1
|
Cashman JR. Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism. Chem Res Toxicol 2024; 37:1776-1793. [PMID: 39485380 DOI: 10.1021/acs.chemrestox.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute. 6351 Nancy Ridge Road, Suite B, San Diego, California 92121, United States
| |
Collapse
|
2
|
Goupil E, Lacroix L, Brière J, Guga S, Saba-El-Leil MK, Meloche S, Labbé JC. OSGN-1 is a conserved flavin-containing monooxygenase required to stabilize the intercellular bridge in late cytokinesis. Proc Natl Acad Sci U S A 2024; 121:e2308570121. [PMID: 38442170 PMCID: PMC10945809 DOI: 10.1073/pnas.2308570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.
Collapse
Affiliation(s)
- Eugénie Goupil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Léa Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jonathan Brière
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sandra Guga
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| |
Collapse
|
3
|
Iglesias-Carres L, Chadwick-Corbin SA, Sweet MG, Neilson AP. Dietary phenolics and their microbial metabolites are poor inhibitors of trimethylamine oxidation to trimethylamine N-oxide by hepatic flavin monooxygenase 3. J Nutr Biochem 2023; 120:109428. [PMID: 37549832 DOI: 10.1016/j.jnutbio.2023.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
High circulating levels of trimethylamine N-oxide (TMAO) have been associated with cardiovascular disease risk. TMAO is formed through a microbiome-host pathway utilizing primarily dietary choline as a substrate. Specific gut microbiota transform choline into trimethylamine (TMA), and, when absorbed, host hepatic flavin-containing monooxygenase 3 (FMO3) oxidizes TMA into TMAO. Chlorogenic acid and its metabolites reduce microbial TMA production in vitro. However, little is known regarding the potential for chlorogenic acid and its bioavailable metabolites to inhibit the last step: hepatic conversion of TMA to TMAO. We developed a screening methodology to study FMO3-catalyzed production of TMAO from TMA. HepG2 cells were unable to oxidize TMA into TMAO due to their lack of FMO3 expression. Although Hepa-1 cells did express FMO3 when pretreated with TMA and NADPH, they lacked enzymatic activity to produce TMAO. Rat hepatic microsomes contained active FMO3. Optimal reaction conditions were: 50 µM TMA, 0.2 mM NADPH, and 33 µL microsomes/mL reaction. Methimazole (a known FMO3 competitive substrate) at 200 µM effectively reduced FMO3-catalyzed conversion of TMA to TMAO. However, bioavailable chlorogenic acid metabolites did not generally inhibit FMO3 at physiological (1 µM) nor supra-physiological (50 µM) doses. Thus, the effects of chlorogenic acid in regulating TMAO levels in vivo are unlikely to occur through direct FMO3 enzyme inhibition. Potential effects on FMO3 expression remain unknown. Intestinal inhibition of TMA production and/or absorption are thus likely their primary mechanisms of action.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Sydney A Chadwick-Corbin
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
4
|
Dulak K, Sordon S, Matera A, Kozak B, Huszcza E, Popłoński J. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microb Cell Fact 2022; 21:175. [PMID: 36038906 PMCID: PMC9422121 DOI: 10.1186/s12934-022-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background The regioselective hydroxylation of phenolic compounds, especially flavonoids, is still a bottleneck of classical organic chemistry that could be solved using enzymes with high activity and specificity. Yeast Rhodotorula glutinis KCh735 in known to catalyze the C-8 hydroxylation of flavones and flavanones. The enzyme F8H (flavonoid C8-hydroxylase) is involved in the reaction, but the specific gene has not yet been identified. In this work, we present identification, heterologous expression and characterization of the first F8H ortho-hydroxylase from yeast. Results Differential transcriptome analysis and homology to bacterial monooxygenases, including also a FAD-dependent motif and a GD motif characteristic for flavin-dependent monooxygenases, provided a set of coding sequences among which RgF8H was identified. Phylogenetic analysis suggests that RgF8H is a member of the flavin monooxygenase group active on flavonoid substrates. Analysis of recombinant protein showed that the enzyme catalyzes the C8-hydroxylation of naringenin, hesperetin, eriodyctiol, pinocembrin, apigenin, luteolin, chrysin, diosmetin and 7,4ʹ-dihydroxyflavone. The presence of the C7-OH group is necessary for enzymatic activity indicating ortho-hydroxylation mechanism. The enzyme requires the NADPH coenzyme for regeneration prosthetic group, displays very low hydroxyperoxyflavin decupling rate, and addition of FAD significantly increases its activity. Conclusions This study presents identification of the first yeast hydroxylase responsible for regioselective C8-hydroxylation of flavonoids (F8H). The enzyme was biochemically characterized and applied in in vitro cascade with Bacillus megaterium glucose dehydrogenase reactions. High in vivo activity in Escherichia coli enable further synthetic biology application towards production of rare highly antioxidant compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01899-x.
Collapse
Affiliation(s)
- Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
5
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
6
|
Schugar RC, Gliniak CM, Osborn LJ, Massey W, Sangwan N, Horak A, Banerjee R, Orabi D, Helsley RN, Brown AL, Burrows A, Finney C, Fung KK, Allen FM, Ferguson D, Gromovsky AD, Neumann C, Cook K, McMillan A, Buffa JA, Anderson JT, Mehrabian M, Goudarzi M, Willard B, Mak TD, Armstrong AR, Swanson G, Keshavarzian A, Garcia-Garcia JC, Wang Z, Lusis AJ, Hazen SL, Brown JM. Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. eLife 2022; 11:e63998. [PMID: 35072627 PMCID: PMC8813054 DOI: 10.7554/elife.63998] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Christy M Gliniak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amy Burrows
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chelsea Finney
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kevin K Fung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Frederick M Allen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniel Ferguson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony D Gromovsky
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chase Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kendall Cook
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amy McMillan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - James T Anderson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Margarete Mehrabian
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Maryam Goudarzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Tytus D Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology (NIST)GaithersburgUnited States
| | - Andrew R Armstrong
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical CenterChicagoUnited States
| | - Garth Swanson
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical CenterChicagoUnited States
| | | | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
7
|
Pellegrini G, Williams DP, Amadio D, Park BK, Kipar A. Morphological and Mechanistic Aspects of Thiourea-Induced Acute Lung Injury and Tolerance in the Rat. Toxicol Pathol 2020; 48:725-737. [PMID: 32815462 DOI: 10.1177/0192623320941465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thiourea-based molecules cause pulmonary edema when administered to rats at relatively low doses. However, rats survive normally lethal doses after prior exposure to a lower, nonlethal dose; this phenomenon is known as tolerance. The present study investigated the morphological and functional aspects of acute lung injury (ALI) induced by methylphenylthiourea (MPTU) in the Wistar rat and the pulmonary response involved in prevention of the injury. We identified pulmonary endothelial cells as the main target of acute MPTU injury; they exhibited ultrastructural alterations that can result in increased vascular permeability. In tolerant rats, the lungs showed only transient endothelial changes, at 24-hour post dosing, and mild type II pneumocyte hyperplasia on day 7 post dosing. They exhibited glutathione levels similar to the controls and increased expression of flavin-containing monooxygenase 1 (FMO1), the enzyme responsible for bioactivation of small thioureas in the laboratory rat. Incubation of rat pulmonary microsomal preparations with MPTU inhibited FMO activity, indicating that tolerance is related to irreversible inhibition of FMOs. The rat model of thiourea-induced pulmonary toxicity and tolerance represents an interesting approach to investigate certain aspects of the pathogenesis of ALI and therapeutic approaches to lung diseases, such as acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.,Pellegrini is now with Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Dominic Paul Williams
- Safety Platforms, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniele Amadio
- Research and Early Development, Respiratory, Inflammation and Autoimmunity, Bio Pharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.,Amadio is now with Pelago Bioscience AB, Solna, Sweden
| | - Brian Kevin Park
- Department of Clinical and Molecular Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, United Kingdom
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.,Institute of Global Health, 4591University of Liverpool, United Kingdom
| |
Collapse
|
8
|
Veeravalli S, Phillips IR, Freire RT, Varshavi D, Everett JR, Shephard EA. Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine. Drug Metab Dispos 2020; 48:378-385. [PMID: 32156684 DOI: 10.1124/dmd.119.089995] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Taurine is one of the most abundant amino acids in mammalian tissues. It is obtained from the diet and by de novo synthesis from cysteic acid or hypotaurine. Despite the discovery in 1954 that the oxygenation of hypotaurine produces taurine, the identification of an enzyme catalyzing this reaction has remained elusive. In large part, this is due to the incorrect assignment, in 1962, of the enzyme as an NAD-dependent hypotaurine dehydrogenase. For more than 55 years, the literature has continued to refer to this enzyme as such. Here we show, both in vivo and in vitro, that the enzyme that oxygenates hypotaurine to produce taurine is flavin-containing monooxygenase (FMO) 1. Metabolite analysis of the urine of Fmo1-null mice by 1H NMR spectroscopy revealed a buildup of hypotaurine and a deficit of taurine in comparison with the concentrations of these compounds in the urine of wild-type mice. In vitro assays confirmed that human FMO1 catalyzes the conversion of hypotaurine to taurine, utilizing either NADPH or NADH as cofactor. FMO1 has a wide substrate range and is best known as a xenobiotic- or drug-metabolizing enzyme. The identification that the endogenous molecule hypotaurine is a substrate for the FMO1-catalyzed production of taurine resolves a long-standing mystery. This finding should help establish the role FMO1 plays in a range of biologic processes in which taurine or its deficiency is implicated, including conjugation of bile acids, neurotransmitter, antioxidant and anti-inflammatory functions, and the pathogenesis of obesity and skeletal muscle disorders. SIGNIFICANCE STATEMENT: The identity of the enzyme that catalyzes the biosynthesis of taurine from hypotaurine has remained elusive. Here we show, both in vivo and in vitro, that flavin-containing monooxygenase 1 catalyzes the oxygenation of hypotaurine to produce taurine.
Collapse
Affiliation(s)
- Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| | - Ian R Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| | - Rafael T Freire
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| | - Dorsa Varshavi
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| | - Jeremy R Everett
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| | - Elizabeth A Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom (R.T.F., D.V., J.R.E.)
| |
Collapse
|
9
|
Sakurai E. [Elucidation of New Function in Endothelial Cells for Efficient Delivery Strategy of Drug to Tissues]. YAKUGAKU ZASSHI 2020; 140:51-62. [PMID: 31902886 DOI: 10.1248/yakushi.19-00179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The author has described two new functions of endothelial cells for efficient delivery of drugs to tissues. First, it was indicated that tight junction (TJ)-associated protein, claudin-1, exerts potent paracellular barrier function in cultured mouse lung microvascular endothelial cells (LMECs). This barrier was instantly and reversibly opened by reduction of TJ proteins expression via histamine H1 and H2 receptors. Histamine was biosynthesized by l-histidine decarboxylase from uptaken l-histidine, and biotransformed by type B of monoamine oxidase, suggesting that histamine concentration is controlled in rat brain MECs (BMECs) and LMECs. Moreover, uptake of l-histidine into BMECs and LMECs markedly increased with addition of ZnSO4. Second, it was suggested that drug-metabolizing enzymes such as CYP and flavin-containing monooxygenase exist in vascular endothelial cells exposed to blood and to aerobic conditions. These cells have the same ability to metabolize drugs as hepatocytes, demonstrating that vascular endothelial cells are a metabolic barrier against tissue transfer of drugs. From these results, it was suggested that reversible opening of TJ and selective inhibition of drug metabolism in vascular endothelial cells may be efficient delivery strategies of drugs to tissues. Finally, I hope that this research will lead to development of new drugs and possible re-evaluation of discontinued drugs.
Collapse
Affiliation(s)
- Eiichi Sakurai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
10
|
Miró V, Lifschitz A, Viviani P, Rocha C, Lanusse C, Costa L, Virkel G. In vitro inhibition of the hepatic S-oxygenation of the anthelmintic albendazole by the natural monoterpene thymol in sheep. Xenobiotica 2019; 50:408-414. [PMID: 31305200 DOI: 10.1080/00498254.2019.1644390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Combinations of bioactive phytochemicals with synthetic compounds have been suggested as promissory tools for the improvement of nematode control in livestock. Bioactive phytochemicals may interfere with the activity of drug-metabolizing enzymes and delay the metabolic conversion of anthelmintics into less potent metabolites.This research assessed the effect of the monoterpene thymol (TML) on the in vitro hepatic metabolism of the anthelmintic albendazole (ABZ) in sheep.Liver microsomes from four (4) Texel lambs were incubated with ABZ (50 µM) in absence or in presence of TML (0.05-10 mM).The concentration of TML producing a 50% decrease in ABZ S-oxygenation (IC50) was 13.5 mM. The FMO-dependent S-oxygenation of ABZ was markedly inhibited by the monoterpene (54.1 ± 11.6%, p < .01). In agreement with this observation, TML produced a marked inhibition of benzydamine (BZ) N-oxidase, a specific FMO activity.The CYP-dependent production of the sulfoxide metabolite (ABZSO) was less affected, being 25.3 ± 17.5 lower (p < .05) in presence of TML. Additionally, TML completely abolished the specific CYP1A1-dependent enzyme activity 7-ethoxyresorufin O-deethylase.Overall, the results presented here show that, in addition to its own anthelmintic affect, TML may potentiate ABZ anthelmintic activity by preventing its metabolic conversion into a less active metabolite.
Collapse
Affiliation(s)
- Victoria Miró
- Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CICPBA), Fac. Cs. Veterinarias, UNCPBA, Laboratorio de Farmacología, Departamento de Fisiopatología, Campus Universitario, Los Ombúes y Reforma Universitaria, Tandil, Argentina
| | - Adrian Lifschitz
- Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CICPBA), Fac. Cs. Veterinarias, UNCPBA, Laboratorio de Farmacología, Departamento de Fisiopatología, Campus Universitario, Los Ombúes y Reforma Universitaria, Tandil, Argentina
| | - Paula Viviani
- Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CICPBA), Fac. Cs. Veterinarias, UNCPBA, Laboratorio de Farmacología, Departamento de Fisiopatología, Campus Universitario, Los Ombúes y Reforma Universitaria, Tandil, Argentina
| | - Carolina Rocha
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, Maranhao, Brazil
| | - Carlos Lanusse
- Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CICPBA), Fac. Cs. Veterinarias, UNCPBA, Laboratorio de Farmacología, Departamento de Fisiopatología, Campus Universitario, Los Ombúes y Reforma Universitaria, Tandil, Argentina
| | - Livio Costa
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, Maranhao, Brazil
| | - Guillermo Virkel
- Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CICPBA), Fac. Cs. Veterinarias, UNCPBA, Laboratorio de Farmacología, Departamento de Fisiopatología, Campus Universitario, Los Ombúes y Reforma Universitaria, Tandil, Argentina
| |
Collapse
|
11
|
Viviani P, Lifschitz AL, Luque SE, Lloberas MM, Maté ML, Cardozo PA, Lanusse CE, Virkel GL. Pharmacologic interaction between oxfendazole and triclabendazole: In vitro biotransformation and systemic exposure in sheep. Exp Parasitol 2019; 204:107718. [PMID: 31201779 DOI: 10.1016/j.exppara.2019.107718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
The aim of the current work was to evaluate a potential pharmacokinetic interaction between the flukicide triclabendazole (TCBZ) and the broad-spectrum benzimidazole (BZD) anthelmintic oxfendazole (OFZ) in sheep. To this end, both an in vitro assay in microsomal fractions and an in vivo trial in lambs parasitized with Haemonchus contortus resistant to OFZ and its reduced derivative fenbendazole (FBZ) were carried out. Sheep microsomal fractions were incubated together with OFZ, FBZ, TCBZ, or a combination of either FBZ and TCBZ or OFZ and TCBZ. OFZ production was significantly diminished upon coincubation of FBZ and TCBZ, whereas neither FBZ nor OFZ affected the S-oxidation of TCBZ towards its sulfoxide and sulfone metabolites. For the in vivo trial, lambs were treated with OFZ (Vermox® oral drench at a single dose of 5 mg/kg PO), TCBZ (Fasinex® oral drench at a single dose of 12 mg/kg PO) or both compounds at a single dose of 5 (Vermox®) and 12 mg/kg (Fasinex®) PO. Blood samples were taken to quantify drug and metabolite concentrations, and pharmacokinetic parameters were calculated by means of non-compartmental analysis. Results showed that the pharmacokinetic parameters of active molecules and metabolites were not significantly altered upon coadministration. The sole exception was the increase in the mean residence time (MRT) of OFZ and FBZ sulfone upon coadministration, with no significant changes in the remaining pharmacokinetic parameters. This research is a further contribution to the study of metabolic drug-drug interactions that may affect anthelmintic efficacies in ruminants.
Collapse
Affiliation(s)
- P Viviani
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina
| | - A L Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina
| | - S E Luque
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina
| | - M M Lloberas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce, (7620), Balcarce, Argentina
| | - M L Maté
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina
| | - P A Cardozo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce, (7620), Balcarce, Argentina
| | - C E Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina
| | - G L Virkel
- Laboratorio de Farmacología, Centro de Investigación Veterinarias de Tandil (CIVETAN. CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Tandil, Argentina.
| |
Collapse
|
12
|
Nguyen PTT, Parvez MM, Kim MJ, Yoo SE, Ahn S, Ghim JL, Shin JG. Physiologically Based Pharmacokinetic Modeling Approach to Predict Drug-Drug Interactions With Ethionamide Involving Impact of Genetic Polymorphism on FMO3. J Clin Pharmacol 2019; 59:880-889. [PMID: 30690726 DOI: 10.1002/jcph.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022]
Abstract
The widely used second-line antituberculosis drug ethionamide shows wide interindividual variability in its disposition; however, the relevant factors affecting this phenomenon have not been characterized. We previously reported the major contribution of flavin-containing monooxygenase 3 (FMO3) in the reductive elimination pathway of ethionamide. In this study, ethionamide metabolism was potentially inhibited by methimazole in vitro. The drug-drug interaction leading to methimazole affecting the disposition of ethionamide mediated by FMO3 was then quantitated using a bottom-up approach with a physiologically based pharmacokinetic framework. The maximum concentration (Cmax ) and area under the curve (AUC) of ethionamide were estimated to increase by 13% and 16%, respectively, when coadministered with methimazole. Subsequently, we explored the effect of FMO3 genetic polymorphism on metabolic capacity, by constructing 2 common functional variants, Lys158 -FMO3 and Gly308 -FMO3. Compared to the wild type, recombinant Lys158 -FMO3 and Gly308 -FMO3 variants significantly decreased the intrinsic clearance of ethionamide by 2% and 24%, respectively. Two prevalent functional variants of FMO3 were predicted to affect ethionamide disposition, with mean ratios of Cmax and AUC of up to 1.5 and 1.7, respectively, in comparison with the wild type. In comparing single ethionamide administration with the wild type, simulations of the combined effects of comedications and FMO3 genetic polymorphism estimated that the Cmax and AUC ratios of ethionamide increased up to 1.7 and 2.0, respectively. These findings suggested that FMO3-mediated drug-drug interaction and genetic polymorphism could be important determinants of interindividual heterogeneity in ethionamide disposition that need to be considered comprehensively to optimize the personalized dosing of ethionamide.
Collapse
Affiliation(s)
- Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Md Masud Parvez
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Min Jung Kim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Yoo
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jong-Lyul Ghim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
13
|
Tian X, Zhao S, Guo Z, Hu B, Wei Q, Tang Y, Su J. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:533-544. [PMID: 29749684 DOI: 10.1111/imb.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enhanced detoxification is one of the important mechanisms for insecticide resistance. Most research in this field to date has focused on the role of cytochrome P450s. Our previous work revealed that flavin-dependent monooxygenases (FMOs) were involved in metabolic resistance of Spodoptera exigua. In the present study we investigated the molecular characteristics, expression patterns and oxidative activities of SeFMO on insecticides. Three FMO genes, which encode proteins with the typical FMO motifs, were cloned from S. exigua. The oxidative activities of eukaryotically expressed SeFMO enzymes were verified with the model substrate of FMO. Importantly, the SeFMOs had significantly higher oxidative activities on metaflumizone and lambda-cyhalothrin than on model substrates and other insecticides tested. The three SeFMOs were mainly expressed in the midgut, fat body and Malpighian tubules. The tissues responsible for xenobiotic metabolism and their expression characteristics were similar to those of P450s acting as detoxification genes. The study also revealed that the expression of SeFMOs could be induced by insecticide exposure, and that SeFMOs were over-expressed in a metaflumizone-resistant strain of S. exigua. These results suggest that SeFMOs are important insecticide detoxifying enzymes, and that over-expression of FMO genes may be one of the mechanisms for metabolic resistance in S. exigua.
Collapse
Affiliation(s)
- X Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Zhao
- Zoonbio Biotechnology Co., Ltd, Nanjing, China
| | - Z Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - B Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine. Sci Rep 2017; 7:14668. [PMID: 29116146 PMCID: PMC5676948 DOI: 10.1038/s41598-017-15224-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
Human flavin-containing monooxygenase 3 (hFMO3) catalyses the oxygenation of a wide variety of compounds including drugs as well as dietary compounds. It is the major hepatic enzyme involved in the production of the N-oxide of trimethylamine (TMAO) and clinical studies have uncovered a striking correlation between plasma TMAO concentration and cardiovascular disease. Certain mutations within the hFMO3 gene cause defective trimethylamine (TMA) N-oxygenation leading to trimethylaminuria (TMAU) also known as fish-odour syndrome. In this paper, the inactivation mechanism of a TMAU-causing polymorphic variant, N61S, is investigated. Transient kinetic experiments show that this variant has a > 170-fold lower NADPH binding affinity than the wild type. Thermodynamic and spectroscopic experiments reveal that the poor NADP+ binding affinity accelerates the C4a-hydroperoxyFAD intermediate decay, responsible for an unfavourable oxygen transfer to the substrate. Steady-state kinetic experiments show significantly decreased N61S catalytic activity towards other substrates; methimazole, benzydamine and tamoxifen. The in vitro data are corroborated by in silico data where compared to the wild type enzyme, a hydrogen bond required for the stabilisation of the flavin intermediate is lacking. Taken together, the data presented reveal the molecular basis for the loss of function observed in N61S mutant.
Collapse
|
15
|
Tanino T, Bando T, Komada A, Nojiri Y, Okada Y, Ueda Y, Sakurai E. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide. Drug Metab Dispos 2017; 45:1189-1196. [DOI: 10.1124/dmd.117.076570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
|
16
|
Catucci G, Polignano I, Cusumano D, Medana C, Gilardi G, Sadeghi SJ. Identification of human flavin-containing monooxygenase 3 substrates by a colorimetric screening assay. Anal Biochem 2017; 522:46-52. [DOI: 10.1016/j.ab.2017.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
|
17
|
Fu CW, Lin TH. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors. PLoS One 2017; 12:e0169910. [PMID: 28072829 PMCID: PMC5224990 DOI: 10.1371/journal.pone.0169910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.
Collapse
Affiliation(s)
- Chien-wei Fu
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
| | - Thy-Hou Lin
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
18
|
Hirani N, Westenberg M, Seed PT, Petalcorin MIR, Dolphin CT. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress. Biol Open 2016; 5:537-49. [PMID: 27010030 PMCID: PMC4874355 DOI: 10.1242/bio.017400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies in Caenorhabditis elegans have revealed osmoregulatory systems engaged when worms experience hypertonic conditions, but less is known about measures employed when faced with hypotonic stress. Inactivation of fmo-4, which encodes flavin-containing monooxygenase-4, results in dramatic hypoosmotic hypersensitivity; worms are unable to prevent overwhelming water influx and swell rapidly, finally rupturing due to high internal hydrostatic pressure. fmo-4 is expressed prominently in hypodermis, duct and pore cells but is excluded from the excretory cell. Thus, FMO-4 plays a crucial osmoregulatory role by promoting clearance of excess water that enters during hypotonicity, perhaps by synthesizing an osmolyte that acts to establish an osmotic gradient from excretory cell to duct and pore cells. C. elegans FMO-4 contains a C-terminal extension conserved in all nematode FMO-4s. The coincidently numbered human FMO4 also contains an extended C-terminus with features similar to those of FMO-4. Although these shared sequence characteristics suggest potential orthology, human FMO4 was unable to rescue the fmo-4 osmoregulatory defect. Intriguingly, however, mammalian FMO4 is expressed predominantly in the kidney - an appropriate site if it too is, or once was, involved in osmoregulation.
Collapse
Affiliation(s)
- Nisha Hirani
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Marcel Westenberg
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Paul T Seed
- Division of Women's Health, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Mark I R Petalcorin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Colin T Dolphin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
19
|
Eng H, Sharma R, Wolford A, Di L, Ruggeri RB, Buckbinder L, Conn EL, Dalvie DK, Kalgutkar AS. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes. ACTA ACUST UNITED AC 2016; 44:1262-9. [PMID: 27079250 DOI: 10.1124/dmd.116.070185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/13/2016] [Indexed: 11/22/2022]
Abstract
N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more electrophilic sulfinic acid species that is trapped intramolecularly by the pendant alcohol motif in compound 1.
Collapse
Affiliation(s)
- Heather Eng
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Raman Sharma
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Angela Wolford
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Li Di
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Roger B Ruggeri
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Leonard Buckbinder
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Edward L Conn
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Deepak K Dalvie
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., Groton, Connecticut (H.E., R.S., A.W., L.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department, Pfizer Inc., La Jolla, California (D.K.D.); Pharmacokinetics, Pharmacodynamics, and Metabolism Department (A.S.K.), Worldwide Medicinal Chemistry (E.L.C., R.B.R.), and Cardiovascular and Metabolic Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
20
|
Ballent M, Virkel G, Maté L, Viviani P, Lanusse C, Lifschitz A. Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle. J Vet Pharmacol Ther 2016; 39:488-96. [DOI: 10.1111/jvp.12296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- M. Ballent
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| | - G. Virkel
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| | - L. Maté
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| | - P. Viviani
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| | - C. Lanusse
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| | - A. Lifschitz
- Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); CONICET-CICPBA; Facultad de Ciencias Veterinarias; UNCPBA; Tandil Argentina
| |
Collapse
|
21
|
Turesky RJ, Konorev D, Fan X, Tang Y, Yao L, Ding X, Xie F, Zhu Y, Zhang QY. Effect of Cytochrome P450 Reductase Deficiency on 2-Amino-9H-pyrido[2,3-b]indole Metabolism and DNA Adduct Formation in Liver and Extrahepatic Tissues of Mice. Chem Res Toxicol 2015; 28:2400-10. [PMID: 26583703 PMCID: PMC4703101 DOI: 10.1021/acs.chemrestox.5b00405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Amino-9H-pyrido[2,3-b]indole (AαC), a carcinogen formed during the combustion of tobacco and cooking of meat, undergoes cytochrome P450 (P450) metabolism to form the DNA adduct N-(deoxyguanosin-8-yl)-2-amino-9H-pyrido[2,3-b]indole (dG-C8-AαC). We evaluated the roles of P450 expressed in the liver and intestine to bioactivate AαC by employing male B6 wild-type (WT) mice, liver-specific P450 reductase (Cpr)-null (LCN) mice, and intestinal epithelium-specific Cpr-null (IECN) mice. Pharmacokinetic parameters were determined for AαC, 2-amino-9H-pyrido[2,3-b]indol-3-yl sulfate (AαC-3-OSO3H), and N(2)-(β-1-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Glu) with animals dosed by gavage with AαC (13.6 mg/kg). The uptake of AαC was rapid with no difference in the plasma half-lives (t1/2) of AαC, AαC-3-OSO3H, and AαC-N(2)-Glu among mouse models. The maximal plasma concentrations (Cmax) and the areas under concentration-time curve (AUC0-24h) of AαC and AαC-N(2)-Glu were 4-24-fold higher in LCN than in WT mice, but they were not different between WT and IECN mice. These findings are consistent with the ablation of hepatic P450 activity in LCN mice. However, the Cmax and AUC0-24h of AαC-3-OSO3H in plasma were not substantially different among the mouse models. Similar pharmacokinetic parameters were obtained with WT and LCN mice treated with a lower AαC dose (1.36 mg kg(-1)). dG-C8-AαC was detected at similar levels in the livers of all three mouse models at the high AαC dose; levels of dG-C8-AαC in colon, bladder, and lung were greater in LCN than in WT mice and were the same in colon of IECN and WT mice. At the low AαC dose, dG-C8-AαC occurred at ∼ 40% lower levels in liver of LCN mouse than in WT mouse liver, but adduct levels remained higher in extrahepatic tissues of LCN mice. Therefore, hepatic P450 plays an important role in detoxication of AαC, but other hepatic or extrahepatic enzymes contribute to the bioactivation of AαC. P450s expressed in the intestine do not appreciably contribute to bioactivation of AαC in mice.
Collapse
Affiliation(s)
- Robert J Turesky
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dmitri Konorev
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xiaoyu Fan
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Yijin Tang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Lihua Yao
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xinxin Ding
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute , Albany, New York 12203, United States
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| |
Collapse
|
22
|
Tian X, Sun X, Su J. Biochemical mechanisms for metaflumizone resistance in beet armyworm, Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 113:8-14. [PMID: 25052521 DOI: 10.1016/j.pestbp.2014.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
The metaflumizone, which belongs to the class of voltage-dependent sodium channel blockers, was registered to control Spodoptera exigua on vegetables in China in 2009. The present study revealed S. exigua has developed high resistance to this novel chemistry insecticide shortly after 2-3 years application in Guangdong Province of China. The metabolic mechanisms for metaflumizone resistance in this insect were analysed. The inhibitor of esterases greatly potentiates the toxicity of this chemical against the field resistant populations. The synergism ratio is 5.7 and 3.4-fold for S. exigua collected from Huizhou, Guangdong Province in 2011 and 2012, respectively. The activity of esterases in field populations (HZ12) is also significantly greater than that in the susceptible strain, and further significantly increased by challenge with metaflumizone for 3 generations. However, the inhibitor of P450s or GSTs only has slight synergism on metaflumizone toxicity against resistant populations, and there are no obvious differences in activities of P450s or GSTs between resistant populations and the susceptible strain. These results suggest that esterases might take pivotal role in conferring metabolic resistance to metaflumizone in the field populations of S. exigua, and P450s or GSTs are not involved in this resistance. Moreover, flavin-dependent monooxygenases (FMOs) are discovered to involve in metaflumizone resistance in the field populations of S. exigua. The FMO inhibitor, methimazole, potentiates metaflumizone toxicity in resistant larva of this species substantially. The synergism ratios for methimazole in resistant populations HZ11 and HZ12 were 3.1 and 1.9, respectively. Enzymatic assays also revealed higher FMO activities in resistant populations than in the susceptible strain, and successive selection with metaflumizone further increased the FMO activity in the field resistant population, but not significantly. The higher FMO activities in the older larval stages and in the larval midgut signify the importance of FMO in the detoxification of xenobiotic from food sources. The synergism assay and FMO activity analysis suggest that FMO contributes to metaflumizone detoxification in resistant populations of S. exigua and conferred metaflumizone resistance in S. exigua. A novel mechanism for insecticide resistance by insect was proposed.
Collapse
Affiliation(s)
- Xiangrui Tian
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingxing Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianya Su
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Virkel G, Lifschitz A, Sallovitz J, Maté L, Farías C, Lanusse C. In vitro and in vivo assessment of the benzydamine-mediated interference with the hepatic S-oxidation of the anthelmintic albendazole in sheep. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Larsen K, Najle R, Lifschitz A, Maté ML, Lanusse C, Virkel GL. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats. Int J Toxicol 2014; 33:307-318. [PMID: 24985121 DOI: 10.1177/1091581814540481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified.
Collapse
Affiliation(s)
- Karen Larsen
- Laboratorio de Biología y Ecotoxicología, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Roberto Najle
- Laboratorio de Biología y Ecotoxicología, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - María L Maté
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias (UNCPBA), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET), Tandil, Argentina
| |
Collapse
|
25
|
Ceballos L, Virkel G, Elissondo C, Canton C, Canevari J, Murno G, Denegri G, Lanusse C, Alvarez L. A pharmacology-based comparison of the activity of albendazole and flubendazole against Echinococcus granulosus metacestode in sheep. Acta Trop 2013; 127:216-25. [PMID: 23692888 DOI: 10.1016/j.actatropica.2013.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/19/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
Cyst echinococcosis (CE) is a zoonotic disease caused by the larval stage of the Echinococcus granulosus helminth parasite. The work reported here aimed to compare the efficacy of albendazole (ABZ) and flubendazole (FLBZ) against CE in naturally infected sheep. Additionally, their comparative pharmacokinetic behaviour and the assessment of serum liver enzymes activities were studied. Twelve (12) naturally infected sheep were allocated to the following experimental groups: unmedicated control group, FLBZ-treated and ABZ-treated. Treatments were orally performed every 48 h, over 55 days at dose rate of 10 (FLBZ) and 8.5 (ABZ) mg/kg (equimolar dose rates). The efficacy of the drug treatments was based on protoscoleces' vitality/viability. The kinetic disposition assessment included the Initial and Final Kinetic Studies which implicated the collection of blood samples after both the first and the last drug administration. Blood samples were processed to measure drug concentrations by HPLC. The protoscoleces' vitality observed in the untreated control group (98%) was significantly reduced in the presence of both ABZ and FLBZ. 90% of mice inoculated with protoscoleces in the control group developed hydatid cysts in their peritoneal cavity (viability study). However, only 25% (FLBZ) and 33% (ABZ) of mice inoculated with protoscoleces recovered from treated sheep, developed hydatid cysts in their abdominal cavity. Reduced FLBZ (R-FLBZ) was the main metabolite recovered in the bloodstream after oral administration of FLBZ to sheep. Low plasma concentrations of FLBZ parent drug were measured up to 48 h post-administration. ABZ was not detected in plasma at any time post-treatment, being its metabolites ABZ sulphoxide (ABZSO) and ABZ sulphone (ABZSO₂) recovered in plasma. Hepatotoxicity due to the continued treatment with either ABZ or FLBZ was not observed. A 3-fold increase ethoxyresorufin O-deethylase activity, a cytochrome P450 1A (CYP1A)-dependent enzyme reaction, was observed in liver microsomes obtained from sheep receiving ABZ, compared to those of the unmedicated and FLBZ-treated animals. In conclusion, FLBZ is an available anthelmintic which may be developed into an effective and safe drug for the human CE treatment. Despite the low plasma concentrations measured by FLBZ/R-FLBZ, an important reduction in protoscoleces' vitality was observed in cysts located in sheep liver. Modern pharmaceutical technology may help to greatly improve FLBZ systemic exposure improving its efficacy against CE.
Collapse
|
26
|
Wang J, Wu SG, Zhang HJ, Yue HY, Xu L, Ji F, Xu L, Qi GH. Trimethylamine deposition in the egg yolk from laying hens with different FMO3 genotypes. Poult Sci 2013; 92:746-52. [PMID: 23436525 DOI: 10.3382/ps.2012-02313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The A/T polymorphism at position nt 1,034 of the chicken FMO3 cDNA sequence is associated with elevated levels of trimethylamine (TMA) in the egg yolk, which is responsible for the fishy egg flavor. This study was aimed to investigate yolk TMA deposition in eggs from different FMO3 genotype (AA, AT, TT) laying hens fed a high level of choline, and the relationship between egg yolk TMA contents and yolk acceptability. A total of 132 genotyped laying hens, 38 wk of age, were assigned to 1 of the 4 dietary treatments: 1) a control group of AA hens fed 370 mg of choline/kg of diet (practical choline level, provided by 500 mg of choline chloride/kg of diet); 2) AA hens were fed 2,960 mg of choline/kg of diet (higher dietary choline level, provided by 4,000 mg of choline chloride/kg of diet); 3) AT hens were fed 2,960 mg of choline/kg of diet; and 4) TT hens were fed 2,960 mg of choline/kg of diet. All layers were fed a 370 mg of choline/kg added diet for a period of 1-wk adaptation followed by a 6-wk trial period. A remarkable increase in yolk TMA concentration of TT hens (P < 0.001) caused by dietary choline addition at 2,960 mg/kg was observed. The relationship between TMA concentration in the egg yolk (μg/g, y) and deposition time (1~42 d, x) for TT hens is y = 0.0005x(3) - 0.0419x(2) + 1.0924x + 0.4323 (R(2) = 0.9259). The fish-flavor scores of egg yolks rose steadily (R(2) = 0.9324) as the TMA concentration increased, and there was also a corresponding decrease in the acceptance score (R(2) = 0.8276). The eggs were acceptable when the yolk TMA concentrations were less than 4.516 μg/g of yolk.
Collapse
Affiliation(s)
- J Wang
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Catucci G, Gilardi G, Jeuken L, Sadeghi SJ. In vitro drug metabolism by C-terminally truncated human flavin-containing monooxygenase 3. Biochem Pharmacol 2012; 83:551-8. [DOI: 10.1016/j.bcp.2011.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
28
|
Reddy RR, Ralph EC, Motika MS, Zhang J, Cashman JR. Characterization of human flavin-containing monooxygenase (FMO) 3 and FMO5 expressed as maltose-binding protein fusions. Drug Metab Dispos 2010; 38:2239-45. [PMID: 20810540 DOI: 10.1124/dmd.110.033639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The flavin-containing monooxygenase (FMO) family of enzymes oxygenates nucleophilic xenobiotics and endogenous substances. Human FMO3 and FMO5 are the predominant FMO forms in adult liver. These enzymes are naturally membrane-bound, and recombinant proteins are commercially available as microsomal preparations from insect cells (i.e., Supersome FMO). As an alternative, FMO3 has previously been expressed as a soluble protein, through use of an N-terminal maltose-binding protein (MBP) fusion. In the current study, MBP fusions of both human FMO3 and FMO5 were prepared to >90% purity in the presence of detergent and characterized for biochemical and kinetic parameters, and the parameters were compared with those of Supersome FMO samples. Although MBP-FMO enzymes afforded lower rates of turnover than the corresponding Supersome FMOs, both types of FMO showed identical substrate dependencies and similar responses to changes in assay conditions. Of interest, the FMO3 enzymes showed a 2-fold activation of k(cat)/K(m) in the presence of Triton X-100. Oligomeric analysis of MBP-FMO3 also showed disassociation from a high-order oligomeric form to a monomeric status in the presence of Triton X-100. This report serves as the first direct comparison between Supersome FMOs and the corresponding MBP fusions and the first report of a detergent-based activation of k(cat)/K(m) that corresponds to changes in oligomerization.
Collapse
Affiliation(s)
- Robert R Reddy
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
29
|
MATÉ L, VIRKEL G, LIFSCHITZ A, SALLOVITZ J, BALLENT M, LANUSSE C. Phase 1 and phase 2 metabolic activities along the small intestine in adult male sheep1. J Vet Pharmacol Ther 2010; 33:537-45. [DOI: 10.1111/j.1365-2885.2010.01177.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Novick RM, Vezina CM, Elfarra AA. Isoform distinct time-, dose-, and castration-dependent alterations in flavin-containing monooxygenase expression in mouse liver after 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment. Biochem Pharmacol 2009; 79:1345-51. [PMID: 20036217 DOI: 10.1016/j.bcp.2009.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 01/07/2023]
Abstract
Flavin-containing monooxygenase (FMO) expression in male mouse liver is altered after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or castration. Because TCDD is slowly eliminated from the body, we examined hepatic Fmo mRNA alterations for up to 32 days following 10 or 64 microg/kg TCDD exposure by oral gavage in male C57BL/6J mice. Fmo2 mRNA was significantly induced at 1, 4, and 8 days whereas Fmo3 mRNA was also induced at 32 days relative to controls. Fmo3 mRNA levels exhibited a dose-dependent increase at 4, 8, and 32 days after exposure; Fmo1, Fmo4, and Fmo5 mRNA did not exhibit clear trends. Because castration alone also increased Fmo2, Fmo3, and Fmo4 mRNA we examined the combined effects of castration and TCDD treatment on FMO expression. A greater than additive effect was observed with Fmo2 and Fmo3 mRNA expression. Fmo2 mRNA exhibited a 3-5-fold increase after castration or 10 microg/kg TCDD exposure by oral gavage, whereas an approximately 20-fold increase was observed between the sham-castrated control and castrated TCDD-treated mice. Similarly, treatment with 10 microg/kg TCDD alone increased Fmo3 mRNA 130- and 180-fold in the sham-castrated and castrated mice compared to their controls respectively, whereas, Fmo3 mRNA increased approximately 1900-fold between the sham control and castrated TCDD-treated mice. An increase in hepatic Fmo3 protein in TCDD-treated mice was observed by immunoblotting and assaying methionine S-oxidase activity. Collectively, these results provide evidence for isoform distinct time-, dose-, and castration-dependent effects of TCDD on FMO expression and suggest cross-talk between TCDD and testosterone signal transduction pathways.
Collapse
Affiliation(s)
- Rachel M Novick
- Department of Comparative Biosciences and Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
31
|
VIRKEL G, CARLETTI M, CANTIELLO M, DELLA DONNA L, GARDINI G, GIROLAMI F, NEBBIA C. Characterization of xenobiotic metabolizing enzymes in bovine small intestinal mucosa. J Vet Pharmacol Ther 2009; 33:295-303. [DOI: 10.1111/j.1365-2885.2009.01137.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Lee SK, Kang MJ, Jin C, In MK, Kim DH, Yoo HH. Flavin-containing monooxygenase 1-catalysedN,N-dimethylamphetamineN-oxidation. Xenobiotica 2009; 39:680-6. [DOI: 10.1080/00498250902998699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Zhang J, Chaluvadi MR, Reddy R, Motika MS, Richardson TA, Cashman JR, Morgan ET. Hepatic flavin-containing monooxygenase gene regulation in different mouse inflammation models. Drug Metab Dispos 2008; 37:462-8. [PMID: 19088265 DOI: 10.1124/dmd.108.025338] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of the study was to investigate the regulation of hepatic flavin-containing monooxygenases (Fmo) Fmo1, Fmo3, Fmo4, and Fmo5 in three different mouse models of inflammation, including treatment with Citrobacter rodentium, lipopolysaccharide (LPS), and dextran sulfate sodium (DSS). Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the steady-state mRNA levels for the various Fmo isoforms in these mouse models of inflammation during different treatment time courses. Fmo3 mRNA was most significantly down-regulated in C. rodentium-treated female mice. Fmo1, Fmo3, and Fmo5 mRNAs were also found to be down-regulated in LPS models of inflammation. The significant down-regulation of hepatic FMO3 protein during C. rodentium treatment was confirmed with Western blot analysis of liver microsomes from treated animals. Toll-like receptor (TLR) 4 is known to be responsible for LPS signaling in association with several proteins. To investigate whether TLR4 was responsible for regulation of Fmo genes in both LPS and C. rodentium animal models, Fmo mRNA levels in female wild-type (C3H/HeOuJ) and TLR4 mutant (C3H/HeJ) mice were compared in both inflammatory models by real-time RT-PCR. The results showed that Fmo3 down-regulation during C. rodentium infection is independent of TLR4. Whereas TLR4 is likely to play only a partial role in Fmo1 gene regulation in LPS-treated animals, our results show that the down-regulation of Fmo3 and Fmo5 in this model is TLR4-dependent. Unlike cytochrome P450 regulation measured in the same mouse strains, Fmo3 expression was largely refractory to down-regulation in the DSS model of inflammatory colitis.
Collapse
Affiliation(s)
- Jun Zhang
- Human BioMolecular Research Institute, San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Francois AA, Nishida CR, de Montellano PRO, Phillips IR, Shephard EA. Human flavin-containing monooxygenase 2.1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide. Drug Metab Dispos 2008; 37:178-86. [PMID: 18948378 DOI: 10.1124/dmd.108.024158] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The second-line antitubercular drugs thiacetazone (TAZ) and ethionamide (ETA) are bioactivated by the mycobacterial enzyme EtaA. We report here that human flavin-containing monooxygenase 2.1 (FMO2.1), which is expressed predominantly in the lung, catalyzes oxygenation of TAZ. The metabolites generated, the sulfenic acid, sulfinic acid, and carbodiimide derivatives, are the same as those produced by EtaA and human FMO1 and FMO3. Two of the metabolites, the sulfenic acid and carbodiimide, are known to be harmful to mammalian cells. FMO2.1 also catalyzes oxygenation of ETA, producing the S-oxide. We have developed a novel spectrophotometric assay for TAZ oxygenation. The assay was used to determine kinetic parameters for TAZ oxygenation catalyzed by human FMO1, FMO2.1, and FMO3 and by EtaA. Although the K(M) values for the four enzyme-catalyzed reactions are similar, k(cat) and, consequently, k(cat)/K(M) (the specificity constant) for FMO2.1-catalyzed TAZ oxygenation are much higher than those of FMO1, FMO3, or EtaA. This indicates that FMO2.1 is more effective in catalyzing TAZ oxygenation than are the other three enzymes and thus is likely to contribute substantially to the metabolism of TAZ, decreasing the availability of the prodrug to mycobacteria and producing toxic metabolites. Because of a genetic polymorphism, Europeans and Asians lack FMO2.1. However, in sub-Saharan Africa, a region in which tuberculosis is a major health problem, a substantial proportion of individuals express FMO2.1. Thus, our results may explain some of the observed interindividual differences in response to TAZ and ETA and have implications for the treatment of tuberculosis in sub-Saharan Africa.
Collapse
Affiliation(s)
- Asvi A Francois
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Krause RJ, Elfarra AA. Reduction of L-methionine selenoxide to seleno-L-methionine by endogenous thiols, ascorbic acid, or methimazole. Biochem Pharmacol 2008; 77:134-40. [PMID: 18930712 DOI: 10.1016/j.bcp.2008.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
Seleno-L-methionine (SeMet) can be oxidized to L-methionine selenoxide (MetSeO) by flavin-containing monooxygenase 3 (FMO3) and rat liver microsomes in the presence of NADPH. MetSeO can be reduced by GSH to yield SeMet and GSSG. In the present study, the potential reduction of MetSeO to SeMet by other cellular components and antioxidants was investigated. Besides GSH, other thiols (L-cysteine, or N-acetyl-L-cysteine) and antioxidants (ascorbic acid and methimazole) also reduced MetSeO to SeMet. This reduction is unique to MetSeO since methionine sulfoxide was not reduced to methionine under similar conditions. The MetSeO reduction by thiols was instaneous and much faster than the reduction by ascorbic acid or methimazole. However, only one molar equivalent of ascorbic acid or methimazole was needed to complete the reduction, as opposed to two molar equivalents of thiols. Whereas the disulfides produced by the reactions of MetSeO with thiols are chemically stable, methimazole disulfide readily decomposed at pH 7.4, 37 degrees C to yield methimazole, methimazole-sulfenic acid, methimazole sulfinic acid, methimazole S-sulfonate, 1-methylimidazole (MI) and sulfite anion. Collectively, the results demonstrate reduction of MetSeO to SeMet by multiple endogenous thiols, ascorbic acid, and methimazole. Thus, oxidation of SeMet to MetSeO may result in depletion of endogenous thiols and antioxidant molecules. Furthermore, the novel reduction of MetSeO by methimazole provides clear evidence that methimazole should not be used as an alternative FMO substrate when studying FMO-mediated oxidation of SeMet.
Collapse
Affiliation(s)
- Renee J Krause
- Department of Comparative Biosciences and the Center for Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|
36
|
Novick RM, Elfarra AA. Purification and characterization of flavin-containing monooxygenase isoform 3 from rat kidney microsomes. Drug Metab Dispos 2008; 36:2468-74. [PMID: 18775983 DOI: 10.1124/dmd.108.021436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rats are a common animal model for metabolism and toxicity studies. Previously, the enzymatic properties of rat flavin-containing monooxygenase (FMO) 1 purified from hepatic and renal microsomes and that of FMO3 purified from hepatic microsomes were characterized. This study investigated the physical, immunological, and enzymatic properties of FMO3 purified from male rat kidney microsomes and compared the results with those obtained with isolated rat liver FMO3. Renal FMO3 was purified via affinity columns based on the elution of L-methionine (Met) S-oxidase activity and reactivity of the eluted proteins with human FMO3 antibody. In general, Met S-oxidase-specific activity was increased 100-fold through the purification steps. The resulting protein had similar mobility (approximately 56 kDa) as isolated rat liver FMO3 and cDNA-expressed human FMO3 by SDS-polyacrylamide gel electrophoresis. When the isolated kidney protein band was subjected to trypsin digestion and matrix-assisted laser desorption ionization/time of flight mass spectral analysis, 34% of the sequence of rat FMO3 was detected. The apparent K(m) and V(max) values for rat kidney FMO3 were determined using the known FMO substrates Met, seleno-L-methionine, S-allyl-L-cysteine (SAC), and methimazole (N-methyl-2-mercaptoimidazole). The stereoselectivity of the reactions with Met and SAC were also examined using high-performance liquid chromatography. The obtained kinetic and stereoselectivity results were similar to those we obtained in the present study, or those previously reported, for rat liver FMO3. Taken together, the results demonstrate many similar properties between rat hepatic and renal FMO3 forms and suggest that renal FMO3 may play an important role in kidney metabolism of xenobiotics containing sulfur and selenium atoms.
Collapse
Affiliation(s)
- Rachel M Novick
- Department of Comparative Biosciences and Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
37
|
Celius T, Roblin S, Harper PA, Matthews J, Boutros PC, Pohjanvirta R, Okey AB. Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. Drug Metab Dispos 2008; 36:2499-505. [PMID: 18765683 DOI: 10.1124/dmd.108.023457] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flavin-containing monooxygenases (FMOs) are important in detoxication but generally are considered not to be inducible by xenobiotics. Our recent microarray studies revealed induction of FMO2 and FMO3 mRNAs by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver of mice with wild-type aryl hydrocarbon receptor (AHR) but not in Ahr-null mice. The aim of the present study was to delineate mechanisms of FMO regulation. In adult male mice, basal FMO3 mRNA is low but was induced 6-fold at 4 h and 6000-fold at 24 h. The ED50 was approximately 1 microg/kg for FMO2 and FMO3, similar to that for the classic AHR-regulated gene, Cyp1a1. In adult female mice basal FMO3 mRNA is high and was not induced at 4 h but was elevated 8-fold at 24 h. FMO5 mRNA was significantly down-regulated by TCDD in both male and female adult mice. Juvenile mice show no sex difference in response to TCDD; FMO3 was induced 4 to 6-fold by TCDD in both sexes. Chromatin immunoprecipitation demonstrated recruitment of AHR and aryl hydrocarbon nuclear translocator proteins to Fmo3 regulatory regions, suggesting that induction by TCDD is a primary AHR-mediated event. Although FMO2 and FMO3 mRNAs were highly induced by TCDD in adult males, overall FMO catalytic activity increased only modestly. In contrast to the striking up-regulation of FMO2 and FMO3 in mouse liver, TCDD has little effect on FMO mRNA in rat liver. However, FMO2 and FMO3 mRNAs were highly induced in transgenic mice that express wild-type rat AHR, indicating that lack of induction in rat is not due to an incompetent AHR in this species.
Collapse
Affiliation(s)
- Trine Celius
- Department of Pharmacology and Toxicology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, Canada M5S1A8
| | | | | | | | | | | | | |
Collapse
|
38
|
Siddens LK, Henderson MC, Vandyke JE, Williams DE, Krueger SK. Characterization of mouse flavin-containing monooxygenase transcript levels in lung and liver, and activity of expressed isoforms. Biochem Pharmacol 2007; 75:570-9. [PMID: 17942081 DOI: 10.1016/j.bcp.2007.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 11/30/2022]
Abstract
The significance of active versus inactive flavin-containing monooxygenase 2 (FMO2) for human drug and xenobiotic metabolism and sensitivity is unknown, but the underlying ethnic polymorphism is well documented. We used quantitative real-time PCR to measure message levels of Fmo1, Fmo2, Fmo3 and Fmo5 in lung and liver from eight strains of 8 week old female mice to determine if a strain could be identified that predominately expressed Fmo2 in lung, recapitulating the human FMO expression profile and being the ideal strain for Fmo2 knockout studies. We also characterized enzyme activity of baculovirus expressed mouse Fmo1, Fmo2 and Fmo3 to identify a substrate or incubation conditions capable of discriminating Fmo2 from Fmo mixtures. Fmo transcript expression patterns were similar for all strains. In lung, 59% of total FMO message was Fmo2, but Fmo1 levels were also high, averaging 34%, whereas Fmo3 and Fmo5 levels were 2 and 5%, respectively. In liver, Fmo1, Fmo2, Fmo3 and Fmo5 contributed 16, 1, 7 and 76% respectively, of detected message. Peak activity varied by isoform and was pH- and substrate-dependent. Fmo3 oxidation of methyl p-tolyl sulfide was negligible at pH 9.5, but Fmo3 oxidation of methimazole was comparable to Fmo1 and Fmo2. Heating microsomes at 50 degrees C for 10min eliminated most Fmo1 and Fmo3 activity, while 94% of Fmo2 activity remained. Measurement of activity in heated and unheated lung and liver microsomes verified relative transcript abundance. Our results show that dual Fmo1/2 knockouts will be required to model the human lung FMO profile.
Collapse
Affiliation(s)
- Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States
| | | | | | | | | |
Collapse
|
39
|
Treberg JR, Driedzic WR. Maintenance and accumulation of trimethylamine oxide by winter skate (Leucoraja ocellata): reliance on low whole animal losses rather than synthesis. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1790-8. [PMID: 16873558 DOI: 10.1152/ajpregu.00150.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trimethylamine oxide (TMAO) is typically accumulated as an organic osmolyte in marine elasmobranchs to levels second only to urea (which can reach >400 mM); however, little is known about the whole animal regulation of TMAO in elasmobranchs. In the present study on the winter skate ( Leucoraja ocellata), we determine whether this species can maintain levels of TMAO in the absence of feeding, and if so, is this due to endogenous synthesis or low whole animal losses. Winter skates maintain plasma TMAO levels for up to 45 days without feeding. The liver displays methimazole oxidation, which is consistent with the presence of flavin-containing monooxygenase (E.C. 1.14.13.8 ) activity, the class of enzymes responsible for the physiological oxygenation of trimethylamine (TMA) to TMAO in mammals. However, no evidence for TMA oxygenation by winter skates was found using in vivo or in vitro techniques, indicating no significant capacity for endogenous TMAO synthesis. Fed skates displayed low, but measurable (∼4–13 μmol·kg−1·h−1), efflux of TMAO (plus TMA), whereas fasted skates did not. Using the loss of injected [14C]TMAO, it was determined that whole animal TMAO losses are likely <1% of whole body TMAO per day. These results demonstrate that winter skates utilize low whole animal TMAO losses, rather than endogenous synthesis, to maintain TMAO levels when not feeding.
Collapse
Affiliation(s)
- Jason R Treberg
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | |
Collapse
|
40
|
Koukouritaki SB, Poch MT, Henderson MC, Siddens LK, Krueger SK, VanDyke JE, Williams DE, Pajewski NM, Wang T, Hines RN. Identification and Functional Analysis of Common Human Flavin-Containing Monooxygenase 3 Genetic Variants. J Pharmacol Exp Ther 2006; 320:266-73. [PMID: 17050781 DOI: 10.1124/jpet.106.112268] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flavin-containing monooxygenases (FMOs) are important for the disposition of many therapeutics, environmental toxicants, and nutrients. FMO3, the major adult hepatic FMO enzyme, exhibits significant interindividual variation. Eighteen FMO3 single-nucleotide polymorphism (SNP) frequencies were determined in 202 Hispanics (Mexican descent), 201 African Americans, and 200 non-Latino whites. Using expressed recombinant enzyme with methimazole, trimethylamine, sulindac, and ethylenethiourea, the novel structural variants FMO3 E24D and K416N were shown to cause modest changes in catalytic efficiency, whereas a third novel variant, FMO3 N61K, was essentially devoid of activity. The latter variant was present at an allelic frequency of 5.2% in non-Latino whites and 3.5% in African Americans, but it was absent in Hispanics. Inferring haplotypes using PHASE, version 2.1, the greatest haplotype diversity was observed in African Americans followed by non-Latino whites and Hispanics. Haplotype 2A and 2B, consisting of a hypermorphic promoter SNP cluster (-2650C>G, -2543T>A, and -2177G>C) in linkage with synonymous structural variants was inferred at a frequency of 27% in the Hispanic population, but only 5% in non-Latino whites and African Americans. This same promoter SNP cluster in linkage with one or more hypomorphic structural variant also was inferred in multiple haplotypes at a total frequency of 5.6% in the African-American study group but less than 1% in the other two groups. The sum frequencies of the hypomorphic haplotypes H3 [15,167G>A (E158K)], H5B [-2650C>G, 15,167G>A (E158K), 21,375C>T (N285N), 21,443A>G (E308G)], and H6 [15,167G>A (E158K), 21,375C>T (N285N)] was 28% in Hispanics, 23% in non-Latino whites, and 24% in African Americans.
Collapse
Affiliation(s)
- Sevasti B Koukouritaki
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Borbás T, Zhang J, Cerny MA, Likó I, Cashman JR. Investigation of structure and function of a catalytically efficient variant of the human flavin-containing monooxygenase form 3. Drug Metab Dispos 2006; 34:1995-2002. [PMID: 16985102 DOI: 10.1124/dmd.106.010827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To characterize the contribution of amino acid 360 to the functional activity of the human flavin-containing monooxygenase form 3 (FMO3) and form 1 (FMO1) in the oxygenation of drugs and chemicals, we expressed four FMO3 variants (i.e., Ala360-FMO3, His360-FMO3, Gln360-FMO3, and Pro360-FMO3) and one FMO1 variant (i.e., Pro360-FMO1) and compared them to wild-type enzymes (Leu360-FMO3 and His360-FMO1, respectively). The amino acid substitutions were introduced into wild-type FMO3 or FMO1 cDNA by site-directed mutagenesis. The thermal stability of variants of Leu360 FMO3 was also studied, and the thermal stability was significantly different from that of wild-type FMO3. The influence of different substrates to modulate the catalytic activity of FMO3 variants was also examined. Selective functional substrate activity was determined with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine. Compared with wild-type FMO3, the Ala360-FMO3 and His360-FMO3 variants were less catalytically efficient for mercaptoimidazole S-oxygenation. N-Oxygenation of chlorpromazine was significantly less catalytically efficient for His360-FMO3 compared with wild-type FMO3. Human Pro360-FMO1 was significantly more catalytically efficient at S-oxygenating mercaptoimidazole and chlorpromazine compared with wild-type FMO1. The data support the mechanism that the Pro360 loci affect thermal stability of FMO3. Because different amino acids at position 360 affect substrate oxygenation in a unique fashion compared with that of FMO3 stimulation, we conclude that the mechanism of stimulation of FMO3 is distinct from that of enzyme catalysis. A molecular model of human FMO3 was also constructed to help explain the results. The increase in catalytic efficiency observed for Pro360 in human FMO3 was also observed when the His of FMO1 was replaced by Pro at loci 360.
Collapse
Affiliation(s)
- Tímea Borbás
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
42
|
Virkel G, Lifschitz A, Sallovitz J, Pis A, Lanusse C. Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. J Vet Pharmacol Ther 2006; 29:213-23. [PMID: 16669866 DOI: 10.1111/j.1365-2885.2006.00735.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triclabendazole (TCBZ) is an halogenated benzimidazole (BZD) compound worldwide used to control immature and adult stages of the liver fluke Fasciola hepatica. The purpose of this investigation was to characterize in vitro the patterns of hepatic and ruminal biotransformation of TCBZ and its metabolites in sheep. TCBZ parent drug was metabolized into its sulphoxide (TCBZSO), sulphone (TCBZSO2) and hydroxy derivatives by sheep liver microsomes. The same microsomal fraction was also able to oxidize TCBZSO into TCBZSO2 and hydroxy-TCBZSO (HO-TCBZSO). TCBZ sulphoxidation was significantly (P < 0.001) inhibited after inactivation of the flavin-monooxygenase (FMO) system (77% inhibition) as well as in the presence of the FMO substrate methimazole (MTZ) (71% inhibition). TCBZ sulphoxidative metabolism was also reduced (24% inhibition, P < 0.05) by the cytochrome P450 inhibitor piperonyl butoxide (PB). The rate of TCBZSO conversion into TCBZSO2 was also significantly inhibited by PB (55% inhibition), MTZ (52% inhibition) and also following FMO inactivation (58% inhibition). The data reported here indicate that the FMO is the main enzymatic pathway involved in TCBZ sulphoxidation (ratio FMO/P450 = 3.83 +/- 1.63), although both enzymatic systems participate in a similar proportion in the sulphonation of TCBZSO to form the sulphone metabolite (ratio FMO/P450 = 1.31 +/- 0.23). Additionally, ketoconazole (KTZ) did not affect TCBZ sulphoxidation but decreased (66% inhibition, P < 0.05) the formation of TCBZSO2. Similarly, inhibition of TCBZSO2 production was observed after incubation of TCBZSO in the presence of KTZ and erythromycin (ETM). Conversely, thiabendazole (TBZ) and fenbendazole (FBZ) did not affect the oxidative metabolism of both incubated substrates. The sheep ruminal microflora was able to reduce the sulphoxide (TCBZSO) into the parent thioether (TCBZ). The ruminal sulphoreduction of the HO-TCBZSO derivative into HO-TCBZ was also demonstrated. The rate of sulphoreduction of HO-TCBZSO was significantly (P < 0.05) higher than that observed for TCBZSO. The metabolic approach tested here contributes to the identification of the different pathways involved in drug biotransformation in ruminant species. These findings on the pattern of hepatic and ruminal biotransformation of TCBZ and its main metabolites are a further contribution to the understanding of the pharmacological properties of widely used anthelmintics in ruminants. Comprehension of TCBZ metabolism is critical to optimize its flukicidal activity.
Collapse
Affiliation(s)
- G Virkel
- Laboratorio de Farmacologia, Departmento de Fisiopatologia, Nuncleo Fisfarvet, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | | | | | | | |
Collapse
|
43
|
Eswaramoorthy S, Bonanno JB, Burley SK, Swaminathan S. Mechanism of action of a flavin-containing monooxygenase. Proc Natl Acad Sci U S A 2006; 103:9832-7. [PMID: 16777962 PMCID: PMC1502539 DOI: 10.1073/pnas.0602398103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elimination of nonnutritional and insoluble compounds is a critical task for any living organism. Flavin-containing monooxygenases (FMOs) attach an oxygen atom to the insoluble nucleophilic compounds to increase solubility and thereby increase excretion. Here we analyze the functional mechanism of FMO from Schizosaccharomyces pombe using the crystal structures of the wild type and protein-cofactor and protein-substrate complexes. The structure of the wild-type FMO revealed that the prosthetic group FAD is an integral part of the protein. FMO needs NADPH as a cofactor in addition to the prosthetic group for its catalytic activity. Structures of the protein-cofactor and protein-substrate complexes provide insights into mechanism of action. We propose that FMOs exist in the cell as a complex with a reduced form of the prosthetic group and NADPH cofactor, readying them to act on substrates. The 4alpha-hydroperoxyflavin form of the prosthetic group represents a transient intermediate of the monooxygenation process. The oxygenated and reduced forms of the prosthetic group help stabilize interactions with cofactor and substrate alternately to permit continuous enzyme turnover.
Collapse
Affiliation(s)
| | | | | | - Subramanyam Swaminathan
- *Biology Department, Brookhaven National Laboratory, Upton, NY 11973
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Abstract
This review summarizes recent information concerning the pharmacological and toxicological significance of the human flavin-containing monooxygenase (FMO, EC 1.14.13.8). The human FMO oxygenates nucleophilic heteroatom-containing chemicals and drugs and generally converts them into harmless, polar, readily excreted metabolites. Sometimes, however, FMO bioactivates chemicals into reactive materials that can cause toxicity. Most of the interindividual differences of FMO are due to genetic variability and allelic variation, and splicing variants may contribute to interindividual and interethnic variability observed for FMO-mediated metabolism. In contrast to cytochrome P450 (CYP), FMO is not easily induced nor readily inhibited, and potential adverse drug-drug interactions are minimized for drugs prominently metabolized by FMO. These properties may provide advantages in drug design and discovery, and by incorporating FMO detoxication pathways into drug candidates, more drug-like materials may be forthcoming. Although exhaustive examples are not available, physiological factors can influence FMO function, and this may have implications for the clinical significance of FMO and a role in human disease.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, San Diego, CA 92121, USA.
| | | |
Collapse
|
45
|
Krueger SK, Siddens LK, Henderson MC, VanDyke JE, Karplus PA, Pereira CB, Williams DE. C-Terminal truncation of rabbit flavin-containing monooxygenase isoform 2 enhances solubility. Arch Biochem Biophys 2006; 450:149-56. [PMID: 16620765 DOI: 10.1016/j.abb.2006.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/21/2022]
Abstract
Flavin-containing monooxygenases (FMO) are membrane-associated enzymes contributing to oxidative metabolism of drugs and other chemicals. There are no known structures similar enough to FMO to provide accurate insights into the structural basis for differences in metabolism observed among FMOs. To develop an FMO amenable to crystallization, we introduced mutations into rabbit FMO2 (rF2) to increase solubility, decrease aggregation, and simplify isolation. Alterations included removal of 26 AA (Delta26) from the carboxyl-terminus, His(6)-fusion to the amino-terminus and a double Ser substitution designed to reduce local hydrophobicity. Only Delta26 FMO variants retained normal activity, increased the yield of cytosolic rF2 and decreased protein aggregation. Delta26 constructs increased rF2 in cytosol in low (from 2 to 13%), and high salt (from 24 to 62%) conditions. His-fusion proteins, while active and useful for purification, did not affect solubility. Delta26 variants should prove useful for identifying conditions suitable for production of an FMO crystal.
Collapse
Affiliation(s)
- Sharon K Krueger
- Department of Environmental and Molecular Toxicology, Oregon State University, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Alvarez LI, Solana HD, Mottier ML, Virkel GL, Fairweather I, Lanusse CE. Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 2006; 131:501-10. [PMID: 16174415 DOI: 10.1017/s0031182005007997] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/06/2022]
Abstract
Triclabendazole (TCBZ) is a halogenated benzimidazole compound that possesses high activity against immature and adult stages of the liver fluke, Fasciola hepatica. The intensive use of TCBZ in endemic areas of fascioliasis has resulted in the development of liver flukes resistant to this compound. TCBZ sulphoxide (TCBZSO) and TCBZ sulphone (TCBZSO2) are the main molecules recovered in the bloodstream of TCBZ-treated animals. In order to gain some insight into the possible mechanisms of resistance to TCBZ, the goals of the work described here were: to compare the ex vivo transtegumental diffusion of TCBZ parent drug and its sulpho-metabolites (TCBZSO and TCBZSO2) into TCBZ-susceptible and -resistant liver flukes; and to assess the comparative pattern of TCBZ biotransformation by TCBZ-susceptible and -resistant F. hepatica. For the tegumental diffusion studies, TCBZ-susceptible (Cullompton) and -resistant (Sligo) adult flukes collected from untreated infected sheep were incubated (15-180 min) in KRT buffer containing either TCBZ, TCBZSO or TCBZSO2 (5 nmol.ml-1). For the metabolism studies, microsomal fractions obtained from TCBZ-susceptible and -resistant flukes were incubated for 60 min with TCBZ (40 microM), and the amount of the formed metabolic product (TCBZSO) was measured. Drug/metabolite concentrations were quantified by HPLC. All the assayed TCBZ-related molecules penetrated through the tegument of both TCBZ-susceptible and -resistant flukes. However, significantly lower (approximately 50%) concentrations of TCBZ and TCBZSO were recovered within the TCBZ-resistant flukes compared to the TCBZ-susceptible ones over the 180 min incubation period. The rate of TCBZ sulphoxidative metabolism into TCBZSO was significantly higher (39%) in TCBZ-resistant flukes. The flavin-monooxigenase (FMO) enzyme system appears to be the main metabolic pathway involved in the formation of TCBZSO in both TCBZ-susceptible and -resistant flukes. The altered drug influx/efflux and enhanced metabolic capacity identified in TCBZ-resistant liver flukes may account for the development of resistance to TCBZ.
Collapse
Affiliation(s)
- L I Alvarez
- Laboratorio de Farmacología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, 7000, Tandil, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Borbás T, Benko B, Dalmadi B, Szabó I, Tihanyi K. Insulin in flavin-containing monooxygenase regulation. Flavin-containing monooxygenase and cytochrome P450 activities in experimental diabetes. Eur J Pharm Sci 2006; 28:51-8. [PMID: 16488120 DOI: 10.1016/j.ejps.2005.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/16/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Microsomal monooxygenases - cytochrome P450 (CYP, EC 1.14.14.1) and flavin-containing monooxygenase (FMO, EC 1.14.13.8) - have profound roles in drug metabolism. While the induction of some metabolic enzymes such as hepatic FMO and intestinal CYP1A, CYP2B is recognized in experimental diabetes, the effect of insulin treatment on FMO and intestinal CYP3A in diabetic animals has not been reported before. Changes in abundance and activity of hepatic and intestinal microsomal CYPs and FMO were studied in streptozotocin-induced diabetic rats either treated or not with insulin. Hepatic FMO1 activity increased in diabetic rats, but it was restored to control value on insulin treatment. Insulin itself had no effect on FMO1 activity in non-diabetic animals. A remarkable increase of total CYP content was accompanied by a reduced CYP3A specific enzyme activity in the small intestine of diabetic animals. The extent of these changes decreased on insulin treatment. Both, hepatic FMO1 and intestinal CYP3A activity correlated with average blood glucose concentration in untreated diabetic rats. These results indicate that insulin is involved in the regulation of hepatic FMO1 and intestinal CYP3A in rats. Blood glucose level is a good marker for FMO induction. The marked reduction of intestinal CYP3A capacity suggests that diabetes exerts a substantial effect on the activity of most determining intestinal CYP enzyme.
Collapse
Affiliation(s)
- Tímea Borbás
- Division of Pharmacology and Drug Safety, Richter Gedeon Ltd., Gyömroi út 19-21, 1475 Budapest, P.O. Box 27, Hungary
| | | | | | | | | |
Collapse
|
48
|
Can Demirdöğen B, Adali O. Characterization and modulation by drugs of sheep liver microsomal flavin monooxygenase activity. Cell Biochem Funct 2005; 23:245-51. [PMID: 15473006 DOI: 10.1002/cbf.1145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The flavin monooxygenases (FMO) catalyse the NADPH and oxygen-dependent oxidation of a wide range of nucleophilic nitrogen-, sulfur-, phosphorus-, and selenium heteroatom-containing chemicals, drugs, and agricultural agents. In the present study, sheep liver microsomal FMO activity was determined by measuring the S-oxidation rate of methimazole and the average specific activity obtained from different microsomal preparations was found to be 3.8 +/- 1.5 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 7). The presence of 0.1% Triton X-100 in the reaction mixture caused an increase of specific sheep liver microsomal FMO activity towards methimazole to 6.1 +/- 1.4 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 6). Metabolism of imipramine and chlorpromazine was measured by following the oxidation of cofactor NADPH spectrophotometrically at 340 nm. Sheep liver microsomal FMO activity towards imipramine and chlorpromazine was found to be 10.7 and 12.3 nmol NADPH oxidized min(-1) mg(-1) microsomal protein, respectively. Characterization of sheep liver enzyme was carried out using methimazole as substrate and the maximum FMO enzyme activity was detected at 37 degrees C and at pH 8.0. The apparent K(m) value of sheep liver microsomal FMO for methimazole was 0.118 mM. Effects of the detergents Triton X-100, Cholate, and Emulgen 913, on FMO activity were determined and FMO activity was found to increase with the addition of detergents to the reaction medium. Sheep liver microsomal FMO-catalysed methimazole oxidation was inhibited by imipramine and chlorpromazine when these drugs were used at high concentrations. Western blot-immunochemical analysis revealed the presence of FMO3 in sheep liver microsomes.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biological Sciences, Middle East Technical University, Joint Graduate Program in Biochemistry, Ankara, Turkey
| | | |
Collapse
|
49
|
Krueger SK, Siddens LK, Henderson MC, Andreasen EA, Tanguay RL, Pereira CB, Cabacungan ET, Hines RN, Ardlie KG, Williams DE. Haplotype and functional analysis of four flavin-containing monooxygenase isoform 2 (FMO2) polymorphisms in Hispanics. Pharmacogenet Genomics 2005; 15:245-56. [PMID: 15864117 PMCID: PMC1351039 DOI: 10.1097/01213011-200504000-00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Previous work defined two flavin-containing monooxygenase 2 (FMO2) alleles. The major allele, FMO2*2 (g.23,238C>T), encodes truncated inactive protein (p.X472) whereas the minor allele, FMO2*1, present in African- and Hispanic-American populations, encodes active protein (p.Q472). Recently, four common (27 to 51% incidence) FMO2 single nucleotide polymorphisms (SNPs) were detected in African-Americans (N=50); they encode the following protein variants: p.71Ddup, p.V113fs, p.S195L and p.N413 K. Our objectives were to: (1) determine the incidence of these SNPs in 29 Hispanic individuals previously genotyped as g.23,238C (p.Q472) and 124 previously genotyped as homozygous g.23,238 T (p.X472); (2) determine FMO2 haplotypes in this population; and (3) assess the functional impact of SNPs in expressed proteins. METHODS SNPs were detected via allele-specific oligonucleotide amplification coupled with real-time or electrophoretic product detection, or single strand conformation polymorphism. RESULTS The g.7,700_7,702dupGAC SNP (p.71Ddup) was absent. The remaining SNPs were present but, except for g.13,732C>T (p.S195L), were less common in the current Hispanic study population versus the previously described African-Americans. Only expressed p.N413 K was as active as p.Q472, as determined by methimazole- and ethylenethiourea-dependent oxidation. Haplotype determination demonstrated that the g.10,951delG (p.V113fs), g.13,732C>T (p.S195L) and g.22,060T>G (p.N413 K) variants segregated with g.23,238C>T (p.X472). CONCLUSIONS SNPs would not alter FMO2 activity in individuals possessing at least one FMO2*1 allele. It is likely that these SNPs will segregate similarly in African-American populations. Therefore, estimates that 26% of African-Americans and 2-7% of Hispanic-Americans have at least one FMO2*1 allele should closely reflect the percentages producing active FMO2 protein.
Collapse
Affiliation(s)
- Sharon K. Krueger
- Department of Environmental and Molecular Toxicology
- The Linus Pauling Institute
| | - Lisbeth K. Siddens
- Department of Environmental and Molecular Toxicology
- The Linus Pauling Institute
| | | | | | | | | | - Erwin T. Cabacungan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA and
| | - Ronald N. Hines
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA and
| | - Kristin G. Ardlie
- Genomics Collaborative Division of SeraCare Life Sciences, Inc., Cambridge, MA, USA
| | - David E. Williams
- Department of Environmental and Molecular Toxicology
- The Linus Pauling Institute
- Correspondence and requests for reprints to David Williams, Department of Environmental and Molecular Toxicology, Oregon State University, 1007, Agricultural and Life Sciences Building, Corvallis, OR 97331, USA. Tel: 541 737 3277; fax: 541 737 7966; e-mail:
| |
Collapse
|
50
|
Mottier L, Virkel G, Solana H, Alvarez L, Salles J, Lanusse C. Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 2005; 34:1043-57. [PMID: 15801547 DOI: 10.1080/00498250400015285] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Triclabendazole (TCBZ) is an halogenated trematodicidal benzimidazole compound extensively used in veterinary medicine. It is active against immature and adult stages of the liver fluke Fasciola hepatica. Free and conjugated TCBZ metabolites have been identified in the bile of treated sheep. The experimental aims were to characterize the in vitro patterns of TCBZ biotransformation both in the animal host (sheep liver microsomes) and target parasite (F. hepatica microsomal preparation); and to compare the ex vivo diffusion of TCBZ parent drug and its oxidized metabolites (TCBZ sulphoxide [TCBZSO], TCBZ sulphone [TCBZSO2], and TCBZ-hydroxy derivatives) into F. hepatica. Additionally, the octanol-water partition coefficients for TCBZ and all its metabolites were estimated as an indicator of the relationship between drug lipophilicity and diffusion into the target parasite. Drug/metabolites concentrations were quantified by HPLC after sample clean up and a solvent-mediated chemical extraction. Sheep liver microsomes metabolized TCBZ into its sulphoxide and sulphone metabolites after 30 min of incubation. The rate of TCBZ sulphoxidation in the liver was significantly greater (p < 0.01) than that observed for the sulphonation of TCBZSO. The trematode parasite oxidized TCBZ into its sulphoxide metabolite after 60 min of incubation at a metabolic rate of 0.09 nmol min(-1) mg protein(-1). TCBZ and all its oxidized metabolic products were recovered from F. hepatica as early as 15 min after their ex vivo incubation in a Kreb's Ringer Tris buffer. However, the diffusion of the hydroxy-derivatives into the fluke was lower than that observed for TCBZ, TCBZSO and TCBZSO2. There was a high correlation (r=0.82) between drug lipophilicity (expressed as octanol-water partition coefficients) and drug availability measured within the parasite. Unlike the uptake pattern previously observed for albendazole, the parent TCBZ and its sulphoxide and sulphone metabolites showed a similar ability to penetrate into the trematode parasite. Understanding the relationship between TCBZ metabolism, the relative pharmacological potency of its metabolic products and their ability to reach the target parasite may be critical to optimize its flukicidal activity, particularly when TCBZ resistant flukes have been already isolated in the field.
Collapse
Affiliation(s)
- L Mottier
- Laboratorio de Farmacología, Departamento de Fisiopatologia, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Campus Universitario, 7000, Tandil, Argentina
| | | | | | | | | | | |
Collapse
|