that performance capacity in the heat is diminished compared to cooler conditions, a response attributable to greater cardiovascular strain caused by high skin and core temperatures. Because hydration status, environmental conditions, and carbohydrate availability interact to influence performance capacity, we sought to determine how these factors affect push-to-the-finish cycling performance. Ten young trained cyclists exercised at a moderate intensity (2.5 W·kg-1) in a hot-dry condition [40°C, 20% relative humidity (RH)] until dehydration of ~2% body mass. Subjects then consumed either no fluid (NF) or enough fluid (water, WAT; Gatorade®, GAT; or GoodSport™, GS) to replace 75% of lost body mass over 30 min. After a 30-min light-intensity warm-up (1.5 W·kg-1) in a 35°C, 20% RH environment, subjects then completed a 120-kJ time trial (TT). TT time-to-completion, absolute power, and relative power were significantly improved in WAT (535 ± 214 s, 259 ± 99 W, 3.3 ± 0.9 W·kg-1), GAT (539 ± 226 s, 260 ± 110 W, 3.3 ± 1.0 W·kg-1), and GS (534 ± 238 s, 262 ± 105 W, 3.4 ± 1.0 W·kg-1) compared to NF (631 ± 310 s, 229 ± 96 W, 3.0 ± 0.9 W·kg-1) all (p < 0.01) with no differences between WAT, GAT, and GS, suggesting that hydration is more important than carbohydrate availability during exercise in the heat. A subset of four subjects returned to the laboratory to repeat the WAT, GAT, and GS treatments to determine if between-beverage differences in time-trial performance were evident with a longer TT in thermoneutral conditions. Following dehydration, the ambient conditions in the environmental chamber were reduced to 21°C and 20% RH and subjects completed a 250-kJ TT. All four subjects improved TT performance in the GS trial (919 ± 353 s, 300 ± 100 W, 3.61 ± 0.86 W·kg-1) compared to WAT (960 ± 376 s, 283 ± 91 W, 3.43 ± 0.83 W·kg-1), while three subjects improved TT performance in the GAT trial (946 ± 365 s, 293 ± 103 W, 3.60 ± 0.97 W·kg-1) compared to WAT, highlighting the importance of carbohydrate availability in cooler conditions as the length of a push-to-the-finish cycling task increases.
Collapse
Affiliation(s)
- Craig W Berry
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - S Tony Wolf
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Rachel M Cottle
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Graduate Program in Physiology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
37
|
Kitson O, Rutherfurd-Markwick K, Foskett A, Lee JKW, Diako C, Wong M, Ali A. Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat. Nutrients 2021; 13:nu13103313. [PMID: 34684314 PMCID: PMC8537885 DOI: 10.3390/nu13103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Prolonged exercise in the heat elicits a number of physiological changes as glycogen stores are low and water and electrolytes are lost through sweat. However, it is unclear whether these changes provoke an increase in liking of saltiness and, therefore, palatability of an oral rehydration solution (ORS). Twenty-seven recreationally active participants (n = 13 males; n = 14 females) completed sensory analysis of an ORS, a traditional sports drink (TS), and a flavored water placebo (PL) at rest and during 60 min (3 × 20-min bouts) of cycling exercise at 70% age-predicted maximum heart rate (HRmax) at 35.3 ± 1.4 °C and 41 ± 6% relative humidity. Before and after every 20 min of exercise, drinks were rated (using 20-mL beverage samples) based on liking of sweetness, liking of saltiness, thirst-quenching ability, and overall liking on a nine-point hedonic scale. Hydration status was assessed by changes in semi-nude body mass, saliva osmolality (SOsm), and saliva total protein concentration (SPC). After 60 min of exercise, participants lost 1.36 ± 0.39% (mean ± SD) of body mass and there were increases in SOsm and SPC. At all time points, liking of sweetness, saltiness, thirst-quenching ability, and overall liking was higher for the TS and PL compared to the ORS (p < 0.05). However, the saltiness liking and thirst-quenching ability of the ORS increased after 60 min of exercise compared to before exercise (p < 0.05). There was also a change in predictors of overall liking with pre-exercise ratings mostly determined by liking of sweetness, saltiness, and thirst-quenching ability (p < 0.001), whereas only liking of saltiness predicted overall liking post-exercise (R2 = 0.751; p < 0.001). There appears to be a hedonic shift during exercise in which the perception of saltiness becomes the most important predictor of overall liking. This finding supports the potential use of an ORS as a valuable means of hydration during the latter stages of prolonged and/or intense exercise in the heat.
Collapse
Affiliation(s)
- Olivia Kitson
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand; (O.K.); (A.F.)
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0745, New Zealand;
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
| | - Andrew Foskett
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand; (O.K.); (A.F.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore S119228, Singapore;
| | - Charles Diako
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, S117593, Singapore
| | - Marie Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, S117593, Singapore
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand; (O.K.); (A.F.)
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- Correspondence: ; Tel.: +64-9-213-6414
| |
Collapse
|
38
|
Abreu R, Figueiredo P, Beckert P, Marques JP, Amorim S, Caetano C, Carvalho P, Sá C, Cotovio R, Cruz J, Dias T, Fernandes G, Gonçalves E, Leão C, Leitão A, Lopes J, Machado E, Neves M, Oliveira A, Pereira AI, Pereira B, Ribeiro F, Silva LM, Sousa F, Tinoco T, Teixeira VH, Sousa M, Brito J. Portuguese Football Federation consensus statement 2020: nutrition and performance in football. BMJ Open Sport Exerc Med 2021; 7:e001082. [PMID: 34527279 PMCID: PMC8395276 DOI: 10.1136/bmjsem-2021-001082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/04/2022] Open
Abstract
Nutrition is an undeniable part of promoting health and performance among football (soccer) players. Nevertheless, nutritional strategies adopted in elite football can vary significantly depending on culture, habit and practical constraints and might not always be supported by scientific evidence. Therefore, a group of 28 Portuguese experts on sports nutrition, sports science and sports medicine sought to discuss current practices in the elite football landscape and review the existing evidence on nutritional strategies to be applied when supporting football players. Starting from understanding football's physical and physiological demands, five different moments were identified: preparing to play, match-day, recovery after matches, between matches and during injury or rehabilitation periods. When applicable, specificities of nutritional support to young athletes and female players were also addressed. The result is a set of practical recommendations that gathered consensus among involved experts, highlighting carbohydrates periodisation, hydration and conscious use of dietary supplements.
Collapse
Affiliation(s)
- Rodrigo Abreu
- Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal.,Universidade do Porto Faculdade de Ciências da Nutrição e Alimentação, Porto, Portugal
| | - Pedro Figueiredo
- Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal.,Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal
| | - Paulo Beckert
- Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal
| | - José P Marques
- Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal
| | | | | | - Pedro Carvalho
- Universidade Catolica Portuguesa Escola Superior de Biotecnologia, Porto, Portugal
| | - Carla Sá
- ISMAI, Castelo da Maia, Porto, Portugal.,Polytechnic Institute of Bragança, Braganca, Portugal
| | | | - Joana Cruz
- Portimonense Futebol SAD, Portimao, Portugal
| | - Tiago Dias
- Clube Desportivo Santa Clara, Ponta Delgada, Portugal
| | | | | | - César Leão
- Instituto Politecnico de Viana do Castelo Escola Superior de Desporto e Lazer, Melgaco, Viana do Castelo, Portugal.,FC Paços de Ferreira, Paços de Ferreira, Portugal
| | | | - João Lopes
- Sporting Clube de Portugal, SAD, Lisboa, Portugal
| | | | - Mónica Neves
- Vitória Futebol Clube, Setúbal, Portugal.,Universidade do Algarve, Faro, Portugal
| | | | | | - Bruno Pereira
- Sports Medicine Control Training Unit, Instituto Portugues do Desporto e Juventude, Lisboa, Portugal
| | - Fernando Ribeiro
- Universidade do Porto Faculdade de Ciências da Nutrição e Alimentação, Porto, Portugal.,Moreirense FC, Moreira, Portugal
| | - Luis M Silva
- Centro de Medicina Desportiva do Porto, Porto, Portugal
| | - Filipe Sousa
- Futebol Clube de Vizela, Vizela, Portugal.,Futbolniy Klub Shakhtar, Shakhtar, Ukraine
| | | | - Vitor H Teixeira
- Universidade do Porto Faculdade de Ciências da Nutrição e Alimentação, Porto, Portugal.,Futebol Clube do Porto SAD, Porto, Portugal
| | - Monica Sousa
- Nutrition and Metabolism, Universidade Nova de Lisboa Faculdade de Ciências Médicas de Lisboa, Lisboa, Portugal.,NOVA Medical School, CINTESIS, Porto, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal
| |
Collapse
|
39
|
Claveau P, Deshayes TA, Jeker D, Pancrate T, Goulet EDB. Provision of instructions to drink ad libitum or according to thirst sensation: impact during 120 km of cycling in the heat in men. Appl Physiol Nutr Metab 2021; 47:1-8. [PMID: 34461024 DOI: 10.1139/apnm-2021-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The terms drinking to thirst and ad libitum drinking are used interchangeably, but should they? We investigated the differences in how athletes consumed fluids during exercise when instructed to drink according to thirst or ad libitum. Using a randomized, crossover, and counterbalanced design, 10 males (27 ± 4 y) cycled 120 km (48 ± 4% of peak power, 33 °C, 40% relative humidity) on 2 occasions, while drinking water according to thirst or ad libitum. Participants covered the cycling trials in 222 ± 11 min (p = 0.29). Although the body mass loss at the end of exercise and total volume of water consumed were similar between trials, thirst perception before each sip and the volume consumed per sip were significantly higher with thirst than ad libitum drinking, whereas the total number of sips was significantly lower with thirst than ad libitum drinking. Perceived exertion, rectal temperature, and heart rate were all significantly higher with thirst than ad libitum drinking, but the difference was trivial. In conclusion, thirst and ad libitum drinking are associated with different drinking patterns, but equally maintain fluid balance during prolonged exercise. The terms drinking to thirst and ad libitum drinking can be used interchangeably to guide fluid intake during prolonged exercise. Novelty: Both strategies are associated with different patterns of fluid ingestion during prolonged exercise, but are equally effective in maintaining fluid balance. Perceived exertion, rectal temperature, and heart rate are regulated dissimilarly by thirst and ad libitum drinking, but the difference is trivial.
Collapse
Affiliation(s)
- Pascale Claveau
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Thomas A Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Jeker
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Benjamin CL, Sekiguchi Y, Morrissey MC, Butler CR, Filep EM, Stearns RL, Casa DJ. The effects of hydration status and ice-water dousing on physiological and performance indices during a simulated soccer match in the heat. J Sci Med Sport 2021; 24:723-728. [DOI: 10.1016/j.jsams.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
|
41
|
Cheuvront SN, Kenefick RW. Personalized fluid and fuel intake for performance optimization in the heat. J Sci Med Sport 2021; 24:735-738. [DOI: 10.1016/j.jsams.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
|
42
|
Optimal break structures and cooling strategies to mitigate heat stress during a Rugby League match simulation. J Sci Med Sport 2021; 24:793-799. [DOI: 10.1016/j.jsams.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
|
43
|
Abstract
Maintaining euhydration is important for optimal health, performance and recovery, but can be challenging for alpine skiers when training in a relatively cold but dry environment. This study aimed to evaluate hydration status, fluid loss and fluid intake in adolescent alpine skiers during a training camp. Twelve athletes aged 14.3 ± 0.9 years volunteered to participate in the study. Athletes resided at an altitude of 1600 m and trained between 1614 and 2164 m. During eight consecutive days, urine specific gravity was measured before each morning training session using a refractometer. Changes in body weight representing fluid loss and ad libitum fluid intake during each morning training session were assessed using a precision scale. Mean pre-training urine specific gravity remained stable throughout the training camp. Individual values ranged between 1.010 and 1.028 g/cm3with 50 to 83% of athletes in a hypohydrated state (urine specific gravity ≥ 1.020 g/cm3). Mean training induced fluid loss remained stable throughout the training camp (range -420 to -587 g) with individual losses up to 1197 g (-3.5%). Fluid intake was significantly lower than fluid loss during each training session. To conclude, urine specific gravity values before training indicated insufficient daily fluid intake in more than half of the athletes. Furthermore, fluid intake during training in adolescent alpine skiers was suboptimal even when drinks were provided ad libitum. Coaches and athletes should be encouraged to carefully monitor hydration status and to ensure that alpine skiers drink sufficiently during and in between training sessions.
Collapse
|
44
|
Changes in Hydration Factors Over the Course of Heat Acclimation in Endurance Athletes. Int J Sport Nutr Exerc Metab 2021; 31:406-411. [PMID: 34303307 DOI: 10.1123/ijsnem.2020-0374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to examine the effect of heat acclimation (HA) on thirst levels, sweat rate, and percentage of body mass loss (%BML), and changes in fluid intake factors throughout HA induction. Twenty-eight male endurance athletes (mean ± SD; age, 35 ± 12 years; body mass, 73.0 ± 8.9 kg; maximal oxygen consumption, 57.4 ± 6.8 ml·kg-1·min-1) completed 60 min of exercise in a euhydrated state at 58.9 ± 2.3% velocity of maximal oxygen consumption in the heat (ambient temperature, 35.0 ± 1.3 °C; relative humidity, 48.0 ± 1.3%) prior to and following HA where thirst levels, sweat rate, and %BML were measured. Then, participants performed 5 days of HA while held at hyperthermia (38.50-39.75 °C) for 60 min with fluid provided ad libitum. Sweat volume, %BML, thirst levels, and fluid intake were measured for each session. Thirst levels were significantly lower following HA (pre, 4 ± 1; post, 3 ± 1, p < .001). Sweat rate (pre, 1.76 ± 0.42 L/hr; post, 2.00 ± 0.60 L/hr, p = .039) and %BML (pre, 2.66 ± 0.53%; post, 2.98 ± 0.83%, p = .049) were significantly greater following HA. During HA, thirst levels decreased (Day 1, 4 ± 1; Day 2, 3 ± 2; Day 3, 3 ± 2; Day 4, 3 ± 1; Day 5, 3 ± 1; p < .001). However, sweat volume (Day 1, 2.34 ± 0.67 L; Day 2, 2.49 ± 0.58 L; Day 3, 2.67 ± 0.63 L; Day 4, 2.74 ± 0.61 L; Day 5, 2.74 ± 0.91 L; p = .010) and fluid intake (Day 1, 1.20 ± 0.45 L; Day 2, 1.52 ± 0.58 L; Day 3, 1.69 ± 0.63 L; Day 4, 1.65 ± 0.58 L; Day 5, 1.74 ± 0.51 L; p < .001) increased. In conclusion, thirst levels were lower following HA even though sweat rate and %BML were higher. Thirst levels decreased while sweat volume and fluid intake increased during HA induction. Thus, HA should be one of the factors to consider when planning hydration strategies.
Collapse
|
45
|
Kamran F, Le VC, Frischknecht A, Wiens J, Sienko KH. Noninvasive Estimation of Hydration Status in Athletes Using Wearable Sensors and a Data-Driven Approach Based on Orthostatic Changes. SENSORS (BASEL, SWITZERLAND) 2021; 21:4469. [PMID: 34210068 PMCID: PMC8271939 DOI: 10.3390/s21134469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Dehydration beyond 2% bodyweight loss should be monitored to reduce the risk of heat-related injuries during exercise. However, assessments of hydration in athletic settings can be limited in their accuracy and accessibility. In this study, we sought to develop a data-driven noninvasive approach to measure hydration status, leveraging wearable sensors and normal orthostatic movements. Twenty participants (10 males, 25.0 ± 6.6 years; 10 females, 27.8 ± 4.3 years) completed two exercise sessions in a heated environment: one session was completed without fluid replacement. Before and after exercise, participants performed 12 postural movements that varied in length (up to 2 min). Logistic regression models were trained to estimate dehydration status given their heart rate responses to these postural movements. The area under the receiver operating characteristic curve (AUROC) was used to parameterize the model's discriminative ability. Models achieved an AUROC of 0.79 (IQR: 0.75, 0.91) when discriminating 2% bodyweight loss. The AUROC for the longer supine-to-stand postural movements and shorter toe-touches were similar (0.89, IQR: 0.89, 1.00). Shorter orthostatic tests achieved similar accuracy to clinical tests. The findings suggest that data from wearable sensors can be used to accurately estimate mild dehydration in athletes. In practice, this method may provide an additional measurement for early intervention of severe dehydration.
Collapse
Affiliation(s)
- Fahad Kamran
- Division of Computer Science and Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA; (F.K.); (J.W.)
| | - Victor C. Le
- Department of Mechanical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA;
| | | | - Jenna Wiens
- Division of Computer Science and Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA; (F.K.); (J.W.)
| | - Kathleen H. Sienko
- Department of Mechanical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA;
| |
Collapse
|
46
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Bouscaren N, Faricier R, Millet GY, Racinais S. Heat Acclimatization, Cooling Strategies, and Hydration during an Ultra-Trail in Warm and Humid Conditions. Nutrients 2021; 13:1085. [PMID: 33810371 PMCID: PMC8065615 DOI: 10.3390/nu13041085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the history of exertional heat illness (EHI), heat preparation, cooling strategies, heat related symptoms, and hydration during an ultra-endurance running event in a warm and humid environment. This survey-based study was open to all people who participated in one of the three ultra-endurance races of the Grand Raid de la Réunion. Ambient temperature and relative humidity were 18.6 ± 5.7 °C (max = 29.7 °C) and 74 ± 17%, respectively. A total of 3317 runners (56% of the total eligible population) participated in the study. Overall, 78% of the runners declared a history of heat-related symptoms while training or competing, and 1.9% reported a previous diagnosis of EHI. Only 24.3% of study participants living in temperate climates declared having trained in the heat before the races, and 45.1% of all respondents reported a cooling strategy during the races. Three quarter of all participants declared a hydration strategy. The planned hydration volume was 663 ± 240 mL/h. Fifty-nine percent of the runners had enriched their food or drink with sodium during the race. The present study shows that ultra-endurance runners have a wide variability of hydration and heat preparation strategies. Understandings of heat stress repercussions in ultra-endurance running need to be improved by specific field research.
Collapse
Affiliation(s)
- Nicolas Bouscaren
- Inserm CIC1410, CHU Réunion, 97448 Saint Pierre, France
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
| | - Robin Faricier
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
| | - Guillaume Y. Millet
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Sébastien Racinais
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, Doha 29222, Qatar;
| |
Collapse
|
48
|
Armstrong LE. Rehydration during Endurance Exercise: Challenges, Research, Options, Methods. Nutrients 2021; 13:887. [PMID: 33803421 PMCID: PMC8001428 DOI: 10.3390/nu13030887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Abstract
During endurance exercise, two problems arise from disturbed fluid-electrolyte balance: dehydration and overhydration. The former involves water and sodium losses in sweat and urine that are incompletely replaced, whereas the latter involves excessive consumption and retention of dilute fluids. When experienced at low levels, both dehydration and overhydration have minor or no performance effects and symptoms of illness, but when experienced at moderate-to-severe levels they degrade exercise performance and/or may lead to hydration-related illnesses including hyponatremia (low serum sodium concentration). Therefore, the present review article presents (a) relevant research observations and consensus statements of professional organizations, (b) 5 rehydration methods in which pre-race planning ranges from no advanced action to determination of sweat rate during a field simulation, and (c) 9 rehydration recommendations that are relevant to endurance activities. With this information, each athlete can select the rehydration method that best allows her/him to achieve a hydration middle ground between dehydration and overhydration, to optimize physical performance, and reduce the risk of illness.
Collapse
Affiliation(s)
- Lawrence E Armstrong
- Human Performance Laboratory and Korey Stringer Institute, University of Connecticut, Storrs, CT 06269-1110, USA
| |
Collapse
|
49
|
Xu M, Wu Z, Dong Y, Qu C, Xu Y, Qin F, Wang Z, Nassis GP, Zhao J. A Mixed-Method Approach of Pre-Cooling Enhances High-Intensity Running Performance in the Heat. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:26-34. [PMID: 33707983 DOI: 10.52082/jssm.2021.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
We investigated whether single or combined methods of pre-cooling could affect high-intensity exercise performance in a hot environment. Seven male athletes were subjected to four experimental conditions for 30 min in a randomised order. The four experimental conditions were: 1) wearing a vest cooled to a temperature of 4 ℃ (Vest), 2) consuming a beverage cooled to a temperature of 4 ℃ (Beverage), 3) simultaneous usage of vest and consumption of beverage (Mix), and 4) the control trial without pre-cooling (CON). Following those experimental conditions, they exercised at a speed of 80% VO2max until exhaustion in the heat (38.1 ± 0.6 ℃, 55.3 ± 0.3% RH). Heart rate (HR), rectal temperature (Tcore), skin temperature (Tskin), sweat loss (SL), urine specific gravity (USG), levels of sodium (Na+) and potassium (K+), rating of perceived exertion (RPE), thermal sensation (TS), and levels of blood lactic acid ([Bla]) were monitored. Performance was improved using the mixed pre-cooling strategy (648.43 ± 77.53 s, p = 0.016) compared to CON (509.14 ± 54.57 s). Tcore after pre-cooling was not different (Mix: 37.01 ± 0.27 ℃, Vest: 37.19 ± 0.33 ℃, Beverage: 37.03 ± 0.35 ℃) in all cooling conditions compared to those of CON (37.31 ±0.29 ℃). A similar Tcore values was achieved at exhaustion in all trials (from 38.10 ℃ to 39.00 ℃). No difference in the level of USG was observed between the conditions. Our findings suggest that pre-cooling with a combination of cold vest usage and cold fluid intake can improve performance in the heat.
Collapse
Affiliation(s)
- Minxiao Xu
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Zhaozhao Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,Physical Education Department, Northwest University, Xi'an, China
| | - Yanan Dong
- Beijing Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Sport Science, Beijing Sport University, Beijing, China
| | - Yaoduo Xu
- Physical Education Department, Northwestern Poly-technical University, Xi'an, China
| | - Fei Qin
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Physical Education, Jinan University, Guangzhou, China
| | - Zhongwei Wang
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - George P Nassis
- Physical Education Department-(CEDU), United Arab Emirates University, Abu Dhabi, United Arab Emirates.,Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
50
|
Balci A, Badem EA, Yılmaz AE, Devrim-Lanpir A, Akınoğlu B, Kocahan T, Hasanoğlu A, Hill L, Rosemann T, Knechtle B. Current Predictive Resting Metabolic Rate Equations Are Not Sufficient to Determine Proper Resting Energy Expenditure in Olympic Young Adult National Team Athletes. Front Physiol 2021; 12:625370. [PMID: 33613316 PMCID: PMC7890252 DOI: 10.3389/fphys.2021.625370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Predictive resting metabolic rate (RMR) equations are widely used to determine athletes’ resting energy expenditure (REE). However, it remains unclear whether these predictive RMR equations accurately predict REE in the athletic populations. The purpose of the study was to compare 12 prediction equations (Harris-Benedict, Mifflin, Schofield, Cunningham, Owen, Liu’s, De Lorenzo) with measured RMR in Turkish national team athletes and sedentary controls. A total of 97 participants, 49 athletes (24 females, 25 males), and 48 sedentary (28 females, 20 males), were recruited from Turkey National Olympic Teams at the Ministry of Youth and Sports. RMR was measured using a Fitmate GS (Cosmed, Italy). The results of each 12 prediction formulas were compared with the measured RMR using paired t-test. The Bland-Altman plot was performed to determine the mean bias and limits of agreement between measured and predicted RMRs. Stratification according to sex, the measured RMR was greater in athletes compared to controls. The closest equation to the RMR measured by Fitmate GS was the Harris-Benedict equation in male athletes (mean difference -8.9 (SD 257.5) kcal/day), and Liu’s equation [mean difference -16.7 (SD 195.0) kcal/day] in female athletes. However, the intra-class coefficient (ICC) results indicated that all equations, including Harris-Benedict for male athletes (ICC = 0.524) and Liu’s for female athletes (ICC = 0.575), had a moderate reliability compared to the measured RMR. In sedentary subjects, the closest equation to the measured RMR is the Nelson equation in males, with the lowest RMSE value of 118 kcal/day [mean difference: 10.1 (SD 117.2) kJ/day], whereas, in females, all equations differ significantly from the measured RMR. While Nelson (ICC = 0.790) had good and Owen (ICC = 0.722) and Mifflin (calculated using fat-free mass) (ICC = 0.700) had moderate reliability in males, all predictive equations showed poor reliability in females. The results indicate that the predictive RMR equations failed to accurately predict RMR levels in the participants. Therefore, it may not suitable to use them in determining total energy expenditure.
Collapse
Affiliation(s)
- Aydın Balci
- Department of Sports Medicine, Ankara Yıldırım Beyazıt University, Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Ebru Arslanoğlu Badem
- Department of Health Services, Sports General Directorship, The Ministry of Youth and Sports, Center of Athlete Training and Health Research, Ankara, Turkey
| | | | - Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Bihter Akınoğlu
- Department of Health Services, Sports General Directorship, The Ministry of Youth and Sports, Center of Athlete Training and Health Research, Ankara, Turkey.,Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Tuğba Kocahan
- Department of Health Services, Sports General Directorship, The Ministry of Youth and Sports, Center of Athlete Training and Health Research, Ankara, Turkey
| | - Adnan Hasanoğlu
- Department of Health Services, Sports General Directorship, The Ministry of Youth and Sports, Center of Athlete Training and Health Research, Ankara, Turkey
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|