1
|
Fu J, Kang JY, Gao W, Huang ZW, Kong LQ, Xie K, Zhu QH, Zhang GH, Tao GH, He L. Covalent organic frameworks for radioactive iodine capture: structure and functionality. Chem Commun (Camb) 2025. [PMID: 39775467 DOI: 10.1039/d4cc06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The adsorption of radioactive iodine is a critical concern in nuclear safety and environmental protection due to its hazardous nature and long half-life. Covalent organic frameworks (COFs) have emerged as promising materials for capturing radioactive iodine owing to their tunable porosity, high surface area, and versatile functionalization capabilities. This review provides a comprehensive overview of the application of COFs in the adsorption of radioactive iodine. We begin by discussing the sources, properties, and hazards of radioactive iodine, as well as traditional capture techniques and their limitations. We then delve into the intrinsic structures of COFs, focusing on their porosity, conjugated frameworks, and hydrogen bonding, which are pivotal for effective iodine adsorption. The review further explores various functionalization strategies, including electron-rich COFs, flexible COFs, ionic COFs, COF nanosheets, and quasi-3D COFs, highlighting how these modifications enhance the adsorption performance. Finally, we conclude with an outlook on future research directions and potential applications, underscoring the significance of continued innovation in this field. This review aims to provide valuable insights for researchers and practitioners seeking to develop advanced materials for the efficient capture of radioactive iodine.
Collapse
Affiliation(s)
- Jie Fu
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Jin-Yang Kang
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Wei Gao
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Zhi-Wen Huang
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Ling-Qin Kong
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Kai Xie
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Qiu-Hong Zhu
- School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guo-Hao Zhang
- School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Tripathi A, Awasthi A, Baran C, Uttam KN. Rapid investigation of the alteration in biochemical profile of maize seedlings treated with aluminium oxide nanoparticles using spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125639. [PMID: 39732535 DOI: 10.1016/j.saa.2024.125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I685/I734). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings. Likewise, the analysis of the acquired Raman spectrum depicts that the treatment of different concentration of aluminium oxide nanoparticles exhibits toxic effect on the maize plants and reduces the level of biochemicals like cellulose, carbohydrates, carotenoid, lignin, proteins, pectin and aliphatics compared to untreated seedlings. The results obtained in the present study indicate that the effects of the treatment of different concentration of the aluminium oxide nanoparticles on maize seedlings can be estimated at an early stage, rapidly and cost effectively using spectroscopic techniques.
Collapse
Affiliation(s)
- Aradhana Tripathi
- Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
| | - Aishwary Awasthi
- Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - Chhavi Baran
- Centre for Environmental Science, IIDS, University of Allahabad, Prayagraj, India
| | - K N Uttam
- Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| |
Collapse
|
4
|
Bharati K, Gupta M, Rajkumari, Tiwari PR, Singh RP, Bhardwaj B, Singh KA, Yadav BC, Tripathi S, Kumar S. LPG Sensing Study of Calcium-Doped Praseodymium Orthoferrite Nanomaterial. Anal Chem 2024; 96:19491-19503. [PMID: 39572400 DOI: 10.1021/acs.analchem.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Liquefied petroleum gas (LPG) is a modern fuel for kitchens, vehicles, and industry. Leakage of LPG is extremely fatal for humans and the atmosphere; therefore, quick detection is a vital need. The sol-gel self-combustion process was applied to synthesize the calcium-doped praseodymium orthoferrite (PrFeO3) nanomaterials. Synthesized nanoparticles were analyzed by powder X-ray diffraction (PXRD) for phase and crystallite size, energy dispersive X-ray (EDX) for elemental composition and field emission scanning electron microscopy (FESEM) for surface morphology, high-resolution transmission electron microscopy (HR-TEM) for structural and morphology, ultraviolet-visible (UV-vis) spectroscopy for absorption behavior and energy band gap, Brunauer-Emmett-Teller (BET) for surface analysis, and Fourier transform infrared spectroscopy (FTIR) for the vibrational study. The PXRD illustrates that the crystallite size reduces from 27.72 to 20.49 with the rising content of calcium. The FESEM and EDX interpret the morphology and elemental composition/mapping. The UV-vis spectroscopy reveals that the band gap is decreasing from 2.25 to 1.87 eV with the increasing concentration of calcium. The optimized nanomaterials were explored for LPG sensing. Recovery time, response time, sensor response, etc., were determined and discussed. This study divulges that the composition Pr0.8Ca0.2FeO3 has optimum sensor response, selectivity, and least response and recovery times of 7.5 and 7.1 s, respectively. The designed sensor shows good selectivity for LPG at ambient temperature. The current study points out that the developed sensor outperforms in terms of response and recovery times when compared with other LPG sensors based on perovskite materials. The gas sensing mechanism has been explained.
Collapse
Affiliation(s)
- Keval Bharati
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Monu Gupta
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Rajkumari
- Department of Physics, T. D. P. G. College Jaunpur, Jaunpur, Uttar Pradesh 222001, India
| | - Prabhat Ranjan Tiwari
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Rahul Pratap Singh
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Bala Bhardwaj
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Kuwar Ankur Singh
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Bal Chandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Shipra Tripathi
- Department of Physics, Faculty of Science and Technology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh 226017, India
| | - Santosh Kumar
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| |
Collapse
|
5
|
Azhar S, Ahmad KS, Abrahams I, Ingsel T, Gupta RK, Al-Sadoon MK, Ashraf GA, Gul MM. Biogenic Synthesis and Characterization of ZrO2-La2O3 and Study of its Scope in Energy Based Applications: Supercapacitors & Water Splitting. J Inorg Organomet Polym Mater 2024. [DOI: 10.1007/s10904-024-03499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 01/06/2025]
|
6
|
Bahl E, Jyoti A, Singh A, Siddqui A, Upadhyay SK, Jain D, Shah MP, Saxena J. Nanomaterials for intelligent CRISPR-Cas tools: improving environment sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67479-67495. [PMID: 38291210 DOI: 10.1007/s11356-024-32101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.
Collapse
Affiliation(s)
- Ekansh Bahl
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Arif Siddqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Ankleshwar, India
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India.
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
7
|
Neiva J, Benzarti Z, Carvalho S, Devesa S. Green Synthesis of CuO Nanoparticles-Structural, Morphological, and Dielectric Characterization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5709. [PMID: 39685144 DOI: 10.3390/ma17235709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
This study investigates the structural, chemical, and morphological properties of CuO nanoparticles synthesized via a green synthesis route using Opuntia ficus-indica cladode extract, with a focus on the effects of stepwise versus direct calcination. Raman spectroscopy revealed the presence of CuO, Na2CO3, and Na2SO3, with the latter two being associated with elements inherited from the cactus extracts. XRD patterns confirmed the presence of crystalline CuO and Na2CO3 phases, with the low content of Na2SO3 inferred to be amorphous. Rietveld refinement estimated a CuO content of approximately 77% in the stepwise-calcined sample and 75% in the directly calcined sample, with lattice parameters closely aligning with reference values. SEM micrographs revealed a tendency for CuO nanoparticles to aggregate, likely due to high surface energy and interaction with the viscous plant extract used in the green synthesis. Crystallite size estimates, along with morphological observations, suggest that stepwise calcination enhances crystallinity and particle definition without altering the fundamental nanoparticle morphology. These findings highlight the influence of calcination method and natural extracts on the composition and morphology of green-synthesized CuO nanoparticles, offering insights into potential applications, namely in microelectronics, due to their promising dielectric properties.
Collapse
Affiliation(s)
- Joana Neiva
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Zohra Benzarti
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
- Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax, Soukra Road km 3.5, B.P. 1171, Sfax 3000, Tunisia
| | - Sandra Carvalho
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Susana Devesa
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| |
Collapse
|
8
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
9
|
Elsafi M, Abdel-Gawad EH, El-Nahal MA, Sayyed MI. Effect of tin oxide particle size on epoxy resin to form new composites against gamma radiation. Sci Rep 2024; 14:27901. [PMID: 39537732 PMCID: PMC11560943 DOI: 10.1038/s41598-024-78608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of the present study is to assess the shielding performance of a novel lead-free epoxide material against ionizing radiation. The effect of variation in particle size and concentration of tin oxide (SnO), which was added to epoxy resin polymer (ER), on its radiation shielding properties has been investigated in this research. Ten samples of ER samples incorporated with different concentrations (0%,20%,40%,60%) of SnO microparticles, nanoparticles, and both sizes combined were prepared and assessed. The linear attenuation coefficients (LAC) were measured experimentally through the collimated gamma-ray beam at 0.0595 MeV, 0.6617 MeV, 1.1730 MeV, and 1.330 MeV emitted from Am-241, Cs-137 and Co-60, respectively (to cover all energy range of gamma rays) for all samples with various concentrations and particle sizes of SnO. The other radiological shielding parameters such as half value layer (HVL), tenth value layer (TVL), and radiation protection efficiency (RPE) were estimated and compared for all different samples. The results prove that the increasing of the concentration and reducing the particle size of SnO leads to the enhancement of the radiation protection properties of the ER polymer. Moreover, it was observed that the incorporation of SnO micro- and nanoparticles together improves the radiation shielding properties of ER samples. Conclusively, the reinforcing of ER polymer material matrix by micro/nanoparticles of SnO as composite with enhanced radiation shielding specifications was highlighted.
Collapse
Affiliation(s)
- Mohamed Elsafi
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Esraa H Abdel-Gawad
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A El-Nahal
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - M I Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman, Jordan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| |
Collapse
|
10
|
Shah K, Patel J, Kumar S, Pandey R, Maity G, Dubey S. Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques. NANOSCALE 2024; 16:20374-20404. [PMID: 39431309 DOI: 10.1039/d4nr02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Nanotechnology has found widespread applications in our everyday lives, including areas such as water purification, sensor technology, advanced materials, biomedicine, drug delivery, and bioimaging. Conventional methods to synthesize nanoparticles (NPs) often involve expensive equipment, high temperatures and pressures, and hazardous chemicals, leading to environmentally harmful waste. Lately, plasma-assisted methods have emerged as possible replacements for the conventional schemes because of being straightforward and environment friendly. In particular, microplasma (plasma characterized by its small dimensions on the microscale and its high electron energy density) has been the most active domain for research in NP synthesis. Utilizing microplasma under atmospheric pressure opens avenues to enhance the production of functional materials, especially those sensitive to temperature. This review examines the importance and potential future developments of microplasma-based nanomaterial production technology. The discussion highlights the distinctive features of microplasma-based synthesis compared with conventional methods, emphasizing its potential to revolutionize the field of synthesis of NPs of different sizes, shapes and compositions and also the opportunities for advancing the production of functional materials for various applications.
Collapse
Affiliation(s)
- Khushboo Shah
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| | - Jenish Patel
- Department of Physics, Sir P T Sarvajanik College of Science, Surat 395001, Gujarat, India
| | - Sanjeev Kumar
- Department of Chemistry, School of Advanced Engineering UPES Dehradun, 248007, India
| | - Ratnesh Pandey
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| | - Gurupada Maity
- Department of Physics, School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar-203201, India
| | - Santosh Dubey
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| |
Collapse
|
11
|
Chellapandi T, Madhumitha G, Avinash J. Ultrasonication-assisted synthesis of CuO-decorated montmorillonite K30 nanocomposites for photocatalytic removal of emerging contaminants: A response surface methodology approach. ENVIRONMENTAL RESEARCH 2024; 259:119574. [PMID: 38986800 DOI: 10.1016/j.envres.2024.119574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Environmental pollution is increasing worldwide due to population and industrialization. Among the various forms of pollution, water pollution poses a significant challenge in contemporary times. In this study, we synthesized CuO-decorated montmorillonite K30 (MK30) nanosheets via a simple ultrasonication technique. The structural, morphological, compositional, and optical properties of the synthesized nanocomposites were evaluated using advanced instrumentation techniques. The morphology of CuO was cubic and cubic CuO evenly designed on the MK30, which was proved by Field Emission Scanning Electron Microscopy (FESEM). The adsorption photocatalytic activity of the synthesized cubic CuO/MK30 composites was examined through the degradation of MB under visible light irradiation. The apparent reaction rate constant of 20% CuO/MK30 was 12.5 folds higher than that of CuO. These conditions included a catalyst dosage ranging from 5 to 15 mg, a pH level ranging from to 3-11, and a pollutant concentration ranging from 5 to 20 mg/L. The optimal conditions for MB dye removal were determined using response surface methodology (RSM). A scavenger study of the composite was conducted and verified that •O2- and •OH radicals play an important role in the degradation process. This investigation addressed the process of adsorption and potential removal pathways, with a particular emphasis on the role of functional groups. The environmentally friendly CuO/MK30 nanocomposites exhibited potential as photocatalysts for efficiently absorbing and degrading MB dye and TC drug pollutants. They represent promising candidates for the treatment of industrial wastewater, aiming to mitigate the environmental threats posed by organic pollutants.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Jayaprakash Avinash
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
12
|
Gutierrez CT, Hadrup N, Loizides C, Hafez I, Biskos G, Roursgaard M, Saber AT, Møller P, Vogel U. Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:251-260. [PMID: 39394842 DOI: 10.1002/em.22634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO2) at 54 and 162 μg/mouse, aluminum oxide (Al2O3) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO2) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO2. Al2O3, ZnO, and SnO2 generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Synthiya S, Thilagavathi T, Uthrakumar R, Renuka R, Kaviyarasu K. Studies of pure TiO2 and CdSe doped TiO2 nanocomposites from structural, optical, electrochemical, and photocatalytic perspectives. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2024; 35:1943. [DOI: 10.1007/s10854-024-13729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/13/2024] [Indexed: 01/05/2025]
Abstract
AbstractA low temperature hydrothermal method is employed in this study to synthesize CdSe doped TiO2 nanocomposites. Further characterization and studies of the synthesized particles were carried out. As part of this study, the sample was examined by X-ray diffraction to determine its structure, crystallite size, strain, and crystallinity. Molecules were analyzed by energy dispersive X-ray spectroscopy to determine their chemical composition. By using fourier transform infrared spectroscopy spectroscopy, we were able to observe the presence of functional groups as well as the types of bonds. By analyzing the scanning electron microscopy spectra, we were able to determine the particle size while by analyzing the photoluminescence spectra, we could determine the bandgap energy. To determine the nature of materials and their effective photocatalytic behavior, optical bandgap energies were observed in the ultra-violet visible spectrum of synthesized particles. For determining the charge transfer mechanism and specific capacitance, electrochemical studies were conducted using electrochemical impedance spectroscopy and cyclic voltammetry analysis. The degradation of malachite green and Rhodamine-B dyes with CdSe doped TiO2 nanocomposites in the visible region was studied for photocatalytic activity, degradation efficiency, and rate constant. According to the results, doped nanoparticles increased the efficiency of RhB dye degradation by ~ 4% and MG dye degradation by ~ 20% over pure nanoparticles.
Collapse
|
14
|
Marzouk A, Papavasileiou KD, Peristeras LD, Bezemer L, van Bavel AP, Shenai PM, Economou IG. A systematic DFT study of structure and electronic properties of titanium dioxide. J Comput Chem 2024; 45:2153-2166. [PMID: 38785277 DOI: 10.1002/jcc.27376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
DFT functionals are of paramount importance for an accurate electronic and structural description of transition metal systems. In this work, a systematic analysis using some well-known and commonly used DFT functionals is performed. A comparison of the structural and energetic parameters calculated with the available experimental data is made in order to find the adequate functional for an accurate description of the TiO2 bulk and surface of both anatase and rutile structures. In the absence of experimental data on the surface energy, the theoretical predictions obtained using the high-accuracy HSE06 functional were used as a reference to compare against the surface energy values calculated with the other DFT functionals. A clear improvement in the electronic description of both anatase and rutile was observed by introducing the Hubbard U correction term to PBE, PW91, and OptPBE functionals. The OptPBE-U4 functional was found to offer a good compromise between accurately describing the structural and electronic properties of titania.
Collapse
Affiliation(s)
- Asma Marzouk
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Konstantinos D Papavasileiou
- Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Athens, Greece
| | - Loukas D Peristeras
- Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Athens, Greece
| | - Leendert Bezemer
- GTL and XTL Research, Shell Global Solutions International BV, Amsterdam, The Netherlands
| | - Alexander P van Bavel
- Next Generation Breakthrough Research, Shell Global Solutions International BV, Amsterdam, The Netherlands
| | - Prathamesh M Shenai
- Computational Chemistry and Material Science, Shell India Markets Pvt. Ltd, Shell India Markets Pvt. Ltd, Banglore, India
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
15
|
Ansari FS, Daneshjou S. Optimizing the green synthesis of antibacterial TiO 2 - anatase phase nanoparticles derived from spinach leaf extract. Sci Rep 2024; 14:22440. [PMID: 39341863 PMCID: PMC11438858 DOI: 10.1038/s41598-024-73344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Titanium dioxide nanoparticles, renowned for their abundance, non-toxicity, and stability, have emerged as indispensable components in various fields such as air purification, healthcare, and industrial processes. Their applications as photocatalysts and antibacterial agents are particularly prominent. The synthesis methods significantly influence the properties and subsequent applications of these nanoparticles. While several techniques exist, the biological approach using plant extracts offers advantages such as simplicity, biocompatibility, and cost-effectiveness. This study focused on the green synthesis of titanium dioxide nanoparticles utilizing spinach leaf extract. Within the scope of this investigation, the green synthesis of titanium dioxide nanoparticles through spinach leaf extract were synthesized and optimized, followed by a comprehensive examination of their morphological, structural, and chemical attributes with UV-visible spectroscopy, FTIR spectroscopy, XRD, FESEM, and EDX. The minimum inhibitory concentration (MIC) against E. coli and S. aureus was determined to evaluate their antibacterial potential. Optimal synthesis conditions were identified at 50 °C, using a 1/30 concentration and 20 ml of spinach leaf extract. Spherical anatase nanoparticles, ranging from 10 to 40 nm, were produced under these conditions. The change in the color of the extract, absorption at 247 nm, change and increase of the peak at 800 - 400 wavelengths, and the maximum intensity of X-ray diffraction at the angle of 25.367 with the crystal plane 101 were indications of the synthesis of these nanoparticles. Notably, the synthesized nanoparticles exhibited antibacterial activity with MIC values of 0.5 mg/ml against E. coli and 2 mg/ml against S. aureus. This research presents a novel, eco-friendly approach to synthesizing titanium dioxide nanoparticles with promising antibacterial properties.
Collapse
Affiliation(s)
- Fatemeh Sheikh Ansari
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sara Daneshjou
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
17
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
18
|
Sugitha SKJ, Latha RG, Venkatesan R, Vetcher AA, Ali N, Kim SC. Biological Effects of Green Synthesized Al-ZnO Nanoparticles Using Leaf Extract from Anisomeles indica (L.) Kuntze on Living Organisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1407. [PMID: 39269068 PMCID: PMC11396933 DOI: 10.3390/nano14171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The synthesis of Al-ZnO nanoparticles (NPs) was achieved using a green synthesis approach, utilizing leaf extract from Anisomeles indica (L.) in a straightforward co-precipitation method. The goal of this study was to investigate the production of Al-ZnO nanoparticles through the reduction and capping method utilizing Anisomeles indica (L.) leaf extract. The powder X-ray diffraction, UV spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy with EDAX analysis were used to analyze the nanoparticles. X-ray diffraction analysis confirmed the presence of spherical structures with an average grain size of 40 nm in diameter, while UV-visible spectroscopy revealed a prominent absorption peak at 360 nm. FTIR spectra demonstrated the presence of stretching vibrations associated with O-H, N-H, C=C, C-N, and C=O as well as C-Cl groups indicating their involvement in the reduction and stabilization of nanoparticles. SEM image revealed the presence of spongy, spherical, porous agglomerated nanoparticles, confirming the chemical composition of Al-ZnO nanoparticles through the use of the EDAX technique. Al-ZnO nanoparticles showed increased bactericidal activity against both Gram-positive and Gram-negative bacteria. The antioxidant property of the green synthesized Al-ZnO nanoparticles was confirmed by DPPH radical scavenging with an IC50 value of 23.52 indicating excellent antioxidant capability. Green synthesized Al-ZnO nanoparticles were shown in in vivo studies on HeLa cell lines to be effective for cancer treatment. Additionally, α-amylase inhibition assay and α-glucosidase inhibition assay demonstrated their potent anti-diabetic activities. Moving forward, the current methodology suggests that the presence of phenolic groups, flavonoids, and amines in Al-ZnO nanoparticles synthesized with Anisomeles indica (L.) extract exhibit significant promise for eliciting biological responses, including antioxidant and anti-diabetic effects, in the realms of biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- S K Johnsy Sugitha
- Department of Chemistry, Holy Cross College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
| | - R Gladis Latha
- Department of Chemistry and Research Centre, Holy Cross College, Nagercoil 629002, Tamil Nadu, India
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
19
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
20
|
Dasgupta I, Das T, Das B, Gayen S. Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:909-924. [PMID: 39076688 PMCID: PMC11285082 DOI: 10.3762/bjnano.15.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024]
Abstract
Nanoparticles (NPs) are considered as versatile tools in various fields including medicine, electronics, and environmental science. Understanding the structural aspects of surface modifiers in nanoparticles that govern their cellular uptake is crucial for optimizing their efficacy and minimizing potential cytotoxicity. The cellular uptake is influenced by multiple factors, namely, size, shape, and surface charge of NPs, as well as their surface functionalization. In the current study, classification-based ML models (i.e., Bayesian classification, random forest, support vector classifier, and linear discriminant analysis) have been developed to identify the features/fingerprints that significantly contribute to the cellular uptake of ENMOs in multiple cell types, including pancreatic cancer cells (PaCa2), human endothelial cells (HUVEC), and human macrophage cells (U937). The best models have been identified for each cell type and analyzed to detect the structural fingerprints/features governing the cellular uptake of ENMOs. The study will direct scientists in the design of ENMOs of higher cellular uptake efficiency for better therapeutic response.
Collapse
Affiliation(s)
- Indrasis Dasgupta
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Totan Das
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biplab Das
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
21
|
Edwin MHM, Sundara Raj AS, Mani A, Sillanpää M, Al-Farraj S. Green synthesis of Vitis vinifera extract-appended magnesium oxide NPs for biomedical applications. NANOTECHNOLOGY REVIEWS 2024; 13. [DOI: 10.1515/ntrev-2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biologically active magnesium oxide (MgO) nanoparticles were synthesised using green reduction with an extract derived from the Vitis vinifera plant. The investigation focused on examining the structure and carbon abundance resulting from the thermal degradation of adsorbed biomolecules. It was accomplished using powder X-ray diffraction, Raman spectroscopy, and FT-IR analysis techniques. X-ray photoelectron spectroscopy studies conducted on MgO nanoparticles indicate the absence of any supplementary peaks, thereby indicating the purity of the material. The morphological characteristics, which have been examined using field emission scanning electron microscopy and TEM methodologies, demonstrate the presence of particles with a spherical shape, exhibiting minimal agglomeration and a uniform distribution across the surfaces of MgO. The porous structure, porosity, and pore volume of the MgO particles were evaluated using Brunauer-Emmett-Teller surface analysis. The experimental findings reveal that the surface area of the MgO nanoparticles is 23.8742 m2/g, while the total pore volume is 0.12528 cm3/g. Additionally, the average pore diameter is determined to be 1.7 nm. These observations collectively suggest the presence of microporous structures within the MgO nanoparticles. This article discusses the biological studies to assess the antibacterial, antifungal, anti-inflammatory, and anti-diabetic activities of the synthesised MgO nanoparticles.
Collapse
Affiliation(s)
- Mary Harli Mol Edwin
- Research Scholar, Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Ajin Sundar Sundara Raj
- Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Aravind Mani
- Department of Physics, National Engineering College, K.R. Nagar , Kovilpatti , Tamil Nadu, 628503 , India
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology , Mubarak Al-Abdullah , 32093, Kuwait , Kuwait
- Adnan Kassar School of Business, Lebanese American University , Beirut , Lebanon
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University , Rajpura , 140401, Punjab , India
- Division of Research & Development, Lovely Professional University , Phagwara , 144411, Punjab , India
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
22
|
Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract. Drug Discov Ther 2024; 18:167-177. [PMID: 38945877 DOI: 10.5582/ddt.2024.01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
Collapse
Affiliation(s)
- Mathurada Sasarom
- PhD Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Pisaisit Chaijareenont
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Krishnasamy M, Rajendran R, Vignesh S, Arumugam P, Diravidamani B, Shkir M, Algarni H. Facile synthesis of efficient MoS 2-coupled graphitic carbon nitride Z-scheme heterojunction nanocomposites: photocatalytic removal of methylene blue dye under solar light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46513-46525. [PMID: 36943565 DOI: 10.1007/s11356-023-26418-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
Among different types of semiconductor photocatalysts, MoS2 hybridized with graphitic carbon heterojunction has developed the most promising "celebrity" due to its static chemical properties, suitable band structure, and facile synthesis. Physiochemical and surface characterizations were revealed with structural, electronic, and optical analysis. Diffused reflectance spectroscopy evidenced the energy band gap tailoring from 2.62 eV for pure g-C3N4 and 1.68 eV for MoS2 to 2.12 eV for the hybridized heterojunction nanocomposite. Effective electron/hole pair separation, rise in redox species, and great utilization of solar range because of band gap modifying leading to greater degradation efficacy of g-C3N4/MoS2 heterojunction. The photocatalytic degradation with MoS2/g-C3N4 heterojunction catalyst to remove methylene blue dye was remarkably enriched and much higher than g-C3N4. By carefully examining the stimulus aspects, a probable mechanism is suggested, assuming that the concurring influence of MoS2 and g-C3N4, the lesser crystallite size, and more solubility in aquatic solution furnish the efficient e--h+ pair separation and tremendous photocatalytic degradation activity. This work delivers a novel idea to improve the efficient MoS2/g-C3N4 heterojunction for improved photocatalytic degradation in environmental refinement.
Collapse
Affiliation(s)
- Mahalakshmi Krishnasamy
- Department of Physics, N.K.R. Government Arts College for Women, Namakkal, 637001, Tamil Nadu, India
| | - Ranjith Rajendran
- Department of Physics, K.S.R. College of Engineering, Tiruchengode, Namakkal, 637215, Tamil Nadu, India
| | - Shanmugam Vignesh
- SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - Priyadharsan Arumugam
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Barathi Diravidamani
- Department of Physics, N.K.R. Government Arts College for Women, Namakkal, 637001, Tamil Nadu, India.
| | - Mohd Shkir
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Division of Research and Development, Lovely Professional University, Punjab, 144411, Phagwara, India
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
24
|
Abideen ZU, Arifeen WU, Bandara YMNDY. Emerging trends in metal oxide-based electronic noses for healthcare applications: a review. NANOSCALE 2024; 16:9259-9283. [PMID: 38680123 DOI: 10.1039/d4nr00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
An electronic nose (E-nose) is a technology fundamentally inspired by the human nose, designed to detect, recognize, and differentiate specific odors or volatile components in complex and chaotic environments. Comprising an array of sensors with meticulously designed nanostructured architectures, E-noses translate the chemical information captured by these sensors into useful metrics using complex pattern recognition algorithms. E-noses can significantly enhance the quality of life by offering preventive point-of-care devices for medical diagnostics through breath analysis, and by monitoring and tracking hazardous and toxic gases in the environment. They are increasingly being used in defense and surveillance, medical diagnostics, agriculture, environmental monitoring, and product validation and authentication. The major challenge in developing a reliable E-nose involves miniaturization and low power consumption. Various sensing materials are employed to address these issues. This review presents the key advancements over the last decade in E-nose technology, specifically focusing on chemiresistive metal oxide sensing materials. It discusses their sensing mechanisms, integration into portable E-noses, and various data analysis techniques. Additionally, we review the primary metal oxide-based E-noses for disease detection through breath analysis. Finally, we address the major challenges and issues in developing and implementing a portable metal oxide-based E-nose.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia.
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, South Korea
| | - Y M Nuwan D Y Bandara
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
25
|
Rustembekkyzy K, Sabyr M, Kanafin YN, Khamkhash L, Atabaev TS. Microwave-assisted synthesis of ZnO structures for effective degradation of methylene blue dye under solar light illumination. RSC Adv 2024; 14:16293-16299. [PMID: 38769968 PMCID: PMC11103780 DOI: 10.1039/d4ra02451f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024] Open
Abstract
The presence of dyes in wastewater poses a high risk to both human health and the environment due to their potential toxicity and ecological impacts. Zinc(ii) oxide is a low-cost, non-toxic material that can serve as a sustainable and effective solution to the global water pollution crisis. In this study, we propose a facile one-step synthesis of various ZnO structures by microwave irradiation. The primary goal of this study was to explore the morphology-dependent photocatalytic activity of various ZnO structures, as well as the impact of interfering anions on the Methylene Blue (MB) photodegradation under solar light illumination. Photocatalytic activity studies show that the sample denoted as 0.56 M-ZnO with a sheet-like structure has remarkable catalytic activity under solar light illumination, reaching ∼96.6% degradation of 30 mL MB solution (3 × 10-5 M) within 40 minutes. The BET specific surface area and band gap of the optimal 0.56 M-ZnO sample were observed to be 12.42 m2 g-1 and 2.89 eV, respectively. It was shown that the presence of anions like Cl-, NO3-, and HCO3- can reduce the catalytic activity of 0.56 M-ZnO structure to some extent, although more than 70% MB degradation can still be obtained under neutral pH conditions. The superior catalytic efficacy observed in the 0.56 M-ZnO photocatalyst can be attributed to its improved crystallinity, large surface area, and enhanced production of hydroxyl radicals. The low-cost synthesis, combined with high photocatalytic activity collectively underscores the efficiency and practical usability of produced ZnO photocatalysts for dye degradation.
Collapse
Affiliation(s)
| | - Madi Sabyr
- Karagandy Bilim Innovation Lyceum Karagandy 100029 Kazakhstan
| | | | - Laura Khamkhash
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| |
Collapse
|
26
|
Mahmood WK, Dakhal GY, Younus D, Issa AA, El-Sayed DS. Comparative properties of ZnO modified Au/Fe nanocomposite: electronic, dynamic, and locator annealing investigation. J Mol Model 2024; 30:165. [PMID: 38735975 DOI: 10.1007/s00894-024-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
CONTEXT A computational representation was used to model the doping and nanomodification of ZnO nanoparticles incorporated in Au/Fe nanocomposite. Au/Fe nanostructure was geometrically and discussed to investigate its electronic properties such electronic band structure and PDOS spectra. Moreover, the ZnO interacted with Au/Fe system was illustrated concerning the modified properties present on the surface of the nanocomposite as it may behave different attribution of band gap evaluated after ZnO modification included. Molecular dynamic simulation of the whole nano system was studied to predict the system stability concerning temperature and energy parameters during 100 ps simulation time. The most effective models under investigation were evaluated using adsorption annealing computations associated with the adsorption energy surface. A highly stable energetic adsorption system was anticipated by the periodic adsorption-annealing calculation. METHODS Au and Fe pure metals nanostructures were studied as a separate molecule with (0 0 1) plane surface for optimum energy minimization. Dmol3 module in/materials studio software was utilized for this protocol. The designed Au/Fe layers for nanostructure building material was computationally optimized, where DFT level was considered involving generalized gradient approximation (GGA) with Perdew-Burke-Ernzerh (PBE) exchange functional. In the computations of the structure matrix simulation, the global orbital cutoff was selected. To address the weak quantification of the standard DFT functionals, Tkatchenko-Schefer (TS) (DFT + D) was utilized to precisely correct the pairwise dispersion of the functionals. The electrical parameters were interpreted using the reciprocal space of the ultrasoft pseudopotential representation. To overcome the issues of self-electron interaction, the nonlocal hybrid functional with PBE0 method was utilized to calculate the electronic properties of the studied systems. The computations generated are predicated on a particular trajectory of the gamma k-point band energy interpolations proposed in this examination. An investigation into the position of adsorption came after geometric optimization. Adsorbed on an optimized Au/Fe surface, ZnO nanostructure was computationally explored using the Dmol3 simulation software.
Collapse
Affiliation(s)
- Waleed K Mahmood
- Computer Department, Faculty of Basic Education, Mustansiriyah University, Baghdad, Iraq
| | - Ghaith Y Dakhal
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Dhurgham Younus
- Department of Architectural Engineering, University of Technology, Baghdad, Iraq
| | - Ali Abdullah Issa
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
27
|
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. BIOSENSORS 2024; 14:238. [PMID: 38785712 PMCID: PMC11117604 DOI: 10.3390/bios14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.
Collapse
Affiliation(s)
- Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Elif Sifa Ataman
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sueda Betul Taskin
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - İlker Polatoglu
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| |
Collapse
|
28
|
Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, Tiong SK. Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application. Nanotoxicology 2024; 18:272-298. [PMID: 38821108 DOI: 10.1080/17435390.2024.2349304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 06/02/2024]
Abstract
Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
Collapse
Affiliation(s)
- B Senthil Rathi
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Lay Sheng Ewe
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Sanjay S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Sujatha S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Weng Kean Yew
- School of Engineering and Physical Science, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | | | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| |
Collapse
|
29
|
Kanchana U, Jose J, Ali N, AlAsmari AF, Khalid Parvez M, Mathew TV. Tailoring ZnO nanoparticles for biomedical applications: Surface functionalization of ZnO nanoparticles with 2-oxo-2H-chromene-3-carboxylic acid coupled beta-cyclodextrin for enhanced antimicrobial and anticancer effect. INORG CHEM COMMUN 2024; 163:112363. [DOI: 10.1016/j.inoche.2024.112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
30
|
Su PG, Yang JJ. Preparation and NH 3 gas-sensing properties of Ag/β-AgVO 3 nanorods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682943 DOI: 10.1039/d4ay00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
NH3 gas sensors operating at room temperature, consisting of Ag nanoparticles decorated β-AgVO3 nanorods (Ag/β-AgVO3 NRs), were fabricated via a facile hydrothermal method without the need for a template. The surface characteristics and compositions of Ag/β-AgVO3 NRs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ag nanoparticles, ranging in diameter from approximately 20 to 40 nm, were dispersed on the surface of monoclinic β-AgVO3 NRs with diameters ranging from 50 to 105 nm and lengths from 0.3 to 1.3 μm. The NH3 gas sensing properties of Ag/β-AgVO3 NRs were studied under both dry air and humid conditions at room temperature. Comparative analysis demonstrated that the Ag/β-AgVO3 NRs exhibited a strong response to NH3 gas under 70% relative humidity (RH) at room temperature compared to α-AgVO3 NRs. Specifically, the response of the Ag/β-AgVO3 NRs to 5 ppm NH3 increased by 2.25 times as the RH varied from 20% to 80% at room temperature. This enhanced response was attributed to the effects of formation of nanoheterojunctions, nano-metallic Ag activity and the conductivity of NH4+ and OH- ions induced by the presence of humidity. The room temperature NH3 gas sensors based on Ag/β-AgVO3 NRs demonstrated strong responses to low NH3 concentrations, high selectivity, good reproducibility, and long-term stability, and show promise for the development of low-power and cost-effective NH3 gas sensors for practical applications even under high humidity.
Collapse
Affiliation(s)
- Pi-Guey Su
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| | - Jia-Jie Yang
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| |
Collapse
|
31
|
Solorio-Rodriguez SA, Wu D, Boyadzhiev A, Christ C, Williams A, Halappanavar S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:743. [PMID: 38727337 PMCID: PMC11085103 DOI: 10.3390/nano14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Metal oxide nanoparticles (MONP/s) induce DNA damage, which is influenced by their physicochemical properties. In this study, the high-throughput CometChip and micronucleus (MicroFlow) assays were used to investigate DNA and chromosomal damage in mouse lung epithelial cells induced by nano and bulk sizes of zinc oxide, copper oxide, manganese oxide, nickel oxide, aluminum oxide, cerium oxide, titanium dioxide, and iron oxide. Ionic forms of MONPs were also included. The study evaluated the impact of solubility, surface coating, and particle size on response. Correlation analysis showed that solubility in the cell culture medium was positively associated with response in both assays, with the nano form showing the same or higher response than larger particles. A subtle reduction in DNA damage response was observed post-exposure to some surface-coated MONPs. The observed difference in genotoxicity highlighted the mechanistic differences in the MONP-induced response, possibly influenced by both particle stability and chemical composition. The results highlight that combinations of properties influence response to MONPs and that solubility alone, while playing an important role, is not enough to explain the observed toxicity. The results have implications on the potential application of read-across strategies in support of human health risk assessment of MONPs.
Collapse
Affiliation(s)
- Silvia Aidee Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Callum Christ
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
32
|
Ran F, Hu M, Deng S, Wang K, Sun W, Peng H, Liu J. Designing transition metal-based porous architectures for supercapacitor electrodes: a review. RSC Adv 2024; 14:11482-11512. [PMID: 38595725 PMCID: PMC11002841 DOI: 10.1039/d4ra01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Over the past decade, transition metal (TM)-based electrodes have shown intriguing physicochemical properties and widespread applications, especially in the field of supercapacitor energy storage owing to their diverse configurations, composition, porosity, and redox reactions. As one of the most intriguing research interests, the design of porous architectures in TM-based electrode materials has been demonstrated to facilitate ion/electron transport, modulate their electronic structure, diminish strain relaxation, and realize synergistic effects of multi-metals. Herein, the recent advances in porous TM-based electrodes are summarized, focusing on their typical synthesis strategies, including template-mediated assembly, thermal decomposition strategy, chemical deposition strategy, and host-guest hybridization strategy. Simultaneously, the corresponding conversion mechanism of each synthesis strategy are reviewed, and the merits and demerits of each strategy in building porous architectures are also discussed. Subsequently, TM-based electrode materials are categorized into TM oxides, TM hydroxides, TM sulfides, TM phosphides, TM carbides, and other TM species with a detailed review of their crystalline phase, electronic structure, and microstructure evolution to tune their electrochemical energy storage capacity. Finally, the challenges and prospects of porous TM-based electrode materials are presented to guide the future development in this field.
Collapse
Affiliation(s)
- Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Meijie Hu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Shulin Deng
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Hui Peng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
33
|
Yesmin S, Mahiuddin M, Nazmul Islam ABM, Karim KMR, Saha P, Khan MAR, Ahsan HM. Piper chaba Stem Extract Facilitated the Synthesis of Iron Oxide Nanoparticles as an Adsorbent to Remove Congo Red Dye. ACS OMEGA 2024; 9:10727-10737. [PMID: 38463303 PMCID: PMC10918656 DOI: 10.1021/acsomega.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, a straightforward, eco-friendly, and facile method for synthesizing iron oxide nanoparticles (IONPs) utilizing Piper chaba steam extract as a reducing and stabilizing agent has been demonstrated. The formation of stable IONPs coated with organic moieties was confirmed from UV-vis, FTIR, and EDX spectroscopy and DLS analysis. The produced IONPs are sufficiently crystalline to be superparamagnetic having a saturation magnetization value of 58 emu/g, and their spherical form and size of 9 nm were verified by XRD, VSM, SEM, and TEM investigations. In addition, the synthesized IONPs exhibited notable effectiveness in the removal of Congo Red (CR) dye with a maximum adsorption capacity of 88 mg/g. The adsorption kinetics followed pseudo-second-order kinetics, meaning the adsorption of CR on IONPs is mostly controlled by chemisorption. The adsorption isotherms of CR on the surface of IONPs follow the Langmuir isotherm model, indicating the monolayer adsorption on the homogeneous surface of IONPs through adsorbate-adsorbent interaction. The IONPs have revealed good potential for their reusability, with the adsorption efficiency remaining at about 85% after five adsorption-desorption cycles. The large-scale, safe, and cost-effective manufacturing of IONPs is made possible by this environmentally friendly process.
Collapse
Affiliation(s)
| | - Md. Mahiuddin
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | | | - Prianka Saha
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | - Habib Md. Ahsan
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| |
Collapse
|
34
|
Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Khoo KS, Cheng YW. Promoting the suitability of graphitic carbon nitride and metal oxide nanoparticles: A review of sulfonamides photocatalytic degradation. CHEMOSPHERE 2024; 351:141218. [PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | | | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), United States
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam bin Abdulaziz University, PO Box 422, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Hanan Akhdar
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
35
|
Durodola SS, Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA. A Review on Nanomaterial as Photocatalysts for Degradation of Organic Pollutants. J Fluoresc 2024; 34:501-514. [PMID: 37432581 DOI: 10.1007/s10895-023-03332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Eliminating hazardous organic contaminants from water is a major concern today. Nanomaterials with their textural features, large surface area, electrical conductivity, and magnetic properties make them efficient for the removal and photocatalytic degradation of organic pollutants. The reaction mechanisms of the photocatalytic oxidation of common organic pollutants were critically examined. A detailed review of articles published on photocatalytic degradation of hydrocarbons, pesticides, and dyes was presented therein. This review seeks to bridge information gaps on the reported nanomaterial as photocatalysts for the degradation of organic pollutants under sub-headings, nanomaterials, organic pollutants, degradation of organic pollutants, and mechanisms of photocatalytic activities.
Collapse
Affiliation(s)
- Solomon S Durodola
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Olaniran K Akeremale
- Department of Science and Technology Education, Bayero University, 3011, Kano, Nigeria
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
| | - Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Johnson Adedeji Olusola
- Department of Geography and Planning Science, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| |
Collapse
|
36
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, Sun Y, Shahzad K, Ali B, Zhou W. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123013. [PMID: 38012966 DOI: 10.1016/j.envpol.2023.123013] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 μM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 μM. The findings showed that 100 μM Si NPs under 100 μM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Khuram Shahzad
- Department of Botany, University of Sargodha, Sargodha, 40162, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Aigbe UO, Osibote OA. Green synthesis of metal oxide nanoparticles, and their various applications. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2024; 13:100401. [DOI: 10.1016/j.hazadv.2024.100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Beytür S, Essiz S, Özuğur Uysal B. Investigation of Structural and Antibacterial Properties of WS 2-Doped ZnO Nanoparticles. ACS OMEGA 2024; 9:4037-4049. [PMID: 38284036 PMCID: PMC10809239 DOI: 10.1021/acsomega.3c09041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
ZnO nanoparticles, well-known for their structural, optical, and antibacterial properties, are widely applied in diverse fields. The doping of different materials to ZnO, such as metals or metal oxides, is known to ameliorate its properties. Here, nanofilms composed of ZnO doped with WS2 at 5, 15, and 25% ratios are synthesized, and their properties are investigated. Supported by molecular docking analyses, the enhancement of the bactericidal properties after the addition of WS2 at different ratios is highlighted and supported by the inhibitory interaction of residues playing a crucial role in the bacterial survival through the targeting of proteins of interest.
Collapse
Affiliation(s)
- Sercan Beytür
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Sebnem Essiz
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Bengü Özuğur Uysal
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| |
Collapse
|
40
|
Girma A, Abera B, Mekuye B, Mebratie G. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review. IET Nanobiotechnol 2024; 2024:5417924. [PMID: 38863967 PMCID: PMC11095078 DOI: 10.1049/2024/5417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 06/13/2024] Open
Abstract
Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). "Nanoparticles," "Inorganic Nanoparticles," "Metal Nanoparticles," "Metal-Oxide Nanoparticles," "Antimicrobial Activity," "Antibacterial Activity," "Foodborne Bacterial Pathogens," "Mechanisms of Action," and "Foodborne Diseases" were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
41
|
Naushin F, Sen S, Kumar M, Bairagi H, Maiti S, Bhattacharya J, Sen S. Structural and Surface Properties of pH-Varied Fe 2O 3 Nanoparticles: Correlation with Antibacterial Properties. ACS OMEGA 2024; 9:464-473. [PMID: 38222513 PMCID: PMC10785298 DOI: 10.1021/acsomega.3c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Hematite (Fe2O3) nanoparticles were synthesized using a hydrothermal synthesis route under different pH conditions (pH ∼8,10,11.5) (i.e., different ratios of H+/OH- ions). The sample synthesized at pH 10 had better motility toward the bacterial surface due to having an overall positive charge (ξ-potential = +11.10), leading to a minimal hydrodynamic size (Dτ = 186.6). The results are discussed in light of the relative ratio of H+/OH- that may affect bond formation by influencing the electronic clouds of the participating ions that can modify the structure. This, in turn, modifies crystallinity, strain, disorder, surface termination, and thereby, the surface charge, which has been correlated to the antibacterial properties of the nanoparticles due to the interaction between the respective opposite charges on the nanoparticle surface and bacterial cell wall. The structural modifications were correlated to all of these parameters in this work.
Collapse
Affiliation(s)
- Farzana Naushin
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Srishti Sen
- School
of Biosciences Engineering & Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh 466114, India
| | - Mukul Kumar
- Department
of MEMS, Indian Institute of Technology, Indore 453552, India
| | - Hemang Bairagi
- School
of Biosciences Engineering & Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh 466114, India
| | - Siddhartha Maiti
- School
of Biosciences Engineering & Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh 466114, India
| | | | - Somaditya Sen
- Department
of Physics, SMART Lab, Indian Institute
of Technology, Indore 453552, India
| |
Collapse
|
42
|
Mubarak MF, Selim H, Hawash HB, Hemdan M. Flexible, durable, and anti-fouling maghemite copper oxide nanocomposite-based membrane with ultra-high flux and efficiency for oil-in-water emulsions separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2297-2313. [PMID: 38062214 PMCID: PMC10791961 DOI: 10.1007/s11356-023-31240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.
Collapse
Affiliation(s)
- Mahmoud F Mubarak
- Department of Petroleum Application, Core Lab Analysis Center, Egyptian Petroleum Research Institute, P.B. 11727, Nasr City, Cairo, Egypt
| | - Hanaa Selim
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Hamada B Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| |
Collapse
|
43
|
Aliko V, Vasjari L, Ibrahimi E, Impellitteri F, Karaj A, Gjonaj G, Piccione G, Arfuso F, Faggio C, Istifli ES. "From shadows to shores"-quantitative analysis of CuO nanoparticle-induced apoptosis and DNA damage in fish erythrocytes: A multimodal approach combining experimental, image-based quantification, docking and molecular dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167698. [PMID: 37832669 DOI: 10.1016/j.scitotenv.2023.167698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The usage of copper (II) oxide nanoparticles (CuO NPs) has significantly expanded across industries and biomedical fields. However, the potential toxic effects on non-target organisms and humans lack comprehensive understanding due to limited research on molecular mechanisms. With this study, by combining the 96 h in vivo exposure of crucian carp fish, Carassius carassius, to sub-lethal CuO NPs doses (0.5 and 1 mg/dL) with image-based quantification, and docking and molecular dynamics approaches, we aimed to understand the mechanism of CuO NPs-induced cyto-genotoxicity in the fish erythrocytes. The results revealed that both doses of copper NPs used were toxic to erythrocytes causing oxidative stress response and serious red blood cell morphological abnormalities, and genotoxicity. Docking and 10-ns molecular dynamics confirmed favorable interactions (ΔG = -2.07 kcal mol-1) and structural stability of Band3-CuO NP complex, mainly through formation of H-bonds, implying the potential of CuO NPs to induce mitotic nuclear abnormalities in C. carassius erythrocytes via Band3 inhibition. Moreover, conventional and multiple ligand simultaneous docking with DNA revealed that single, double and triple CuO NPs bind preferentially to AT-rich regions consistently in the minor grooves of DNA. Of note, the DNA-binding strength subtantially increased (ΔG = -2.13 kcal mol-1, ΔG = -4.08 kcal mol-1, and ΔG = -6.03 kcal mol-1, respectively) with an increasing number of docked CuO NPs, suggesting that direct structural perturbation on DNA could also count for the molecular basis of in-vivo induced DNA damage in C. carassius erythrocytes. This study introduces the novel term "erythrotope" to describe comprehensive red blood cell morphological abnormalities. It proves to be a reliable and cost-effective biomarker for evaluating allostatic erythrocyte load in response to metallic nanoparticle exposure, serving as a distinctive fingerprint to assess fish erythrocyte health and physiological fitness.
Collapse
Affiliation(s)
- Valbona Aliko
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Ledia Vasjari
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Eliana Ibrahimi
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Ambra Karaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Grejsi Gjonaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Giuseppe Piccione
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Francesca Arfuso
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Erman S Istifli
- University of Cukurova, Faculty of Science and Literature, Department of Biology, Adana, Turkey
| |
Collapse
|
44
|
Sarkar MM, Rudra P, Paul P, Dua TK, Roy S. Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108309. [PMID: 38169228 DOI: 10.1016/j.plaphy.2023.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Silica nanoparticles (SiNPs) confer better growth and development of plants under salinity stress. Moreover, the surface-functionalization of SiNPs with bioactive molecules is expected to enhance its efficacy. The present study thus aimed to modify the surface of SiNPs, by attaching a bioactive molecule (trehalose) to obtain TSiNPs. The successful surface functionalization was confirmed using FTIR, XRD, and EDS. The spherical shape and amorphous nature of the nanoparticles were confirmed using SEM. The TEM image analysis revealed that the size of SiNPs and TSiNPs ranged between 20-50 nm and 200-250 nm, respectively. A novel bioassay experiment designed to study the release of silica and trehalose from nanoparticles elucidated that the TSiNPs improved the release and uptake of silica. Also, trehalose uptake significantly improved after 72 h of application due to enhanced release of trehalose from TSiNPs. Further, this study also aimed to investigate the potential benefits of SiNPs and TSiNPs in promoting the growth and development of plants under salinity stress. In this context, the nanoparticles were applied to the saline-stressed (0, 200, 300 mM) lentil seedlings for the in-planta experiments. The results revealed that both SiNPs and TSiNPs improved the growth of seedlings (shoot, and root length), ionic balance (K+/Na+ ratio), and osmolyte status (sugars, proline, glycine betaine, trehalose). Additionally, increased antioxidant enzyme activities helped scavenge ROS (H2O2, O2.-) generated in NaCl-stressed seedlings, ultimately improving the membrane integrity (by reducing MDA and EL). However, the TSiNPs exhibited a much-enhanced activity in stress alleviation compared to the SiNPs.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Pritha Rudra
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
45
|
Chalawadi S, Pujar MS, Bhajantri RF. Synthesis of CuO/polyaniline/multiwalled carbon nanotube composites using Macaranga indica leaves extract as hydrogen gas sensor. Biointerphases 2024; 19:011002. [PMID: 38270483 DOI: 10.1116/6.0003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
In this study, we describe the fabrication of hydrogen gas sensors in the form of nanocomposites containing metal oxides such as copper oxide (CuO), multiwalled carbon nanotubes (MWCNTs), and polyaniline (PANI) using a green synthesis method. We used Macaranga indica (M. indica) leaf extract as a reducing and stabilizing agent to prepare copper oxide nanoparticles (CuONPs). The sample was analyzed using various techniques to determine its physicochemical, morphological, and elemental composition. The XRD data showed that the sample is a CuO/PANI/MWCNT nanocomposite by the best match with the reported data. SEM images revealed a uniform distribution of MWCNTs and spherical CuO nanoparticles of 30-40 nm throughout the CNT network. EDX confirmed that the prepared sample is a pure and inline combination of Cu, O, C, and N. Due to the presence of bioactive elements and PANI, we observed 17% and 25% weight loss for CuO and CuO/PANI/MWCNTs. It was found that this combination of materials can detect H2 gas in concentrations ranging from 110 to 2 ppm at temperatures of 200 and 250 °C. As H2 concentration increased, sensitivity varied from 5% to 20%, but response and recovery times were about 290 and 500 s, respectively, for 40 ppm H2 gas. A logistic function fit to Ra/Rg versus H2 was performed using Y = A2 + (A1 - A2)/(1 + (x/x0)p). The energy bands among the CuO/PANI/MWCNT heterointerfaces were used to demonstrate enhanced H2 gas-sensing properties.
Collapse
Affiliation(s)
- Shivaprasad Chalawadi
- Department of Studies in Physics, Karnatak University, Dharwad 580003, Karnataka, India
| | - Malatesh S Pujar
- Departmernt of Physics, KLE Technological University, Dr. M. S. Sheshgiri Campus, Belagavi 590008, Karnataka, India
| | | |
Collapse
|
46
|
El-Gebaly AS, Sofy AR, Hmed AA, Youssef AM. Green synthesis, characterization and medicinal uses of silver nanoparticles (Ag-NPs), copper nanoparticles (Cu-NPs) and zinc oxide nanoparticles (ZnO-NPs) and their mechanism of action: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 55:103006. [DOI: 10.1016/j.bcab.2023.103006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Bashal AH, Khalil KD, Abu-Dief AM, El-Atawy MA. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int J Biol Macromol 2023; 253:126856. [PMID: 37714231 DOI: 10.1016/j.ijbiomac.2023.126856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
This research aimed to prepare, characterize, and investigate the biological efficacy of chitosan‑cobalt (II) oxide hybrid nanocomposites against a variety of micrograms. Analytical methods, FTIR, SEM, XRD, and EDX, were utilized to thoroughly characterize the produced CS-CoO nanocomposite. In FTIR spectra, the presence of the chitosan peaks in addition to that of CoO at 681 and 558 cm-1 confirmed that CoO molecules interact with the chitosan backbone. Moreover, in the XRD measurements, significantly less chitosan crystallinity was observed. Due to the incorporation of a larger amount of cobalt oxide within the polymer matrix. Applying the Debye-Sherrer calculation, the crystallite size was obviously reduced from 48.24 nm (5 wt %) to 19.27 nm (20 wt %) for the obtained nanocomposites. Furthermore, SEM measurements showed a transformation in the chitosan surface with the physical adsorption of CoO molecules on the surface active sites of chitosan that were visible in SEM graphs. Additionally, EDX determined the amount of Co element within the chitosan, with the sample of 20 wt % weight being found to be 19.26 wt %. The variable dose well-diffusion method was utilized to assess the efficacy of the CS-Co nanocomposite against a wide range of bacteria and fungi. CS - CoO nanocomposite is more effective than chitosan alone as an antibacterial agent against both Gram-positive and Gram-negative bacteria. Moreover, the MTT approach was employed to measure the cytotoxicity based on the cell viability of different cancer cell lines under different UV expositions. The proportion of the destroyed cells elevated due to the easy diffusion of CS - CoO nanocomposite into cancer cells as UV-free anticancer activity. UV exposition has stimulated the anticancer activity, which was attributed to an increase in ROS generation caused by the increased dose of the chitosan and its CS - CoO nanocomposites. Furthermore, the antioxidant capacities of the prepared nano-composites thin films were validated using the DPPH free radical scavenging method and showed good antioxidant activities with the DPPH radical compared with standard vitamin C. It has been noticed that by increasing the content of CoO nanoparticles from 5 to 20 wt %, the biological activity of the prepared nanocomposites was enhanced.
Collapse
Affiliation(s)
- Ali H Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia.
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Abu-Dief
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah 30002, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Mohamed A El-Atawy
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt.
| |
Collapse
|
48
|
Kahandal A, Chaudhary S, Methe S, Nagwade P, Sivaram A, Tagad CK. Galactomannan polysaccharide as a biotemplate for the synthesis of zinc oxide nanoparticles with photocatalytic, antimicrobial and anticancer applications. Int J Biol Macromol 2023; 253:126787. [PMID: 37690639 DOI: 10.1016/j.ijbiomac.2023.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Biotemplates provide a facile, rapid, and environmentally benign route for synthesizing various nanostructured materials. Herein, Locust Bean Gum (LBG), a galactomannan polysaccharide, has been used as a biotemplate for synthesizing ZnO nanoparticles (NPs) for the first time. The composition, structure, morphology, and bandgap of ZnO were investigated by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV-vis spectroscopy. XRD data showed single-phase crystalline hexagonal NPs. FTIR spectra confirmed the presence of M-O bonding in the sample. At a concentration of 0.5 mg/mL the NPs can degrade Rhodamine B under sunlight, displaying excellent photocatalytic activity. These NPs exhibited antimicrobial activity in both Staphylococcus aureus and Bacillus subtilis. Significant cell death was observed at 500 μg/mL, 250 μg/mL, 125 μg/mL and 62.5 μg/mL of NP in breast cancer, ovarian cancer and lung cancer cell lines. Wound healing assay showed that the NPs significantly blocked the cell migration at a concentration as low as 62.5 μg/mL in all three cell lines. Further optimization of the nanostructure properties will make it a promising candidate in the field of nano-biotechnology and bioengineering owing to its wide range of potential applications.
Collapse
Affiliation(s)
- Amol Kahandal
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Sanyukta Chaudhary
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Saakshi Methe
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Pratik Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, MH, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| | - Chandrakant K Tagad
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| |
Collapse
|
49
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2023:10.1007/s10895-023-03560-1. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
50
|
Boudie C, Maréchal M, Ah-Lung G, Jacquemin J, Nockemann P. Tuneable-by-design copper oxide nanoparticles in ionic liquid nanofluids. NANOSCALE 2023; 15:18423-18434. [PMID: 37937721 DOI: 10.1039/d3nr04159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In this study, copper oxide nanoparticles (CuO-NPs) were synthesised in an ionic liquid, [C2MIm][CnHnCO2], and the respective copper(II) carboxylate precursors. Heating the solution to 120 °C caused a colour change from blue to red, indicating a change in copper salt coordination and nanoparticle formation. Crystallography and UV-Vis spectroscopy were used to monitor the transition upon temperature changes. The particle formation was characterised using TEM and SWAXS analyses. The results showed that different anion chain lengths led to different particle sizes. When using copper(II) acetate precursors, the transformation resulted in CuO(I,II) clusters (<1 nm), depending on the imidazolium-based cation used. However, using a copper(II) octanoate precursor, small CuO-NPs in the range of 10-25 nm were formed, while larger CuO-NPs were obtained using a copper(II) butanoate precursor in the range of 10-61 nm.
Collapse
Affiliation(s)
- Claire Boudie
- The QUILL Research Centre, Queen's University Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Manuel Maréchal
- Univ. Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Guillaume Ah-Lung
- MSN Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Johan Jacquemin
- The QUILL Research Centre, Queen's University Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
- MSN Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Peter Nockemann
- The QUILL Research Centre, Queen's University Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| |
Collapse
|