1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Li JB, Li D, Liu YY, Cao A, Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium(IV/V) ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104378. [PMID: 38295964 DOI: 10.1016/j.etap.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Dorado-Martínez C, Montiel-Flores E, Ordoñez-Librado JL, Gutierrez-Valdez AL, Garcia-Caballero CA, Sanchez-Betancourt J, Reynoso-Erazo L, Tron-Alvarez R, Rodríguez-Lara V, Avila-Costa MR. Histological and Memory Alterations in an Innovative Alzheimer's Disease Animal Model by Vanadium Pentoxide Inhalation. J Alzheimers Dis 2024; 99:121-143. [PMID: 38640149 DOI: 10.3233/jad-230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-β (Aβ) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aβ plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.
Collapse
Affiliation(s)
- Claudia Dorado-Martínez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Enrique Montiel-Flores
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Jose Luis Ordoñez-Librado
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Ana Luisa Gutierrez-Valdez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Cesar Alfonso Garcia-Caballero
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | | | - Leonardo Reynoso-Erazo
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Rocio Tron-Alvarez
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Vianey Rodríguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| |
Collapse
|
4
|
|
5
|
Dario BS, Fernandes Neto F, Portes MC, Boni Fazzi R, Rodrigues da Silva D, Peterson EJ, Farrell NP, Castelli S, Desideri A, Petersen PAD, Petrilli HM, Da Costa Ferreira AM. DNA binding, cytotoxic effects and probable targets of an oxindolimine–vanadyl complex as an antitumor agent. NEW J CHEM 2019. [DOI: 10.1039/c9nj02480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vanadyl–oxindolimine complex as an antitumor agent.
Collapse
Affiliation(s)
- Bruno Soares Dario
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Francisco Fernandes Neto
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Marcelo Cecconi Portes
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Rodrigo Boni Fazzi
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eiam-Ong S, Nakchui Y, Chaipipat M, Eiam-Ong S. Vanadate-Induced Renal cAMP and Malondialdehyde Accumulation Suppresses Alpha 1 Sodium Potassium Adenosine Triphosphatase Protein Levels. Toxicol Res 2018; 34:143-150. [PMID: 29686776 PMCID: PMC5903140 DOI: 10.5487/tr.2018.34.2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that vanadate causes nephrotoxicity. Vanadate inhibits renal sodium potassium adenosine triphosphatase (Na, K-ATPase) activity and this is more pronounced in injured renal tissues. Cardiac cyclic adenosine monophosphate (cAMP) is enhanced by vanadate, while increased cAMP suppresses Na, K-ATPase action in renal tubular cells. There are no in vivo data collectively demonstrating the effect of vanadate on renal cAMP levels; on the abundance of the alpha 1 isoform (α1) of the Na, K-ATPase protein or its cellular localization; or on renal tissue injury. In this study, rats received a normal saline solution or vanadate (5 mg/kg BW) by intraperitoneal injection for 10 days. Levels of vanadium, cAMP, and malondialdehyde (MDA), a marker of lipid peroxidation were measured in renal tissues. Protein abundance and the localization of renal α1-Na, K-ATPase was determined by Western blot and immunohistochemistry, respectively. Renal tissue injury was examined by histological evaluation and renal function was assessed by blood biochemical parameters. Rats treated with vanadate had markedly increased vanadium levels in their plasma, urine, and renal tissues. Vanadate significantly induced renal cAMP and MDA accumulation, whereas the protein level of α1-Na, K-ATPase was suppressed. Vanadate caused renal damage, azotemia, hypokalemia, and hypophosphatemia. Fractional excretions of all studied electrolytes were increased with vanadate administration. These in vivo findings demonstrate that vanadate might suppress renal α1-Na, K-ATPase protein functionally by enhancing cAMP and structurally by augmenting lipid peroxidation.
Collapse
Affiliation(s)
- Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuyen Nakchui
- School of Medicine, Walailak University, Nakhonsrithammarat, Thailand
| | - Mookda Chaipipat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Zhang J, Yang H, Sun T, Chen Z, Yin G. Nonredox Metal-Ions-Enhanced Dioxygen Activation by Oxidovanadium(IV) Complexes toward Hydrogen Atom Abstraction. Inorg Chem 2017; 56:834-844. [DOI: 10.1021/acs.inorgchem.6b02277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Hang Yang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Tingting Sun
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
8
|
|
9
|
Abstract
The purpose of this study was to define the toxic effects of vanadium on thymic development in broilers fed on diets supplemented with 0, 5, 15, 30, 45 and 60 mg/kg of vanadium for 42 days. We examined the changes of relative weigh, cell cycle phase, apoptotic cells, and protein expression of Bcl-2, Bax, and caspase-3 in the thymus by the methods of flow cytometry, TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) and immunohistochemistry. The results showed that dietary high vanadium (30 mg/kg, 45 mg/kg and 60 mg/kg) caused the toxic effects on thymic development, which was characterized by decreasing relative weigh, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index (PI), and increasing percentages of apoptotic thymocytes. Concurrently, the protein expression levels of Bax and caspase-3 were increased, and protein expression levels of Bcl-2 were decreased. The thymic development suppression caused by dietary high vanadium further leads to inhibitive effects on T lymphocyte maturity and activity, and cellular immune function. The above-mentioned results provide new evidences for further understanding the vanadium immunotoxicity. In contrast, dietary 5 mg/kg vanadium promoted the thymic development by increasing relative weigh, decreasing G0/G1 phase, increasing S phase and PI, and reducing percentages of apoptotic thymocytes when compared to the control group and high vanadium groups.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
10
|
Butenko N, Pinheiro JP, Da Silva JP, Tomaz AI, Correia I, Ribeiro V, Costa Pessoa J, Cavaco I. The effect of phosphate on the nuclease activity of vanadium compounds. J Inorg Biochem 2015; 147:165-76. [PMID: 25958839 DOI: 10.1016/j.jinorgbio.2015.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 01/05/2023]
Abstract
The nuclease activity of VO(acac)2 (1, acac = acetylacetone) and its derivatives VO(hd)2 (2, hd = 3,5-heptanedione), VO(Cl-acac)2 (3, Cl-acac = 3-chloro-2,4-pentanedione), VO(Et-acac)2 (4, Et-acac = 3-ethyl-2,4-pentanedione) and VO(Me-acac)2 (5, Me-acac = 3-methyl-2,4-pentanedione), is studied by agarose gel electrophoresis, UV-visible spectroscopy, cyclic and square wave voltammetry and (51)V NMR. The mechanism is shown to be oxidative and associated with the formation of reactive oxygen species (ROS). Hydrolytic cleavage of the phosphodiester bond is also promoted by 1, but at much slower rate which cannot compete with the oxidative mechanism. The generation of ROS is much higher in the presence of phosphate buffer when compared with organic buffers and this was attributed to the formation of a mixed-ligand complex containing phosphate, (V(IV)O)(V(V)O)(acac)2(HnPO4(n-3)), presenting a quasi-reversible voltammetric behavior. The formation of this species was further observed by Electrospray Ionization Mass Spectrometry (ESI-MS). Phosphate being an essential species in most biological media, the importance of the formation of mixed-ligand species in other vanadium systems is emphasized.
Collapse
Affiliation(s)
- Nataliya Butenko
- Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José Paulo Pinheiro
- Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Paulo Da Silva
- Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vera Ribeiro
- Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
11
|
Physiological roles of peroxido-vanadium complexes: Leitmotif as their signal transduction pathway. J Inorg Biochem 2015; 147:93-8. [PMID: 25912243 DOI: 10.1016/j.jinorgbio.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/24/2022]
Abstract
Evidence exists that supports the various physiological roles of vanadium compounds, although the amount of vanadium in our body is limited. This limited concentration in our body does not attract much attention of the biological chemists, although the fact is present; even in the 19th century, vanadium derivatives were used for the therapeutic reagents. In the middle of the 20th century, the main focus of vanadium chemistry is mainly on the chemical and material fields. After the first discovery of vanadium compounds expressing ATPase activity, oxidovanadium(IV) sulfate was reported to have insulin mimic activity. Additionally, because some vanadium compounds possess cellular toxicity, trials were also carried out to examine the possible use of vanadium compounds as cancer therapeutics. The application of vanadium complexes was extended in recent years especially in the 21st century. In this review, we briefly explain the historical background of vanadium chemistry and also summarize the physiological role of vanadium complexes mainly focusing on the synthesis and physiological role of peroxidovanadium compounds and their interactions with insulin signal transduction pathways.
Collapse
|
12
|
Andrezálová L, Gbelcová H, Duračková Z. DNA damage induction and antiproliferative activity of vanadium(V) oxido monoperoxido complex containing two bidentate heteroligands. J Trace Elem Med Biol 2013; 27:21-6. [PMID: 22575540 DOI: 10.1016/j.jtemb.2012.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/14/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022]
Abstract
Several peroxidovanadium(V) complexes have been shown as a potent anticancer agents. The aim of this study was to investigate the interaction of monoperoxidovanadium(V) complex Pr(4)N[VO(O(2))(ox)(phen)], (Vphen), [phen=1,10-phenantroline, ox=oxalate(2-) and Pr(4)N=tetra(n-propyl)ammonium(1+)] with DNA. UV-Vis spectrophotometry and the alkaline single-cell gel electrophoresis (SCGE, the comet assay) were used to examine the possibility of the vanadium(V) complex to induce changes in DNA. The interaction of Vphen with calf thymus DNA resulted in absorption hyperchromicity in DNA spectrum and shift of the absorption band of DNA to longer wavelengths for the [complex]/[DNA] concentration ratio equals to 4 and after 60 min of incubation. The rise in DNA absorption (by 34%) and bathochromic shift (Δλ(max)=6 nm) are indicative of the interaction between DNA and the complex molecules. DNA strand breaks in cellular DNA were investigated using the comet assay. The human lymphocytes were exposed to various concentrations of Vphen for 30 min. The results revealed that Vphen contributed to the DNA damage expressed as DNA strand breaks in concentration dependent manner. The used concentrations of Vphen (ranging from 0.1 to 100 μmol/L) caused higher DNA damage in lymphocytes compared to untreated cells (from 1.2 times for 0.1 μmol/L to 1.8 times for 100 μmol/L). Vphen was screened for its potential antitumor activity towards murine leukemia cell line L1210. Vphen exhibited significant antiproliferative activity depending on its concentration and time of exposure. The IC(50) values were 0.247 μg/mL (0.45 μmol/L) for 24h, 0.671 μg/mL (1.21 μmol/L) for 48 h and 0.627 μg/mL (1.13 μmol/L) for 72 h.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia.
| | | | | |
Collapse
|
13
|
Deng Y, Cui H, Peng X, Fang J, Zuo Z, Wang K, Cui W, Wu B. Changes of IgA+ cells and cytokines in the cecal tonsil of broilers fed on diets supplemented with vanadium. Biol Trace Elem Res 2012; 147:149-55. [PMID: 22270623 DOI: 10.1007/s12011-012-9330-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
Abstract
The cecal tonsil of broiler is known as a secondary lymphoid tissue, which is involved in antigen-specific humoral immune responses. The purpose of this study was to investigate the effects of dietary vanadium on the tissue distribution and quantity of immunoglobulin A-positive (IgA(+)) cell in the cecal tonsil by immunohistochemistry. Simultaneously, the changes in interleukin-6 (IL-6), interleukin-10 (IL-10), interferon gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) contents in the cecal tonsil were also quantified by enzyme-linked immunosorbent assay (ELISA). A total of 420 one-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet (control diet) or the same diet supplemented respectively with 5, 15, 30, 45, and 60 mg/kg of vanadium in the form of ammonium metavanadate for 42 days. The results showed that the population of the IgA(+) cells in the cecal tonsil were significantly lower (p < 0.05 or p < 0.01) in the 45 and 60 mg/kg groups than that in the control group. Meanwhile, IL-10, IFN-γ and TNF-α contents in the cecal tonsil were significantly decreased (p < 0.05 or p < 0.01) in the 30, 45 and 60 mg/kg groups in comparison with those of the control group. However, IL-6 content in the cecal tonsil was only decreased (p < 0.05 or p < 0.01) in 60 mg/kg at 14 and 28 days of age. In conclusion, dietary vanadium in excess of 30 mg/kg reduced the numbers of the IgA(+) cells and changed the contents of the abovementioned cytokines in the cecal tonsil, which may finally impact the function of local mucosal humoral immunity in broilers.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sato K, Ohnuki T, Takahashi H, Miyashita Y, Nozaki K, Kanamori K. Preparation, structure, and properties of tetranuclear vanadium(III) and (IV) complexes bridged by diphenyl phosphate or phosphate. Inorg Chem 2012; 51:5026-36. [PMID: 22486192 DOI: 10.1021/ic2024617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.
Collapse
Affiliation(s)
- Kyouhei Sato
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Cui W, Cui H, Peng X, Fang J, Zuo Z, Liu X, Wu B. Dietary vanadium induces lymphocyte apoptosis in the bursa of Fabricius of broilers. Biol Trace Elem Res 2012; 146:59-67. [PMID: 21960355 DOI: 10.1007/s12011-011-9215-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The purpose of this 42-day study was to investigate the apoptosis in the bursa of Fabricius induced by different levels of dietary vanadium. A total of 420 1-day-old avian broilers were divided into 6 groups in which there were 7 replicates in each group and 10 broilers in each replicate and fed on a corn-soybean basal diet as control diet (vanadium 0.073 mg/kg) or the same diet amended to contain 5, 15, 30, 45, and 60 mg/kg vanadium supplied as ammonium metavanadate (NH(4)VO(3)). Ultrastructurally, mitochondrial injury and increased numbers of apoptotic cells with condensed nuclei were observed in the 30, 45, and 60 mg/kg groups. As measured by flow cytometry, the percentages of apoptotic lymphocytes were significantly increased in the 15-, 30-, 45-, and 60-mg/kg groups when compared with those of control group. Meanwhile, the terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end-labeling assay showed that there were increased numbers of apoptotic cells in the 30-, 45-, and 60-mg/kg groups. Immunohistochemical tests showed increased numbers of positive cells under Bax and caspase-3 protein detection and decreased Bcl-2 protein in the 15-, 30-, 45-, and 60-mg/kg groups. The vanadium content of the bursa was found to be significantly increased in the 30-, 45-, and 60-mg/kg groups. These results suggested that dietary vanadium in excess of 15 mg/kg could cause lymphocyte apoptosis in the bursa of Fabricius and impact humoral immunity in broilers. Lymphocyte apoptosis in the bursa induced by high levels of dietary vanadium is associated with mitochondrial injury and changes in levels of apoptogenic proteins, such as Bcl-2, Bax, and caspase-3.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Deng Y, Cui H, Peng X, Fang J, Wang K, Cui W, Liu X. Effect of dietary vanadium on cecal tonsil T cell subsets and IL-2 contents in broilers. Biol Trace Elem Res 2011; 144:647-56. [PMID: 21409474 DOI: 10.1007/s12011-011-9018-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on intestinal immune function by histopathological observation of cecal tonsil and changes of the cecal tonsil T cell subsets by method of flow cytometry. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 mg/kg vanadium supplied as ammonium metavanadate. In comparison with those of control group, lymphocytes in the lymphatic nodule of cecal tonsil were apparently decreased in 45 and 60 mg/kg groups. The percentage of CD(3)(+) T cells was decreased (p < 0.05) in 45 mg/kg group at 28 and 42 days of age and significantly decreased (p < 0.01) in 60 mg/kg group at 28 and 42 days of age. The percentages of CD(3)(+)CD(4)(+) and CD(3)(+)CD(8)(+) T cells were markedly decreased (p < 0.05 or p < 0.01) in 60 mg/kg group from 14 to 28 days of age and were decreased (p < 0.05) in 45 mg/kg group at 28 and 42 days of age. However, changes of the CD(4)(+)/CD(8)(+) ratio were not significant. Meanwhile, the cecal tonsil interleukin-2 (IL-2) contents were decreased (p < 0.05 or p < 0.01) in 45 and 60 mg/kg groups from 14 to 42 days of age. It was concluded that dietary vanadium in excess of 30 mg/kg reduced the percentages of cecal tonsil T cells subsets and IL-2 contents, and caused cecal tonsil lesions, which impaired cecal tonsil function and impacted the local mucosal immune function of the intestines in broilers.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Cui W, Cui H, Peng X, Fang J, Zuo Z, Liu X, Wu B. Excess dietary vanadium induces the changes of subsets and proliferation of splenic T cells in broilers. Biol Trace Elem Res 2011; 143:932-8. [PMID: 21046277 DOI: 10.1007/s12011-010-8890-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on immune function by determining changes of the subsets and proliferation function of splenic T cells. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 ppm of vanadium supplied as ammonium metavanadate. When compared with those of the control group, the percentage of CD3+, CD3+CD4+, and CD3+CD8+ of splenic T cells were decreased in the 45 and 60 ppm groups; however, the percentage of CD3+ and CD3+CD4+ were increased in the 5 ppm group, and the CD4+/CD8+ ratios were raised in the 5 and 15 ppm groups at 14 days of age. Meanwhile, the proliferation of splenic T cells were depressed in the 45 and 60 ppm groups but raised in the 5 and 15 ppm groups. Also, the serum interleukin-2 (IL-2) and interleukin-6 (IL-6) contents were decreased in the 45 and 60 ppm groups and increased in the 5 ppm group. It was concluded that dietary vanadium in excess of 30 ppm changed the percentages of splenic T cell subsets and inhibited the proliferation of splenic T cells and reduced the serum IL-2 and IL-6 contents. The cellular immune function was finally impaired in broilers.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China, 625014
| | | | | | | | | | | | | |
Collapse
|
18
|
Cui W, Cui H, Peng X, Fang J, Zuo Z, Liu X, Wu B. Dietary excess vanadium induces lesions and changes of cell cycle of spleen in broilers. Biol Trace Elem Res 2011; 143:949-56. [PMID: 21191820 DOI: 10.1007/s12011-010-8938-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on spleen growth and lesions by determining morphological changes and cell cycle of spleen. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, 60 ppm of vanadium supplied as ammonium metavanadate. When compared with that of control group, the relative weight of spleen was significantly raised in 5- and 15-ppm groups, but depressed in 45- and 60-ppm groups. The gross lesions of spleen showed obvious atrophy with decreased volume and pale color in 45- and 60-ppm groups. Histopathologically, lymphocytes in splenic corpuscle and periarterial lymphatic sheath were variously decreased in number in 30-, 45-, and 60-ppm groups. The percentage of static phase (G0/G1) was significantly decreased, and the percentage of synthesis period (S) phase and the proliferating index (PI) were significantly increased in 5- and 15-ppm groups. The percentage of G0/G1 phase was significantly increased, and the percentage of mitotic phase (G2+M), S phase, and PI significantly decreased in 45- and 60-ppm groups. These results suggested that dietary excess vanadium (45 and 60 ppm) could inhibit growth of spleen and induce lesions in spleen in chicken.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Ueki T, Michibata H. Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Cui W, Cui H, Peng X, Fang J, Zuo Z, Liu X, Wu B. Changes of relative weight and cell cycle, and lesions of bursa of Fabricius induced by dietary excess vanadium in broilers. Biol Trace Elem Res 2011; 143:251-60. [PMID: 20830531 DOI: 10.1007/s12011-010-8832-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on immune function by determining the morphological changes and cell cycle of bursa of Fabricius, and the serum Ig contents. A total of 420 one-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet, or the same diet amended to contain 5, 15, 30, 45, and 60 ppm vanadium supplied as ammonium metavanadate. When compared with that of control group, the relative weight of bursa was significantly increased in the 15 ppm group from 14 to 35 days of age and increased in the 5 ppm group at 42 days of age, and significantly decreased in the 60 ppm group from 14 to 42 days of age and decreased in 30 and 45 ppm groups from 35 to 42 days of age. Pathological lesions progressed as the dietary vanadium increased. The gross lesions of bursa showed obvious atrophy with decreased volume and pale color in 45 and 60 ppm groups. Histopathologically, widened cortex and increased number of lymphocytes appeared in 5 and 15 ppm groups, and reduced lymphocytes and connective tissue hyperplasia appeared in 45 and 60 ppm groups. The bursal cells in static phase (G(0)/G(1)) were decreased, and those in the mitotic phase (G(2) + M) and the proliferating index (PI) were increased in 5 and 15 ppm groups. However, bursal cells in the G(0)/G(1) phase were increased, and those in G(2) + M phase, synthesis phase (S) and the PI were decreased in 45 and 60 ppm groups. Also, the serum IgG and IgA contents were increased in 5 and 15 ppm groups, and the serum IgG, IgA, and IgM contents were decreased in 45 and 60 ppm groups. These results suggested that dietary excess vanadium (45 and 60 ppm) could inhibit growth of bursa of Fabricius and impair humoral immunity in chicken.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Cui W, Cui HM, Peng X, Zuo Z, Liu X, Wu B. Effect of vanadium on the subset and proliferation of peripheral blood T cells, and serum interleukin-2 content in broilers. Biol Trace Elem Res 2011; 141:192-9. [PMID: 20532669 DOI: 10.1007/s12011-010-8737-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on immune function by determining changes of the subsets and proliferation function of peripheral blood T cells. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 ppm vanadium supplied as ammonium metavanadate. In comparison with those of the control group, the percentages of CD (3) (+) , CD (3) (+) CD (4) (+) , and CD (3) (+) CD (8) (+) were decreased in 45 and 60 ppm groups from 14 to 42 days of age, and the percentages of CD (3) (+) and CD (3) (+) CD (4) (+) were increased in 5 ppm group at 42 days of age. The CD (4) (+) /CD (8) (+) ratio was increased in 45 and 60 ppm groups at 28 days of age. Meanwhile, the proliferation function of peripheral blood T cell were decreased in 30, 45, and 60 ppm groups from 14 to 42 days of age. Also, the serum interleukin-2 contents were decreased in 45 and 60 ppm groups from 14 to 42 days of age and increased in 5 ppm group at 28 days of age. Histopathologically, hypocellularity appeared in the thymus in 45 and 60 ppm groups. It was concluded that dietary vanadium in excess of 30 ppm reduced the percentages of peripheral blood T-cell subsets and the proliferation function and serum interleukin-2 contents. The cellular immune function was finally impaired in broilers.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | | | | | | | | | | |
Collapse
|
22
|
Cohen MD, Sisco M, Prophete C, Yoshida K, Chen LC, Zelikoff JT, Smee J, Holder AA, Stonehuerner J, Crans DC, Ghio AJ. Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium. Inhal Toxicol 2010; 22:169-78. [PMID: 19757987 PMCID: PMC4018818 DOI: 10.3109/08958370903161232] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In situ reactions of metal ions or their compounds are important mechanisms by which particles alter lung immune responses. The authors hypothesized that major determinants of the immunomodulatory effect of any metal include its redox behavior/properties, oxidation state, and/or solubility, and that the toxicities arising from differences in physicochemical parameters are manifest, in part, via differential shifts in lung iron (Fe) homeostasis. To test the hypotheses, immunomodulatory potentials for both pentavalent vanadium (VV; as soluble metavanadate or insoluble vanadium pentoxide) and hexavalent chromium (CrVI; as soluble sodium chromate or insoluble calcium chromate) were quantified in rats after inhalation (5h/day for 5 days) of each at 100 microg metal/m3. Differences in effects on local bacterial resistance between the two VV, and between each CrVI, agents suggested that solubility might be a determinant of in situ immunotoxicity. For the soluble forms, VV had a greater impact on resistance than CrVI, indicating that redox behavior/properties was likely also a determinant. The soluble VV agent was the strongest immunomodulant. Regarding Fe homeostasis, both VV agents had dramatic effects on airway Fe levels. Both also impacted local immune/airway epithelial cell Fe levels in that there were significant increases in production of select cytokines/chemokines whose genes are subject to regulation by HIF-1 (whose intracellular longevity is related to cell Fe status). Our findings contribute to a better understanding of the role that metal compound properties play in respiratory disease pathogenesis and provide a rationale for differing pulmonary immunotoxicities of commonly encountered ambient metal pollutants.
Collapse
Affiliation(s)
- Mitchell D Cohen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Al-Gonaiah M, Smith RA, Stone TW. Xanthine oxidase-induced neuronal death via the oxidation of NADH: prevention by micromolar EDTA. Brain Res 2009; 1280:33-42. [PMID: 19450565 DOI: 10.1016/j.brainres.2009.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
Abstract
The oxidation of xanthine by xanthine oxidase (XO) or xanthine dehydrogenase represents an important source of reactive oxygen species (ROS), which contribute to the damaging consequences of cerebral ischemia, inflammation, and neurodegenerative disorders. However, both enzymes are also able to act on reduced nicotinamide adenine dinucleotide (NADH). The FAD binding site to which NADH binds is distinct from that of the xanthine binding site. We report that the combination of xanthine oxidase and NADH is toxic to cultures of cerebellar granule neurons. Protection by superoxide dismutase (Cu,Zn-SOD or Mn-SOD) or catalase indicates mediation of the toxicity by superoxide and hydrogen peroxide. In addition, pre-incubating XO with EDTA at concentrations as low as 2 microM, prevented the toxicity, indicating that a metal contaminating XO is involved in producing the toxic effects of XO/NADH. It is possible that such a metal might play a role in the toxicity of XO in vivo.
Collapse
Affiliation(s)
- Majed Al-Gonaiah
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
24
|
Cohen MD, Sisco M, Prophete C, Chen LC, Zelikoff JT, Ghio AJ, Stonehuerner JD, Smee JJ, Holder AA, Crans DC. Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Vanadium Agents. J Immunotoxicol 2008; 4:49-60. [DOI: 10.1080/15476910601119350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
|
26
|
|
27
|
Willsky GR, Chi LH, Liang Y, Gaile DP, Hu Z, Crans DC. Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate. Physiol Genomics 2006; 26:192-201. [PMID: 16684804 DOI: 10.1152/physiolgenomics.00196.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment with vanadium, a representative of a class of antidiabetic compounds, alleviates diabetic hyperglycemia and hyperlipidemia. Oral administration of vanadium compounds in animal models and humans does not cause clinical symptoms of hypoglycemia, a common problem for diabetic patients with insulin treatment. Gene expression, using Affymetrix arrays, was examined in muscle from streptozotocin-induced diabetic and normal rats in the presence or absence of oral vanadyl sulfate treatment. This treatment affected normal rats differently from diabetic rats, as demonstrated by two-way ANOVA of the full array data. Diabetes altered the expression of 133 genes, and the expression of 30% of these genes dysregulated in diabetes was normalized by vanadyl sulfate treatment. For those genes, the ratio of expression in normal animals to the expression in diabetic animals showed a strong negative correlation with the ratio of expression in diabetic animals to the expression in diabetic animals treated with vanadyl sulfate ( P = −0.85). The genes identified belong to six major metabolic functional groups: lipid metabolism, oxidative stress, muscle structure, protein breakdown and biosynthesis, the complement system, and signal transduction. The identification of oxidative stress genes, coupled with the known oxidative chemistry of vanadium, implicates reactive oxygen species in the action of this class of compounds. These results imply that early transition metals or compounds formed from their chemical interactions with other metabolites may act as general transcription modulators, a role not usually associated with this class of compounds.
Collapse
Affiliation(s)
- Gail R Willsky
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160:1-40. [PMID: 16430879 DOI: 10.1016/j.cbi.2005.12.009] [Citation(s) in RCA: 3997] [Impact Index Per Article: 210.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 02/07/2023]
Abstract
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular, ROS activation of AP-1 (activator protein) and NF-kappaB (nuclear factor kappa B) signal transduction pathways, which in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu, Zn-SOD, Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappaB, AP-1 are also reviewed.
Collapse
Affiliation(s)
- M Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
29
|
Khan MOF, Parveen S, Seddon GM, Douglas KT. Vanadate as a Futile, Superoxide Ion-producing Substrate of Trypanothione Reductase fromTrypanosoma cruzi. CHEM LETT 2005. [DOI: 10.1246/cl.2005.1558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Amado AM, Aureliano M, Riberio-Claro PJA, Teixeira-Dias JJC. Combined Raman and 51V NMR spectroscopic study of vanadium (V) oligomerization in aqueous alkaline solutions. JOURNAL OF RAMAN SPECTROSCOPY 2005. [DOI: 10.1002/jrs.1250241011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 2004; 104:849-902. [PMID: 14871144 DOI: 10.1021/cr020607t] [Citation(s) in RCA: 1004] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
| | | | | | | |
Collapse
|
32
|
Théberge JF, Mehdi MZ, Pandey SK, Srivastava AK. Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Arch Biochem Biophys 2003; 420:9-17. [PMID: 14622970 DOI: 10.1016/j.abb.2003.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.
Collapse
Affiliation(s)
- Jean-François Théberge
- Research Centre, Centre hospitalier de l'Université de Montréal-Hôtel-Dieu, and Department of Medicine, Universitéde Montréal, 3850 rue Saint-Urbain, Montreal, Que., H2W1T8, Canada
| | | | | | | |
Collapse
|
33
|
Michibata H. Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord Chem Rev 2003. [DOI: 10.1016/s0010-8545(02)00278-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Michibata H, Uyama T, Ueki T, Kanamori K. Vanadocytes, cells hold the key to resolving the highly selective accumulation and reduction of vanadium in ascidians. Microsc Res Tech 2002; 56:421-34. [PMID: 11921344 DOI: 10.1002/jemt.10042] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since Henze discovered vanadium in the blood (or coelomic) cells of an ascidian in 1911, this unusual phenomenon has attracted the interest of many investigators. The highest concentration of vanadium (350 mM) in the blood cells of Ascidia gemmata, which belongs to the suborder Phlebobranchia, is 10(7) times higher than that in seawater. Of the approximately 10 types of blood cells, a combination of cell fractionation and neutron-activation analysis revealed that the signet ring cells were the true vanadocytes. In the vanadocytes, 97.6% of the vanadium is in the +3 oxidation state (III). The extremely low pH of 1.9 found in vanadocytes suggests that protons, concentrated by an H(+)-ATPase, might be linked to the accumulation of vanadium energetically. The antigen recognized by a monoclonal antibody, S4D5, prepared to identify vanadocytes, was determined to be 6-PGDH in the pentose phosphate pathway. NADPH produced in the pentose phosphate pathway in vanadocytes is thought to participate in the reduction of vanadium(V) to vanadium(IV). During embryogenesis, a vanadocyte-specific antigen first appears in the body wall at the same time that significant accumulations of vanadium become apparent. Three different vanadium-associated proteins (VAPs) were extracted from the blood cells of vanadium-rich ascidians. These are 12.5, 15, and 16 kDa in size and are associated with vanadium in an approximate ratio of 1:16. The cDNA encoding the 12.5 and 15 kDa VAPs was isolated and the proteins encoded were found to be novel. Further biochemical and biophysical characterization of the VAPs is in progress.
Collapse
Affiliation(s)
- Hitoshi Michibata
- Mukaishima Marine Biological Laboratory, Faculty of Science and Laboratory of Marine Molecular Biology, Graduate School of Science, Hiroshima University, Hiroshima 722-0073, Japan.
| | | | | | | |
Collapse
|
35
|
Grandvaux N, Elsen S, Vignais PV. Oxidant-dependent phosphorylation of p40phox in B lymphocytes. Biochem Biophys Res Commun 2001; 287:1009-16. [PMID: 11573965 DOI: 10.1006/bbrc.2001.5665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As with the neutrophil NADPH oxidase, the B lymphocyte NADPH oxidase consists of a membrane-bound flavocytochrome b and regulatory factors including Rac and the cytosolic phox protein triad p67phox, p47phox, and p40phox. Here we demonstrate by phosphoamino acid analysis and the use of the potent PKC inhibitor GFX that, in response to stimulation of B lymphocytes with sodium orthovanadate and H(2)O(2), the p40phox component of the cytosolic phox triad is selectively phosphorylated on serine and threonine residues by a PKC-type protein kinase. The pattern of p40phox phosphorylation was closely related to the kinetics of tyrosine phosphorylation of PKC-delta, the main PKC isotype of B lymphocytes. Blocking H(2)O(2)-dependent tyrosine phosphorylation of PKC by genistein resulted in inhibition of p40phox phosphorylation. The correlation between the tyrosine phosphorylation of PKC-delta and the serine/threonine phosphorylation of p40phox, together with the inhibition of p40phox phosphorylation by rottlerin, a selective inhibitor of PKC-delta, makes the activated PKC-delta a likely candidate in the process of the oxidant-dependent phosphorylation of p40phox in B cells.
Collapse
Affiliation(s)
- N Grandvaux
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CEA-CNRS-UJF), CEA-Grenoble, 17 avenue des martyrs, 38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
36
|
Prahalad AK, Inmon J, Ghio AJ, Gallagher JE. Enhancement of 2'-deoxyguanosine hydroxylation and DNA damage by coal and oil fly ash in relation to particulate metal content and availability. Chem Res Toxicol 2000; 13:1011-9. [PMID: 11080050 DOI: 10.1021/tx000110j] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemiologic studies have shown causal relationships between air pollution particles and adverse health effects in susceptible subpopulations. Fly ash particles (containing water-soluble and insoluble metals) are a component of ambient air particulate pollution and may contribute to particulate-induced health effects. Some of the pathological effects after inhalation of the particles may be due to reactive oxygen species (ROS) produced by metal-catalyzed reactions. In this investigation, we analyzed emission source particulates oil fly ash (OFA) and coal fly ash (CFA) for metal content and solubility in relation to their ability to induce 2'-deoxyguanosine (dG) hydroxylation and DNA damage as measured by 8-oxo-dG formation by HPLC/UV-electrochemical detection (ECD). Water-soluble vanadium and nickel were present at the highest concentrations, and iron was present in trace amounts in OFA (5.1% V, 1.0% Ni, and 0.4% Fe by weight). In contrast, CFA comprised mostly of water-insoluble aluminosilicates and iron (9.2% Al, 12.2% Si, and 2.8% Fe by weight). As a first approach to gain insight into the mode of action of these particulates, we examined metal species-catalyzed kinetics of dG hydroxylation. Metal species at a concentration of 0.1 mM in the incubation mixture containing 0.1 mM dG under ambient air at room temperature catalyzed maximum 8-oxo-dG formation at 15 min with yields ranging from 0.05 to 0.17%, decreasing in the following order: vanadium(IV) > iron(II) > vanadium(V) > iron(III) > or = nickel(II). Insoluble Fe(III) oxide (Fe(2)O(3)) under similar conditions had no effect. Consistent with these results, OFA rich in vanadium and nickel concentrations showed a dose-dependent increase in the level of dG hydroxylation to 8-oxo-dG formation at particulate concentrations of 0.1-1 mg/mL (p < 0.05). In contrast, CFA with high concentrations of aluminosilicates and iron did not result in a significant increase in the level of 8-oxo-dG over that of the control, i.e., dG (p > 0.05). DMSO, a (*)OH scavenger, inhibited OFA-induced 8-oxo-dG formation, and metal ion chelators, deferoxamine (DFX), DTPA, and ferrozine blocked OFA-induced 8-oxo-dG formation. OFA and CFA induced 8-oxo-dG formation in a pattern similar to that observed for dG hydroxylation when calf thymus DNA was used as a substrate. Treatment of OFA particles with DFX before reacting with DNA or addition of a catalase in the incubation mixture significantly suppressed 8-oxo-dG formation (p < 0.05). These results suggest that metal availability, but not the concentration of metals present in CFA and OFA, is critical in mediating molecular oxygen-dependent dG hydroxylation and DNA base damage.
Collapse
Affiliation(s)
- A K Prahalad
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
37
|
Grabowski GM, Paulauskis JD, Godleski JJ. Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol 1999; 156:170-8. [PMID: 10222309 DOI: 10.1006/taap.1999.8642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Occupational exposure by inhalation to vanadium-containing particles such as residual oil fly ash results in respiratory tract inflammation. This inflammation, characterized by abundant neutrophilia, appears to be initiated by alveolar macrophages (AMs) encountering particles and the subsequent release of proinflammatory cytokines. Intracellular signaling events in these cells in response to particles or their components are largely unknown. We investigated two immediate responses of AMs to vanadium exposure in vitro, the production of reactive oxygen intermediates (ROI) or respiratory burst (RB), and the tyrosine phosphorylation of cellular proteins. Macrophages exposed in vitro to 100 microM vanadyl chloride/1 microCi 48V incorporated 8.3% of the metal after 30 min. Exposure of AMs to increasing concentrations of sodium metavanadate resulted in a dose-dependent increase in production of ROI as measured by dichlorofluorescin oxidation. The lowest dose yielding a significant response was 50 microM, whereas 1000 microM increased RB activity by 173%. NADPH oxidase inhibitors deoxy-D-glucose (100 mM) and diphenylene iodonium (25 microM) reduced the metavanadate-induced RB by 62 and 71%, respectively, implicating NADPH oxidase as the primary cellular source of ROI. Enhanced cerium chloride oxidation in response to metavanadate localized to the plasma membrane consistent with increased NADPH oxidase activity. Pretreatment of AMs with the epidermal growth factor receptor inhibitor, tryphostin B50 (10 microM), reduced the metavanadate-induced RB, but did not influence overall tyrosine phosphorylation. Metavanadate and H2O2 exposure greatly increased overall tyrosine phosphorylation, yielding a similar but distinguishable pattern of phosphorylation in these cells. These observations demonstrate that in vitro metavanadate exposure regulates two distinct, yet related intracellular signaling pathways important in initiating inflammatory responses in these cells: (1) activation of the NADPH oxidase complex with subsequent increased ROI synthesis, and (2) enhanced tyrosine phosphorylation of cellular proteins.
Collapse
Affiliation(s)
- G M Grabowski
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Folz RJ, Abushamaa AM, Suliman HB. Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin Invest 1999; 103:1055-66. [PMID: 10194479 PMCID: PMC408251 DOI: 10.1172/jci3816] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene showed threefold higher EC-SOD levels in the lung compared with wild-type (Wt) littermate controls. A significant amount of hEC-SOD was present in the epithelial lining fluid layer. Both Tg and Wt mice were exposed to normobaric hyperoxia (>99% oxygen) for 48, 72, and 84 hours. Mice overexpressing hEC-SOD in the airways attenuated the hyperoxic lung injury response, showed decreased morphologic evidence of lung damage, had reduced numbers of recruited inflammatory cells, and had a reduced lung wet/dry ratio. To evaluate whether reduced numbers of neutrophil infiltration were directly responsible for the tolerance to oxygen toxicity observed in the Tg mice, we made Wt and Tg mice neutropenic using anti-neutrophil antibodies and subsequently exposed them to 72 hours of hyperoxia. Both Wt and Tg neutrophil-depleted (ND) mice have less severe lung injury compared with non-ND animals, thus providing direct evidence that neutrophils recruited to the lung during hyperoxia play a distinct role in the resultant acute lung injury. We conclude that oxidative and inflammatory processes in the extracellular lung compartment contribute to hyperoxic-induced lung damage and that overexpression of hEC-SOD mediates a protective response to hyperoxia, at least in part, by attenuating the neutrophil inflammatory response.
Collapse
Affiliation(s)
- R J Folz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | | | | |
Collapse
|
39
|
Uyama T, Ueki T, Suhama Y, Kanamori K, Michibata H. A 100-kDa Antigen Recognized by a Newly Prepared Monoclonal Antibody Specific to the Vanadocytes of the Vanadium-Rich Ascidian, Ascidia sydneiensis samea, is Glycogen Phosphorylase. Zoolog Sci 1998. [DOI: 10.2108/zsj.15.815] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Abou-Seif MA. Oxidative stress of vanadium-mediated oxygen free radical generation stimulated by aluminium on human erythrocytes. Ann Clin Biochem 1998; 35 ( Pt 2):254-60. [PMID: 9547897 DOI: 10.1177/000456329803500209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been suggested that aluminium stimulates vanadium-mediated superoxide radical generation. The oxidative stress of generated superoxide radicals on antioxidant enzyme activity, oxidation of NADH and NADPH, membrane lipid peroxidation and osmotic fragility in human red blood cells (RBC) was investigated. RBC were incubated with varying concentrations of vanadium and aluminium ions at 37 degrees C for 2 h. RBC incubated with vanadium ions showed significantly increased superoxide dismutase and catalase activities, and oxidized NADH and NADPH concentrations compared with control RBC preparations. Erythrocyte lipid peroxidation was assessed by measuring thiobarbituric acid reactivity. RBC incubated with elevated levels of vanadium showed significantly increased membrane lipid peroxidation when compared with control RBC; it increased further on addition of aluminium. A significant positive correlation was observed between the extent of vanadium induced membrane lipid peroxidation and the osmotic fragility of treated RBC. In the presence of vanadium, aluminium stimulates superoxide dismutase and catalase activities. NADH and NADPH oxidation and membrane lipid peroxidation, as well as increasing osmotic fragility of human erythrocytes. The stimulatory effect of aluminium was dependent on concentration. These results may have implications for the mechanism of toxicity of aluminium and vanadium in haemodialysis patients.
Collapse
Affiliation(s)
- M A Abou-Seif
- Chemistry Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
41
|
Abou-Seif MA. Vanadium-mediated oxidation of NADH is enhanced by aluminium and inhibited by vitamin E and some copper (II) complexes. Ann Clin Biochem 1997; 34 ( Pt 6):645-50. [PMID: 9367002 DOI: 10.1177/000456329703400608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of aluminium on vanadium-mediated oxidation of NADH was examined. The oxidation of NADH was enhanced in the presence of aluminium. The effect was concentration dependent. Vitamin E and copper (II) complexes with superoxide dismutase (SOD)-like activities containing isobutyric acid hydrazine were tested for their effect on the vanadium-mediated oxidation of NADH. The stimulatory effect of aluminium was decreased upon addition of different concentrations of vitamin E and copper (II) complexes. These results indicate that the biological toxicity of aluminium may be attributed to its enhancement of the production of superoxide radicals (O2.-) in association with the accumulation of other trace elements such as vanadium.
Collapse
Affiliation(s)
- M A Abou-Seif
- Chemistry Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
42
|
Dackiw AP, Grinstein S, Brisseau GF, McGilvray ID, Nathens AB, McGuire JA, Romanek R, Cheung PY, Rotstein OD. The role of tyrosine phosphorylation in lipopolysaccharide- and zymosan-induced procoagulant activity and tissue factor expression in macrophages. Infect Immun 1997; 65:2362-70. [PMID: 9169775 PMCID: PMC175327 DOI: 10.1128/iai.65.6.2362-2370.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of surface procoagulants by exudative macrophages represents an important mechanism underlying local fibrin deposition at sites of extravascular inflammation. The present studies investigated the contribution of tyrosine phosphorylation to the generation of macrophage procoagulant activity (PCA) and tissue factor expression in response to proinflammatory stimuli. Both lipopolysaccharide (LPS) and zymosan rapidly stimulated tyrosine phosphorylation in elicited murine peritoneal macrophages. This effect was prevented by the tyrosine kinase inhibitors genistein and herbimycin and augmented by the addition of the phosphotyrosine phosphatase inhibitor vanadate. The vanadate-mediated rise in phosphotyrosine accumulation was abrogated by the use of diphenylene iodonium, an inhibitor of the respiratory burst oxidase, suggesting a role for peroxides of vanadate as contributors to the tyrosine phosphorylation. This notion was supported by the finding that vanadyl hydroperoxide markedly increased the accumulation of phosphotyrosine residues. To define the role of tyrosine phosphorylation in the induction of macrophage PCA by LPS, the effects of tyrosine kinase inhibition by genistein and herbimycin were investigated. Both agents inhibited the expression of macrophage PCA. Further, Northern blot analysis with the cDNA probe for murine tissue factor indicated that the inhibition occurred at the mRNA level or earlier. Since vanadate augmented phosphotyrosine accumulation, it was hypothesized that it might enhance generation of macrophage products. However, vanadate reduced induction of PCA in response to LPS. By contrast, vanadate augmented basal prostaglandin E2 (PGE2) release and stimulated PGE2 release by macrophages. Indomethacin prevented the increase in PGE2 but only partially restored normal levels of PCA. The effect of vanadate on tissue factor expression appeared to be posttranscriptional. These studies thus demonstrate, by functional Western blotting and Northern blotting techniques, that tyrosine phosphorylation plays a role in the regulation of macrophage PCA and tissue factor expression in response to proinflammatory stimuli.
Collapse
Affiliation(s)
- A P Dackiw
- Department of Surgery, Toronto Hospital and the University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO. production to a minimum. O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction. In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the "free" iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors. The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.
Collapse
Affiliation(s)
- S L Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
44
|
Vanadium complexes with insulin mimic actions—A second line of protection against diabetes. Indian J Clin Biochem 1996. [DOI: 10.1007/bf02896425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Shi X, Jiang H, Mao Y, Ye J, Saffiotti U. Vanadium(IV)-mediated free radical generation and related 2'-deoxyguanosine hydroxylation and DNA damage. Toxicology 1996; 106:27-38. [PMID: 8571399 DOI: 10.1016/0300-483x(95)03151-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Free radical generation, 2'-deoxyguanosine (dG) hydroxylation and DNA damage by vanadium(IV) reactions were investigated. Vanadium(IV) caused molecular oxygen dependent dG hydroxylation to form 8-hydroxyl-2'-deoxyguanosine (8-OHdG). During a 15 min incubation of 1.0 mM dG and 1.0 mM VOSO4 in phosphate buffer solution (pH 7.4) at room temperature under ambient air, dG was converted to 8-OHdG with a yield of about 0.31%. Catalase and formate inhibited the 8-OHdG formation while superoxide dismutase enhanced it. Metal ion chelators, DTPA and deferoxamine, blocked the 8-OHdG formation. Incubation of vanadium(IV) with dG in argon did not generate any significant amount of 8-OHdG, indicating the role of molecular oxygen in the mechanism of vanadium(IV)-induced dG hydroxylation. Vanadium(IV) also caused molecular oxygen-dependent DNA strand breaks in a pattern similar to that observed for dG hydroxylation. ESR spin trapping measurements demonstrated that the reaction of vanadium(IV) with H2O2 generated OH radicals, which were inhibited by DTPA and deferoxamine. Incubation of vanadium(IV) with dG or with DNA in the presence of H2O2 resulted in an enhanced 8-OHdG formation and substantial DNA double strand breaks. Sodium formate inhibited 8-OHdG formation while DTPA had no significant effect. Deferoxamine enhanced the 8-OHdG generation by 2.5-fold. ESR and UV measurements provided evidence for the complex formation between vanadium(IV) and deferoxamine. UV-visible measurements indicate that dG, vanadium(IV) and deferoxamine are able to form a complex, thereby, facilitating site-specific 8-OHdG formation. Reaction of vanadium(IV) with t-butyl hydroperoxide generated hydroperoxide-derived free radicals, which caused 8-OHdG formation from dG and DNA strand breaks. DTPA and deferoxamine attenuated vanadium(IV)/t-butyl-OOH-induced DNA strand breaks.
Collapse
Affiliation(s)
- X Shi
- Laboratory of Experimental Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Crans DC, Mahroof-Tahir M, Keramidas AD. Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. Mol Cell Biochem 1995; 153:17-24. [PMID: 8927035 DOI: 10.1007/bf01075914] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stability of 11 vanadium compounds is tested under physiological conditions and in administration fluids. Several compounds including those currently used as insulin-mimetic agents in animal and human studies are stable upon dissolution in distilled water but lack such stability in distilled water at pH 7. Complex lability may result in decomposition at neutral pH and thus may compromise the effectiveness of these compounds as therapeutic agents; Even well characterized vanadium compounds are surprisingly labile. Sufficiently stable complexes such as the VEDTA complex will only slowly reduce, however, none of the vanadium compounds currently used as insulin-mimetic agents show the high stability of the VEDTA complex. Both the bis(maltolato)oxovanadium(IV) and peroxovanadium complexes extend the insulin-mimetic action of vanadate in reducing cellular environments probably by increased lifetimes under physiological conditions and/or by decomposing to other insulin mimetic compounds. For example, treatment with two equivalents of glutathione or other thiols the (dipicolinato)peroxovanadate(V) forms (dipicolinato)oxovanadate(V) and vanadate, which are both insulin-mimetic vanadium(V) compounds and can continue to act. The reactivity of vanadate under physiological conditions effects a multitude of biological responses. Other vanadium complexes may mimic insulin but not induce similar responses if the vanadate formation is blocked or reduced. We conclude that three properties, stability, lability and redox chemistry are critical to prolong the half-life of the insulin-mimetic form of vanadium compounds under physiological conditions and should all be considered in development of vanadium-based oral insulin-mimetic agents.
Collapse
Affiliation(s)
- D C Crans
- Department of Chemistry and Cell and Molecular Biology Program, Colorado State University 80523, USA
| | | | | |
Collapse
|
47
|
Dowd P, Zheng ZB. On the mechanism of the anticlotting action of vitamin E quinone. Proc Natl Acad Sci U S A 1995; 92:8171-5. [PMID: 7667263 PMCID: PMC41118 DOI: 10.1073/pnas.92.18.8171] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vitamin E in the reduced, alpha-tocopherol form shows very modest anticlotting activity. By contrast, vitamin E quinone is a potent anticoagulant. This observation may have significance for field trials in which vitamin E is observed to exhibit beneficial effects on ischemic heart disease and stroke. Vitamin E quinone is a potent inhibitor of the vitamin K-dependent carboxylase that controls blood clotting. A newly discovered mechanism for the inhibition requires attachment of the active site thiol groups of the carboxylase to one or more methyl groups on vitamin E quinone. The results from a series of model reactions support this interpretation of the anticlotting activity associated with vitamin E.
Collapse
Affiliation(s)
- P Dowd
- Department of Chemistry, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
48
|
Russanov E, Zaporowska H, Ivancheva E, Kirkova M, Konstantinova S. Lipid peroxidation and antioxidant enzymes in vanadate-treated rats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PHARMACOLOGY, TOXICOLOGY AND ENDOCRINOLOGY 1994; 107:415-21. [PMID: 8061948 DOI: 10.1016/1367-8280(94)90070-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Male Wistar rats received an aqueous solution of ammonium metavanadate (AMV) of 0.15 mg/V/ml concentration instead of water for 14 days. The erythrocyte count and haemoglobin level in blood were not changed; the haematocrit index was slightly increased. The spontaneous lipid peroxidation in kidney and liver homogenates was increased. The Fe(II)- or ascorbate-induced lipid peroxidation was more pronounced in the kidney than in the liver. No changes in lipid peroxidation were observed in erythrocytes after AMV treatment. The AMV treatment resulted in a decrease in the activity of the antioxidant enzymes, catalase and glutathione peroxidase in the kidney and liver; the cytosolic Cu,Zn-SOD and mitochondrial Mn-SOD were unchanged. The activity of the enzymes in blood was not changed. The results are discussed with a view to the participation of lipid peroxidation in vanadium toxicity.
Collapse
Affiliation(s)
- E Russanov
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia
| | | | | | | | | |
Collapse
|
49
|
Abstract
In vitro O2.- reduces Fe(III) to Fe(II), which, in turn, reduces the H2O2, yielding Fe(II)O or HO.. In vivo O2.- increases the supply of free iron by oxidatively attacking the [4Fe-4S] clusters of dehydratases such that they release Fe(II), which can then reduce H2O2. In vivo, O2.- also increases the production of H2O2 by acting as an oxidant toward the dehydratases and toward other cellular reductants.
Collapse
Affiliation(s)
- S I Liochev
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia
| | | |
Collapse
|
50
|
Kalyani P, Ramasarma T. Polyvanadate-stimulated NADH oxidation by plasma membranes--the need for a mixture of deca and meta forms of vanadate. Arch Biochem Biophys 1992; 297:244-52. [PMID: 1497344 DOI: 10.1016/0003-9861(92)90668-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyvanadate solutions obtained by extracting vanadium pentoxide with dilute alkali over a period of several hours contained increasing amounts of decavanadate as characterized by NMR and ir spectra. Those solutions having a metavanadate:decavanadate ratio in the range of 1-5 showed maximum stimulation of NADH oxidation by rat liver plasma membranes. Reduction of decavanadate, but not metavanadate, was obtained only in the presence of the plasma membrane enzyme system. High simulation of activity of NADH oxidation was obtained with a mixture of the two forms of vanadate and this further increased on lowering the pH. Addition of increasing concentrations of decavanadate to metavanadate and vice versa increased the stimulatory activity, reaching a maximum when the metavanadate:decavanadate ratio was in the range of 1-5. Increased stimulatory activity can also be obtained by reaching these ratios by conversion of decavanadate to metavanadate by alkaline phosphate degradation, and of metavanadate to decavanadate by acidification. These studies show for the first time that both deca and meta forms of vanadate present in polyvanadate solutions are needed for maximum activity of NADH oxidation.
Collapse
Affiliation(s)
- P Kalyani
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|