1
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
2
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M. Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Zhu A, Bai Y, Nan Y, Ju D. Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy. Clin Transl Med 2024; 14:e70046. [PMID: 39472273 PMCID: PMC11521791 DOI: 10.1002/ctm2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Natural killer cell engagers (NKCEs) are a specialised subset of antibodies capable of simultaneously targeting endogenous NK cells and tumour cells, generating precise and effective cytolytic responses against cancer. This review systematically explores NK engagers as a rising star in NK-mediated immunotherapy, specifically focusing on multi-specific engagers. It examines the diverse configuration of NKCEs and how certain biologics could be employed to boost NK activity, including activating receptor engagement and cytokine incorporation. Some challenges and future perspectives of current NKCEs therapy are also discussed, including optimising pharmacokinetics, addressing the immunosuppressive tumour microenvironment and exploring potential combinatorial approaches. By offering an in-depth analysis of the current landscape and future trajectories of multi-specific NKCEs in cancer treatment, this review serves as a valuable resource for understanding this promising field of immunotherapy. HIGHLIGHTS Innovative NKCEs: NK cell engagers (NKCEs) represent a promising new class of immunotherapeutics targeting tumours by activating NK cells. Multi-specific formats: The transition from bi-specific to multi-specific NKCEs enhances their versatility and therapeutic efficacy. MECHANISMS OF ACTION NKCEs have the potential to improve NK cell activation by engaging activating receptors and incorporating cytokines. CLINICAL POTENTIAL Current clinical trials demonstrate the safety and efficacy of various NKCEs across different cancer types. Future research directions: Optimising NKCE designs and exploring combination therapies are essential for overcoming challenges in cancer treatment.
Collapse
Affiliation(s)
- An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Douka S, Papamoschou V, Raimo M, Mastrobattista E, Caiazzo M. Harnessing the Power of NK Cell Receptor Engineering as a New Prospect in Cancer Immunotherapy. Pharmaceutics 2024; 16:1143. [PMID: 39339180 PMCID: PMC11434712 DOI: 10.3390/pharmaceutics16091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Natural killer (NK) cells have recently gained popularity as an alternative for cancer immunotherapy. Adoptive cell transfer employing NK cells offers a safer therapeutic option compared to T-cell-based therapies, due to their significantly lower toxicity and the availability of diverse autologous and allogeneic NK cell sources. However, several challenges are associated with NK cell therapies, including limited in vivo persistence, the immunosuppressive and hostile tumor microenvironment (TME), and the lack of effective treatments for solid tumors. To address these limitations, the modification of NK cells to stably produce cytokines has been proposed as a strategy to enhance their persistence and proliferation. Additionally, the overexpression of activating receptors and the blockade of inhibitory receptors can restore the NK cell functions hindered by the TME. To further improve tumor infiltration and the elimination of solid tumors, innovative approaches focusing on the enhancement of NK cell chemotaxis through the overexpression of chemotactic receptors have been introduced. This review highlights the latest advancements in preclinical and clinical studies investigating the engineering of activating, inhibitory, and chemotactic NK cell receptors; discusses recent progress in cytokine manipulation; and explores the potential of combining the chimeric antigen receptor (CAR) technology with NK cell receptors engineering.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Vasilis Papamoschou
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Enrico Mastrobattista
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Massimiliano Caiazzo
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
6
|
Matson AW, Hullsiek R, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. J Immunother Cancer 2024; 12:e008959. [PMID: 39053944 DOI: 10.1136/jitc-2024-008959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.
Collapse
Affiliation(s)
- Anders W Matson
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Rob Hullsiek
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anders J Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan R Friess
- Graduate Program in Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shee Kwan Phung
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Tanya S Freedman
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily N Truckenbrod
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Wu J. Emerging Innate Immune Cells in Cancer Immunotherapy: Promises and Challenges. BioDrugs 2024; 38:499-509. [PMID: 38700835 PMCID: PMC11246812 DOI: 10.1007/s40259-024-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Immune checkpoint inhibitor (ICI)-based therapy has made an unprecedented impact on survival benefit for a subset of cancer patients; however, only a subset of cancer patients is benefiting from ICI therapy if all cancer types are considered. With the advanced understanding of interactions of immune effector cell types and tumors, cell-based therapies are emerging as alternatives to patients who could not benefit from ICI therapy. Pioneering work of chimeric antigen receptor T (CAR-T) therapy for hematological malignancies has brought encouragement to a broad range of development for cellular-based cancer immunotherapy, both innate immune cell-based therapies and T-cell-based therapies. Innate immune cells are important cell types due to their rapid response, versatile function, superior safety profiles being demonstrated in early clinical development, and being able to utilize multiple allogeneic cell sources. Efforts on engineering innate immune cells and exploring their therapeutic potential are rapidly emerging. Some of the therapies, such as CD19 CAR natural killer (CAR-NK) cell-based therapy, have demonstrated comparable early efficacy with CD19 CAR-T cells. These studies underscore the significance of developing innate immune cells for cancer therapy. In this review, we focus on the current development of emerging NK cells, γδ T cells, and macrophages. We also present our views on potential challenges and perspectives to overcome these challenges.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Urology, Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
10
|
Matson AW, Hullsiek RH, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593347. [PMID: 38798522 PMCID: PMC11118905 DOI: 10.1101/2024.05.09.593347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients. These stimuli activate the membrane protease ADAM17, which then cleaves assorted receptors on the surface of NK cells as a negative feedback loop to limit their activation and function. We have shown that ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo . In this study, we investigated the underlying mechanism of this process. Methods PBMCs or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15 +/- an ADAM17 function-blocking antibody. Different versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab') 2 , and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A engagement on NK cells. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell anti-tumor activity. Results The ADAM17 function-blocking mAb Medi-1 markedly increased initial NK cell activation by IL-15. Using different engineered versions of the antibody revealed that the activating Fcγ receptor CD16A, a well-described ADAM17 substrate, was critical for enhancing IL-15 stimulation. Hence, Medi-1 bound to ADAM17 on NK cells can be engaged by CD16A and block its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide, phagocytosis, or dysfunction. Synergistic activity by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A + NK cells and augmented their proliferation in the presence of PBMC accessory cells. Conclusions Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the anti-tumor activity of NK cells in cancer patients. What is already known on this topic NK cell therapies are being broadly investigated to treat cancer. NK cell stimulation by IL-15 prolongs their survival in cancer patients. Various stimuli including IL-15 activate ADAM17 in NK cells, a membrane protease that regulates the cell surface density of various receptors as a negative feedback mechanism. What this study adds Treating NK cells with the ADAM17 function-blocking mAb Medi-1 markedly enhanced their activation and proliferation. Our study reveals that the Fc and Fab regions of Medi-1 function synergistically with IL-15 in NK cell activation. Medi-1 treatment augments the upregulation of CD137 by NK cells, which enhances their proliferation in the presence of PBMC accessory cells. How this study might affect research practice or policy Our study is of translational importance as Medi-1 treatment in combination with IL-15 could potentially augment the proliferation and function of endogenous or adoptively transferred NK cells in cancer patients. Graphical abstract
Collapse
|
11
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
12
|
Lunn-Halbert MC, Laszlo GS, Erraiss S, Orr MT, Jessup HK, Thomas HJ, Chan H, Jahromi MA, Lloyd J, Cheung AF, Chang GP, Dichwalkar T, Fallon D, Grinberg A, Rodríguez-Arbolí E, Lim SYT, Kehret AR, Huo J, Cole FM, Scharffenberger SC, Walter RB. Preclinical Characterization of the Anti-Leukemia Activity of the CD33/CD16a/NKG2D Immune-Modulating TriNKET ® CC-96191. Cancers (Basel) 2024; 16:877. [PMID: 38473239 PMCID: PMC10931532 DOI: 10.3390/cancers16050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing efforts are focusing on natural killer (NK) cell immunotherapies for AML. Here, we characterized CC-96191, a novel CD33/CD16a/NKG2D immune-modulating TriNKET®. CC-96191 simultaneously binds CD33, NKG2D, and CD16a, with NKG2D and CD16a co-engagement increasing the avidity for, and activation of, NK cells. CC-96191 was broadly active against human leukemia cells in a strictly CD33-dependent manner, with maximal efficacy requiring the co-engagement of CD16a and NKG2D. A frequent CD33 single nucleotide polymorphism, R69G, reduced CC-96191 potency but not maximal activity, likely because of reduced CD33 binding. Similarly, the potency, but not the maximal activity, of CC-96191 was reduced by high concentrations of soluble CD33; in contrast, the soluble form of the NKG2D ligand MICA did not impact activity. In the presence of CD33+ AML cells, CC-96191 activated NK cells but not T cells; while maximum anti-AML efficacy was similar, soluble cytokine levels were 10- to >100-fold lower than with a CD33/CD3 bispecific antibody. While CC-96191-mediated cytolysis was not affected by ABC transporter proteins, it was reduced by anti-apoptotic BCL-2 family proteins. Finally, in patient marrow specimens, CC-96191 eliminated AML cells but not normal monocytes, suggesting selectivity of TriNKET-induced cytotoxicity toward neoplastic cells. Together, these findings support the clinical exploration of CC-96191 as in NCT04789655.
Collapse
Affiliation(s)
- Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah Erraiss
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mark T. Orr
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heidi K. Jessup
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heather J. Thomas
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Henry Chan
- Bristol Myers Squibb, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | - Eduardo Rodríguez-Arbolí
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), University of Seville, 41013 Seville, Spain
| | - Sheryl Y. T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allie R. Kehret
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frances M. Cole
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Samuel C. Scharffenberger
- Molecular Medicine and Mechanisms of Disease (M3D) Ph.D. Program, University of Washington, Seattle, WA 98195, USA
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Dodd H, Guerra N, Dunlop IE. The Power of Three: Nanomaterials for Natural Killer (NK) Cell Immunoengineering Maximize Their Potency if They Exploit Multireceptor Stimulation. Adv Healthc Mater 2024; 13:e2302297. [PMID: 38029341 PMCID: PMC11468765 DOI: 10.1002/adhm.202302297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Many emerging cancer treatments are immunotherapies that modulate Natural Killer- (NK) or T cell activation, posing a challenge to develop immunoengineering nanomaterials that improve on the performance of molecular reagents. In physiological activation, multiple immunoreceptors signal in consort; however, current biomaterials do not replicate this. Here, NK cells are created for the first time, activating bionanomaterials that stimulate >2 immunoreceptors. Nanoclusters of monoclonal antibodies (mAb), templated by nanoscale graphene oxide sheets (NGO) (≈75 nm size), are exploited. To inform nanoreagent design, a model system of planar substrates with anchored mAb is first investigated. Combining mAb that stimulates three NK cell activating receptors (αNKP46 + αNKG2D + αDNAM-1), activated NK cells act more potently than any single receptor or pair. Applying this insight, an NGO-mAb nanocluster combining three distinct mAb: NGO-mAb(αNKP46 + αNKG2D + αDNAM-1) is created. This construct is potent and outperforms single-receptor-simulating nanoclusters, activating nearly twice as many NK cells as NGO-mAb(αNKP46) at a similar mAb dose or delivering similar activation at 10× lower dosage. Further, NGO-mAb are more potent than planar substrates for both single- and triple-mAb stimulation. These results imply a new concept for immunoengineering biomaterials: both nanoclustering and multi-receptor stimulation should be incorporated for maximum effect.
Collapse
Affiliation(s)
- Helena Dodd
- Dept. MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
- Dept. Life SciencesImperial College LondonExhibition RoadLondonSW7 2AZUK
- Dept. ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Nadia Guerra
- Dept. Life SciencesImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Iain E. Dunlop
- Dept. MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
14
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
15
|
Kiefer A, Prüfer M, Röder J, Pfeifer Serrahima J, Bodden M, Kühnel I, Oberoi P, Wels WS. Dual Targeting of Glioblastoma Cells with Bispecific Killer Cell Engagers Directed to EGFR and ErbB2 (HER2) Facilitates Effective Elimination by NKG2D-CAR-Engineered NK Cells. Cells 2024; 13:246. [PMID: 38334638 PMCID: PMC10854564 DOI: 10.3390/cells13030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable NK-92 cells with a chimeric antigen receptor (NKAR) which contains the extracellular domain of NKG2D for target recognition, or an NKAR, together with the IL-15 superagonist RD-IL15, and combined these effector cells with recombinant NKG2D-interacting bispecific engagers that simultaneously recognize the tumor-associated antigens epidermal growth factor receptor (EGFR) or ErbB2 (HER2). Applied individually, in in vitro cell-killing assays, these NKAB-EGFR and NKAB-ErbB2 antibodies specifically redirected NKAR-NK-92 and NKAR_RD-IL15-NK-92 cells to glioblastoma and other cancer cells with elevated EGFR or ErbB2 levels. However, in mixed glioblastoma cell cultures, used as a model for heterogeneous target antigen expression, NKAR-NK cells only lysed the EGFR- or ErbB2-expressing subpopulations in the presence of one of the NKAB molecules. This was circumvented by applying NKAB-EGFR and NKAB-ErbB2 together, resulting in effective antitumor activity similar to that against glioblastoma cells expressing both target antigens. Our results demonstrate that combining NK cells carrying an activating NKAR receptor with bispecific NKAB antibodies allows for flexible targeting, which can enhance tumor-antigen-specific cytotoxicity and prevent immune escape.
Collapse
Affiliation(s)
- Anne Kiefer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
| | - Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a Partnership between DKFZ and University Hospital Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
16
|
Yao Q, Zhang X, Wang Y, Wang C, Chen J, Chen D. A promising natural killer cell-based model and a nomogram for the prognostic prediction of clear-cell renal cell carcinoma. Eur J Med Res 2024; 29:73. [PMID: 38268058 PMCID: PMC10807100 DOI: 10.1186/s40001-024-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Clear-cell renal cell carcinoma (ccRCC) is one of prevalent kidney malignancies with an unfavorable prognosis. There is a need for a robust model to predict ccRCC patient survival and guide treatment decisions. METHODS RNA-seq data and clinical information of ccRCC were obtained from the TCGA and ICGC databases. Expression profiles of genes related to natural killer (NK) cells were collected from the Immunology Database and Analysis Portal database. Key NK cell-related genes were identified using consensus clustering algorithms to classify patients into distinct clusters. A NK cell-related risk model was then developed using Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to predict ccRCC patient prognosis. The relationship between the NK cell-related risk score and overall survival, clinical features, tumor immune characteristics, as well as response to commonly used immunotherapies and chemotherapy, was explored. Finally, the NK cell-related risk score was validated using decision tree and nomogram analyses. RESULTS ccRCC patients were stratified into 3 molecular clusters based on expression of NK cell-related genes. Significant differences were observed among the clusters in terms of prognosis, clinical characteristics, immune infiltration, and therapeutic response. Furthermore, six NK cell-related genes (DPYSL3, SLPI, SLC44A4, ZNF521, LIMCH1, and AHR) were identified to construct a prognostic model for ccRCC prediction. The high-risk group exhibited poor survival outcomes, lower immune cell infiltration, and decreased sensitivity to conventional chemotherapies and immunotherapies. Importantly, the quantitative real-time polymerase chain reaction (qRT-PCR) confirmed significantly high DPYSL3 expression and low SLC44A4 expression in ACHN cells. Finally, the decision tree and nomogram consistently show the dramatic prediction performance of the risk score on the survival outcome of the ccRCC patients. CONCLUSIONS The six-gene model based on NK cell-related gene expression was validated and found to accurately mirror immune microenvironment and predict clinical outcomes, contributing to enhanced risk stratification and therapy response for ccRCC patients.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China.
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China.
| |
Collapse
|
17
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Bispecific antibodies revolutionizing breast cancer treatment: a comprehensive overview. Front Immunol 2023; 14:1266450. [PMID: 38111570 PMCID: PMC10725925 DOI: 10.3389/fimmu.2023.1266450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-Ya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
19
|
Balzasch BM, Cerwenka A. Microenvironmental signals shaping NK-cell reactivity in cancer. Eur J Immunol 2023; 53:e2250103. [PMID: 37194594 DOI: 10.1002/eji.202250103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Since the postulation of the "missing-self" concept, much progress has been made in defining requirements for NK-cell activation. Unlike T lymphocytes that process signals from receptors in a hierarchic manner dominated by the T-cell receptors, NK cells integrate receptor signals more "democratically." Signals originate not only the downstream of cell-surface receptors triggered by membrane-bound ligands or cytokines, but are also mediated by specialized microenvironmental sensors that perceive the cellular surrounding by detecting metabolites or the availability of oxygen. Thus, NK-cell effector functions are driven in an organ and disease-dependent manner. Here, we review the latest findings on how NK-cell reactivity in cancer is determined by the reception and integration of complex signals. Finally, we discuss how this knowledge can be exploited to guide novel combinatorial approaches for NK-cell-based anticancer therapies.
Collapse
Affiliation(s)
- Bianca M Balzasch
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Liu Q, Song Q, Luo C, Wei J, Xu Y, Zhao L, Wang Y. A novel bispecific antibody as an immunotherapeutic agent in hepatocellular carcinoma. Mol Immunol 2023; 162:125-132. [PMID: 37677989 DOI: 10.1016/j.molimm.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and highly fatal malignancies in humans worldwide with increasing prevalence and limited therapeutic options. For many decades, many researchers have attempted to find effective curative methods for HCC and great strides have been made. GPC3 is overexpressed in HCC, but not in normal liver, making it a rational immunotherapeutic target for HCC. GC33, a humanized mAb directed against GPC3, is a safe and well-tolerated therapy choice for patients with HCC, which tested in a phase I trial in advanced HCC patients. Phase II trials of GC33 to evaluate its efficacy and safety in advanced or metastatic HCC, showed no significant differences in overall survival and progression-free survival compared with the placebo. Retrospective analysis indicates that high drug exposure and high CD16 expression may contribute to the clinical efficacy of GC33. Chugai Pharmaceutical has restarted its Phase I trial of GC33, continuing to explore its clinical value targeting GPC3 in solid tumors. To enhance the antitumor potency of GC33, we designed a GPC3/CD16A bispecific antibody (QDEB). In this study, we obtained QDEB at high purity and assessed its effectiveness in the therapy of HCC compared with GC33. In vitro cytotoxicity assays and in vivo experiments demonstrated that QDEB could enhance anti-tumor efficacy compared with GC33. CD16A activation and increased cytokines release were associated with higher anti-tumor activity. In conclusion, this bispecific antibody may possibly help develop new therapeutic strategies for HCC and develop new treatment options in the future.
Collapse
Affiliation(s)
- Qingxia Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Qifeng Song
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Cheng Luo
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Jian Wei
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yao Xu
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Liwen Zhao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yong Wang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China.
| |
Collapse
|
22
|
Motallebnejad P, Kantardjieff A, Cichocki F, Azarin SM, Hu WS. Process engineering of natural killer cell-based immunotherapy. Trends Biotechnol 2023; 41:1314-1326. [PMID: 37142447 PMCID: PMC10523923 DOI: 10.1016/j.tibtech.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Cell therapy offers the potential for curative treatment of cancers. Although T cells have been the predominantly used cell type, natural killer (NK) cells have attracted great attention owing to their ability to kill cancer cells and because they are naturally suitable for allogeneic applications. Upon stimulation by cytokines or activation by a target cell, NK cells proliferate and expand their population. These cytotoxic NK cells can be cryopreserved and used as an off-the-shelf medicine. The production process for NK cells thus differs from that of autologous cell therapies. We briefly outline key biological features of NK cells, review the manufacturing technologies for protein biologics, and discuss their adaptation for developing robust NK cell biomanufacturing processes.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Huan T, Guan B, Li H, Tu X, Zhang C, Tang B. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccin Immunother 2023; 19:2256904. [PMID: 37772505 PMCID: PMC10543353 DOI: 10.1080/21645515.2023.2256904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Monoclonal antibody-based targeted therapies have greatly improved treatment options for patients by binding to the innate immune system. However, the long-term efficacy of such antibodies is limited by mechanisms of drug resistance. Over the last 50 years, with advances in protein engineering technology, more and more bispecific antibody (bsAb) platforms have been engineered to meet diverse clinical needs. Bispecific NK cell engagers (BiKEs) or tri-specific NK cell engagers (TriKEs) allow for direct targeting of immune cells to tumors, and therefore resistance and serious adverse effects are greatly reduced. Many preclinical and clinical trials are currently underway, depicting the promise of antibody-based natural killer cell engager therapeutics. In this review, we compile worldwide efforts to explore the involvement of NK cells in bispecific antibodies. With a particular emphasis on lessons learned, we focus on preclinical and clinical studies in malignancies and discuss the reasons for the limited success of NK-cell engagers against solid tumors, offering plausible new ideas for curing some advanced cancers shortly.
Collapse
Affiliation(s)
- Tian Huan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bugao Guan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Hongbo Li
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Xiu Tu
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Chi Zhang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- Department of Central Laboratory, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
24
|
Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol 2023; 16:83. [PMID: 37501154 PMCID: PMC10373336 DOI: 10.1186/s13045-023-01482-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Immune cell engagers are engineered antibodies with at least one arm binding a tumor-associated antigen and at least another one directed against an activating receptor in immune effector cells: CD3 for recruitment of T cells and CD16a for NK cells. The first T cell engager (the anti-CD19 blinatumomab) was approved by the FDA in 2014, but no other one hit the market until 2022. Now the field is gaining momentum, with three approvals in 2022 and 2023 (as of May): the anti-CD20 × anti-CD3 mosunetuzumab and epcoritamab and the anti-B cell maturation antigen (BCMA) × anti-CD3 teclistamab, and another three molecules in regulatory review. T cell engagers will likely revolutionize the treatment of hematological malignancies in the short term, as they are considerably more potent than conventional monoclonal antibodies recognizing the same tumor antigens. The field is thriving, with a plethora of different formats and targets, and around 100 bispecific T cell engagers more are already in clinical trials. Bispecific NK cell engagers are also in early-stage clinical studies and may offer similar efficacy with milder side effects. Trispecific antibodies (engaging either T cell or NK cell receptors) raise the game even further with a third binding moiety, which allows either the targeting of an additional tumor-associated antigen to increase specificity and avoid immune escape or the targeting of additional costimulatory receptors on the immune cell to improve its effector functions. Altogether, these engineered molecules may change the paradigm of treatment for relapsed or refractory hematological malignancies.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Álvarez-Vallina
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain.
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
| |
Collapse
|
25
|
Seo H, Verma A, Kinzel M, Huang Q, Mahoney DJ, Jacquelot N. Targeting Potential of Innate Lymphoid Cells in Melanoma and Other Cancers. Pharmaceutics 2023; 15:2001. [PMID: 37514187 PMCID: PMC10384206 DOI: 10.3390/pharmaceutics15072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.
Collapse
Affiliation(s)
- Hobin Seo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Amisha Verma
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Kinzel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
26
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Zhou Y, Cheng L, Liu L, Li X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol Cancer 2023; 22:34. [PMID: 36797782 PMCID: PMC9933398 DOI: 10.1186/s12943-023-01737-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Immune escape is a hallmark of cancer. The dynamic and heterogeneous tumour microenvironment (TME) causes insufficient infiltration and poor efficacy of natural killer (NK) cell-based immunotherapy, which becomes a key factor triggering tumour progression. Understanding the crosstalk between NK cells and the TME provides new insights for optimising NK cell-based immunotherapy. Here, we present new advances in direct or indirect crosstalk between NK cells and 9 specialised TMEs, including immune, metabolic, innervated niche, mechanical, and microbial microenvironments, summarise TME-mediated mechanisms of NK cell function inhibition, and highlight potential targeted therapies for NK-TME crosstalk. Importantly, we discuss novel strategies to overcome the inhibitory TME and provide an attractive outlook for the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China ,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Liu
- grid.412643.60000 0004 1757 2902Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
28
|
Floerchinger A, Klein JE, Finkbeiner MSC, Schäfer TE, Fuchs G, Doerner J, Zirngibl H, Ackermann M, Kvasnicka HM, Chester KA, Jäger D, Ball CR, Ungerechts G, Engeland CE. A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death Dis 2023; 14:104. [PMID: 36765035 PMCID: PMC9918448 DOI: 10.1038/s41419-023-05624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.
Collapse
Affiliation(s)
- Alessia Floerchinger
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Jessica E Klein
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maximiliane S C Finkbeiner
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Gwendolin Fuchs
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Francis Crick Institute, London, UK
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Hubert Zirngibl
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
30
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
31
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
32
|
Natural killer cell awakening: unleash cancer-immunity cycle against glioblastoma. Cell Death Dis 2022; 13:588. [PMID: 35803912 PMCID: PMC9270460 DOI: 10.1038/s41419-022-05041-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Due to the negligence of the complex tumor immune microenvironment, traditional treatment for glioblastoma has reached its limitation and cannot achieve a satisfying outcome in the past decade. The emergence of immunotherapy based on the theory of cancer-immunity cycle has brought a new dawn to glioblastoma patients. However, the results of most phase II and phase III clinical trials are not optimistic due to the simple focus on T cells activation rather than other immune cells involved in anti-tumor immunity. NK cells play a critical role in both innate and adaptive immunity, having the ability to coordinate immune response in inflammation, autoimmune disease and cancer. They are expected to cooperate with T cells to maximize the anti-tumor immune effect and have great potential in treating glioblastoma. Here, we describe the traditional treatment methods and current immunotherapy strategies for glioblastoma. Then, we list a microenvironment map and discuss the reasons for glioblastoma inhibitory immunity from multiple perspectives. More importantly, we focus on the advantages of NK cells as potential immune regulatory cells and the ways to maximize their anti-tumor immune effect. Finally, our outlook on the directions and potential applications of NK cell-based therapy combining with the advance technologies is presented. This review depicts NK cell awakening as the precondition to unleash the cancer-immunity cycle against glioblastoma and elaborate this idea from biology to clinical treatment.
Collapse
|
33
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
34
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
35
|
Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol 2022; 144:58-70. [DOI: 10.1016/j.molimm.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
36
|
McGraw JM, Witherden DA. γδ T cell costimulatory ligands in antitumor immunity. EXPLORATION OF IMMUNOLOGY 2022; 2:79-97. [PMID: 35480230 PMCID: PMC9041367 DOI: 10.37349/ei.2022.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph M. McGraw
- 1Department of Biology, Calibr at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deborah A. Witherden
- 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|