1
|
Chathuranga K, Rathnapala P, Weerawardhana A, Kim TH, Seong Y, Gayan Chathuranga WA, Subasinghe A, Haluwana DK, Gamage N, Choi YJ, Jung JU, Lee JS. The E3 ubiquitin ligase MARCH2 controls TNF-α mediated inflammation by autoubiquitination. Cell Commun Signal 2025; 23:257. [PMID: 40450320 DOI: 10.1186/s12964-025-02260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/20/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Regulation of the nuclear factor-kappa B (NF-kB) signaling pathway is a major host homeostatic mechanism for controlling hyper-inflammation or chronic inflammation. Despite extensive research, the regulatory factors of NF-kB signaling required to preserve homeostasis and control inflammatory disorders are not fully understood. Moreover, the role of MARCH2 in chronic inflammation models and the regulation of MARCH2 activation remain to be elucidated. METHODS We monitored disease severity and mortality in MARCH2-/- or MARCH2+/+ mice induced experimental colitis. Susceptibility to DSS-induced experimental colitis was determined by various methods, including Swiss roll assay and fluorescein isothiocyanate (FITC)-dextran treatment, respectively. RNA-sequencing was conducted to recognize the inflammatory response-related genes in the distal colon of colitis-induced mice. Enzyme-linked immunosorbent assay (ELISA) was used to measure the cytokines and chemokines with in vitro and in vivo samples. Affinity purification and LC-MS/MS analysis were used to identify the MARCH2 interacting proteins and posttranslational modifications. The underlying mechanism was elucidated using immunoblotting, co-immunoprecipitation, ubiquitination assay, and confocal microscopy. RESULT Here, we report that MARCH2-/- mice were more susceptible to experimental inflammatory bowel disease (IBD) due to the massive production of cytokines. Stimulation by inflammatory cytokines such as TNF induces dimerization of MARCH2 at a later stage and dimerized MARCH2 undergoes K63-linked autoubiquitination at lysine 127 and 238, which promotes NEMO recognition, ubiquitination and proteasomal degradation. We also show an interaction between MARCH2 and MARCH8 in resting cells that inhibits MARCH2 activation. Taken together, these findings provide new insights into the molecular mechanism of MARCH2 and suggest a crucial role of MARCH2 in the modulation of inflammation and cellular homeostasis. CONCLUSION Our results indicate that MARCH2 plays a critical role in regulating NEMO/IKKγ under the inflammatory and resting conditions, thereby suppressing excessive or unexpected inflammatory responses. Our findings here not only demonstrate a biological role of MARCH2 in inflammatory signaling pathways but also provide a novel insight in the underlying mechanism.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Pramodya Rathnapala
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Asela Weerawardhana
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Tae-Hwan Kim
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yebin Seong
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - W A Gayan Chathuranga
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ashan Subasinghe
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - D K Haluwana
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Nuwan Gamage
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Youn Jung Choi
- Kao Autoimmunity Institute and Division of Rheumatology, Department of Medicine, Ce dars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jong-Soo Lee
- Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Identification of a gene controlling levels of the copper response regulator 1 transcription factor in Chlamydomonas reinhardtii. THE PLANT CELL 2024; 37:koae300. [PMID: 39777451 PMCID: PMC11708838 DOI: 10.1093/plcell/koae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia. By selecting for mutants able to swim even in normoxia, we obtained strains that constitutively express the reporter gene. One identified mutant was affected in a gene encoding an F-box protein 3 (FBXO3) that participates in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 (constitutive expression of hydrogenases and copper-responsive genes), triggers the upregulation of genes known to be targets of copper response regulator 1 (CRR1), a transcription factor involved in the nutritional copper signaling pathway and in the hypoxia response pathway. CRR1 was required for upregulating the HYDA1 reporter gene expression in response to hypoxia and for the constitutive expression of the reporter gene in cehc1-1 mutant cells. The CRR1 protein, normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 facilitates CRR1 degradation. Our results describe a previously unknown pathway for CRR1 inhibition and possibly other pathways leading to complex metabolic changes.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Matthew LaVoie
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Paul A Lefebvre
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Sean D Gallaher
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Anne G Glaesener
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Daniela Strenkert
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Radhika Mehta
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Sabeeha S Merchant
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Carolyn D Silflow
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
3
|
El Shanawany EE, Younis SS, Nemr WA, Hassan SE, Zalat RS, Desouky HM, Shaapan RM, Abdel-Rahman EH. Effectiveness of Gamma Rays in Attenuation of Toxoplasma gondii Pathogenicity and Eliciting Immune Response in Mice. Parasite Immunol 2024; 46:e13077. [PMID: 39660943 DOI: 10.1111/pim.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Gamma irradiation was applied to the tachyzoites Toxoplasma gondii virulent strain at doses of 0.25, 0.5, 1, 1.5 and 2 KGy. Radiation's effects were assessed both in vivo and in vitro. In vitro, the modest dosage of radiation, 0.25 KGy, showed 97% tachyzoites viability with only slight surface abnormalities and a normal crescent form using a scanning electron microscope. Protein analysis by SDS-PAGE demonstrated that while higher doses of radiation altered the protein banding profile, the 0.25 KGy irradiated tachyzoites showed no significant changes compared to the control (non-irradiated tachyzoites). While, tachyzoites exposed to the higher dose of irradiation (1, 1.5 and 2 KGy) resulted in the appearance of a new protein band as the molecular weights detected were 60, 30 and 10 kDa for antigens prepared from tachyzoites exposed to 1 kDa, and 1.5 and 60, 28 kDa for antigen prepared from tachyzoites exposed to 2 KGy. The immunogenicity of the tachyzoites exposed to radiation did not reveal any significant change in comparison with no irradiated tachyzoites when tested by ELISA using sheep-infected sera. A study conducted in vivo evaluated the infectivity of irradiation tachyzoites by inoculating mice with a 2500 tachyzoites virulent strain/mouse. There are six groups of mice, each with twelve animals, for the six doses of radiation. Mice harbouring irradiation tachyzoites remained viable until 40 days post-inoculation. On the other hand, the mice of control group had a mean survival time of 6.5 ± 0.22 days, and none of them survived past 7 dpi. Comparing the attenuated T. gondii tachyzoites at 0.25 KGy to the control group and other groups injected with irradiated tachyzoites, the results showed statistically significant increases in total IgG. Compared to other irradiation groups, the group injected with 0.25 KGy irradiated tachyzoites had a considerably higher level of IFN γ and IL17 (p < 0.000001). The groups which received 0.25 and 0.5 KGy irradiated tachyzoites as an injection showed no discernible variation in their higher levels of IL12. The findings imply that gamma irradiation was successful in reducing the pathogenicity of the T. gondii virulent strain while preserving the potential of the irradiated tachyzoites to induce an immunological reaction. An investigation into this immune response's immunoprotective potential is advised.
Collapse
Affiliation(s)
- Eman E El Shanawany
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Salwa Sami Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Waleed A Nemr
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Soad E Hassan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Rabab S Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hassan M Desouky
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, Dokki- Giza, Egypt
| | - Raafat M Shaapan
- Department of Zoonosis, Veterinary Research Division, National Research Center, Dokki, Giza, Egypt
| | - Eman H Abdel-Rahman
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
5
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
6
|
Wang C, Wang Y, Feng M, Yuan R, Chen G. A thiol-anchored solvatochromic and fluorogenic molecular rotor for covalent protein labeling in SDS-PAGE and mitochondria specific fluorescence imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3684-3691. [PMID: 38804857 DOI: 10.1039/d4ay00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fluorescent labeling is a widely used method for protein detection and fluorescence imaging. A solvatochromic and fluorogenic molecular rotor DASPBCl was developed for covalent protein labeling in solution and SDS-PAGE, and also for stable mitochondria labeling and fluorescence imaging. The dye DASPBCl consisted of a 4-(N,N-dimethylamino)phenyl moiety as the electron donor and a positively charged N-benzylpyridinium moiety as the electron acceptor. A benzyl chloride group was introduced into the pyridine moiety for covalent labeling of thiol in proteins. When the fluorescent dye DASPBCl is covalently labeled to the thiol of proteins, significantly enhanced fluorescence was obtained, which is attributed to the polarity sensitivity caused solvatochromic effect from the hydrophobic protein structure and the viscosity sensitivity caused fluorogenic effect from the restriction of single bond rotation. DASPBCl exhibits high sensitivity and good linear response for protein detection in SDS-PAGE analysis with both the pre-staining method and post-staining method. DASPBCl was also successfully used for covalently protein-anchored fluorescence imaging of mitochondria in living cells.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yujie Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Mengxiang Feng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rongrong Yuan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
8
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
9
|
Chathuranga WAG, Nikapitiya C, Kim JH, Chathuranga K, Weerawardhana A, Dodantenna N, Kim DJ, Poo H, Jung JU, Lee CH, Lee JS. Gadd45β is critical for regulation of type I interferon signaling by facilitating G3BP-mediated stress granule formation. Cell Rep 2023; 42:113358. [PMID: 37917584 DOI: 10.1016/j.celrep.2023.113358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45β) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45β deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45β knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45β interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45β markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45β complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45β as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.
Collapse
Affiliation(s)
- W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea; Livestock Products Analysis Division, Division of Animal Health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon 34146, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRRIB), Daejeon 34141, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea.
| |
Collapse
|
10
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
11
|
Lloyd-Jones C, Dos Santos Seckler H, DiStefano N, Sniderman A, Compton PD, Kelleher NL, Wilkins JT. Preparative Electrophoresis for HDL Particle Size Separation and Intact-Mass Apolipoprotein Proteoform Analysis. J Proteome Res 2023; 22:1455-1465. [PMID: 37053489 PMCID: PMC10436667 DOI: 10.1021/acs.jproteome.2c00804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The most abundant proteins on high-density lipoproteins (HDLs), apolipoproteins A-I (APOA1) and A-II (APOA2), are determinants of HDL function with 15 and 9 proteoforms (chemical-structure variants), respectively. The relative abundance of these proteoforms in human serum is associated with HDL cholesterol efflux capacity, and cholesterol content. However, the association between proteoform concentrations and HDL size is unknown. We employed a novel native-gel electrophoresis technique, clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE) paired with mass spectrometry of intact proteins to investigate this association. Pooled serum was fractionated using acrylamide gels of lengths 8 and 25 cm. Western blotting determined molecular diameter and intact-mass spectrometry determined proteoform profiles of each fraction. The 8- and 25 cm experiments generated 19 and 36 differently sized HDL fractions, respectively. The proteoform distribution varied across size. Fatty-acylated APOA1 proteoforms were associated with larger HDL sizes (Pearson's R = 0.94, p = 4 × 10-7) and were approximately four times more abundant in particles larger than 9.6 nm than in total serum; HDL-unbound APOA1 was acylation-free and contained the pro-peptide proAPOA1. APOA2 proteoform abundance was similar across HDL sizes. Our results establish CN-GELFrEE as an effective lipid-particle separation technique and suggest that acylated proteoforms of APOA1 are associated with larger HDL particles.
Collapse
Affiliation(s)
- Cameron Lloyd-Jones
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Henrique Dos Santos Seckler
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas DiStefano
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Allan Sniderman
- Royal Victoria Hospital-McGill University Health Centre, Montreal, Quebec H3A 1W9, Canada
| | - Phillip D Compton
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John T Wilkins
- Departments of Medicine (Cardiology) and Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
12
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
13
|
Srivastava A, Mohan S, Davies KG. Exploring Bacillus thuringiensis as a model for endospore adhesion and its potential to investigate adhesins in Pasteuria penetrans. J Appl Microbiol 2022; 132:4371-4387. [PMID: 35286009 PMCID: PMC9311801 DOI: 10.1111/jam.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Aims Phytonematodes are a constraint on crop production and have been controlled using nematicides; these are highly toxic and legislation in Europe and elsewhere is prohibiting their use and alternatives are being sought. Pasteuria penetrans is a hyperparasitic bacterium that form endospores and have potential to control root‐knot nematodes (Meloidogyne spp.), but their attachment to the nematode cuticle is host‐specific. Understanding host specificity has relied upon endospore inhibition bioassays using immunological and biochemical approaches. Phylogenetic analysis of survey sequences has shown P. penetrans to be closely related to Bacillus and to have a diverse range of collagen‐like fibres which we hypothesise to be involved in the endospore adhesion. However, due to the obligately hyperparasitic nature of Pasteuria species, identifying and characterizing these collagenous‐like proteins through gain of function has proved difficult and new approaches are required. Methods and Results Using antibodies raised to synthetic peptides based on Pasteuria collagen‐like genes we show similarities between P. penetrans and the more easily cultured bacterium Bacillus thuringiensis and suggest it be used as a gain of function platform/model. Using immunological approaches similar proteins between P. penetrans and B. thuringiensis are identified and characterized, one >250 kDa and another ~72 kDa are glycosylated with N‐acetylglucosamine and both of which are digested if treated with collagenase. These treatments also affected endospore attachment and suggest these proteins are involved in adhesion of endospores to nematode cuticle. Conclusion There are conserved similarities in the collagen‐like proteins present on the surface of endospores of both P. penetrans and B. thuringiensis. Significance and Impact of Study As B. thuringiensis is relatively easy to culture and can be transformed, it could be developed as a platform for studying the role of the collagen‐like adhesins from Pasteuria in endospore adhesion.
Collapse
Affiliation(s)
- Arohi Srivastava
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi110012, India
| | - Keith G Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
14
|
Sun X, Miao L, Chen R, Wang H, Xia J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113883. [PMID: 34601348 DOI: 10.1016/j.jenvman.2021.113883] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Microbially induced calcite precipitation (MICP) has been shown to mitigate sand erosion; however, few studies have applied MICP on loess soils. In this study, polyacrylamide (PAM) was added to the cementation solution, and combined MICP-PAM treatment was applied to improve the surface erosion resistance of loess-slopes. The freeze-thaw (FT) durability of MICP-PAM treated loess slopes was also studied. The obtained results showed that MICP-PAM treatment improved erosion resistance and addition of 1.5 g/L PAM achieved the best erosion control and highest surface strength. The high erosion resistance of MICP-PAM treated slopes could be attributed to the stable spatial structure of precipitation, and PAM addition conveyed stronger resistance to tension or shear force. With increasing number of FT cycles, the surface strength of MICP-PAM treated loess slopes decreased; however, slopes subjected to 12 FT cycles still only lost little soil. In MICP-PAM treated loess slopes, cracks and pores evolved with increasing number of FT cycles. With increasing number of FT cycles, porosity and fractal dimension increased, pore ellipticity decreased slightly, and the percentage of various pores changed slightly. The number of FT cycles had less effect on MICP-PAM treated loess slopes than on untreated slopes. MICP-PAM treatment significantly mitigated surface erosion of loess-slopes and improved FT weathering resistance, thus presenting promising potential for application in the field. In addition, based on the linear correlations between surface strength and rainfall-erosion resistance, surface strength could be measured to evaluate the rainfall-erosion resistance for MICP-PAM treated slopes in practical engineering applications.
Collapse
Affiliation(s)
- Xiaohao Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Runfa Chen
- Beijing Urban Construction Group Co. Ltd, Beijing, 210096, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jingxin Xia
- School of Transportation, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
15
|
Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Lamzira Z, Salah RBEN, Saalaoui E, Ghabbour N, Asehraou A. Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J Genet Eng Biotechnol 2021; 19:117. [PMID: 34370148 PMCID: PMC8353020 DOI: 10.1186/s43141-021-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Background Oleuropein, the main bitter phenolic glucoside responsible for green olive bitterness, may be degraded by the β-glucosidase enzyme to release glucose and phenolic compounds. Results Lactobacillus plantarum FSO1 and Candida pelliculosa L18 strains, isolated from natural fermented green olives, were tested for their β-glucosidase production and activity at different initial pH, NaCl concentrations, and temperature. The results showed that strains produced extracellular and induced β-glucosidase, with a molecular weight of 60 kD. The strains demonstrated their biodegradation capacity of oleuropein, associated with the accumulation of hydroxytyrosol and other phenolic compounds, resulting in antioxidant activity values significantly higher than that of ascorbic acid. The highest production value of β-glucosidase was 0.91 U/ml obtained at pH 5 and pH 6, respectively for L. plantarum FSO1 and C. pelliculosa L18. The increase of NaCl concentration, from 0 to 10% (w/v), inhibited the production of β-glucosidase for both strains. However, the β-glucosidase was activated with an increase of NaCl concentration, with a maximum activity obtained at 8% NaCl (w/v). The enzyme activity was optimal at pH 5 for both strains, while the optimum temperature was 45 °C for L. plantarum FSO1 and 35 °C for C. pelliculosa L18. Conclusions L. plantarum FSO1 and C. pelliculosa L18 strains showed their ability to produce an extracellular and induced β-glucosidase enzyme with promising traits for application in the biological processing of table olives.
Collapse
Affiliation(s)
- Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco.
| | - Houssam Abouloifa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Ismail Hasnaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Sara Gaamouche
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Zahra Lamzira
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Riadh B E N Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, BP 717, Oujda, Morocco
| |
Collapse
|
16
|
Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, Geyeregger R, Kratzer B, Jäger U, Kunert R, Pickl WF, Traxlmayr MW. Directed Evolution of Stabilized Monomeric CD19 for Monovalent CAR Interaction Studies and Monitoring of CAR-T Cell Patients. ACS Synth Biol 2021; 10:1184-1198. [PMID: 33843201 PMCID: PMC8155657 DOI: 10.1021/acssynbio.1c00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD19 is among the most relevant targets in cancer immunotherapy. However, its extracellular domain (ECD) is prone to aggregation and misfolding, representing a major obstacle for the development and analysis of CD19-targeted therapeutics. Here, we engineered stabilized CD19-ECD (termed SuperFolder) variants, which also showed improved expression rates and, in contrast to the wild type protein, they could be efficiently purified in their monomeric forms. Despite being considerably more stable, these engineered mutants largely preserved the wild type sequence (>98.8%). We demonstrate that the variant SF05 enabled the determination of the monovalent affinity between CD19 and a clinically approved FMC63-based CAR, as well as monitoring and phenotypic characterization of CD19-directed CAR-T cells in the blood of lymphoma patients. We anticipate that the SuperFolder mutants generated in this study will be highly valuable tools for a range of applications in basic immunology and CD19-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Elisabeth Laurent
- Department of Biotechnology and BOKU Core Facility Biomolecular and Cellular Analysis, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Anna Sieber
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Anna Wachernig
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jacqueline Seigner
- Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Manfred Lehner
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - René Geyeregger
- St. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
17
|
Zheng YF, Wu MC, Chien HJ, Wang WC, Kuo CY, Lai CC. Honey proteomic signatures for the identification of honey adulterated with syrup, producing country, and nectar source using SWATH-MS approach. Food Chem 2021; 354:129590. [PMID: 33756333 DOI: 10.1016/j.foodchem.2021.129590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 01/18/2023]
Abstract
Honey is widely consumed by humans, due to its multiple applications as a food constituent and its therapeutic effects. This study reports on the discrimination of honey products from different geographical and botanical sources, as well as honey products containing distinct forms of syrup used in honey adulteration. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS)-based proteomic analysis combined with chemometrics was successfully applied in identifying characteristic proteins that can be used as biomarkers of the original source of honey. Honey samples from different producing regions (Tainan, Changhua, and Taichung), countries (Taiwan and Thailand), and distinct botanical sources (longan and litchi) were clearly distinguished by the developed orthogonal projections to latent structures discriminant analysis (OPLS-DA) model with good fitness and prediction ability. Furthermore, we successfully discriminated the adulteration of honey with syrup in different proportions (even with honey content as low as 20%) with this proteomic SWATH-MS platform.
Collapse
Affiliation(s)
- Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40447, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
18
|
Panda PP, Bohot M, Chaturvedi MM, Purohit JS. Purification and partial characterization of vinculin from chicken liver nuclear extract. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hassanain MA, Toaleb NI, Shaapan RM, Hassanain NA, Maher A, Yousif AB. Immunological detection of human and camel cystic echinococcosis using different antigens of hydatid cyst fluid, protoscoleces, and germinal layers. Vet World 2021; 14:270-275. [PMID: 33642814 PMCID: PMC7896894 DOI: 10.14202/vetworld.2021.270-275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Cystic echinococcosis (CE)/hydatidosis is one of the most prevalent neglected zoonotic diseases. It is initially asymptomatic and does not produce any clinical signs until the cyst becomes enlarged, causing localized pressure on internal organs and tissues. Therefore, the detection of Echinococcus granulosus antibodies is highly essential. This study evaluated the antigens of hydatid cyst fluid, protoscoleces, and germinal layers for efficient immunological diagnosis of CE in humans and camels. MATERIALS AND METHODS Hydatid cyst fluid (FLc), protoscoleces (Psc), and the germinal layer (GLc) antigens were prepared from camel-lung hydatid cysts. In the same way, hydatid cyst fluid (FLh) and protoscoleces (Psh) antigens from human-liver cyst aspirate were produced. The comparative immunodiagnostic efficacy of the prepared antigens was verified using indirect enzyme-linked immunosorbent assay (ELISA), SDS-PAGE, and immunoblotting. RESULTS ELISA proves that FLc and GLc antigens were higher than FLh and Psh antigens. This shows that binding reactivity in naturally infected human sera, camel sera, and Psc is the most potent, exhibiting 100% sensitivity with 78.26% and 76.47% specificity in camel and human sera, respectively. The CE prevalence using diagnostic Psc was 54.79% and 61.32% in tested human and camel sera, respectively. The electrophoretic profiles of all shared antigens showed similarities at 52, 41, and 22 kDa. Immunoblotting demonstrated common immune-reactive bands in all antigen types at 52 and 41 kDa against positive human and camel sera. CONCLUSION This immunological study introduces camel hydatid cyst Psc as a potent diagnostic antigen and new immune-reactive fractions of 52 and 41 kDa for diagnosing hydatidosis in humans and camels.
Collapse
Affiliation(s)
- Mohey A. Hassanain
- Department of Zoonotic Diseases, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt
| | - Nagwa I. Toaleb
- Department of Parasitology and Animal Diseases, National Research Center, El-Tahrir Street, Dokki, Giza, Egypt
| | - Raafat M. Shaapan
- Department of Zoonotic Diseases, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt
| | - Nawal A. Hassanain
- Department of Zoonotic Diseases, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt
| | - Ahmed Maher
- Department of Zoonotic Diseases, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt
| | | |
Collapse
|
20
|
Nagdas SK, Wallace S, Eaford D, Baker R, Carr K, Raychoudhuri SS. Fibrinogen-related protein, FGL2, of hamster cauda epididymal fluid: Purification, kinetic analysis of its prothrombinase activity, and its role in segregation of nonviable spermatozoa. Mol Reprod Dev 2020; 87:1206-1218. [PMID: 33216420 DOI: 10.1002/mrd.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022]
Abstract
Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Shamar Wallace
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Don Eaford
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Rashad Baker
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Ky'ara Carr
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Samir S Raychoudhuri
- Department of Biology, Chemistry and Environmental Health Science, Benedict College, Columbia, South Carolina, USA
| |
Collapse
|
21
|
Chathuranga K, Kim TH, Lee H, Park JS, Kim JH, Chathuranga WAG, Ekanayaka P, Choi YJ, Lee CH, Kim CJ, Jung JU, Lee JS. Negative regulation of NEMO signaling by the ubiquitin E3 ligase MARCH2. EMBO J 2020; 39:e105139. [PMID: 32935379 PMCID: PMC7604578 DOI: 10.15252/embj.2020105139] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
NF‐κB essential modulator (NEMO) is a key regulatory protein that functions during NF‐κB‐ and interferon‐mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO‐mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K‐48‐linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2−/− mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.
Collapse
Affiliation(s)
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Jun-Seol Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | | | - Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
22
|
Marrón-Grijalba E, Cardona-Félix CS, Cruz-Escalona VH, Muñoz-Ochoa M, Cabral-Romero C, Hernández-Delgadillo R, Rivera-Pérez C, Aguila-Ramírez RN. Biochemical characterization and in vitro biological activities of the epithelial cell extracts from Hypanus dipterurus spine. Toxicon 2020; 187:129-135. [PMID: 32916140 DOI: 10.1016/j.toxicon.2020.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Ocean organisms live in competitive environments that demand the production of poisons and toxins. In some cases, these substances have been used in the pharmaceutical industry for human disease treatments. Most fish poisons generally have potent cytolytic activity, probably through cardiovascular and neuromuscular effects. In the case of marine stingrays, the injuries made by their tail venom apparatus are caused by the mechanical penetration of their sting and a subsequent venom release. This study focused on the evaluation of substances with cytotoxic activity in the epithelium that covers the venom apparatus from the marine stingray Hypanus dipterurus. To demonstrate the above, the hemolytic, proteolytic and cytotoxic capacities of H. dipterurus epithelium substances were determined. Discs impregnated with epithelial extract were used on blood agar plates. The proteolytic activity was analyzed using casein as substrate and for gelatin the liquefaction activity test. To determine the cytotoxicity degree of the extracts, the proliferation and cell viability MTT bioassay was implemented on human cervical carcinoma cells (HeLa). The results showed that no hemolytic or proteolytic activity existed against casein associated with the epithelial extract, but gelatin hydrolysis and cytotoxic activity against the HeLa cell line were observed. This study concludes that the substances found in the epithelium covering the H. dipterurus stingray venom apparatus are a mixture of various proteins, among which, glycosylated anionic proteins represent a potential source of molecules with cytotoxic and hydrolytic activity.
Collapse
Affiliation(s)
- Estrella Marrón-Grijalba
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - César Salvador Cardona-Félix
- CONACyT-Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Víctor Hugo Cruz-Escalona
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Mauricio Muñoz-Ochoa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo León, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Eduardo Aguirre Pequeño, Mitras Centro, 64460, Monterrey, N.L., Mexico.
| | - René Hernández-Delgadillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Eduardo Aguirre Pequeño, Mitras Centro, 64460, Monterrey, N.L., Mexico.
| | - Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas Del Noroeste, Km. 1 Carretera a San Juan de La Costa, La Paz, BCS, 23205, Mexico.
| | - Ruth Noemí Aguila-Ramírez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
23
|
Mombeni M, Arjmand S, Siadat SOR, Alizadeh H, Abbasi A. pMOX: a new powerful promoter for recombinant protein production in yeast Pichia pastoris. Enzyme Microb Technol 2020; 139:109582. [DOI: 10.1016/j.enzmictec.2020.109582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/27/2022]
|
24
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
25
|
Muñoz‐Bacasehua C, Rosas‐Rodríguez JA, Arvizu‐Flores AA, Stephens‐Camacho A, Soñanez‐Organis JG, Figueroa‐Soto CG, Valenzuela‐Soto EM. Heterogeneity of active sites in recombinant betaine aldehyde dehydrogenase is modulated by potassium. J Mol Recognit 2020; 33:e2869. [DOI: 10.1002/jmr.2869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 01/26/2023]
Affiliation(s)
- César Muñoz‐Bacasehua
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Jesús A. Rosas‐Rodríguez
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | | | - Aurora Stephens‐Camacho
- Licenciatura en Nutrición HumanaUniversidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo Navojoa México
| | - José G. Soñanez‐Organis
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | - Ciria G. Figueroa‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Elisa M. Valenzuela‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| |
Collapse
|
26
|
Mohammadi A, Rahmandoust M, Mirzajani F, Azadkhah Shalmani A, Raoufi M. Optimization of the interaction of graphene quantum dots with lipase for biological applications. J Biomed Mater Res B Appl Biomater 2020; 108:2471-2483. [PMID: 32083405 DOI: 10.1002/jbm.b.34579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Abstract
Graphene quantum dots (GQDs) are known as emerging sub-10 nm nanoparticles (NPs), which are in fact few-layered pieces of graphene, capable of emitting blue fluorescence, when exposed to 360 nm UV light. Understanding the details of the interaction between GQDs and lipase can serve as a critical step for improving the biological outcome of GQD-derived drug-delivery and diagnosis systems. The interaction occurs in the form of surface adsorption, which can subsequently influence the physicochemical properties of both the NP and the protein. Hence, a systematic approach was taken here to optimize the GQDs' synthesis conditions in order to achieve the highest possible quantum yield (QY). Furthermore, to understands the influence of the interaction of GQDs and lipase, on both the activity of lipase and the emission intensity of GQDs, various incubation conditions were tested to achieve optimized conditions over central composite design algorithm by Design-Expert®, using response surface methodology. The results show that the GQDs fabricated by thermal decomposition of citric acid at 160°C, with a heating duration of 55 min, obtain almost three times higher QY than the highest values reported previously. The best enzymatic activity after the formation of the hard corona, as well as the highest fluorescent emission, were achieved at GQD-to-enzyme ratios within the rage of 23-25%, at temperatures between 41 and 42°C, for 6-8 min. In the aforementioned condition, the enzyme retains 91-95% of its activity and the NP preserves about 80-82% of its fluorescence intensity after incubation.
Collapse
Affiliation(s)
- Asra Mohammadi
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Fateme Mirzajani
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Mohammad Raoufi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Physical Chemistry I and Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| |
Collapse
|
27
|
Romanova Y, Laikov A, Markelova M, Khadiullina R, Makseev A, Hasanova M, Rizvanov A, Khaiboullina S, Salafutdinov I. Proteomic Analysis of Human Serum from Patients with Chronic Kidney Disease. Biomolecules 2020; 10:biom10020257. [PMID: 32046176 PMCID: PMC7072325 DOI: 10.3390/biom10020257] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is an important public health problem in the world. The aim of our research was to identify novel potential serum biomarkers of renal injury. ELISA assay showed that cytokines and chemokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGFb, G-CSF, GM-CSF, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-1bb, RANTES, TNF-α and VEGF were significantly higher (R > 0.6, p value < 0.05) in the serum of patients with CKD compared to healthy subjects, and they were positively correlated with well-established markers (urea and creatinine). The multiple reaction monitoring (MRM) quantification method revealed that levels of HSP90B2, AAT, IGSF22, CUL5, PKCE, APOA4, APOE, APOA1, CCDC171, CCDC43, VIL1, Antigen KI-67, NKRF, APPBP2, CAPRI and most complement system proteins were increased in serum of CKD patients compared to the healthy group. Among complement system proteins, the C8G subunit was significantly decreased three-fold in patients with CKD. However, only AAT and HSP90B2 were positively correlated with well-established markers and, therefore, could be proposed as potential biomarkers for CKD.
Collapse
Affiliation(s)
- Yulia Romanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
- Correspondence: (Y.R.); (I.S.); Tel.: +7-927-418-90-02 (Y.R.); +7-917-867-43-60 (I.S.)
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
| | - Rania Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
| | - Alfiz Makseev
- Republican Clinical Hospital Ministry of Health Republic of Tatarstan, 420064 Kazan, Tatarstan, Russia; (A.M.); (M.H.)
| | - Milausha Hasanova
- Republican Clinical Hospital Ministry of Health Republic of Tatarstan, 420064 Kazan, Tatarstan, Russia; (A.M.); (M.H.)
- Department of Urology and Nephrology, Kazan State Medical Academy, 420012 Kazan, Tatarstan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA;
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tartastan, Russia; (A.L.); (M.M.); (R.K.); (A.R.)
- Correspondence: (Y.R.); (I.S.); Tel.: +7-927-418-90-02 (Y.R.); +7-917-867-43-60 (I.S.)
| |
Collapse
|
28
|
Lobner E, Wachernig A, Gudipati V, Mayrhofer P, Salzer B, Lehner M, Huppa JB, Kunert R. Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express" CD19 for Staining and Stimulation of CAR-T Cells. Front Bioeng Biotechnol 2020; 8:49. [PMID: 32117929 PMCID: PMC7020774 DOI: 10.3389/fbioe.2020.00049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.
Collapse
Affiliation(s)
- Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna Wachernig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
29
|
Toaleb NI, Helmy MS, Shanawany EEE, Abdel-Rahman EH. A simple and efficient purification method of native immunoreactive antigen for diagnosis of camel hydatidosis. Vet World 2020; 13:141-146. [PMID: 32158164 PMCID: PMC7020131 DOI: 10.14202/vetworld.2020.141-146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE), a zoonotic disease that affects animal and human health, is of increasing economic importance due to high morbidity rates and high economic losses in the livestock industry. AIM The present study was conducted to purify the antigen from hydatid cyst fluid (HCF) with high diagnostic efficacy of camel hydatidosis using indirect enzyme-linked immunosorbent assay (ELISA). MATERIALS AND METHODS The HCF antigen was purified using Sephacryl S-300 column chromatography. Characterization of fractions was performed using reducing and non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Further, antibodies against Echinococcus granulosus cysts in camel serum were detected using indirect ELISA. RESULTS The purification process resulted in three fractions of antigens: FI, FII, and FIII. Indirect ELISA showed that higher diagnostic efficacy was observed in FI than in FII and FIII. Indirect ELISA, in which FI was utilized, showed 88% sensitivity and 91.7% specificity. Non-reducing SDS-PAGE showed that FI had two bands of molecular weights 120 and 60 kDa. Western blot analysis of FI demonstrated that 60, 38, and 22 kDa were antigenic bands when reacted with naturally infected camel sera with E. granulosus cysts. Using indirect ELISA, F1 recorded an infection percentage of 81.7% in randomly collected camel serum samples. CONCLUSION FI is a promising antigen for accurate diagnosis of camel CE using indirect ELISA.
Collapse
Affiliation(s)
- Nagwa I. Toaleb
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Mohamed S. Helmy
- Department of Molecular Biology, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Eman E. El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
30
|
Larson L, Lioy J, Johnson J, Medler S. Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development. J Histochem Cytochem 2019; 67:891-900. [PMID: 31510854 PMCID: PMC6882066 DOI: 10.1369/0022155419876421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles comprise hundreds of individual muscle fibers, with each possessing specialized contractile properties. Skeletal muscles are recognized as being highly plastic, meaning that the physiological properties of single muscle fibers can change with appropriate use. During fiber type transitions, one myosin heavy chain isoform is exchanged for another and over time the fundamental nature of the fiber adapts to become a different fiber type. Within the rat triceps surae complex, the soleus muscle starts out as a muscle comprised of a mixture type IIA and type I fibers. As neonatal rats grow and mature, the soleus undergoes a near complete transition into a muscle with close to 100% type I fibers at maturity. We used immunohistochemistry and single fiber SDS-PAGE to track the transformation of type IIA into type I fibers. We found that transitioning fibers progressively incorporate new myofibrils containing type I myosin into existing type IIA fibers. During this exchange, distinct type I-containing myofibrils are segregated among IIA myofibrils. The individual myofibrils within existing muscle fibers thus appear to represent the functional unit that is exchanged during fiber type transitions that occur as part of normal muscle development.
Collapse
Affiliation(s)
- Lauren Larson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jessica Lioy
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jordan Johnson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| |
Collapse
|
31
|
Brämer C, Tünnermann L, Gonzalez Salcedo A, Reif OW, Solle D, Scheper T, Beutel S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography. MEMBRANES 2019; 9:E159. [PMID: 31783640 PMCID: PMC6950724 DOI: 10.3390/membranes9120159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies are conquering the biopharmaceutical market because they can be used to treat a variety of diseases. Therefore, it is very important to establish robust and optimized processes for their production. In this article, the first step of chromatography (Protein A chromatography) in monoclonal antibody purification was optimized with a focus on the critical elution step. Therefore, different buffers (citrate, glycine, acetate) were tested for chromatographic performance and product quality. Membrane chromatography was evaluated because it promises high throughputs and short cycle times. The membrane adsorber Sartobind® Protein A 2 mL was used to accelerate the purification procedure and was further used to perform a continuous chromatographic run with a four-membrane adsorber-periodic counter-current chromatography (4MA-PCCC) system. It was found that citrate buffer at pH 3.5 and 0.15 M NaCl enabled the highest recovery of >95% and lowest total aggregate content of 0.26%. In the continuous process, the capacity utilization of the membrane adsorber was increased by 20%.
Collapse
Affiliation(s)
- Chantal Brämer
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Lisa Tünnermann
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Alina Gonzalez Salcedo
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Oscar-Werner Reif
- Sartorius Stedim Biotech, August-Spindler-Straße 11, 37079 Göttingen, Germany;
| | - Dörte Solle
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| |
Collapse
|
32
|
Toaleb NI, Gabr HSM, Abd El-Shafy S, Abdel-Rahman EH. Evaluation of vaccine candidates purified from the adult ticks of Ornithodoros savignyi (Acari: Argasidae) and Hyalomma dromedarii (Acari: Ixodidae) against tick infestations. J Parasit Dis 2019; 43:246-255. [PMID: 31263330 PMCID: PMC6570741 DOI: 10.1007/s12639-018-01082-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Ticks cause anemia, toxicosis, growth delay, and transmit infectious diseases in animals and humans. The current study aimed to evaluate the immunoprophylactic properties of two vaccine candidates to develop vaccine against tick infestations. These two vaccine candidates were specific fraction from the adults of the soft tick Ornithodoros savignyi and cross-reactive fraction from the adults of the hard tick Hyalomma dromedarii. Both specific and cross-reactive fractions were isolated by Cyanogen Bromide-activated Sepharose-4B affinity column chromatography. Both candidates proved their cross-reactivity by enzyme linked immunosorbent assay and Western blot. Characterization of the two vaccines by SDS-PAGE showed that the O. savignyi specific fraction consists of four bands; 97, 85, 66 and 11.5 kDa compared with nine bands associated with its crude antigen (196-11.5 kDa). The H. dromedarii cross-reactive vaccine candidate consists of three bands; 97, 66 and 45 kDa compared to eight bands of its crude antigen (196-21 kDa). Two common bands of 97 and 66 kDa between two candidates showed immunogenic cross-reactivity with the developed antisera of both infestations by Western blot. Immunization of rabbits intramuscularly with two doses of the fractions separately (40 µg/kg) led to immunological and parasitological changes. Immunologically; the level of immunoglobulins in vaccinated rabbits increased significantly compared with control infested non-vaccinated rabbits. These immunoglobulins are probably responsible for the protective effect of both candidates. Parasitologically, immunized rabbits showed protection against infestation by adult ticks as proved by significant feeding rejection percentage and significant reduction in egg and engorgement weights of H. dromedarii. While insignificant protection was observed against O. savignyi ticks infestation in feeding rejection and reduction in engorgement weight. In conclusion, this study suggests promising immunoprophylactic potentials of the purified fractions against tick infestations in rabbits through induction of IgG responses. The protective effect of both vaccine candidates deserves further evaluation in other hosts and against other tick infestations.
Collapse
Affiliation(s)
- Nagwa I. Toaleb
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanan S. M. Gabr
- Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sobhy Abd El-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
33
|
Hernandez R, Glaros T, Rizzo G, Ferreira DF. Purification and Proteomic Analysis of Alphavirus Particles from Sindbis Virus Grown in Mammalian and Insect Cells. Bio Protoc 2019; 9:e3239. [PMID: 33654768 DOI: 10.21769/bioprotoc.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/02/2022] Open
Abstract
Current mass spectrometry (MS) methods and new instrumentation now allow for more accurate identification of proteins in low abundance than previous protein fractionation and identification methods. It was of interest if this method could serve to define the virus proteome of a membrane-containing virus. To evaluate the efficacy of mass spec to determine the proteome of medically important viruses, Sindbis virus (SINV), the prototypical alphavirus was chosen for evaluation. This model system was chosen specifically because the alphaviruses contain members which are human pathogens, this virus is well defined biochemically and structurally, and grows to high titers in both vertebrate and non-vertebrate host cells. The SINV proteome was investigated using this method to determine if host proteins are specifically packaged into infectious virions. It was also of interest if the SINV proteome, when grown in multiple host cells representing vertebrate and mosquito hosts, incorporated specific host proteins from all hosts. Observation of recurrent or distinctive proteins in the virus proteome aided in the determination of proteins incorporated into the virion as opposed to those bound to the particle exterior. Mass spectrometry analysis identified the total protein content of purified virions within limits of detection. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress, identifying at least one host factor integrally involved in alphavirus replication. Key to the success of this analysis is the method of virus purification which must deliver measurably infectious virus free of high levels of contaminants. For SINV and other members of the alphavirus family, this is accomplished by isopycnic centrifugation through potassium tartrate, followed by a high salt wash.
Collapse
Affiliation(s)
- Raquel Hernandez
- Department of Molecular and Structural Biology, North Carolina State University, Raleigh, USA
| | - Trevor Glaros
- U.S. Army Combat Capabilities Development Command (CCDC) Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Gabrielle Rizzo
- Excet, Inc. 6225 Brandon Ave, Suite 360, Springfield, VA 22150, USA
| | - Davis F Ferreira
- Department of Molecular and Structural Biology, North Carolina State University, Raleigh, USA.,Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Shanawany EEE, Hassan SE, Abdel-Rahman AAH, Abdel-Rahman EH. Toxocara vitulorum cuticle glycoproteins in the diagnosis of calves' toxocariasis. Vet World 2019; 12:288-294. [PMID: 31040572 PMCID: PMC6460866 DOI: 10.14202/vetworld.2019.288-294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022] Open
Abstract
Aim: The current study was designed to isolate and characterize Toxocara vitulorum glycoprotein antigens and then to evaluate its potency in accurate diagnosis of toxocariasis. Materials and Methods: T. vitulorum glycoprotein fractions were isolated using Con-A affinity chromatography. The fractions characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblot assay. Mass spectrometric analysis was used for identification of proposed structure of the N-acetylglucosamine (GlcNAc) fraction. Enzyme-linked immunosorbent assay (ELISA) was used to assess the diagnostic potential of the isolated fractions. Results: Surface of T. vitulorum adult worm revealed two glycoprotein fractions rich in glucose (Glc) and GlcNAc. Three bands of molecular weight 212kDa, 107 kDa, and 93 kDa were detected in Glc fraction by SDS-PAGE. These bands were also detected in GlcNAc fraction with an additional band of 49 kDa. GlcNAc fraction showed more diagnostic potency of calves’ toxocariasis; 79% than Glc fraction; 46.9% by indirect ELISA. The additional band of 49 kDa in GlcNAc fraction is probably responsible for its higher diagnostic potentials. Western blotting verified the immunoreactivity of the Glc and GlcNAc isolated fraction as they reacted with calves sera infected with toxocariasis. The proposed structure of GlcNAc fraction was Ser-Meth-Arg-O-methylated GlcNAc. Conclusion: GlcNAc-rich fraction of T. vitulorum can be successfully utilized in the diagnosis of calves’ toxocariasis.
Collapse
Affiliation(s)
- Eman E El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, Giza, Egypt
| | - Soad E Hassan
- Department of Parasitology and Animal Diseases, National Research Centre, Giza, Egypt
| | - Adel A-H Abdel-Rahman
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin-El Kom, Egypt
| | - Eman H Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, Giza, Egypt
| |
Collapse
|
35
|
Pequeno ACL, Arruda AA, Silva DF, Duarte Neto JMW, Silveira Filho VM, Converti A, Marques DAV, Porto ALF, Lima CA. Production and characterization of collagenase from a new Amazonian Bacillus cereus strain. Prep Biochem Biotechnol 2019; 49:501-509. [PMID: 30945982 DOI: 10.1080/10826068.2019.1587627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new collagenase producing a strain of Bacillus cereus, isolated from the pollen of a bee of Amazon Region (Brazil), had its enzyme characterized and the production medium composition and culture conditions enhanced. A two-level design on three factors, namely initial medium pH, the substrate (gelatin) concentration and agitation intensity, allowed identifying the first two variables as the most significant ones, while a central composite design (CCD) was subsequently used to identify their optimal levels. Statistics highlighted maximized collagenolytic activity when substrate concentration and initial medium pH were selected at their highest levels (positive effects), whereas agitation intensity at the lowest (negative effect). Triplicate runs performed under predicted optimal conditions (pH 7.8 and 1.7% gelatin concentration) yielded a collagenolytic activity (305.39 ± 5.15 U) 4.6- to 15-fold those obtained with the preliminary design. The enzyme displayed optimum activity at 45 °C and pH 7.2, was stable over wide ranges of pH values and temperatures (7.2-11.0 and 25-50 °C, respectively) and was strongly inhibited by 10 mM phenylmethylsulphonyl fluoride. The zymogram showed two prominent bands at 50 and 76 kDa. These results are a first attempt to elucidate the features of this new collagenase, its production conditions, and possible scale-up.
Collapse
Affiliation(s)
- Alexsandra C L Pequeno
- a Laboratory of Biotechnology and Therapeutic Innovation, University of Pernambuco-UPE , Garanhuns , PE , Brazil
| | - Aline A Arruda
- b Laboratory of Immunopathology Keizo Asami (LIKA) , Federal University of Pernambuco-UFPE , Recife , PE , Brazil
| | - Douglas F Silva
- a Laboratory of Biotechnology and Therapeutic Innovation, University of Pernambuco-UPE , Garanhuns , PE , Brazil
| | - José M W Duarte Neto
- b Laboratory of Immunopathology Keizo Asami (LIKA) , Federal University of Pernambuco-UFPE , Recife , PE , Brazil
| | - Vladimir M Silveira Filho
- a Laboratory of Biotechnology and Therapeutic Innovation, University of Pernambuco-UPE , Garanhuns , PE , Brazil
| | - Attilio Converti
- c Department of Civil, Chemical and Environmental Engineering , Genoa University , Genoa , Italy
| | - Daniela A V Marques
- d Laboratory of Microbiology and Parasitology, University of Pernambuco (UPE) , Serra Talhada , PE , Brazil
| | - Ana L F Porto
- e Department of Morphology and Animal Physiology , Federal Rural University of Pernambuco- UFRPE , Recife , PE , Brazil
| | - Carolina A Lima
- a Laboratory of Biotechnology and Therapeutic Innovation, University of Pernambuco-UPE , Garanhuns , PE , Brazil
| |
Collapse
|
36
|
Balestri F, Quattrini L, Coviello V, Sartini S, Da Settimo F, Cappiello M, Moschini R, Del Corso A, Mura U, La Motta C. Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chem Biol 2018; 25:1414-1418.e3. [PMID: 30122369 DOI: 10.1016/j.chembiol.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Aldose reductase (AKR1B1), the key enzyme of the polyol pathway, plays a crucial role in the development of long-term complications affecting diabetic patients. Nevertheless, the expedience of inhibiting this enzyme to treat diabetic complications has failed, due to the emergence of side effects from compounds under development. Actually AKR1B1 is a Janus-faced enzyme which, besides ruling the polyol pathway, takes part in the antioxidant defense mechanism of the body. In this work we report the evidence that a class of compounds, characterized by a pyrazolo[1,5-a]pyrimidine core and an ionizable fragment, modulates differently the catalytic activity of the enzyme, depending on the presence of specific substrates such as sugar, toxic aldehydes, and glutathione conjugates of toxic aldehydes. The study stands out as a systematic attempt to generate aldose reductase differential inhibitors (ARDIs) intended to target long-term diabetic complications while leaving unaltered the detoxifying role of the enzyme.
Collapse
Affiliation(s)
- Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Luca Quattrini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Vito Coviello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Stefania Sartini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mario Cappiello
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Roberta Moschini
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Antonella Del Corso
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Umberto Mura
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Concettina La Motta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy.
| |
Collapse
|
37
|
Abdullah HHAM, El-Shanawany EE, Abdel-Shafy S, Abou-Zeina HAA, Abdel-Rahman EH. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet World 2018; 11:1109-1119. [PMID: 30250371 PMCID: PMC6141297 DOI: 10.14202/vetworld.2018.1109-1119] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIM Q fever Coxiella burnetii is a worldwide zoonotic disease, and C. burnetii was detected in mammals and ticks. Ticks play an important role in the spread of C. burnetii in the environment. Therefore, the aims of this study were to detect Q fever C. burnetii in camels and ixodid ticks by molecular tools and identification of Hyalomma dromedarii and Hyalomma excavatum using molecular and immunological assays. MATERIALS AND METHODS A total of 113 blood samples from camels and 190 adult ticks were investigated for the infection with C. burnetii by polymerase chain reaction (PCR) and sequencing the targeting IS30A spacer. The two tick species H. dromedarii and H. excavatum were characterized molecularly by PCR and sequencing of 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit-1 (CO1) genes and immunologically by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. RESULTS A total of 52 camels (46%) were positive for Q fever infection. Only 10 adult ticks of H. dromedarii were infected with C. burnetii. The IS30A sequence was around 200 bp in length for C. burnetii in H. dromedarii ticks with a similarity of 99% when compared with reference data in GenBank records. The length of 16S rDNA and CO1 was 440 and 850 bp, respectively, for both H. dromedarii and H. excavatum. The phylogenetic status of H. dromedarii was distant from that of H. excavatum. SDS-PAGE revealed seven different bands in the adult antigens of either H. dromedarii or H. excavatum with molecular weights ranged from 132.9 to 17.7 KDa. In western blot analyses, the sera obtained from either infested camel by H. dromedarii or infested cattle by H. excavatum recognized four immunogenic bands (100.7, 49.7, 43.9, and 39.6 kDa) in H. dromedarii antigen. However, the infested camel sera identified two immunogenic bands (117 and 61.4 kDa) in H. excavatum antigen. Furthermore, the sera collected from cattle infested by H. excavatum recognized three immunogenic bands (61.4, 47.3, and 35 kDa) in H. excavatum antigen. CONCLUSION Molecular analyses indicated that both camels and ticks could be sources for infection of animals and humans with Q fever. Furthermore, the molecular analyses are more accurate tools for discriminating H. dromedarii and H. excavatum than immunological tools.
Collapse
Affiliation(s)
- Hend H. A. M. Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Eman E. El-Shanawany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hala A. A. Abou-Zeina
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
38
|
Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J Virol 2018; 92:JVI.00694-18. [PMID: 29743363 PMCID: PMC6026752 DOI: 10.1128/jvi.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.
Collapse
|
39
|
Wolfmeier H, Mansour SC, Liu LT, Pletzer D, Draeger A, Babiychuk EB, Hancock REW. Liposomal Therapy Attenuates Dermonecrosis Induced by Community-Associated Methicillin-Resistant Staphylococcus aureus by Targeting α-Type Phenol-Soluble Modulins and α-Hemolysin. EBioMedicine 2018; 33:211-217. [PMID: 29936135 PMCID: PMC6085503 DOI: 10.1016/j.ebiom.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), typified by the pulse-field type USA300, is an emerging endemic pathogen that is spreading rapidly among healthy people. CA-MRSA causes skin and soft tissue infections, life-threatening necrotizing pneumonia and sepsis, and is remarkably resistant to many antibiotics. Here we show that engineered liposomes composed of naturally occurring sphingomyelin were able to sequester cytolytic toxins secreted by USA300 and prevent necrosis of human erythrocytes, peripheral blood mononuclear cells and bronchial epithelial cells. Mass spectrometric analysis revealed the capture by liposomes of phenol-soluble modulins, α-hemolysin and other toxins. Sphingomyelin liposomes prevented hemolysis induced by pure phenol-soluble modulin-α3, one of the main cytolytic components in the USA300 secretome. In contrast, sphingomyelin liposomes harboring a high cholesterol content (66 mol/%) were unable to protect human cells from phenol-soluble modulin-α3-induced lysis, however these liposomes efficiently sequestered the potent staphylococcal toxin α-hemolysin. In a murine cutaneous abscess model, a single dose of either type of liposomes was sufficient to significantly decrease tissue dermonecrosis. Our results provide further insights into the promising potential of tailored liposomal therapy in the battle against infectious diseases.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Sarah C Mansour
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Leo T Liu
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Wu ZL, Huang X, Ethen CM, Tatge T, Pasek M, Zaia J. Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology 2018; 27:518-524. [PMID: 28025251 DOI: 10.1093/glycob/cww130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide found in the extracellular matrix (ECM) and on the cell membrane. It plays numerous roles in cellular events, including cell growth, migration and differentiation through binding to various growth factors, cytokines and other ECM proteins. Heparanase (HPSE) is an endoglycosidase that cleaves HS in the ECM and cell membrane. By degrading HS, HPSE not only alters the integrity of the ECM but also releases growth factors and angiogenic factors bound to HS chains, therefore, changes various cellular activities, including cell mobility that is critical for cancer metastasis. Accordingly, HPSE is an ideal drug target for cancer therapeutics. Here, we describe a method for non-reducing end labeling of HS via click chemistry (CC), and further use it in a novel HPSE assay. HS chains on a recombinant human syndecan-4 are first labeled at their non-reducing ends with GlcNAz using dimeric HS polymerase EXT1/EXT2. The labeled sample is then biotinylated through CC, immobilized on a multi-well plate and detected with ELISA. HPSE digestion of the biotinylated sample removes the label and, therefore, reduces the signal in ELISA assay. Non-reducing end labeling avoids the interference in an HPSE reaction caused by any internal labeling of HS. The assay is very sensitive with only 2.5 ng of labeled syndecan-4 needed in each reaction. The assay is also highly reproducible with a Z' > 0.6. Overall, this new method is suitable for high-throughput drug screening on HPSE.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Xinyi Huang
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Cheryl M Ethen
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Timothy Tatge
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Marta Pasek
- Department of Protein Purification, Bio-Techne, R&D Systems, Inc. 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
41
|
Szymczyk P, Krajewska WM, Jakubik J, Berner A, Janczukowicz J, Mikulska U, Berner J, Kiliańska ZM. Molecular Characterization of Cellular Proteins from Colorectal Tumors. TUMORI JOURNAL 2018; 82:376-81. [PMID: 8890974 DOI: 10.1177/030089169608200416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background Recent evidence has suggested that progressive stages of colorectal tumorigenesis can be defined by a sequence of genetic events characterized by altered expression of certain genes and the appearance of cancer-specific proteins. Although the significance of these events is still not clear, expression of cancer-specific protein components may be directly involved in the neoplastic transformation. The purpose of the present study was to compare molecular characteristics of cellular proteins from human colorectal tumors and normal colonic mucosa. Methods Normal mucosa and colorectal tumors from 18 patients were fractionated by a differential centrifugation scheme into four cellular fractions, i.e., nuclear, mitochondrial (10P), microsomal (100P) and cytosolic (100S). The proteins of these fractions from normal and tumorigenic mucosa were analyzed by one-dimensional polyacrylamide gel electrophoresis followed by Coomassie brilliant blue R-250 and silver nitrate staining. Nuclear proteins from normal and neoplastic tissues which had revealed the most significant diversities were further characterized by two-dimensional gel electrophoresis. Electrophoretically cancer-specific nuclear proteins in the molecular mass zone 35-40 kDa were used as immunogen to produce rabbit polyclonal antibodies. Results Electrophoretic analysis by one-dimensional gel electrophoresis showed clear differences in molecular characteristics of cellular proteins between normal and tumorigenic mucosa, especially among nuclear fractions. The latter were also confirmed by their two-dimensional electrophoresis results. Rabbit antibodies raised against electrophoretically specific nuclear proteins characterized by molecular mass of 35-40 kDa cross-reacted with 36 kDa polypeptide in 15 of 18 (83.3%) studied nuclear fractions of colorectal tumors but not with any normal mucosa. In some cases, nuclear cancer-associated components of 38 and 40 kDa were also recognized by these antibodies. Conclusions During colorectal carcinogenesis, specific expression of several nuclear proteins takes place. One of them, the polypeptide of 36 kDa not found in normal colonic epithelium, was shared by over 83% of the studied carcinomas despite variations in detailed cancer properties. This particular nuclear protein may be considered as a potential marker for the colon malignancy.
Collapse
Affiliation(s)
- P Szymczyk
- Department of Cytobiochemistry, University of Lódz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brichory F, Collet B, Pineau C, Desrues B, Toujas L, Pennec JP, Dazord L. Purification of a Tumoral Marker Recognized by Monoclonal Antibody Po66 and Associated with Human Lung Squamous Cell Carcinoma. Int J Biol Markers 2018; 11:148-52. [PMID: 8915709 DOI: 10.1177/172460089601100302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monoclonal antibody (MAb) Po66, a murine IgG1, was raised by immunization against human lung squamous cell carcinoma. When injected intravenously, Po66 showed prolonged retention in the tumor. It recognized an intracellular antigen. The human lung squamous carcinoma cell line SK-MES-1 expresses the antigen recognized by MAb Po66 and was used as a source of biological material for its purification. The SK-MES-1 cell line was labeled in culture with [35S]methionine and its lysate was immunoprecipitated with Po66 immobilized on Protein G-Sepharose. The precipitate contained three proteins (47, 50 and 69 kDa) absent in the controls. The 69 kDa polypeptide was further purified by anion exchange and immunoaffinity chromatographies. To date, no other tumor marker expressed in non-small cell lung cancer with these characteristics has been described and as such this marker is interesting for future use in immunotherapy and in diagnosis.
Collapse
Affiliation(s)
- F Brichory
- Département de Biologie Clinique et Expérimentale, Centre Régional de Lutte Contre le Cancer, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Chuang CF, King CE, Ho BW, Chien KY, Chang YC. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res 2018; 17:1953-1966. [DOI: 10.1021/acs.jproteome.8b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | | |
Collapse
|
44
|
Duarte Neto JMW, Wanderley MCDA, Lima CDA, Porto ALF. Single step purification via magnetic nanoparticles of new broad pH active protease from Penicillium aurantiogriseum. Protein Expr Purif 2018; 147:22-28. [PMID: 29448066 DOI: 10.1016/j.pep.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
A new set of applications can be achieved when using high stability proteases. Industrially, high costs can be related to production medium and purification process. Magnetic nanoparticles have been successfully used for rapid and scalable purification. In this work, azocasein were immobilized on magnetite nanoparticles and applied in a single step purification of protease produced by Penicillium aurantiogriseum using soybean flour medium, and the new purified enzyme was characterized. Glutaraldehyde activated nanoparticles were used in azocasein immobilization and then incubated with dialyzed 60-80% saline precipitation fraction of crude extract for purification. Adsorbents were washed 7 times (0.1 M NaCl solution) and eluted 3 times (1 M NaCl solution), these final elutions contained the purified protease. This protease was purified 55.68-fold, retaining 46% of its original activity. Presented approximately 40 kDa on SDS-PAGE and optimum activity at 45 °C and pH 9.0. Maintained over 60% of activity from pH 6.0 to 11.0. Kept more than 50% activity from 15 to 55 °C, did not lose any activity over 48 h at 25 °C. Inhibitors assay suggested a serine protease with aspartic residues on its active site. Results report a successful application of an alternative purification method and novel broad pH tolerant protease.
Collapse
Affiliation(s)
- José Manoel Wanderley Duarte Neto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil
| | - Maria Carolina de Albuquerque Wanderley
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil
| | - Carolina de Albuquerque Lima
- Faculdade de Ciência, Educação e Tecnologia de Garanhuns, Universidade de Pernambuco - UPE, Av. Capitão Pedro Rodrigues, n° 105, Garanhuns, PE, Brazil
| | - Ana Lúcia Figueiredo Porto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil; Departmento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco - UFRPE, Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.
| |
Collapse
|
45
|
Misuri L, Cappiello M, Balestri F, Moschini R, Barracco V, Mura U, Del-Corso A. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. J Enzyme Inhib Med Chem 2017; 32:1152-1158. [PMID: 28856935 PMCID: PMC6009938 DOI: 10.1080/14756366.2017.1363744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.
Collapse
Affiliation(s)
- Livia Misuri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Vito Barracco
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Umberto Mura
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Antonella Del-Corso
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Immunological evaluation of some antigens of Lucilia sericata larvae. J Parasit Dis 2017; 41:1086-1092. [PMID: 29114146 DOI: 10.1007/s12639-017-0939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/05/2017] [Indexed: 10/19/2022] Open
Abstract
The present study aimed to select an antigen of Lucilia sericata larvae showing both high antigenicity and cross-reactive binding abilities with other related antigens of L. sericata larvae for obtaining a promising candidate vaccine antigen. The ELISA results primary concluded that among the excretory secretory (ES) and midgut (MG) antigens of the different larval instars of L. sericata, MGL2 could be characterized as antigen which was able to reflect the highest level of antigenicity and cross-reactivity with the other tested L. sericata antigens. The results were extended to spot the light on the relation between different protein bands in MGL2 and rabbit hyper- immune sera (HIS) raised against the other tested antigens using SDS-PAGE and Western blot technique. Analysis by SDS-PAGE of ES and MG antigens of the different larval instars of L. sericata revealed common protein bands at molecular weights of about 10, 12, 16, 20, 28, 33 and 46 kDa. Western blotting of MGL2 antigen transferred to nitrocellulose sheet revealed reaction by MGL2 HIS to five polypeptide bands; 20, 28, 33, 46 and 63 kDa. Three bands of 28, 33 and 63 kDa were the most prominent bands detected whereas; there was a weak reaction with bands of 20 and 46 kDa. But what was apparent in Western blot was a strong reaction of all tested HIS with a polypeptide band of 63 kDa. This band might be considered to be the main cause of cross reactive binding ability of MGL2 antigen that had been recorded previously in ELISA technique.
Collapse
|
47
|
Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DSW, Gommerman JL, Chan WCW. Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling. J Am Chem Soc 2017. [PMID: 28641018 DOI: 10.1021/jacs.7b04022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical probes are key components of the bioimaging toolbox, as they label biomolecules in cells and tissues. The new challenge in bioimaging is to design chemical probes for three-dimensional (3D) tissue imaging. In this work, we discovered that light scattering of metal nanoparticles can provide 3D imaging contrast in intact and transparent tissues. The nanoparticles can act as a template for the chemical growth of a metal layer to further enhance the scattering signal. The use of chemically grown nanoparticles in whole tissues can amplify the scattering to produce a 1.4 million-fold greater photon yield than obtained using common fluorophores. These probes are non-photobleaching and can be used alongside fluorophores without interference. We demonstrated three distinct biomedical applications: (a) molecular imaging of blood vessels, (b) tracking of nanodrug carriers in tumors, and (c) mapping of lesions and immune cells in a multiple sclerosis mouse model. Our strategy establishes a distinct yet complementary set of imaging probes for understanding disease mechanisms in three dimensions.
Collapse
Affiliation(s)
- Abdullah Muhammad Syed
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Shrey Sindhwani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Stefan Wilhelm
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin R Kingston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Dennis S W Lee
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Room 230, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Chemical Engineering, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Department of Material Science and Engineering, University of Toronto , Room 450, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
48
|
Fanciulli PP, Mencarelli C, Mercati D, Dallai R, Lupetti P. The peculiar extra-acrosomal structure of the Collembola (Hexapoda) spermatozoa. Micron 2017; 101:114-122. [PMID: 28709083 DOI: 10.1016/j.micron.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022]
Abstract
The springtail Collembola are characterized by having rolled spermatozoa, with a long cylindrical extracellular structure adhering to the acrosome. This structure is produced by the secretory activity of the testes epithelial cells at almost the end of spermiogenesis. At the beginning of its formation, it is a thin extension with a helical wall and a dense axial region. Later the cylindrical structure shows an inner organization which is different in the several species examined: species of Entomobryidae contain material with a paracrystalline structure, whilst some of Symphypleona contain ovoid structures. The outer envelope of the extracellular structure consists of two overlapped layers orthogonally arranged, clearly identified by cryo-preparations. Immunoblot analysis and lectin stainings have indicated that the cylindrical structure has a glycoproteic composition. As the structure is no longer visible after the sperm transfer into the female spermatheca, it is suggested that it could contain enzymes able to activate the sperm unwinding process and possibly allowing the reacquisition of sperm motility.
Collapse
Affiliation(s)
- P P Fanciulli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - C Mencarelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - D Mercati
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - R Dallai
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - P Lupetti
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| |
Collapse
|
49
|
Papastavrou N, Chatzopoulou M, Ballekova J, Cappiello M, Moschini R, Balestri F, Patsilinakos A, Ragno R, Stefek M, Nicolaou I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur J Med Chem 2017; 130:328-335. [DOI: 10.1016/j.ejmech.2017.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
50
|
Prion-like characteristics of the bacterial protein Microcin E492. Sci Rep 2017; 7:45720. [PMID: 28361921 PMCID: PMC5374632 DOI: 10.1038/srep45720] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2017] [Indexed: 11/10/2022] Open
Abstract
Microcin E492 (Mcc) is a pore-forming bacteriotoxin. Mcc activity is inhibited at the stationary phase by formation of amyloid-like aggregates in the culture. Here we report that, in a similar manner as prions, Mcc naturally exists as two conformers: a β-sheet-rich, protease-resistant, aggregated, inactive form (Mccia), and a soluble, protease-sensitive, active form (Mcca). The exogenous addition of culture medium containing Mccia or purified in vitro-generated Mccia into the culture induces the rapid and efficient conversion of Mcca into Mccia, which is maintained indefinitely after passaging, changing the bacterial phenotype. Mccia prion-like activity is conformation-dependent and could be reduced by immunodepleting Mccia. Interestingly, an internal region of Mcc shares sequence similarity with the central domain of the prion protein, which is key to the formation of mammalian prions. A synthetic peptide spanning this sequence forms amyloid-like fibrils in vitro and is capable of inducing the conversion of Mcca into Mcciain vivo, suggesting that this region corresponds to the prion domain of Mcc. Our findings suggest that Mcc is the first prokaryotic protein with prion properties which harnesses prion-like transmission to regulate protein function, suggesting that propagation of biological information using a prion-based conformational switch is an evolutionary conserved mechanism.
Collapse
|