1
|
Lin R, Chen R. Exploring the causal connection: insights into diabetic nephropathy and gut microbiota from whole-genome sequencing databases. Ren Fail 2024; 46:2385065. [PMID: 39090986 PMCID: PMC11299436 DOI: 10.1080/0886022x.2024.2385065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Over recent years, the prevalence of diabetes has been on the rise, paralleling improvements in living standards. Diabetic nephropathy (DN), a prevalent complication of diabetes, has also exhibited a growing incidence. While some clinical studies and reviews have hinted at a link between diabetic nephropathy and gut microbiota (GM), the nature of this connection, specifically its causative nature, remains uncertain. Investigating the causal relationship between diabetic nephropathy and gut microbiota holds the promise of aiding in disease screening and identifying novel biomarkers. In this study, we employed a two-sample Mendelian randomization analysis. Our dataset encompassed 4,111 DN patients from the GWAS database, juxtaposed with 308,539 members forming a control group. The aim was to pinpoint specific categories within the vast spectrum of the 211 known gut microbiota types that may have a direct causal relationship with diabetic nephropathy. Rigorous measures, including extensive heterogeneity and sensitivity analyses, were implemented to mitigate the influence of confounding variables on our experimental outcomes. Ultimately, our comprehensive analysis revealed 15 distinct categories of gut microbiota that exhibit a causal association with diabetic nephropathy. In summary, the phyla Bacteroidota and Verrucomicrobiae, the families Peptostreptococcaceae and Veillonellaceae, the genus Akkermansia, and the species Catenibacterium, Lachnoclostridium, Parasutterella, along with the orders Bacteroidales and Verrucomicrobiales, and the class Bacteroidetes were identified as correlates of increased risk for DN. Conversely, the family Victivallaceae, the species Eubacterium coprostanoligenes, and the Clostridium sensu stricto 1 group were found to be associated with a protective effect against the development of DN.These findings not only provide valuable insights but also open up novel avenues for clinical research, offering fresh directions for potential treatments.
Collapse
Affiliation(s)
- Rui Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ashiqueali SA, Schneider A, Zhu X, Juszczyk E, Mansoor MAM, Zhu Y, Fang Y, Zanini BM, Garcia DN, Hayslip N, Medina D, McFadden S, Stockwell R, Yuan R, Bartke A, Zasloff M, Siddiqi S, Masternak MM. Early life interventions metformin and trodusquemine metabolically reprogram the developing mouse liver through transcriptomic alterations. Aging Cell 2024; 23:e14227. [PMID: 38798180 PMCID: PMC11488326 DOI: 10.1111/acel.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Recent studies have demonstrated the remarkable potential of early life intervention strategies at influencing the course of postnatal development, thereby offering exciting possibilities for enhancing longevity and improving overall health. Metformin (MF), an FDA-approved medication for type II diabetes mellitus, has recently gained attention for its promising anti-aging properties, acting as a calorie restriction mimetic, and delaying precocious puberty. Additionally, trodusquemine (MSI-1436), an investigational drug, has been shown to combat obesity and metabolic disorders by inhibiting the enzyme protein tyrosine phosphatase 1b (Ptp1b), consequently reducing hepatic lipogenesis and counteracting insulin and leptin resistance. In this study, we aimed to further explore the effects of these compounds on young, developing mice to uncover biomolecular signatures that are central to liver metabolic processes. We found that MSI-1436 more potently alters mRNA and miRNA expression in the liver compared with MF, with bioinformatic analysis suggesting that cohorts of differentially expressed miRNAs inhibit the action of phosphoinositide 3-kinase (Pi3k), protein kinase B (Akt), and mammalian target of rapamycin (Mtor) to regulate the downstream processes of de novo lipogenesis, fatty acid oxidation, very-low-density lipoprotein transport, and cholesterol biosynthesis and efflux. In summary, our study demonstrates that administering these compounds during the postnatal window metabolically reprograms the liver through induction of potent epigenetic changes in the transcriptome, potentially forestalling the onset of age-related diseases and enhancing longevity. Future studies are necessary to determine the impacts on lifespan and overall quality of life.
Collapse
Affiliation(s)
- Sarah A. Ashiqueali
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Xiang Zhu
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Mishfak A. M. Mansoor
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Yun Zhu
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Yimin Fang
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Bianka M. Zanini
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Driele N. Garcia
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Natalie Hayslip
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - David Medina
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Samuel McFadden
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Robert Stockwell
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Rong Yuan
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Michael Zasloff
- MedStar Georgetown Transplant InstituteGeorgetown University School of MedicineWashingtonDCUSA
| | - Shadab Siddiqi
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
3
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
4
|
Shiri H, Fallah H, Abolhassani M, Fooladi S, Ramezani Karim Z, Danesh B, Abbasi-Jorjandi M. Relationship between types and levels of free fatty acids, peripheral insulin resistance, and oxidative stress in T2DM: A case-control study. PLoS One 2024; 19:e0306977. [PMID: 39133724 PMCID: PMC11318896 DOI: 10.1371/journal.pone.0306977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Free Fatty Acids (FFAs) are vital for energy homeostasis and the pathogenesis of a variety of diseases, including diabetes. For the first time, we presumed and investigated the types and levels of FFAs and their links to Insulin Resistance (IR) and Oxidative Stress (OS) in T2DM. A case-control study was conducted on 60 individuals with diabetes, 60 prediabetics with IFG, and 60 control groups. A Gas Chromatography Flame Ionization Detector (GC-FID) was used to estimate FFAs, which were then classified based on length and saturation. Indeed, antioxidant parameters such as TAC, MDA levels, PON-1, SOD-3, and CAT activity were assessed. Higher levels of LCFFA, SFFA, USFFA, and total FFA were found in people with diabetes and prediabetes. These levels were also linked to higher levels of HOMA-IR, BMI, FBS, HbA1C, and MDA, but lower levels of antioxidants. Furthermore, adjusting the above FFAs with age, sex, and antihypertensive medication increased T2DM development. SCFFA and ω3/6 fatty acids had a negative relationship with HOMA-IR, FBS, and insulin and a positive relationship with TAC. Adjusted SCFFA reduces T2DM risk. According to our models, total FFA is utilized to diagnose diabetes (AUC = 83.98, cut-off > 919 μM) and SCFFA for prediabetes (AUC = 82.32, cut-off < 39.56 μM). Total FFA (≥ 776 μM), LCFFA (≥ 613 μM), SFFA (≥ 471 μM), and USFFA (≥ 398 μM) all increase the risk of T2DM by increasing OS, BMI, and HOMA-IR. On the other hand, SCFFAs (≥ 38.7 μM) reduce the risk of T2DM by reducing BMI, HOMA-IR, and OS. SCFFAs and total FFAs can be used for the diagnosis of prediabetes and diabetes, respectively.
Collapse
Affiliation(s)
- Hamidreza Shiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Ramezani Karim
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Danesh
- Department of Internal Medicine, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03295-1. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
6
|
Liu N, Chen Y, An T, Tao S, Lv B, Dou J, Deng R, Zhen X, Zhang Y, Lu C, Chang Z, Jiang G. Lysophosphatidylcholine trigger myocardial injury in diabetic cardiomyopathy via the TLR4/ZNF480/AP-1/NF-kB pathway. Heliyon 2024; 10:e33601. [PMID: 39040275 PMCID: PMC11260982 DOI: 10.1016/j.heliyon.2024.e33601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetic cardiomyopathy (DC), a frequent complication of type 2 diabetes mellitus (T2DM), is mainly associated with severe adverse outcomes. Previous research has highlighted the role of Lysophosphatidylcholine (LPC) in inducing myocardial injury; however, the specific mechanisms through which LPC mediate such injury in DC remain elusive. The existing knowledge gap underscores the need for additional clarification. Consequently, this study aimed to explore the impact and underlying mechanisms of LPC on myocardial injury in DC. Methods A total of 55 patients diagnosed with T2DM and 62 healthy controls were involved. A combination of 16s rRNA sequencing, metabolomic analysis, transcriptomic RNA-sequencing (RNA-seq), and whole exome sequencing (WES) was performed on fecal and peripheral blood samples collected from the participants. Following this, correlation analysis was carried out, and the results were further validated through the mouse model of T2DM. Results Four LPC variants distinguishing T2DM patients from healthy controls were identified, all of which were upregulated in T2DM patients. Specifically, Lysopc (16:0, 2 N isoform) and LPC (16:0) exhibited a positive correlation with nuclear factor kappa B subunit 2 (NFKB2) and a negative correlation with Zinc finger protein 480 (ZNF480) Furthermore, the expression levels of Toll-like receptor 4 (TLR4), c-Jun, c-Fos, and NFKB2 were upregulated in the peripheral blood of T2DM patients and in the myocardial tissue of T2DM mice, whereas ZNF480 expression level was downregulated. Lastly, myocardial injury was identified in T2DM mice. Conclusions The results indicated that LPC could induce myocardial injury in DC through the TLR4/ZNF480/AP-1/NF-kB pathway, providing a precise target for the clinical diagnosis and treatment of DC.
Collapse
Affiliation(s)
- Nannan Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, City Urumqi, China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinfang Dou
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Caizhong Lu
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Zhongsheng Chang
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Liu T, Zhang C, Zhang H, Jin J, Li X, Liang S, Xue Y, Yuan F, Zhou Y, Bian X, Wei H. A new evaluation system for drug-microbiota interactions. IMETA 2024; 3:e199. [PMID: 38898986 PMCID: PMC11183188 DOI: 10.1002/imt2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.
Collapse
Affiliation(s)
- Tian‐Hao Liu
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Chen‐Yang Zhang
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hang Zhang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jing Jin
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Xue Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Shi‐Qiang Liang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yu‐Zheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Feng‐Lai Yuan
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ya‐Hong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Xiu‐Wu Bian
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Hong Wei
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
| |
Collapse
|
8
|
Plowman TJ, Christensen H, Aiges M, Fernandez E, Shah MH, Ramana KV. Anti-Inflammatory Potential of the Anti-Diabetic Drug Metformin in the Prevention of Inflammatory Complications and Infectious Diseases Including COVID-19: A Narrative Review. Int J Mol Sci 2024; 25:5190. [PMID: 38791227 PMCID: PMC11121530 DOI: 10.3390/ijms25105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Metformin, a widely used first-line anti-diabetic therapy for the treatment of type-2 diabetes, has been shown to lower hyperglycemia levels in the blood by enhancing insulin actions. For several decades this drug has been used globally to successfully control hyperglycemia. Lactic acidosis has been shown to be a major adverse effect of metformin in some type-2 diabetic patients, but several studies suggest that it is a typically well-tolerated and safe drug in most patients. Further, recent studies also indicate its potential to reduce the symptoms associated with various inflammatory complications and infectious diseases including coronavirus disease 2019 (COVID-19). These studies suggest that besides diabetes, metformin could be used as an adjuvant drug to control inflammatory and infectious diseases. In this article, we discuss the current understanding of the role of the anti-diabetic drug metformin in the prevention of various inflammatory complications and infectious diseases in both diabetics and non-diabetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
9
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
10
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
11
|
Cheng M, Ren L, Jia X, Wang J, Cong B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front Pharmacol 2024; 15:1347047. [PMID: 38617792 PMCID: PMC11010946 DOI: 10.3389/fphar.2024.1347047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Metformin is the initial medication recommended for the treatment of type 2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless, further exploration is required to fully understand its mode of operation. Historically, the liver has been acknowledged as the main location where metformin reduces glucose levels, however, there is increasing evidence suggesting that the gastrointestinal tract also plays a significant role in its action. In the gastrointestinal tract, metformin effects glucose uptake and absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the composition and structure of the gut microbiota, and modulates the immune response. However, the side effects of it cannot be ignored such as gastrointestinal distress in patients. This review outlines the impact of metformin on the digestive system and explores potential explanations for variations in metformin effectiveness and adverse effects like gastrointestinal discomfort.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Sawamoto A, Okada M, Matsuoka N, Okuyama S, Nakajima M. Tipepidine activates AMPK and improves adipose tissue fibrosis and glucose intolerance in high-fat diet-induced obese mice. FASEB J 2024; 38:e23542. [PMID: 38466234 DOI: 10.1096/fj.202301861rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Tipepidine (3-[di-2-thienylmethylene]-1-methylpiperidine) (TP) is a non-narcotic antitussive used in Japan. Recently, the potential application of TP in the treatment of neuropsychiatric disorders, such as depression and attention deficit hyperactivity disorder, has been suggested; however, its functions in energy metabolism are unknown. Here, we demonstrate that TP exhibits a metabolism-improving action. The administration of TP reduced high-fat diet-induced body weight gain in mice and lipid accumulation in the liver and increased the weight of epididymal white adipose tissue (eWAT) in diet-induced obese (DIO) mice. Furthermore, TP inhibited obesity-induced fibrosis in the eWAT. We also found that TP induced AMP-activated protein kinase (AMPK) activation in the eWAT of DIO mice and 3T3-L1 cells. TP-induced AMPK activation was abrogated by the transfection of liver kinase B1 siRNA in 3T3-L1 cells. The metabolic effects of TP were almost equivalent to those of metformin, an AMPK activator that is used as a first-line antidiabetic drug. In summary, TP is a potent AMPK activator, suggesting its novel role as an antidiabetic drug owing to its antifibrotic effect on adipose tissues.
Collapse
Affiliation(s)
- Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Madoka Okada
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Nanako Matsuoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| |
Collapse
|
13
|
Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med 2024; 19:275-293. [PMID: 37505311 PMCID: PMC10954893 DOI: 10.1007/s11739-023-03374-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The intestine is the largest interface between the internal body and the external environment. The intestinal barrier is a dynamic system influenced by the composition of the intestinal microbiome and the activity of intercellular connections, regulated by hormones, dietary components, inflammatory mediators, and the enteric nervous system (ENS). Over the years, it has become increasingly evident that maintaining a stable intestinal barrier is crucial to prevent various potentially harmful substances and pathogens from entering the internal environment. Disruption of the barrier is referred to as 'leaky gut' or leaky gut wall syndrome and seems to be characterized by the release of bacterial metabolites and endotoxins, such as lipopolysaccharide (LPS), into the circulation. This condition, mainly caused by bacterial infections, oxidative stress, high-fat diet, exposure to alcohol or chronic allergens, and dysbiosis, appear to be highly connected with the development and/or progression of several metabolic and autoimmune systemic diseases, including obesity, non-alcoholic fatty liver disease (NAFLD), neurodegeneration, cardiovascular disease, inflammatory bowel disease, and type 1 diabetes mellitus (T1D). In this review, starting from a description of the mechanisms that enable barrier homeostasis and analyzing the relationship between this complex ecosystem and various pathological conditions, we explore the role of the gut barrier in driving systemic inflammation, also shedding light on current and future therapeutic interventions.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy.
| | - Angelo Del Gaudio
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| | - Valentina Petito
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
| | - Loris Riccardo Lopetuso
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| |
Collapse
|
14
|
Huber H, Schieren A, Holst JJ, Simon MC. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions - a narrative review. Am J Clin Nutr 2024; 119:599-627. [PMID: 38218319 PMCID: PMC10972717 DOI: 10.1016/j.ajcnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide and central mediator of glucose metabolism, is secreted by L cells in the intestine in response to food intake. Postprandial secretion of GLP-1 is triggered by nutrient-sensing via transporters and G-protein-coupled receptors (GPCRs). GLP-1 secretion may be lower in adults with obesity/overweight (OW) or type 2 diabetes mellitus (T2DM) than in those with normal glucose tolerance (NGT), but these findings are inconsistent. Because of the actions of GLP-1 on stimulating insulin secretion and promoting weight loss, GLP-1 and its analogs are used in pharmacologic preparations for the treatment of T2DM. However, physiologically stimulated GLP-1 secretion through the diet might be a preventive or synergistic method for improving glucose metabolism in individuals who are OW, or have impaired glucose tolerance (IGT) or T2DM. This narrative review focuses on fasting and postprandial GLP-1 secretion in individuals with different metabolic conditions and degrees of glucose intolerance. Further, the influence of relevant diet-related factors (e.g., specific diets, meal composition, and size, phytochemical content, and gut microbiome) that could affect fasting and postprandial GLP-1 secretion are discussed. Some studies showed diminished glucose- or meal-stimulated GLP-1 response in participants with T2DM, IGT, or OW compared with those with NGT, whereas other studies have reported an elevated or unchanged GLP-1 response in T2DM or IGT. Meal composition, especially the relationship between macronutrients and interventions targeting the microbiome can impact postprandial GLP-1 secretion, although it is not clear which macronutrients are strong stimulants of GLP-1. Moreover, glucose tolerance, antidiabetic treatment, grade of overweight/obesity, and sex were important factors influencing GLP-1 secretion. The results presented in this review highlight the potential of nutritional and physiologic stimulation of GLP-1 secretion. Further research on fasting and postprandial GLP-1 concentrations and the resulting metabolic consequences under different metabolic conditions is needed.
Collapse
Affiliation(s)
- Hanna Huber
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden; Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Alina Schieren
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marie-Christine Simon
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany.
| |
Collapse
|
15
|
Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull 2024; 207:110883. [PMID: 38244807 DOI: 10.1016/j.brainresbull.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.
Collapse
Affiliation(s)
- Kirti Garg
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Shu Y, Li W, Hu Q, Xiong D. Bibliometrics and visual analysis of metformin and gut microbiota from 2012 to 2022: A systematic review. Medicine (Baltimore) 2023; 102:e36478. [PMID: 38115325 PMCID: PMC10727597 DOI: 10.1097/md.0000000000036478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metformin is an old drug used for the treatment of type 2 diabetes mellitus and can play a variety of roles by regulating the gut microbiota. The number of research articles on metformin in the gut microbiota has increased annually; however, no bibliometric tools have been used to analyze the research status and hot trends in this field. This study presents a bibliometric analysis of publications on metformin and gut microbiota. METHODS We searched the Web of Science core collection database on June 8, 2023, for papers related to metformin and gut microbiota from 2012 to 2022. We used Microsoft Excel 2021, VOSviewer1.6.19, CiteSpace 6.2.4, and R software package "bibliometrix" 4.0.0 to analyze the countries, institutions, authors, journals, citations, and keywords of the included publications. RESULTS We included 517 papers, and the trend in publications increased over the last 11 years. The 517 articles were from 57 countries, including 991 institutions and 3316 authors, and were published in 259 journals. China led all countries (233 papers) and the most influential institution was the Chinese Academy of Sciences (16 papers). PLOS ONE (19 papers) was the most popular journal, and Nature (1598 citations) was the most cited journal. Li and Kim were the 2 most published authors (six papers each), and Cani (272 co-citations) was the most co-cited author. "Metabolites," "aging," and "intestinal barrier" were emerging topics in this field. CONCLUSIONS This bibliometric study comprehensively summarizes the research trends and progress of metformin and gut microbiota, and provides new research topics and trends for studying the effects of metformin on gut microbiota in different diseases.
Collapse
Affiliation(s)
- Yang Shu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Weidong Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
18
|
Zhang Y, Yang L, Wu Y, He H, Zeng Y, An Z, Jia W. The effect of different prebiotics on intestinal probiotics in newly diagnosed diabetic patients. Food Sci Nutr 2023; 11:7921-7929. [PMID: 38107105 PMCID: PMC10724597 DOI: 10.1002/fsn3.3709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Prebiotics exert favorable effects on the host through interactions with probiotics, and their beneficial impacts have been extensively validated across various chronic ailments, including diabetes. This study presents findings from a case-control investigation involving 10 individuals with type 2 diabetes mellitus (T2DM) and 10 healthy counterparts. Fresh stool specimens were collected from all participants. Following a 24-h fermentation period in mediums containing xylitol and mannitol, the observed increase in Lactobacillus abundance within the case group exceeded that of the control group. Similarly, in mediums containing soluble starch, choline, and L-carnitine, the augmentation of Bifidobacterium within the case group surpassed that of the controls. Notably, a statistically significant divergence in sugar degradation rate emerged between the case and control groups, specifically in the medium harboring lactulose and isomalto-oligosaccharides. Remarkably, the degradation rate of lactulose exhibited a positive correlation with the expansion of Bifidobacterium (R 2 = .147, p = .037). Likewise, the degradation rate of isomalto-oligosaccharides demonstrated a positive correlation with Bifidobacterium proliferation (R 2 = .165, p = .041). In conclusion, prebiotics like xylitol and mannitol exhibit the capacity to enhance intestinal probiotic populations in individuals newly diagnosed with diabetes. The modifications in the intestinal flora homeostasis of diabetic patients may be evidenced by alterations in the degradation rate of specific prebiotic substrates.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduSichuanChina
| | - Lidan Yang
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yitian Wu
- Department of Medical Genetics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second HospitalSichuan UniversityChengduSichuanChina
| | - He He
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuping Zeng
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduSichuanChina
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
da Ponte Neto AM, Clemente ACO, Rosa PW, Ribeiro IB, Funari MP, Nunes GC, Moreira L, Sparvoli LG, Cortez R, Taddei CR, Mancini MC, de Moura EGH. Fecal microbiota transplantation in patients with metabolic syndrome and obesity: A randomized controlled trial. World J Clin Cases 2023; 11:4612-4624. [PMID: 37469721 PMCID: PMC10353513 DOI: 10.12998/wjcc.v11.i19.4612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Metabolic syndrome is a multifactorial disease, and the gut microbiota may play a role in its pathogenesis. Obesity, especially abdominal obesity, is associated with insulin resistance, often increasing the risk of type two diabetes mellitus, vascular endothelial dysfunction, an abnormal lipid profile, hypertension, and vascular inflammation, all of which promote the development of atherosclerotic cardiovascular disease.
AIM To evaluate the outcomes of fecal microbiota transplantation (FMT) in patients with metabolic syndrome.
METHODS This was a randomized, single-blind placebo-controlled trial comparing FMT and a sham procedure in patients with metabolic syndrome. We selected 32 female patients, who were divided into eight groups of four patients each. All of the patients were submitted to upper gastrointestinal endoscopy. In each group, two patients were randomly allocated to undergo FMT, and the other two patients received saline infusion. The patients were followed for one year after the procedures, during which time anthropometric, bioimpedance, and biochemical data were collected. The patients also had periodic consultations with a nutritionist and an endocrinologist. The primary end point was a change in the gut microbiota.
RESULTS There was evidence of a postprocedural change in microbiota composition in the patients who underwent FMT in relation to that observed in those who underwent the sham procedure. However, we found no difference between the two groups in terms of the clinical parameters evaluated.
CONCLUSION There were no significant differences in biochemical or anthropometric parameters, between the two groups evaluated. Nevertheless, there were significant postprocedural differences in the microbiota composition between the placebo group. To date, clinical outcomes related to FMT remain uncertain.
Collapse
Affiliation(s)
- Alberto Machado da Ponte Neto
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Aniele Cristine Ott Clemente
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Paula Waki Rosa
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Igor Braga Ribeiro
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Mateus Pereira Funari
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Gabriel Cairo Nunes
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Luana Moreira
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Ramon Cortez
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Carla Romano Taddei
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Márcio C Mancini
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| |
Collapse
|
21
|
Ma Z, Wang H, Shan S, Zhu K, Yuan L. Effect of metformin on type 2 diabetes mellitus based on the volume of thyroid nodules tracked by artificial intelligence. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Tseng CH. Rosiglitazone Does Not Affect the Risk of Inflammatory Bowel Disease: A Retrospective Cohort Study in Taiwanese Type 2 Diabetes Patients. Pharmaceuticals (Basel) 2023; 16:ph16050679. [PMID: 37242462 DOI: 10.3390/ph16050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Human studies on the effect of rosiglitazone on inflammatory bowel disease (IBD) are still lacking. We investigated whether rosiglitazone might affect IBD risk by using the reimbursement database of Taiwan's National Health Insurance to enroll a propensity-score-matched cohort of ever users and never users of rosiglitazone. The patients should have been newly diagnosed with diabetes mellitus between 1999 and 2006 and should have been alive on 1 January 2007. We then started to follow the patients from 1 January 2007 until 31 December 2011 for a new diagnosis of IBD. Propensity-score-weighted hazard ratios were estimated with regards to rosiglitazone exposure in terms of ever users versus never users and in terms of cumulative duration and cumulative dose of rosiglitazone therapy for dose-response analyses. The joint effects and interactions between rosiglitazone and risk factors of psoriasis/arthropathies, dorsopathies, and chronic obstructive pulmonary disease/tobacco abuse and the use of metformin were estimated by Cox regression after adjustment for all covariates. A total of 6226 ever users and 6226 never users were identified and the respective numbers of incident IBD were 95 and 111. When we compared the risk of IBD in ever users to that of the never users, the estimated hazard ratio (0.870, 95% confidence interval: 0.661-1.144) was not statistically significant. When cumulative duration and cumulative dose of rosiglitazone therapy were categorized by tertiles and hazard ratios were estimated by comparing the tertiles of rosiglitazone exposure to the never users, none of the hazard ratios reached statistical significance. In secondary analyses, rosiglitazone has a null association with Crohn's disease, but a potential benefit on ulcerative colitis (UC) could not be excluded. However, because of the low incidence of UC, we were not able to perform detailed dose-response analyses for UC. In the joint effect analyses, only the subgroup of psoriasis/arthropathies (-)/rosiglitazone (-) showed a significantly lower risk in comparison to the subgroup of psoriasis/arthropathies (+)/rosiglitazone (-). No interactions between rosiglitazone and the major risk factors or metformin use were observed. We concluded that rosiglitazone has a null effect on the risk of IBD, but the potential benefit on UC awaits further investigation.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
23
|
Fan H, Liu X, Ren Z, Fei X, Luo J, Yang X, Xue Y, Zhang F, Liang B. Gut microbiota and cardiac arrhythmia. Front Cell Infect Microbiol 2023; 13:1147687. [PMID: 37180433 PMCID: PMC10167053 DOI: 10.3389/fcimb.2023.1147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
One of the most prevalent cardiac diseases is cardiac arrhythmia, however the underlying causes are not entirely understood. There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss about how GM and its metabolites might impact cardiac arrhythmia through a variety of mechanisms. We proposed to explore the relationship between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGln), bile acids(BA), and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation and other disease associated with cardiac arrythmia, detailing the processes involving immune regulation, inflammation, and different types of programmed cell death etc., which presents a key aspect of the microbial-host cross-talk. In addition, how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people are also summarized. Then we introduced potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator etc. In conclusion, the GM has a significant impact on cardiac arrhythmia through a variety of mechanisms, offering a wide range of possible treatment options. The discovery of therapeutic interventions that reduce the risk of cardiac arrhythmia by altering GM and metabolites is a real challenge that lies ahead.
Collapse
Affiliation(s)
- Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuchang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoning Fei
- Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Luo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyu Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaya Xue
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fenfang Zhang
- Department of Cardiology, Yangquan First People’s Hospital, Yangquan, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
25
|
Guo HH, Shen HR, Wang LL, Luo ZG, Zhang JL, Zhang HJ, Gao TL, Han YX, Jiang JD. Berberine is a potential alternative for metformin with good regulatory effect on lipids in treating metabolic diseases. Biomed Pharmacother 2023; 163:114754. [PMID: 37094549 DOI: 10.1016/j.biopha.2023.114754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Metformin (MTF) and berberine (BBR) share several therapeutic benefits in treating metabolic-related disorders. However, as the two agents have very different chemical structure and bioavailability in oral route, the goal of this study is to learn their characteristics in treating metabolic disorders. The therapeutic efficacy of BBR and MTF was systemically investigated in the high fat diet feeding hamsters and/or ApoE(-/-) mice; in parallel, gut microbiota related mechanisms were studied for both agents. We discovered that, although both two drugs had almost identical effects on reducing fatty liver, inflammation and atherosclerosis, BBR appeared to be superior over MTF in alleviating hyperlipidemia and obesity, but MTF was more effective than BBR for the control of blood glucose. Association analysis revealed that the modulation of intestinal microenvironment played a crucial role in the pharmacodynamics of both drugs, in which their respective superiority on the regulation of gut microbiota composition and intestinal bile acids might contribute to their own merits on lowering glucose or lipids. This study shows that BBR may be a good alternative for MTF in treating diabetic patients, especially for those complicated with dyslipidemia and obesity.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Gang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Juan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Liu D, Ye J, Yan Y, Chen Y, Wang H, Wang M, Feng Y, Li R, Xu X, Jiang Y, Lian C, Yang Y, Meng Y, Liu Y, Jiang W. Ramulus mori (Sangzhi) alkaloids regulates gut microbiota disorder and its metabolism profiles in obese mice induced by a high-fat diet. Front Pharmacol 2023; 14:1166635. [PMID: 37063280 PMCID: PMC10102453 DOI: 10.3389/fphar.2023.1166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The imbalance of gut microbiota has been confirmed to have a close pathological and physiological correlation with obesity and metabolic syndrome. Ramulus Mori (Sangzhi) Alkaloids (SZ-A) derived from twigs of mulberry was approved by the National Medical Products Administration of China in 2020 for the treatment of type 2 diabetes mellitus. In addition to its hypoglycemic effect, previous studies have confirmed that SZ-A also alleviates high-fat diet-induced obesity and non-alcoholic fatty liver disease and ameliorates obesity-linked adipose tissue metabolism and inflammation, indicating the potential of SZ-A to regulate obesity and metabolic syndrome. However, whether SZ-A can improve obesity and metabolic syndrome by regulating gut microbiota and its metabolism profiles remains unclear. The purpose of this study was to assess the effect of SZ-A on gut microbiota in obese mice and to explore the association among changes in gut microbiota, obesity, and lipid metabolism. The results showed that oral administration of SZ-A could significantly reduce body weight, fat mass, and the level of total cholesterol and low-density lipoprotein in serum in obese mice induced by a high-fat diet. Interestingly, SZ-A also regulated gut microbiota and changed the fecal metabolite composition of obese mice. Compared with the high-fat diet group, the ratio of Firmicutes to Bacteroides changed at the phylum level and the abundance of Bifidobacterium and Akkermansia muciniphila significantly increased at the genus level in the SZ-A group. The gut microbiota of the SZ-A group was reshaped and the relative abundance of microbial genes in bile acid metabolism and fatty acid metabolism were altered, which was consistent with the metabolomics results. Additionally, SZ-A greatly enriched the number of goblet cells and reduced inflammatory colon injury and pro-inflammatory macrophage infiltration induced by a high-fat diet in obese mice. In conclusion, SZ-A can alleviate obesity and metabolic syndrome by improving the gut microbiota and its metabolism profiles of obese mice induced by a high-fat diet.
Collapse
Affiliation(s)
- Dongdong Liu
- College of Pharmacy, Guangxi Medical University, Nanning, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Yan
- College of Pharmacy, Guangxi Medical University, Nanning, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Feng
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing, China
| | - Renjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunfang Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Yuling Liu, ; Weizhe Jiang,
| | - Weizhe Jiang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- *Correspondence: Yuling Liu, ; Weizhe Jiang,
| |
Collapse
|
27
|
Mao ZH, Gao ZX, Liu DW, Liu ZS, Wu P. Gut microbiota and its metabolites - molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol 2023; 14:1124704. [PMID: 36742307 PMCID: PMC9896007 DOI: 10.3389/fimmu.2023.1124704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus and is also one of the serious risk factors in cardiovascular events, end-stage renal disease, and mortality. DKD is associated with the diversified, compositional, and functional alterations of gut microbiota. The interaction between gut microbiota and host is mainly achieved through metabolites, which are small molecules produced by microbial metabolism from exogenous dietary substrates and endogenous host compounds. The gut microbiota plays a critical role in the pathogenesis of DKD by producing multitudinous metabolites. Nevertheless, detailed mechanisms of gut microbiota and its metabolites involved in the occurrence and development of DKD have not been completely elucidated. This review summarizes the specific classes of gut microbiota-derived metabolites, aims to explore the molecular mechanisms of gut microbiota in DKD pathophysiology and progression, recognizes biomarkers for the screening, diagnosis, and prognosis of DKD, as well as provides novel therapeutic strategies for DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
28
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
29
|
Bondy SC. Relationships between Diabetes and the Intestinal Microbial Population. Int J Mol Sci 2022; 24:ijms24010566. [PMID: 36614008 PMCID: PMC9820277 DOI: 10.3390/ijms24010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a metabolic disorder characterized by lower responsiveness of tissues to insulin and consequent large variations in circulating levels of glucose. This fluctuation has harmful effects as both hyperglycemia and hypoglycemia can be very injurious. The causes of diabetes are varied but the consequences are rather uniform. Dietary factors are important especially in adult onset type 2 diabetes (T2D) while type 1 diabetes (T1D) is characterized by having a stronger heritable component and involving autoimmune attach on pancreatic beta cells. This review is focused on the relation of the bacterial components found within the intestine, to the establishment and maintenance of diabetes. The precise composition of the gut microbiome is increasingly recognized as a factor in organismic health and its interaction with a variety of disease states has been described. This is especially marked in the case of diabetes since the nature of the diet is an important factor in establishing both the microbiome and the incidence of diabetes. The bidirectional nature of this relationship is discussed. The effects of disease that lead to altered microbiomal composition together with aberrant metabolic changes are also included. Emphasis is given to the important role of short chain fatty acids (SCFAs) as mediators of the microbiome-diabetes relation.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA 92697, USA;
- Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
31
|
Guo X, Wang C, Zhang R, Hao X, Lv L, Ni Y, Fan X, Zhang W, Jiao Y, Song W, Dong Q, Qi Y, Song M, Qin X. Scrophulariae Radix-Atractylodes sinensis pair and metformin inhibit inflammation by modulating gut microbiota of high-fat diet/streptozotocin-induced diabetes in rats. Front Microbiol 2022; 13:900021. [PMID: 36532503 PMCID: PMC9748418 DOI: 10.3389/fmicb.2022.900021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/14/2022] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Type 2 mellitus (T2DM), a chronic metabolic disorder, causes severe impairment of patients' quality of life and has attracted global attention. Many studies have suggested the importance of the gut microbiota in the occurrence of T2DM. The Scrophulariae Radix and Atractylodes sinensis (XC) pair, recommended in traditional Chinese medicine (TCM), have been used for treating diabetes for many years. However, research on the role of the XC pair in modulating gut microbial communities is lacking, but it is important to elucidate the underlying mechanism. METHODS In this study, we detected bacterial communities by high-throughput 16S rRNA gene sequencing. RESULTS The results showed that XC + MET reduced postprandial hyperglycemia and inflammatory response in diabetic rats more effectively than metformin (MET) alone. The XC + MET treatment reshaped the intestinal microbial composition of diabetic rats. XC can help MET regulate carbohydrate, amino acid, and lipid metabolism, particularly the insulin signaling pathway. DISCUSSION This research would help elucidate potential mechanisms and the treatment methods.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Chong Wang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Ranran Zhang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xuliang Hao
- Traditional Chinese Medicine Preparation Center, Affiliated Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi, China
| | - Lei Lv
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yan Ni
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xiaohong Fan
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Weiliang Zhang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yunhong Jiao
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Wei Song
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Qi Dong
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yuqi Qi
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Meiqing Song
- Clinical Pharmacological Research Laboratory, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
32
|
Zhang Y, Cheng Y, Liu J, Zuo J, Yan L, Thring RW, Ba X, Qi D, Wu M, Gao Y, Tong H. Tauroursodeoxycholic acid functions as a critical effector mediating insulin sensitization of metformin in obese mice. Redox Biol 2022; 57:102481. [PMID: 36148770 PMCID: PMC9493383 DOI: 10.1016/j.redox.2022.102481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Metformin is widely used to surmount insulin resistance (IR) and type 2 diabetes. Accumulating evidence suggests that metformin may improve IR through regulating gut microbiota and bile acids. However, the underlying mechanisms remain unclear. Our metabolomic analysis showed that metformin significantly increased the accumulation of tauroursodeoxycholic acid (TUDCA) in intestine and liver from high-fat diet (HFD)-induced IR mice. TUDCA also alleviated IR, and reduced oxidative stress and intestinal inflammation in ob/ob mice. TUDCA blocked KEAP1 to bind with Nrf2, resulting in Nrf2 translocation into nuclear and initiating the transcription of antioxidant genes, which eventually reduced intracellular ROS accumulation and improved insulin signaling. Analysis of gut microbiota further revealed that metformin reduced the relative abundance of Bifidobacterium, which produces bile salt hydrolase (BSH). The reduction in BSH was probably crucial for the accumulation of TUDCA. Metformin also increased the proportion of Akkermanisia muciniphlia in gut microbiota of ob/ob mice via TUDCA. These beneficial effects of metformin in remodeling gut microbiota, reducing oxidative stress and improving insulin sensitivity were partly due to the accumulation of TUDCA, suggesting that TUDCA may be a potential therapy for metabolic syndrome.
Collapse
Affiliation(s)
- Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China; Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yang Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ronald W Thring
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Dake Qi
- College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| |
Collapse
|
33
|
Periplanetaamericana Extract Pretreatment Alleviates Oxidative Stress and Inflammation and Increases the Abundance of Gut Akkermansia muciniphila in Diquat-Induced Mice. Antioxidants (Basel) 2022; 11:antiox11091806. [PMID: 36139880 PMCID: PMC9495987 DOI: 10.3390/antiox11091806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Studies have shown that Periplaneta americana extract (PAE) has good therapeutic effects in inflammatory disorders such as ulcerative colitis, alcoholic hepatitis, and gastric ulcers. However, whether or not PAE has good pre-protective effects has not been widely and deeply studied. In this study, we investigated the effects of PAE pretreatment for 7 days on oxidative stress and inflammation triggered by oxidative stress by using diquat-induced C57BL/6 mice as an oxidative stress model. The results showed that PAE pretreatment could significantly reduce oxidative stress in the intestine and liver by reducing the production of MDA, and improved antioxidant systems (SOD, CAT, GSH, and T-AOC). By primarily activating the anti-inflammatory cytokine (IL-10) mediated JAK1/STAT3 signaling pathway, PAE also effectively reduced oxidative stress-induced liver inflammation while also reducing liver damage, as evidenced by the reductions in serum AST and ALT. PAE pretreatment also had a significant effect on maintaining the intestinal barrier function, which was manifested by inhibiting a decrease in the expression of tight junction proteins (ZO-1 and occludin), and reducing the increased intestinal permeability (serum DAO and D-Lac) caused by diquat. The 16S rRNA sequencing analysis revealed that diquat decreased the gut microbiota diversity index and increased the abundance of pathogenic bacteria (e.g., Allobaculum, Providencia and Escherichia-Shigella), while PAE pretreatment responded to diquat-induced damage by greatly increasing the abundance of Akkermansia muciniphila. These findings elucidate potential pre-protective mechanisms of PAE in alleviating oxidative stress and inflammation, while providing a direction for the treatment of metabolic diseases by utilizing PAE to enhance the abundance of gut A. muciniphila.
Collapse
|
34
|
Guo T, Sun X, Yang J, Yang L, Li M, Wang Y, Jiao H, Li G. Metformin reverse minocycline to inhibit minocycline-resistant Acinetobacter baumannii by destroy the outer membrane and enhance membrane potential in vitro. BMC Microbiol 2022; 22:215. [PMID: 36089583 PMCID: PMC9465895 DOI: 10.1186/s12866-022-02629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen and has emerged as one of the most troublesome pathogens. Drug resistance in A. baumannii has been reported on a global scale. Minocycline was found to be active against multi-drug resistant A. baumannii and was approved by the FDA for the infections caused by sensitive strains of A. baumannii. However, the emergence of minocycline resistance and its toxic effects still need to be addressed. Therefore, this study aimed to evaluate the synergistic effects of metformin combined with minocycline on minocycline-resistant A. baumannii. Results The effect of metformin on the antibacterial activity of minocycline was determined by checkerboard and time-killing assay. Further, it was observed by biofilm formation assay that metformin combination with minocycline can inhibit the formation of biofilm. Outer membrane integrity, membrane permeability, membrane potential and reactive oxygen species (ROS) were monitored to explore the underlying synergistic mechanisms of metformin on minocycline. And the results shown that metformin can destroy the outer membrane of A. baumannii, enhance its membrane potential, but does not affect the membrane permeability and ROS. Conclusion These findings suggested that the combination of metformin and minocycline has the potential for rejuvenating the activity of minocycline against minocycline-resistant A. baumannii.
Collapse
|
35
|
Yuan S, Cai Z, Luan X, Wang H, Zhong Y, Deng L, Feng J. Gut microbiota: A new therapeutic target for diabetic cardiomyopathy. Front Pharmacol 2022; 13:963672. [PMID: 36091756 PMCID: PMC9461091 DOI: 10.3389/fphar.2022.963672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy seriously affects quality of life and even threatens life safety of patients. The pathogenesis of diabetic cardiomyopathy is complex and multifactorial, and it is widely accepted that its mechanisms include oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Some studies have shown that gut microbiota plays an important role in cardiovascular diseases. Gut microbiota and its metabolites can affect the development of diabetic cardiomyopathy by regulating oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Here, the mechanisms of gut microbiota and its metabolites resulting in diabetic cardiomyopathy are reviewed. Gut microbiota may be a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Wang
- Department of Cardiology, Gulin People’s Hospital, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated, Hospital of Southwest Medical University, Luzhou, Sichaun, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Jian Feng,
| |
Collapse
|
36
|
Dualib PM, Taddei CR, Fernandes G, Carvalho CRS, Sparvoli LG, Silva IT, Mattar R, Ferreira SRG, Dib SA, de Almeida-Pititto B. Gut Microbiota across Normal Gestation and Gestational Diabetes Mellitus: A Cohort Analysis. Metabolites 2022; 12:metabo12090796. [PMID: 36144203 PMCID: PMC9504460 DOI: 10.3390/metabo12090796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/16/2022] Open
Abstract
The prevalence of gestational diabetes mellitus (GDM) is a global public health concern. The mechanism that leads to glucose tolerance beyond normal physiological levels to pathogenic conditions remains incompletely understood, and it is speculated that the maternal microbiome may play an important role. This study analyzes the gut microbiota composition in each trimester of weight-matched women with and without GDM and examines possible bacterial genera associations with GDM. This study followed 56 pregnant women with GDM and 59 without admitted to the outpatient clinic during their first/second or third trimester of gestation. They were submitted to a standardized questionnaire, dietary recalls, clinical examination, biological sample collection, and molecular profiling of fecal microbiota. Women with GDM were older and had a higher number of pregnancies than normal-tolerant ones. There was no difference in alpha diversity, and the groups did not differ regarding the overall microbiota structure. A higher abundance of Bacteroides in the GDM group was found. A positive correlation between Christensenellaceae and Intestinobacter abundances with one-hour post-challenge plasma glucose and a negative correlation between Enterococcus and two-hour plasma glucose levels were observed. Bifidobacterium and Peptococcus abundances were increased in the third gestational trimester for both groups. The gut microbiota composition was not dependent on the presence of GDM weight-matched women throughout gestation. However, some genera abundances showed associations with glucose metabolism. Our findings may therefore encourage a deeper understanding of physiological and pathophysiological changes in the microbiota throughout pregnancy, which could have further implications for diseases prevention.
Collapse
Affiliation(s)
- Patricia M. Dualib
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sena Madureira, 1500, Vila Clementino, São Paulo CEP 04021-001, Brazil
- Correspondence: ; Tel.: +55-11-983-220-909
| | - Carla R. Taddei
- Department of Clinical and Toxicological Analysis and Obstetrics, School of Arts, Sciences and Humanities, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 580—Bloco 17, São Paulo CEP 05508-000, Brazil
| | - Gabriel Fernandes
- DepaBiosystems Informatics and Genomics Group, Instituto René Rachou—Fiocruz Minas, Av. Augusto de Lima, 1714, Belo Horizonte CEP 30190-002, Brazil
| | - Camila R. S. Carvalho
- Graduate Program in Endocrinology and Metabology, Universidade Federal de São Paulo, Rua Estado de Israel, nº 639, Vila Clementino, São Paulo CEP 04022-001, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicological Analysis and Obstetrics, School of Arts, Sciences and Humanities, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 580—Bloco 17, São Paulo CEP 05508-000, Brazil
| | - Isis T. Silva
- Nutrition Course, Centro Universitário Estácio de Sá, Rua Erê, 207, Belo Horizonte CEP 30411-052, Brazil
| | - Rosiane Mattar
- Departament of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Napoleão de Barros, 875—Vila Clementino, São Paulo CEP 04024-002, Brazil
| | - Sandra R. G. Ferreira
- Department of Epidemiology, Escola de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715—Cerqueira César, São Paulo CEP 01246-904, Brazil
| | - Sergio A. Dib
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sena Madureira, 1500, Vila Clementino, São Paulo CEP 04021-001, Brazil
| | - Bianca de Almeida-Pititto
- Department of Preventive Medicine, Escola Paulista de Medicina, Campus São Paulo, Universidade Federal de São Paulo, Rua Botucatu, n° 740, Vila Clementino, São Paulo CEP 04023-062, Brazil
| |
Collapse
|
37
|
Chu N, Chan JCN, Chow E. A diet high in FODMAPs as a novel dietary strategy in diabetes? Clin Nutr 2022; 41:2103-2112. [DOI: 10.1016/j.clnu.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
38
|
Gradisteanu Pircalabioru G, Liaw J, Gundogdu O, Corcionivoschi N, Ilie I, Oprea L, Musat M, Chifiriuc MC. Effects of the Lipid Profile, Type 2 Diabetes and Medication on the Metabolic Syndrome—Associated Gut Microbiome. Int J Mol Sci 2022; 23:ijms23147509. [PMID: 35886861 PMCID: PMC9318871 DOI: 10.3390/ijms23147509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the worldwide population. Since the gut microbiota is highly connected to the host metabolism, several recent studies have emerged to characterize the role of the microbiome in MetSyn development and progression. To this end, our study aimed to identify the microbiome patterns which distinguish MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus, Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides, Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae, Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is needed to clarify the exact association of various gut microbial communities with the progression of T2DM and the occurrence of various complications in MetSyn patients.
Collapse
Affiliation(s)
| | - Janie Liaw
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
- Correspondence: (G.G.P.); (O.G.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK;
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania
| | | | - Luciana Oprea
- National Institute of Endocrinology C.I. Parhon, 011863 Bucharest, Romania; (L.O.); (M.M.)
| | - Madalina Musat
- National Institute of Endocrinology C.I. Parhon, 011863 Bucharest, Romania; (L.O.); (M.M.)
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania;
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
39
|
Lyu Y, Li D, Yuan X, Li Z, Zhang J, Ming X, Shaw PC, Zhang C, Kong APS, Zuo Z. Effects of combination treatment with metformin and berberine on hypoglycemic activity and gut microbiota modulation in db/db mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154099. [PMID: 35489323 DOI: 10.1016/j.phymed.2022.154099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gut microbiota alterations could influence the metabolism of administered drugs, leading to their altered pharmacokinetics and pharmacodynamics. Despite that metformin and berberine has individually demonstrated their impacts on hypoglycemic activities and gut microbiota alterations in diabetic mice, investigation regarding the impact of their combination treatment in diabetic treatment has never been conducted. PURPOSE Our current study was proposed aiming to investigate the effect of combination use of metformin with berberine on hypoglycemic activity and identify the possible intestinal bacteria involved in their microbiota-medicated drug-drug interactions in db/db mice. STUDY DESIGN Pharmacodynamics interactions between metformin and berberine were evaluated in six groups of db/db mice (db, M250, B250, B125, B250+M250, and B125+M250) with its wild type (WT) as control to receive 14 days treatment of vehicle, metformin at 250 mg/kg, berberine at 250/125 mg/kg, and metformin (250 mg/kg) 2 h after dosing berberine (250/125 mg/kg). METHODS On day 13, insulin tolerance test (ITT) was conducted. On day 15, fasting serum samples were obtained for insulin concentration determination followed by intraperitoneal glucose tolerance test (ipGTT), homeostatic model assessment for insulin resistance (HOMA-IR) calculation, and feces collection for microbial 16S rRNA sequencing analyses. In addition, metformin steady state plasma concentrations on day 15 were measured by validated LC-MS/MS method. RESULTS Combination treatment of metformin with berberine could further reduce in blood glucose in comparison to that of db/db diabetic control. Further microbial 16S rRNA sequencing analyses revealed that gut microbiota compositions were significantly changed with the abundance of Proteobacteria and Verrucomicrobia altered the most after metformin and berberine co-treatment compared to their monotherapy. In addition, steady state metformin concentrations in their combination treatment were significantly higher than that from metformin monotherapy. CONCLUSION Co-administration of metformin (250 mg/kg) with berberine (125 mg/kg) could not only further improve insulin sensitivity, but also demonstrate different alterations on gut microbial communities than that of their individual treatment in db/db mice.
Collapse
Affiliation(s)
- Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Ziwei Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Jun Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xing Ming
- Division of Endocrinology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Pang Chui Shaw
- School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Alice Pik Shan Kong
- Division of Endocrinology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| |
Collapse
|
40
|
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr 2022; 9:886902. [PMID: 35662937 PMCID: PMC9157426 DOI: 10.3389/fnut.2022.886902] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal environment disorder is a potential pathological mechanism of obesity. There is increasing evidence that disorders in the homeostasis of the intestinal environment can affect various metabolic organs, such as fat and liver, and lead to metabolic diseases. However, there are few therapeutic approaches for obesity targeting the intestinal environment. In this review, on the one hand, we discuss how intestinal microbial metabolites SCFA regulate intestinal function to improve obesity and the possible mechanisms and pathways related to obesity-related pathological processes (depending on SCFA-related receptors such as GPCRs, MCT and SMCT, and through epigenetic processes). On the other hand, we discuss dietary management strategies to enrich SCFA-producing bacteria and target specific SCFA-producing bacteria and whether fecal bacteria transplantation therapy to restore the composition of the gut microbiota to regulate SCFA can help prevent or improve obesity. Finally, we believe that it will be of great significance to establish a working model of gut– SCFA– metabolic disease development in the future for the improvement this human health concern.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
41
|
Sun Y, Sun P, Hu Y, Shan L, Geng Q, Gong Y, Fan H, Zhang T, Zhou Y. Elevated testicular apoptosis is associated with elevated sphingosine driven by gut microbiota in prediabetic sheep. BMC Biol 2022; 20:121. [PMID: 35606800 PMCID: PMC9128135 DOI: 10.1186/s12915-022-01326-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Men with prediabetes often exhibit concomitant low-quality sperm production or even infertility, problems which urgently require improved therapeutic options. In this study, we have established a sheep model of diet-induced prediabetes that is associated with spermatogenic defects and have explored the possible underlying metabolic causes. RESULTS We compared male sheep fed a normal diet with those in which prediabetes was induced by a rich diet and with a third group in which the rich diet was supplemented by melatonin. Only the rich diet group had symptoms of prediabetes, and in these sheep, we found impaired spermatogenesis characterized by a block in the development of round spermatids and an increased quantity of testicular apoptotic cells. Comparing the gut microbiomes and intestinal digest metabolomes of the three groups revealed a distinctive difference in the taxonomic composition of the microbiota in prediabetic sheep, and an altered metabolome, whose most significant feature was altered sphingosine metabolism; elevated sphingosine was also found in blood and testes. Administration of melatonin alleviated the symptoms of prediabetes, including those of impaired spermatogenesis, while restoring a more normal microbiota and metabolic levels of sphingosine. Fecal microbiota transplantation from prediabetic sheep induced elevated sphingosine levels and impaired spermatogenesis in recipient mice, indicating a causal role of gut microbiota in these phenotypes. CONCLUSIONS Our results point to a key role of sphingosine in the disruption of spermatogenesis in prediabetic sheep and suggest it could be a useful disease marker; furthermore, melatonin represents a potential prebiotic agent for the treatment of male infertility caused by prediabetes.
Collapse
Affiliation(s)
- Yuanchao Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Yanting Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Liying Shan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qi Geng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yutian Gong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haitao Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
42
|
Chen L, Fan Z, Sun X, Qiu W, Chen Y, Zhou J, Lv G. Mendelian Randomization Rules Out Causation Between Inflammatory Bowel Disease and Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:891410. [PMID: 35662732 PMCID: PMC9161361 DOI: 10.3389/fphar.2022.891410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) and non-alcoholic fatty liver disease (NAFLD) usually co-exist clinically. However, whether such association is causal is still unknown. Methods: Genetic variants were extracted as instrumental variables from the largest genome-wide association study (GWAS) of IBD, Crohn’s disease (CD) and ulcerative colitis (UC) with 25,042 cases and 34,915 controls (GWAS p-value < 5 × 10−8). Information of genetic variants in NAFLD was extracted from a GWAS with 1,483 cases and 17,781controls. Also, liver fat content (LFC) was included as the outcome. Then, a bi-direction Mendelian randomization (MR) was carried out to appraise the causal relationship between NAFLD on IBD. Besides, a multivariable MR (MVMR) design was carried to adjust for body mass index (BMI) and type 2 diabetes (T2D) as well. Results: Generally, IBD might not affect the risk of NAFLD (OR = 0.994 [0.970, 1.019]), together with its subtypes including UC and CD. However, genetically-elevated risk of IBD might cause liver fat accumulation (beta = 0.019, p-value = 0.016) while turning insignificant at Bonferroni correction. Besides, no causal effect of NAFLD on IBD was observed (OR = 0.968 [0.928, 1.009]), together with UC and CD. Also, genetically-elevated LFC could not impact IBD, UC and CD either. The MR CAUSE analysis supported these null associations and MVMR analysis also supported such null associations even after adjusting for BMI and T2D. Conclusion: This MR study ruled out the causal relationship between IBD and NAFLD, suggesting therapeutics targeting NAFLD might not work for IBD and vice versa.
Collapse
|
43
|
Chow E, Yang A, Chung CHL, Chan JCN. A Clinical Perspective of the Multifaceted Mechanism of Metformin in Diabetes, Infections, Cognitive Dysfunction, and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15040442. [PMID: 35455439 PMCID: PMC9030054 DOI: 10.3390/ph15040442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
In type 2 diabetes, ecological and lifecourse factors may interact with the host microbiota to influence expression of his/her genomes causing perturbation of interconnecting biological pathways with diverse clinical course. Metformin is a plant-based or plant-derived medicinal product used for the treatment of type 2 diabetes for over 60 years and is an essential drug listed by the World Health Organization. By reducing mitochondrial oxidative phosphorylation and adenosine triphosphate (ATP) production, metformin increased AMP (adenosine monophosphate)-activated protein kinase (AMPK) activity and altered cellular redox state with reduced glucagon activity, endogenous glucose production, lipogenesis, and protein synthesis. Metformin modulated immune response by directly reducing neutrophil to lymphocyte ratio and improving the phagocytic function of immune cells. By increasing the relative abundance of mucin-producing and short-chain-fatty-acid-producing gut microbes, metformin further improved the host inflammatory and metabolic milieu. Experimentally, metformin promoted apoptosis and reduced proliferation of cancer cells by reducing their oxygen consumption and modulating the microenvironment. Both clinical and mechanistic studies support the pluripotent effects of metformin on reducing cardiovascular–renal events, infection, cancer, cognitive dysfunction, and all-cause death in type 2 diabetes, making this low-cost medication a fundamental therapy for individualization of other glucose-lowering drugs in type 2 diabetes. Further research into the effects of metformin on cognitive function, infection and cancer, especially in people without diabetes, will provide new insights into the therapeutic value of metformin in our pursuit of prevention and treatment of ageing-related as well as acute and chronic diseases beyond diabetes.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| | - Colin H. L. Chung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China; (E.C.); (A.Y.); (C.H.L.C.)
- The Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3505-3138
| |
Collapse
|
44
|
Chenhuichen C, Cabello-Olmo M, Barajas M, Izquierdo M, Ramírez-Vélez R, Zambom-Ferraresi F, Martínez-Velilla N. Impact of probiotics and prebiotics in the modulation of the major events of the aging process: A systematic review of randomized controlled trials. Exp Gerontol 2022; 164:111809. [DOI: 10.1016/j.exger.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
45
|
Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23073842. [PMID: 35409202 PMCID: PMC8998923 DOI: 10.3390/ijms23073842] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus (DM) burden encompasses diabetic kidney disease (DKD), the leading cause of end-stage renal disease worldwide. Despite compelling evidence indicating that pharmacological intervention curtails DKD progression, the search for non-pharmacological strategies can identify novel targets for drug development against metabolic diseases. One of those emergent strategies comprises the modulation of the intestinal microbiota through fecal transplant from healthy donors. This study sought to investigate the benefits of fecal microbiota transplant (FMT) on functional and morphological parameters in a preclinical model of type 2 DM, obesity, and DKD using BTBRob/ob mice. These animals develop hyperglycemia and albuminuria in a time-dependent manner, mimicking DKD in humans. Our main findings unveiled that FMT prevented body weight gain, reduced albuminuria and tumor necrosis factor-α (TNF-α) levels within the ileum and ascending colon, and potentially ameliorated insulin resistance in BTBRob/ob mice. Intestinal structural integrity was maintained. Notably, FMT was associated with the abundance of the succinate-consuming Odoribacteraceae bacteria family throughout the intestine. Collectively, our data pointed out the safety and efficacy of FMT in a preclinical model of type 2 DM, obesity, and DKD. These findings provide a basis for translational research on intestinal microbiota modulation and testing its therapeutic potential combined with current treatment for DM.
Collapse
|
46
|
Wu J, Jia RB, Luo D, Li ZR, Lin L, Zheng Q, Zhao M. Sargassum fusiforme polysaccharide is a potential auxiliary substance for metformin in the management of diabetes. Food Funct 2022; 13:3023-3035. [PMID: 35199116 DOI: 10.1039/d1fo02165f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study investigated the positive effects of relatively low-dose metformin combined with Sargassum fusiforme polysaccharide (LMET-SFP) in high-fat diet and streptozotocin-induced diabetic rats, and explored the underlying mechanisms of LMET-SFP as compared to metformin alone in managing diabetes. The results indicate that both metformin and LMET-SFP can attenuate body weight loss and ameliorate hyperglycemia, insulin resistance and hyperlipidemia, and LMET-SFP exhibited better effects in lowering fasting blood glucose levels, insulin resistance index and serum cholesterol compared to metformin only. The administration of LMET-SFP could ameliorate liver dysfunction in diabetic rats. In addition, fecal bile acid data implied that LMET-SFP intervention contributed to an increase in fecal total bile acids, ursodesoxycholic acid and tauroursodesoxycholic acid profiles when compared to metformin treatment. Additionally, intestinal microbiological analysis showed that the acknowledged probiotics Lactobacillus and Bifidobacterium exhibited higher levels in the LMET-SFP group compared to the metformin group. RT-qPCR results demonstrated that the better hypoglycemic effects of LMET-SFP were mainly attributed to the down-regulation of 3-hydroxy-3-methylglutaryl-coenzyme A, cytosolic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression, and the up-regulation of cholesterol 7α-hydroxylase expression, in contrast to metformin alone. These results suggest that SFP may be used as an auxiliary hypoglycemic substance for metformin in the future.
Collapse
Affiliation(s)
- Juan Wu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Zhao-Rong Li
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qianwen Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
47
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
48
|
Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice. Nutrients 2022; 14:nu14030692. [PMID: 35277051 PMCID: PMC8839473 DOI: 10.3390/nu14030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.
Collapse
|
49
|
Bastos RMC, Rangel ÉB. Gut microbiota-derived metabolites are novel targets for improving insulin resistance. World J Diabetes 2022; 13:65-69. [PMID: 35070060 PMCID: PMC8771265 DOI: 10.4239/wjd.v13.i1.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays a key role in metabolic diseases. Gut-microbiota-derived metabolites are found in different dietary sources, including: Carbohydrate (acetate, propionate, butyrate, also known as short-chain fatty acids, as well as succinate); protein (hydrogen sulfide, indole, and phenylacetic acid); and lipids (resveratrol-, ferulic acid-, linoleic acid-, catechin- and berry-derived metabolites). Insulin resistance, which is a global pandemic metabolic disease that progresses to type 2 diabetes mellitus, can be directly targeted by these metabolites. Gut-microbiota-derived metabolites have broad effects locally and in distinct organs, in particular skeletal muscle, adipose tissue, and liver. These metabolites can modulate glucose metabolism, including the increase in glucose uptake and lipid oxidation in skeletal muscle, and decrease in lipogenesis and gluconeogenesis associated with lipid oxidation in the liver through activation of phosphatidylinositol 3-kinase - serine/threonine-protein kinase B and AMP-activated protein kinase. In adipose tissue, gut-microbiota-derived metabolites stimulate adipogenesis and thermogenesis, inhibit lipolysis, and attenuate inflammation. Importantly, an increase in energy expenditure and fat oxidation occurs in the whole body. Therefore, the therapeutic potential of current pharmacological and non-pharmacological approaches used to treat diabetes mellitus can be tested to target specific metabolites derived from intestinal bacteria, which may ultimately ameliorate the hyperglycemic burden.
Collapse
Affiliation(s)
- Rosana MC Bastos
- Hospital Israelita Albert Einstein, São Paulo 05652-001, SP, Brazil
| | - Érika B Rangel
- Hospital Israelita Albert Einstein, São Paulo 05652-001, SP, Brazil
- Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, SP, Brazil
| |
Collapse
|
50
|
Abstract
As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Chuyu Yun
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,CONTACT Yanli Pang M.D.,Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China,Jie Qiao M.D., Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|