1
|
Increased PLA 2 activity in individuals at ultra-high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2021; 271:1593-1599. [PMID: 33677687 DOI: 10.1007/s00406-021-01246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Phospholipase A2 is the main enzyme in the metabolism of membrane phospholipids. It comprises a family of enzymes divided into iPLA2, cPLA2 and sPLA2. Studies have reported increased PLA2 activity in psychotic patients, which suggests an accelerated breakdown of membrane phospholipids. In the present study we investigated whether increased PLA2 activity is also present in individuals at ultra-high risk (UHR) for psychosis. One-hundred fifty adults were included in this study (85 UHR and 65 controls). UHR was assessed using the "structured interview for prodromal syndromes". PLA2 activity was determined in platelets by a radio-enzymatic assay. We found in UHR individuals increased activities of iPLA2 (p < 0.001) and cPLA2 (p = 0.012) as compared to controls. No correlations were found between socio-demographic and clinical parameters and PLA2 activity. Our findings suggest that increased PLA2 activities may be useful as a biological risk-marker for psychotic disorders.
Collapse
|
2
|
Baj J, Forma A, Sitarz E, Karakuła K, Flieger W, Sitarz M, Grochowski C, Maciejewski R, Karakula-Juchnowicz H. Beyond the Mind-Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. Int J Mol Sci 2020; 21:E9566. [PMID: 33334078 PMCID: PMC7765526 DOI: 10.3390/ijms21249566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
The alterations in serum trace element levels are common phenomena observed in patients with different psychiatric conditions such as schizophrenia, autism spectrum disorder, or major depressive disorder. The fluctuations in the trace element concentrations might act as potential diagnostic and prognostic biomarkers of many psychiatric and neurological disorders. This paper aimed to assess the alterations in serum trace element concentrations in patients with a diagnosed schizophrenia. The authors made a systematic review, extracting papers from the PubMed, Web of Science, and Scopus databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Among 5009 articles identified through database searching, 59 of them were assessed for eligibility. Ultimately, 33 articles were included in the qualitative synthesis. This review includes the analysis of serum levels of the following trace elements: iron, nickel, molybdenum, phosphorus, lead, chromium, antimony, uranium, magnesium, aluminum, zinc, copper, selenium, calcium, and manganese. Currently, there is no consistency regarding serum trace element levels in schizophrenic patients. Thus, it cannot be considered as a reliable prognostic or diagnostic marker of schizophrenia. However, it can be assumed that altered concentrations of those elements are crucial regarding the onset and exaggeration of either psychotic or negative symptoms or cognitive dysfunctions.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Kaja Karakuła
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Hanna Karakula-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| |
Collapse
|
3
|
Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res 2020; 223:29-42. [PMID: 32958361 DOI: 10.1016/j.schres.2020.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Though the pathophysiology of schizophrenia remains poorly understood, altered brain energy metabolism is increasingly implicated. Here, we conduct meta-analyses of the available human studies measuring lactate or pH in schizophrenia brain and discuss the accumulating evidence for increased lactate and decreased pH in schizophrenia brain and evidence linking these to negative and cognitive symptom severity. Meta-analysis of six postmortem studies revealed a significant increase in lactate in schizophrenia brain while meta-analysis of 14 magnetic resonance spectroscopy studies did not reveal a significant change in brain pH in schizophrenia. However, only five of these studies were likely sufficiently powered to detect differences in brain pH, and meta-analysis of these five studies found a nonsignificant decrease in pH in schizophrenia brain. Next, we discuss evidence for altered brain energy metabolism in schizophrenia and how this may underlie a buildup of lactate and decreased pH. This alteration, similar to the Warburg effect extensively described in cancer biology, involves diminished tricarboxylic acid cycle and oxidative phosphorylation along with a shift toward increased reliance on glycolysis for energy production. We then explore the role that mitochondrial dysfunction, oxidative stress, and hypoxia-related changes in gene expression likely play in this shift in brain energy metabolism and address the functional consequences of lowered brain pH in schizophrenia including alterations in neurotransmitter regulation, mRNA stability, and overall patterns of gene expression. Finally, we discuss how altered energy metabolism in schizophrenia brain may serve as an effective target in the treatment of this illness.
Collapse
Affiliation(s)
- Brandon S Pruett
- University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | | |
Collapse
|
4
|
Joaquim HPG, Costa AC, Serpa MH, Talib LL, Gattaz WF. Reduced Annexin A3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2020; 270:489-494. [PMID: 31372726 DOI: 10.1007/s00406-019-01048-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms underlying onset and development of schizophrenia have not yet been completely elucidated, but the association of disturbed neuroplasticity and inflammation has gained particular relevance recently. These mechanisms are linked to annexins functions. ANXA3, particularly, is associated to inflammation and membrane metabolism cascades. The aim was to determine the ANXA3 levels in first-onset drug-naïve psychotic patients. We investigated by western blot the protein expression of annexin A3 in platelets of first-onset, drug-naïve psychotic patients (diagnoses according to DSM-IV: 28 schizophrenia, 27 bipolar disorder) as compared to 30 age- and gender-matched healthy controls. Annexin A3 level was lower in schizophrenia patients as compared to healthy controls (p < 0.001) and to bipolar patients (p < 0.001). Twenty out of 28 schizophrenic patients had undetectable annexin A3 levels, as compared to none from the bipolar and none from the control subjects. ANXA3 was reduced in drug-naïve patients with schizophrenia. ANXA3 affects neuroplasticity, inflammation and apoptosis, as well as it modulates membrane phospholipid metabolism. All these processes have been discussed in regard to the biology of schizophrenia. In face of these data, we feel that further studies with larger samples are warranted to investigate the possible role of reduced ANXA3 as a possible risk marker for schizophrenia.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Alana Caroline Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Maurício Henriques Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil. .,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
5
|
Haszto CS, Stanley JA, Iyengar S, Prasad KM. Regionally Distinct Alterations in Membrane Phospholipid Metabolism in Schizophrenia: A Meta-analysis of Phosphorus Magnetic Resonance Spectroscopy Studies. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:264-280. [PMID: 31748123 DOI: 10.1016/j.bpsc.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Existing data on altered membrane phospholipid metabolism in schizophrenia are diverse. We conducted a meta-analysis of studies of phosphorus magnetic resonance spectroscopy, a noninvasive imaging approach that can assess molecular biochemistry of cortex by measuring phosphomonoester (PME) and phosphodiester (PDE) levels, which can provide evidence of altered biochemical processes involved in neuropil membrane expansion and contraction in schizophrenia. METHODS We analyzed PME and PDE data in the frontal and temporal lobes in subjects with schizophrenia from 24 peer-reviewed publications using the MAVIS package in R by building random- and fixed-effects models. Heterogeneity of effect sizes, effects of publication bias, and file drawer analysis were also assessed. RESULTS Subjects with schizophrenia showed lower PME levels in the frontal regions (p = .008) and elevated PDE levels in the temporal regions (p < .001) with significant heterogeneity. We noted significant publication bias and file drawer effect for frontal PME and PDE and temporal PDE levels, but not for temporal PME levels. Fail-safe analysis estimated that a high number of negative studies were required to provide nonsignificant results. CONCLUSIONS Despite methodological differences, these phosphorus magnetic resonance spectroscopy studies demonstrate regionally specific imbalance in membrane phospholipid metabolism related to neuropil in subjects with schizophrenia compared with control subjects reflecting neuropil contraction. Specifically, decreased PME levels in the frontal regions and elevated PDE levels in the temporal regions provide evidence of decreased synthesis and increased degradation of neuropil membrane, respectively. Notwithstanding significant heterogeneity and publication bias, a large number of negative studies are required to render the results of this meta-analysis nonsignificant. These findings warrant further postmortem and animal studies.
Collapse
Affiliation(s)
- Connor S Haszto
- Kenneth Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Konasale M Prasad
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Hummer TA, Francis MM, Vohs JL, Liffick E, Mehdiyoun NF, Breier A. Characterization of white matter abnormalities in early-stage schizophrenia. Early Interv Psychiatry 2018; 12:660-668. [PMID: 27621217 DOI: 10.1111/eip.12359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 01/04/2023]
Abstract
AIM White matter abnormalities have been reported in schizophrenia and may indicate altered cortical network integrity and structural connectivity, which have been hypothesized as key pathophysiological components of this illness. In this study, we aimed to further characterize the nature and progression of white matter alterations during the early stages of the disorder. METHODS We employed diffusion tensor imaging (DTI) approaches to investigate fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) in 40 patients with schizophrenia and related psychotic disorders (aged 18-30 years) who were within 5 years of illness, along with an age-, sex- and race-matched sample of 21 healthy controls. Relationships with illness duration, lifetime antipsychotic medication exposure and symptom levels were examined. RESULTS Patients had lower FA and higher RD than controls in numerous white matter tracts, including the corpus callosum (CC) and the superior longitudinal fasciculus. Illness duration was associated with lower FA and higher RD, most prominently in the CC. No group differences or relationships to illness duration were detected with AD, and no relationships between any DTI measurements and lifetime antipsychotic medication use were found. CONCLUSIONS This investigation provides evidence of widespread disruptions to structural connectivity in the early stages of schizophrenia. The relationship to illness duration, coupled with an absence of relationships to AD or antipsychotic drug exposure, provides evidence of a progressive disease process, although prospective assessments with repeated DTI measurements are needed to fully characterize the trajectory of white matter abnormalities in this illness.
Collapse
Affiliation(s)
- Tom A Hummer
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael M Francis
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jenifer L Vohs
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emily Liffick
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicole F Mehdiyoun
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Dogan AE, Yuksel C, Du F, Chouinard VA, Öngür D. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies. Neuropsychopharmacology 2018; 43:1681-1690. [PMID: 29581538 PMCID: PMC6006165 DOI: 10.1038/s41386-018-0041-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Abstract
Converging evidence from molecular to neuroimaging studies suggests brain energy metabolism abnormalities in both schizophrenia and bipolar disorder. One emerging hypothesis is: decreased oxidative phosphorylation leading to accumulation of lactic acid from glycolysis and subsequent acidification of tissue. In this regard, integrating lactate and pH data from magnetic resonance spectroscopy (MRS) studies in both diseases may help us understand underlying neurobiological mechanisms. In order to achieve this goal, we performed a systematic search of case-control studies examining brain lactate or pH among schizophrenia and/or bipolar patients by using MRS. Medline/Pubmed and EBSCO databases were searched separately for both diseases and outcomes. Our search yielded 33 studies in total composed of 7 lactate and 26 pH studies. In bipolar disorder, 5 out of 6 studies have found elevated lactate levels especially in the cingulate cortex and 4 out of 13 studies reported reduced pH in the frontal lobe. In contrast, in schizophrenia a single study has examined lactate and reported elevation, while only 2 out of 13 studies examining pH have reported reduction in this measure. There were no consistent patterns for the relationship between lactate or pH levels and medication use, disease type, mood state, and other clinical variables. We highlight the need for future studies combining 1H-MRS and 31P-MRS approaches, using longitudinal designs to examine lactate and pH in disease progression across both schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
| | - Cagri Yuksel
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Fei Du
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Virginie-Anne Chouinard
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Dost Öngür
- McLean Hospital, 115 Mill Street, Belmont, MA, USA.
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
8
|
Ohtani T, Del Re E, Levitt JJ, Niznikiewicz M, Konishi J, Asami T, Kawashima T, Roppongi T, Nestor PG, Shenton ME, Salisbury DF, McCarley RW. Progressive symptom-associated prefrontal volume loss occurs in first-episode schizophrenia but not in affective psychosis. Brain Struct Funct 2018; 223:2879-2892. [PMID: 29671056 DOI: 10.1007/s00429-018-1634-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
Although smaller gray matter volumes (GMV) in the prefrontal cortex (PFC) in schizophrenia and bipolar disorder have been reported cross-sectionally, there are, to our knowledge, no reports of longitudinal comparisons using manually drawn, gyrally based ROI, and their associations with symptoms. The object of this study was to determine whether first-episode schizophrenia (FESZ) and first-episode affective psychosis (FEAFF) patients show initial and progressive PFC GMV reduction in bilateral frontal pole, superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG) and examine their symptom associations. Twenty-one FESZ, 24 FEAFF and 23 healthy control subjects (HC) underwent 1.5T MRI with follow-up imaging on the same scanner ~ 1.5 years later. Groups were strikingly different in progressive GMV loss. FESZ showed significant progressive GMV loss in the left SFG, bilateral MFG, and bilateral IFG. In addition, left MFG and/or IFG GMV loss was associated with worsening of withdrawal-retardation and total BPRS symptoms scores. In contrast, FEAFF showed no significant difference in GMV compared with HC, either cross-sectionally or longitudinally. Of note, FreeSurfer run on the same images showed no significant changes longitudinally.
Collapse
Affiliation(s)
- Toshiyuki Ohtani
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Safety and Health Organization, Chiba University, Chiba, Japan
| | - Elisabetta Del Re
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Levitt
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Konishi
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takeshi Asami
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Toshiro Kawashima
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohide Roppongi
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Paul G Nestor
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Martha E Shenton
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Dean F Salisbury
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA
| |
Collapse
|
9
|
Chiu PW, Lui SSY, Hung KSY, Chan RCK, Chan Q, Sham PC, Cheung EFC, Mak HKF. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2018; 193:295-303. [PMID: 28751130 DOI: 10.1016/j.schres.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. METHODS Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. RESULTS First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). CONCLUSION This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia.
Collapse
Affiliation(s)
- P W Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - P C Sham
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Chouinard VA, Kim SY, Valeri L, Yuksel C, Ryan KP, Chouinard G, Cohen BM, Du F, Öngür D. Brain bioenergetics and redox state measured by 31P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders. Schizophr Res 2017; 187:11-16. [PMID: 28258794 PMCID: PMC5581291 DOI: 10.1016/j.schres.2017.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/24/2017] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain bioenergetic anomalies and redox dysregulation have been implicated in the pathophysiology of psychotic disorders. The present study examined brain energy-related metabolites and the balance between nicotinamide adenine dinucleotide metabolites (oxidized NAD+ and reduced NADH) using 31P-magnetic resonance spectroscopy (31P-MRS) in unaffected siblings, compared to first episode psychosis (FEP) patients and healthy controls. METHODS 21 unaffected siblings, 32 FEP patients (including schizophrenia spectrum and affective psychoses), and 21 controls underwent 31P-MRS in the frontal lobe (6×6×4cm3) on a 4T MR scanner, using custom-designed dual-tuned surface coil with outer volume suppression. Brain parenchymal pH and steady-state metabolite ratios of high energy phosphate compounds were measured. NAD+ and NADH levels were determined using a 31P-MRS fitting algorithm. 13 unaffected sibling-patient pairs were related; other patients and siblings were unrelated. ANCOVA analyses were used to examine 31P-MRS measures, with age and gender as covariates. RESULTS The phosphocreatine/adenosine triphosphate ratio was significantly reduced in both unaffected siblings and FEP patients, compared to controls. NAD+/NADH ratio was significantly reduced in patients compared to siblings and controls, with siblings showing a reduction in NAD+/NADH compared to controls that was not statistically significant. Compared to patients and controls, siblings showed significantly reduced levels of NAD+. Siblings did not differ from patients or controls on brain pH. DISCUSSION Our results indicate that unaffected siblings show some, but not all the same abnormalities in brain energy metabolites and redox state as FEP patients. Thus, 31P-MRS studies may identify factors related both to risk and expression of psychosis.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Sang-Young Kim
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Linda Valeri
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Cagri Yuksel
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kyle P Ryan
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Guy Chouinard
- Clinical Pharmacology Program, McGill University, Montreal, Quebec, Canada; Mental Health Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Howells FM, Kingdon DG, Baldwin DS. Current and potential pharmacological and psychosocial interventions for anxiety symptoms and disorders in patients with schizophrenia: structured review. Hum Psychopharmacol 2017; 32. [PMID: 28812313 DOI: 10.1002/hup.2628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Between 30% and 62% of patients with schizophrenia present with co-morbid anxiety disorders that are associated with increased overall burden. Our aim was to summarize current and potential interventions for anxiety in schizophrenia. DESIGN Structured review, summarizing pharmacological and psychosocial interventions used to reduce anxiety in schizophrenia and psychosis. RESULTS Antipsychotics have been shown to reduce anxiety, increase anxiety, or have no effect. These may be augmented with another antipsychotic, anxiolytic, or antidepressant. Novel agents, such as L-theanine, pregabalin, and cycloserine, show promise in attenuating anxiety in schizophrenia. Psychosocial therapies have been developed to reduce the distress of schizophrenia. Cognitive behavioural therapy (CBT) has shown that benefit and refinements in the therapy have been successful, for example, for managing worry in schizophrenia. CBT usually involves more than 16 sessions, as short courses of CBT do not attenuate the presentation of anxiety in schizophrenia. To address time and cost, the development of manualized CBT to address anxiety in schizophrenia is being developed. CONCLUSIONS The presence of coexisting anxiety symptoms and co-morbid anxiety disorders should be ascertained when assessing patients with schizophrenia or other psychoses as a range of pharmacological and psychosocial treatments are available.
Collapse
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - David G Kingdon
- Department of Psychiatry Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S Baldwin
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
13
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
14
|
Prasad KM, Burgess AM, Keshavan MS, Nimgaonkar VL, Stanley JA. Neuropil pruning in Early-Course Schizophrenia: Immunological, Clinical, and Neurocognitive Correlates. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:528-538. [PMID: 28255578 PMCID: PMC5328666 DOI: 10.1016/j.bpsc.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neuropathological studies suggest neuropil reduction in schizophrenia. Altered synaptic pruning is proposed to underlie neuropil reduction. Underlying factors and clinical correlates of synaptic pruning are poorly understood. Using phosphorus magnetic resonance spectroscopy (31P MRS), it is feasible to assess membrane phospholipid (MPL) metabolites in the brain that specifically and sensitively reflect neuropil expansion (elevated MPL precursors) or contraction (elevated MPL catabolites). METHODS We examined MPL metabolites and their cognitive, clinical and immunologic correlates among 28 early-course schizophrenia individuals (illness duration 1.99±1.33 years; antipsychotic-naïve=18) and 21 controls. We acquired whole-brain multi-voxel 31P MRS data from 12 unique brain regions. Interleukin-6 and C-reactive protein (CRP) were assayed in the serum. Generalized linear mixed models examined case-control differences in MPL metabolites in these regions correcting for multiple testing. Partial correlations accounting for multiple tests examined the relationship of Interleukin-6 and CRP levels with MPL metabolite levels. RESULTS MPL catabolite levels were increased in the thalamus in schizophrenia compared to controls. Interleukin-6 and CRP levels did not show case-control differences. Interleukin-6 levels positively correlated with MPL catabolite levels in the thalamus after correcting for multiple tests. The left thalamus MPL catabolite levels correlated negatively with sustained attention (corrected p=0.039). DISCUSSION Elevated MPL catabolites in the thalamus suggest increased neuropil contraction that may be related to excessive synaptic pruning. The thalamic neuropil contraction is associated with Interleukin-6 levels suggesting central pathogenic mechanisms for the inflammatory mediators. Correlation of increased thalamic MPL catabolite levels with cognitive impairments suggests clinical correlates of neuropil contraction.
Collapse
|
15
|
Sanacora G, Rothman D, Krystal JH. Applications of Magnetic Resonance Spectroscopy to Psychiatry. Neuroscientist 2016. [DOI: 10.1177/107385849900500316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inaccessibility of the human brain to biochemical studies has historically challenged the ability of in vestigators to elucidate the pathophysiology of psychiatric syndromes. Magnetic resonance spectroscopy (MRS) now provides a noninvasive means of assessing neurochemistry in vivo. Since the first application of the technique to the study of the human brain, many new advances have been made. This new technology broadens the applications of the MRS. The major principles of the technique and compounds currently available for study are discussed in this article. A brief review of current and future applications of the technology to the field of psychiatry are discussed. NEUROSCIENTIST 5:192-196, 1999
Collapse
Affiliation(s)
- Gerard Sanacora
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - Douglas Rothman
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - John H. Krystal
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| |
Collapse
|
16
|
Yuksel C, Tegin C, O'Connor L, Du F, Ahat E, Cohen BM, Ongur D. Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res 2015; 68:157-66. [PMID: 26228415 DOI: 10.1016/j.jpsychires.2015.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022]
Abstract
Phosphorus magnetic resonance spectroscopy ((31)P MRS) allows in vivo quantification of phosphorus metabolites that are considered to be related to membrane turnover and energy metabolism. In schizophrenia (SZ), (31)P MRS studies found several abnormalities in different brain regions suggesting that alterations in these pathways may be contributing to the pathophysiology. In this paper, we systematically reviewed the (31)P MRS studies in SZ published to date by taking patient characteristics, medication status and brain regions into account. Publications written in English were searched on http://www.ncbi.nlm.nih.gov/pubmed/, by using the keywords 'phosphomonoester', 'phosphodiester', 'ATP', 'phosphocreatine', 'phosphocholine', 'phosphoethanolamine','glycerophosphocholine', 'glycerophosphoethanolamine', 'pH', 'schizophrenia', and 'MRS'. Studies that measured (31)P metabolites in SZ patients were included. This search identified 52 studies. Reduced PME and elevated PDE reported in earlier studies were not replicated in several subsequent studies. One relatively consistent pattern was a decrease in PDE in chronic patients in the subcortical structures. There were no consistent patterns for the comparison of energy related phosphorus metabolites between patients and controls. Also, no consistent pattern emerged in studies seeking relationship between (31)P metabolites and antipsychotic use and other clinical variables. Despite emerging patterns, methodological heterogeneities and shortcomings in this literature likely obscure consistent patterns among studies. We conclude with recommendations to improve study designs and (31)P MRS methods in future studies. We also stress the significance of probing into the dynamic changes in energy metabolism, as this approach reveals abnormalities that are not visible to steady-state measurements.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Cuneyt Tegin
- University of Louisville, Department of Psychiatry, 323 E. Chestnut Street, Louisville, KY, USA.
| | | | - Fei Du
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Ezgi Ahat
- Istanbul University, Cerrahpasa School of Medicine. Kocamustafapaşa Cad. No:53, Istanbul, Turkey.
| | - Bruce M Cohen
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Dost Ongur
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
17
|
Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res 2015; 161:85-93. [PMID: 25449713 DOI: 10.1016/j.schres.2014.09.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Du F, Cooper A, Thida T, Sehovic S, Lukas SE, Cohen BM, Zhang X, Öngür D. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry 2014; 71:19-27. [PMID: 24196348 PMCID: PMC7461723 DOI: 10.1001/jamapsychiatry.2013.2287] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Abnormalities in neural activity and cerebral bioenergetics have been observed in schizophrenia (SZ). Further defining energy metabolism anomalies would provide crucial information about molecular mechanisms underlying SZ and may be valuable for developing novel treatment strategies. OBJECTIVE To investigate cerebral bioenergetics in SZ via measurement of creatine kinase activity using in vivo 31P magnetization transfer spectroscopy. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional case-control study in the setting of clinical services and a brain imaging center of an academic psychiatric hospital. Twenty-six participants with chronic SZ (including a subgroup diagnosed as having schizoaffective disorder) and 26 age-matched and sex-matched healthy control subjects (25 usable magnetic resonance spectroscopy data sets from the latter). INTERVENTION 31P magnetization transfer spectroscopy. MAIN OUTCOMES AND MEASURES The primary outcome measure was the forward rate constant (k(f)) of the creatine kinase enzyme in the frontal lobe. We also collected independent measures of brain intracellular pH and steady-state metabolite ratios of high-energy phosphate-containing compounds (phosphocreatine and adenosine triphosphate [ATP]), inorganic phosphate, and the 2 membrane phospholipids phosphodiester and phosphomonoester. RESULTS A substantial (22%) and statistically significant (P = .003) reduction in creatine kinase kf was observed in SZ. In addition, intracellular pH was significantly reduced (7.00 in the SZ group vs 7.03 in the control group, P = .007) in this condition. The phosphocreatine to ATP ratio, inorganic phosphate to ATP ratio, and phosphomonoester to ATP ratio were not substantially altered in SZ, but a significant (P = .02) reduction was found in the phosphodiester to ATP ratio. The abnormalities were similar between SZ and schizoaffective disorder. CONCLUSIONS AND RELEVANCE Using a novel 31P magnetization transfer magnetic resonance spectroscopy approach, we provide direct and compelling evidence for a specific bioenergetic abnormality in SZ. Reduced kf of the creatine kinase enzyme is consistent with an abnormality in storage and use of brain energy. The intracellular pH reduction suggests a relative increase in the contribution of glycolysis to ATP synthesis, providing convergent evidence for bioenergetic abnormalities in SZ. The similar phosphocreatine to ATP ratios in SZ and healthy controls suggest that the underlying bioenergetics abnormality is not associated with change in this metabolite ratio.
Collapse
Affiliation(s)
- Fei Du
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| | | | | | | | | | | | - Xiaoliang Zhang
- Department of Radiology, University of California, San
Francisco
| | - Dost Öngür
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| |
Collapse
|
19
|
Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res 2013; 47:636-43. [PMID: 23428160 PMCID: PMC3620602 DOI: 10.1016/j.jpsychires.2013.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in patients with schizophrenia (SCZ), often as an incomplete lipid profile or a percent of total lipid concentration. In this study, we quantified absolute concentrations (nmol/g wet weight) and fractional concentrations (i.e. percent of total fatty acids) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). METHODS Lipids were extracted, fractionated with thin layer chromatography and assayed. RESULTS Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acid absolute concentrations in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid absolute concentrations in total lipids, triglycerides or phospholipids. Changes in fractional concentrations did not consistently reflect absolute concentration changes. CONCLUSION These findings suggest disturbed prefrontal cortex fatty acid absolute concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia.
Collapse
Affiliation(s)
- Ameer Y Taha
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
20
|
McNamara RK. Deciphering the role of docosahexaenoic acid in brain maturation and pathology with magnetic resonance imaging. Prostaglandins Leukot Essent Fatty Acids 2013; 88:33-42. [PMID: 22521863 PMCID: PMC3458176 DOI: 10.1016/j.plefa.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/11/2023]
Abstract
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
21
|
Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 2012; 36:1442-62. [PMID: 22465051 PMCID: PMC3340488 DOI: 10.1016/j.neubiorev.2012.03.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies.
Collapse
Affiliation(s)
- Patricia J Allen
- Department of Psychology, Tufts University, Psychology Building, 490 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
22
|
Tibbo PG, Bernier D, Hanstock CC, Seres P, Lakusta B, Purdon SE. 3-T proton magnetic spectroscopy in unmedicated first episode psychosis: a focus on creatine. Magn Reson Med 2012; 69:613-20. [PMID: 22511463 DOI: 10.1002/mrm.24291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 11/07/2022]
Abstract
Different lines of evidence suggest an abnormal cerebral energy metabolism as being critical to the pathophysiology of schizophrenia. However, it is unknown as to whether levels of creatine (Cr) would be involved in these anomalies. The study involved 33 unmedicated first episode psychosis patients and 41 healthy controls. Proton magnetic resonance spectroscopy ((1) H-MRS) was performed at 3 T using a long TE (TE/TM/TR of 240/27/3000 ms) such that within the total phosphocreatine (PCr) plus Cr signal (tCr(240)), mainly Cr was detectable. The target region was an 18 cm(3) prefrontal volume. A negative association was found between age of patients and tCr(240) levels referenced to internal water, with 20% of the variance in tCr(240) accounted for by Age. A secondary finding revealed 16% reduction of tCr(240) levels in patients, solely when comparing participants older than the median age of patients. No association existed between tCr(240) levels and clinical variables. These findings support previous data reporting abnormalities in brain creatine kinase isoenzymes involved with the maintenance of energy pools in schizophrenia. The implications of using a long TE are discussed in terms of the relative proportions of Cr and PCr within the tCr(240) signal, and of potential group differences in T(2) times.
Collapse
Affiliation(s)
- Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Progressive membrane phospholipid changes in first episode schizophrenia with high field magnetic resonance spectroscopy. Psychiatry Res 2012; 201:25-33. [PMID: 22284150 DOI: 10.1016/j.pscychresns.2011.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 12/22/2022]
Abstract
Patients with a first episode of schizophrenia generally have increased phospholipid membrane breakdown products within the brain, while findings in chronic patients have been inconsistent. In this study we examine progressive changes in phosphorus membrane metabolites in the same patient group through the early years of schizophrenia in brain regions associated with the disease. Sixteen never-treated and medicated first episode schizophrenic patients were assessed at 10 months and 52 months after diagnosis. Sixteen matched volunteers were assessed at baseline and after 35 months. Phospholipid membrane metabolism was assessed with phosphorous magnetic resonance spectroscopy in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex, parieto-occipital cortex, superior temporal gyrus and temporal pole. At 10 months, glycerophosphocholine was increased in the anterior cingulate in patients as compared to controls. Glycerophosphocholine was decreased in the anterior cingulate and increased in the posterior cingulate and left superior temporal gyrus; glycerophosphoethanolamine was decreased in the left thalamus and increased in the left hippocampus within patients over time. At 52 months, compared to controls phosphocholine was increased in the left thalamus and glycerophosphoethanolamine was increased in the left hippocampus. These results imply a gradual inclusion of brain regions in schizophrenia where an initial increase, followed by a decrease in phospholipid membrane metabolites was observed. This pattern, observed in the early years of schizophrenia, is consistent with excitotoxic neural membrane breakdown in these regions.
Collapse
|
24
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
25
|
Jayakumar PN, Gangadhar BN, Venkatasubramanian G, Desai S, Velayudhan L, Subbakrishna D, Keshavan MS. High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res 2010; 181:237-40. [PMID: 20153149 DOI: 10.1016/j.pscychresns.2009.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 08/30/2009] [Accepted: 10/16/2009] [Indexed: 11/26/2022]
Abstract
We reported increased high-energy phosphate metabolism in the basal ganglia of antipsychotic-naïve schizophrenia patients using (31)P Magnetic Resonance Spectroscopy (MRS). These patients were followed up for 1 year and and reassessed using (31)P MRS. Fourteen (8 males) patients with DSM-IV schizophrenia and 14 (11 males) healthy controls underwent (31)P MRS of sub-cortical structures (predominantly basal ganglia) twice (mean+/-S.D. interscan interval 1.15+/-0.17year) on a 1.5T scanner. Total scores on the Positive and Negative Syndrome Scale (PANSS) decreased significantly after treatment in schizophrenia patients. Patients had significantly lower mean PCr/ATP ratios than healthy controls at baseline but not during the follow-up. In patients, there was a significant positive correlation between the magnitude of improvement in PANSS total scores and the extent of change in the PCr/ATP ratio. Findings support the hypothesis that reduction of energy demand or induction of decreased energy-demanding processes might underlie the mechanism of action of antipsychotics in schizophrenia.
Collapse
Affiliation(s)
- Peruvumba N Jayakumar
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Numerous delusions have been studied which are highly specific and which can present in isolation in people whose beliefs are otherwise entirely unremarkable - "monothematic delusions" such as Capgras or Cotard delusions. We review such delusions and summarize our 2-factor theory of delusional belief which seeks to explain what causes these delusional beliefs to arise initially and what prevents them being rejected after they have arisen. Although these delusions can occur in the absence of other symptoms, they can also occur in the context of schizophrenia, when they are likely to be accompanied by other delusions and hallucinations. We propose that the 2-factor account of particular delusions like Capgras and Cotard still applies even when these delusions occur in the context of schizophrenia rather than occurring in isolation.
Collapse
Affiliation(s)
- Max Coltheart
- Macquarie Centre for Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
27
|
Mason GF, Krystal JH. MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR IN BIOMEDICINE 2006; 19:690-701. [PMID: 16986118 DOI: 10.1002/nbm.1080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Magnetic resonance spectroscopy (MRS) is likely in the near future to play a key role in the process of drug discovery and evaluation. As the pharmaceutical industry seeks biochemical markers of drug delivery, efficacy and toxicity, this non-invasive technique offers numerous ways to study adults and children repeatedly and without ionizing radiation. In this article, we survey an array of the information that MRS offers about neurochemistry in general and psychiatric disorders and their treatment in particular. We also present growing evidence of glial abnormalities in neuropsychiatric disorders and discuss what MRS is contributing to that line of investigation. The third major direction of this article is the discussion of where MRS techniques are headed and how those new techniques can contribute to studies of mechanisms of psychiatric disease and drug discovery.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Diagnostic Radiology, Yale University, School of Medicine, 300 Cedar St, New Haven, CT 06520-8043, USA.
| | | |
Collapse
|
28
|
Kim H, McGrath BM, Silverstone PH. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders--focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 2005; 20:309-26. [PMID: 15880397 DOI: 10.1002/hup.693] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myo-inositol is an important part of the phosphatidylinositol second messenger system (PI-cycle). Abnormalities in nerve cell myo-inositol levels and/or PI-cycle regulation has been suggested as being involved in the pathophysiology and/or treatment of many psychiatric disorders including bipolar disorder, major depressive disorder, panic disorder, obsessive-compulsive disorder, eating disorders and schizophrenia. This review examines the metabolism and biochemical importance of myo-inositol and the PI-cycle. It relates this to the current in vivo evidence for myo-inositol and PI-cycle involvement in these psychiatric disorders, particularly focusing upon the magnetic resonance spectroscopy (MRS) findings in patient studies to date. From this review it is concluded that while the evidence suggests probable relevance to the pathophysiology and/or treatment of bipolar disorder, there is much less support for a significant role for the PI-cycle or myo-inositol in any other psychiatric disorder. More definitive investigation is required before PI-cycle dysfunction can be considered specific to bipolar disorder.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
29
|
du Bois TM, Deng C, Huang XF. Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:878-88. [PMID: 16005134 DOI: 10.1016/j.pnpbp.2005.04.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
This review addresses the relationship between modifications in membrane phospholipid composition (MPC) and alterations in dopaminergic, serotonergic and cholinergic neurotransmitter systems in schizophrenia. The main evidence in support of the MPC hypothesis of schizophrenia comes from post-mortem and platelet studies, which show that in schizophrenia, certain omega-3 and omega-6 polyunsaturated fatty acid (PUFA) levels are reduced. Furthermore, examination of several biochemical markers suggests abnormal fatty acid metabolism may be present in schizophrenia. Dietary manipulation of MPC with polyunsaturated fatty acid diets has been shown to affect densities of dopamine, serotonin and muscarinic receptors in rats. Also, supplementation with omega-3 fatty acids has been shown to improve mental health rating scores, and there is evidence that the mechanism behind this involves the serotonin receptor complex. This suggests that a tight relationship exists between essential fatty acid status and normal neurotransmission, and that altered PUFA levels may contribute to the abnormalities in neurotransmission seen in schizophrenia.
Collapse
Affiliation(s)
- Teresa M du Bois
- Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD), NSW 2010, Australia.
| | | | | |
Collapse
|
30
|
Peet M, Shah S, Selvam K, Ramchand CN. Polyunsaturated fatty acid levels in red cell membranes of unmedicated schizophrenic patients. World J Biol Psychiatry 2004; 5:92-9. [PMID: 15179668 DOI: 10.1080/15622970410029917] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are several reports of reduced levels of polyunsaturated fatty acids (PUFA), particularly arachidonic acid (AA) and docosahexaenoic acid (DHA), in membrane phospholipid from various tissues including red blood cells (RBC) taken from schizophrenic patients. However, reports have not been entirely consistent and most studies have been confounded by the potential effects of environmental factors including antipsychotic medication and diet. We measured PUFA levels in RBC from two separate groups of unmedicated patients and control subjects from India and Malaysia, populations which have substantial differences in diet. We found no significant difference in levels of AA between patients and control subjects in either population. Levels of adrenic acid were significantly reduced, and levels of DHA significantly increased in both clinical populations. However, diet-related differences in DHA between the populations from India and Malaysia were much greater than differences between schizophrenic patients and controls. It is concluded that reduced RBC membrane levels of AA and DHA are not pathognomic of schizophrenia but that variations in cell membrane fatty acid levels are an epiphenomenon which may reflect underlying abnormalities of phospholipid and fatty acid metabolism and their interaction with environmental factors including medication and diet.
Collapse
Affiliation(s)
- Malcolm Peet
- Rotherham Mental Health Services, Swallownest Court, Aughton Road, Sheffield, S26 4TH, UK.
| | | | | | | |
Collapse
|
31
|
Shirayama Y, Yano T, Takahashi K, Takahashi S, Ogino T. In vivo31P NMR spectroscopy shows an increase in glycerophosphorylcholine concentration without alterations in mitochondrial function in the prefrontal cortex of medicated schizophrenic patients at rest. Eur J Neurosci 2004; 20:749-56. [PMID: 15255985 DOI: 10.1111/j.1460-9568.2004.03524.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The (31)P NMR localised method was used to study the metabolism of phospholipid and high energy phosphate in the prefrontal cortex. The spectra were taken from patients with schizophrenia (11 males) receiving neuroleptic medication, and were compared to normal controls (15 males). Their spectral intensities were analysed using a non-linear least-squares method with a prior knowledge of the fixed chemical shifts and linewidths, leading to further resolution into resonances of glycerophosphorylethanolamine (GPE), glycerophosphorylcholine (GPC), phosphorylethanolamine (PE) and phosphorylcholine (PC). The metabolite concentrations were calculated referring to the spectral intensities of phosphate phantoms with known concentrations. T1 values of phantom and cerebrum were estimated from a series of localised inversion recovery spectra to correct for the signal saturation effects. The schizophrenic patients showed an increased concentration of GPC but not GPE, PE or PC. Furthermore, no difference was observed regarding the concentration of high-energy phosphates such as phosphocreatine, inorganic phosphate and ATP. The patients did not show any differences in mitochondrial function such as phosphorylation potential and the ratio of the rate of ATP synthesis. Thus, an increase in GPC concentration in the prefrontal cortex could be characteristic of the pathophysiology of schizophrenia with mild negative symptoms.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, National Center Hospital for Mental, Nervous and Muscular Disorders, and Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Creatine kinase (CK) is responsible for the creatine/creatine phosphate level which that is known to alter in the brain of patients with schizophrenia. A comparative estimation of CK enzymatic activity and immunoreactivity of CK BB was carried out in readily soluble extracts from frontal cortex, anterior and posterior cingulate cortex, hippocampus and cerebellum from brains of individuals with schizophrenia versus normal controls. CK activity was determined using a commercial diagnostic kit. CK BB immunoreactivity was evaluated by ECL -immunoblotting using monoclonal antibody. A drastic drop of CK activity and CK BB immunoreactivity was observed in all the examined brain areas in schizophrenia patients compared to controls (p<0.01), with the maximum drop in the cerebellum. The reduction was independent of age, postmortem interval or chlorpromazine equivalent. The decreased level of CK BB in schizophrenia was confirmed by purification of CK BB from brains of patients with schizophrenia and control brains: the yield of the purified enzyme was significantly lower in schizophrenia, wherein molecular masses of CK B-subunits were equal. Possible causes and consequences of the decrease in CK BB level observed in brain of patients with schizophrenia are discussed.
Collapse
Affiliation(s)
- Gulnur Sh Burbaeva
- Laboratory of Neurochemistry, Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
33
|
Jayakumar PN, Gangadhar BN, Subbakrishna DK, Janakiramaiah N, Srinivas JS, Keshavan MS. Membrane phospholipid abnormalities of basal ganglia in never-treated schizophrenia: a 31P magnetic resonance spectroscopy study. Biol Psychiatry 2003; 54:491-4. [PMID: 12915294 DOI: 10.1016/s0006-3223(02)01829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Studies in schizophrenia using in vivo (31)P magnetic resonance spectroscopy (MRS) have mostly focused on the association cortices, including the frontal and temporal lobes. Striatum has also been implicated in schizophrenia, although neuroleptic exposure in the patients is a potential confound limiting interpretation of earlier studies. We examined membrane phospholipid abnormality in the basal ganglia using (31)P MRS in neuroleptic-naive schizophrenia patients. METHODS Never-treated, DSM-IV schizophrenia patients (n=20) and age- and gender-matched healthy control subjects (n=30) underwent in vivo 1-D 31P MRS of both basal ganglia using an image-selected technique on a 1.5-T magnetic resonance imaging scanner. A neuroradiologist blind to clinical data measured the phosphomonoester (PME) and phosphodiester (PDE) from the spectra. RESULTS The schizophrenia patients showed significantly and bilaterally elevated levels of PME/PDE ratios in basal ganglia as compared with control subjects. There were no significant differences in the ratios between the two sides in either patient or control groups. Phosphomonoester/phosphodiester ratio did not correlate with illness duration. Lower Positive and Negative Syndrome Scale scores were associated with lower PME/PDE ratio. CONCLUSIONS The basal ganglia of never-treated schizophrenia patients show features suggestive of reduced breakdown and/or increased synthesis of membrane phospholipids. Lack of correlation between illness duration and the membrane phosphorus moiety ratio may be consistent with a nonprogressive, possibly neurodevelopmental etiopathogenesis.
Collapse
Affiliation(s)
- Perumbava N Jayakumar
- Department of Neuroimaging and Interventional Neuroradiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
34
|
Weber-Fahr W, Bachert P, Henn FA, Braus DF, Ende G. Signal enhancement through heteronuclear polarisation transfer in in-vivo 31P MR spectroscopy of the human brain. MAGMA (NEW YORK, N.Y.) 2003; 16:68-76. [PMID: 12884109 DOI: 10.1007/s10334-003-0008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 02/24/2003] [Indexed: 11/27/2022]
Abstract
Significant (31)P NMR signal enhancement through heteronuclear polarisation transfer was obtained in model solutions and in vivo on a 1.5-T whole-body MR scanner equipped with two RF channels. The much higher population differences involved in proton Zeeman energy levels can be transferred to the (31)P levels with the refocused INEPT (insensitive nucleus enhancement by polarisation transfer) double-resonance experiment by means of a series of simultaneously applied broadband RF pulses. INEPT achieves a polarisation transfer from (1)H to (31)P spin states by directly reordering the populations in spin systems with heteronuclear scalar coupling. Thus, only the (31)P NMR signal of metabolites with scalar (1)H-(31)P coupling is amplified, while the other metabolite signals in the spectra are suppressed. Compared to Ernst-angle excitation, a repetition-time-dependent signal enhancement of eta=(29+/-3)% for methylene diphosphonic acid (MDPA) and eta=(56+/-1)% for phosphorylethanolamine (PE) was obtained on model solutions through optimisation of the temporal parameters of the pulse experiment. The results are in good agreement with numerical calculations of the theoretical model for the studied spin systems. With optimised echo times, in-vivo (31)P signal enhancement of the same order was obtained in studies of the human brain.
Collapse
Affiliation(s)
- W Weber-Fahr
- NMR Research in Psychiatry, Central Institute of Mental Health, P.O. Box 122120, 68072 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
35
|
Hibbeln JR, Makino KK, Martin CE, Dickerson F, Boronow J, Fenton WS. Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry 2003; 53:431-41. [PMID: 12614996 DOI: 10.1016/s0006-3223(02)01549-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prior reports of decreased levels of essential fatty acids among schizophrenic patients have generated several hypotheses proposing inherent abnormalities in phospholipid and fatty acid metabolism and have provided the basis for treatment trials; however, these essential fatty acid aberrations may be attributable to uncontrolled factors, such as smoking, rather than abnormalities inherent to schizophrenia. METHODS Erythrocyte fatty acid compositions were quantified in 72 medicated schizophrenic or schizoaffective patients both at baseline and after 16 weeks of supplementation with 3 g/day of either ethyl-eicosapentaenoic acid or placebo. Current smoking status, gender, dietary survey, and Montgomery Asburg Depression Rating Scale, Repeatable Battery for the Assessment of Neuropsychological Status, Abnormal Involuntary Movement Scale, and Positive and Negative Syndrome Scale scores were assessed. RESULTS Schizophrenic patients who smoked had lower baseline erythrocyte docosahexaenoic acid percent (2.98 +/-.7 vs. 3.59 +/- 1.2, p <.005) and eicosapentaenoic acid (EPA) percent (.39 +/-.13 vs. 47 +/-.22, p <.05), compared with nonsmokers, with a significant gender interaction (p <.01) in multivariate analyses of variance. Baseline arachidonic acid did not differ. Smokers reported lower dietary intake (percent total fat) of linolenic acid (F = 10.1, p <.003) compared with nonsmokers. Nonsmoking women reported greater dietary intake of EPA compared with smoking men or nonsmokers of either gender. CONCLUSIONS Smoking status, gender, and dietary intake significantly predicted erythrocyte polyunsaturated fatty acid status among schizophrenic patients. No evidence was found for subgroups of schizophrenia or relationships to specific symptom severity on the basis of erythrocyte fatty acids. Prior reports of abnormalities of essential fatty acid metabolism among schizophrenic patients may have been an artifact of patients' smoking behavior and differences in dietary intake of omega-3 fatty acids.
Collapse
Affiliation(s)
- Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
36
|
Moore CM, Bonello CM, Sherwood AR, Cohen BM, Renshaw PF, Yurgulen-Todd DA. Mesial temporal lobe Cho to Cr(PCr) ratio asymmetry in chronic schizophrenics. Schizophr Res 2002; 57:35-42. [PMID: 12165374 DOI: 10.1016/s0920-9964(01)00302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proton magnetic resonance spectra (MRS) were acquired from 1.5 x 1.5 x 1.5-cm voxels in the left and right mesial temporal lobes of 20 schizophrenic patients and 20 non-psychiatric comparison subjects. Choline (Cho) to creatine (and phosphocreatine) (Cr(PCr)) ratios were estimated as were the percent gray matter, white matter and CSF contributing to the voxel. The Cho/Cr(PCr) metabolite ratio was significantly lower in the left temporal lobe than in the right temporal lobe for both the schizophrenia subjects and control group. This difference was greater in the schizophrenia subjects. Left temporal lobe gray matter voxel content was significantly higher and white matter content was significantly lower than in the right temporal lobe for both the schizophrenia subjects and control group. This difference was the same for the schizophrenia subjects and control group. Left voxel gray matter and white matter content correlated with Cho/Cr(PCr) metabolite ratios for the schizophrenic subjects but not for the control subjects. No such correlations were noted on the right side. No significant difference was found between Cho/Cr(PCr) in the left temporal lobe or in the right temporal lobe of the schizophrenia subjects vs. the control group.
Collapse
Affiliation(s)
- Constance M Moore
- Brain Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Riehemann S, Hübner G, Smesny S, Volz HP, Sauer H. Do neuroleptics alter the cerebral intracellular pH value in schizophrenics?-a (31)P-MRS study on three different patient groups. Psychiatry Res 2002; 114:113-7. [PMID: 12036511 DOI: 10.1016/s0925-4927(02)00007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The intracellular pH value has a profound influence on cerebral metabolism. Thus, inadequate pH control may intensify local metabolic deficits. To investigate the influence of neuroleptics on cerebral intracellular pH, we retrospectively evaluated the findings from three independent phosphorous-31 magnetic resonance spectroscopy ((31)P-MRS) studies on schizophrenic patients. A total sample of 72 patients and 32 healthy controls was investigated. A modified pH value was found only in those schizophrenic patients treated with the atypical neuroleptic clozapine.
Collapse
Affiliation(s)
- Stefan Riehemann
- Department of Psychiatry, University of Jena, Philosophenweg 3, D-07740, Jena, Germany.
| | | | | | | | | |
Collapse
|
38
|
Berger GE, Wood SJ, Pantelis C, Velakoulis D, Wellard RM, McGorry PD. Implications of lipid biology for the pathogenesis of schizophrenia. Aust N Z J Psychiatry 2002; 36:355-66. [PMID: 12060184 DOI: 10.1046/j.1440-1614.2001.01021.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. METHODS Medline databases were searched from 1966 to 2001 followed by the cross-checking of references. RESULTS Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. CONCLUSION Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.
Collapse
Affiliation(s)
- Gregor E Berger
- Early Psychosis Prevention and Intervention Centre, MH-SKY (EPPIC), Victoria.
| | | | | | | | | | | |
Collapse
|
39
|
Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55:597-610. [PMID: 11576756 DOI: 10.1016/s0361-9230(01)00528-7] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Qualitative electron microscopy was performed to verify whether brain pathology in schizophrenia and bipolar disorder is associated with alterations of oligodendroglial cells and myelinated fibers. Ultrastructural signs of apoptosis and necrosis of oligodendroglial cells were found in the prefrontal area 10 and the caudate nucleus in both schizophrenia and bipolar disorder. Damage of myelin sheath lamellae, with the formation of concentric lamellar bodies, were detected in both brain structures in schizophrenia. There was also a significant decrease in the area of the nucleus and the volume density of mitochondria in oligodendrogliocytes in the caudate nucleus and in the prefrontal cortex in schizophrenia, as compared to normal controls. Volume density of heterochromatin was significantly increased (+14%) in the caudate nucleus in schizophrenia. The density of concentric lamellar bodies (as an indicator of damage of myelinated fibers) was dramatically increased (4.5-fold) in the caudate nucleus in schizophrenia, as compared to controls, and was positively correlated with volume density of heterochromatin. Multiple regression analysis and analysis of covariance demonstrated that these changes could not be explained by the effects of postmortem delay, age, neuroleptic medication, or gender. Pathology of oligodendroglia might be an essential feature of severe mental disorders.
Collapse
Affiliation(s)
- N Uranova
- Laboratory of Neuropathology, Mental Health Research Center, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fukuzako H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J Biol Psychiatry 2001; 2:70-82. [PMID: 12587188 DOI: 10.3109/15622970109027496] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abnormal phospholipid metabolisms may play important roles in the pathophysiology of schizophrenia. Phosphorus magnetic resonance spectroscopy (31P-MRS) offers a new method for studying phosphorus-related metabolism in vivo. A decrease in the level of phosphomonoesters (PME) and an increase in the level of phosphodiesters (PDE) has been demonstrated in the prefrontal lobe of neuroleptic-naive schizophrenic patients. Most of the studies in medicated schizophrenic patients have shown decreased PME and/or increased PDE. The decreased PME in the frontal lobe appears to be associated with negative symptoms and poor working memory performance. 1H-decoupled 31P-MRS revealed a reduction in the phosphocholine element of PME and an elevation in the mobile phospholipids of PDE in the prefrontal region of medicated schizophrenic patients. PDE were elevated in the temporal lobes of neuroleptic-naive schizophrenic patients, and this increase was partially normalized by haloperidol administration. Data about the temporal lobes of medicated schizophrenic patients have not been consistent. Except for the reduction in the adenosine triphosphate (ATP) in the basal ganglia and the correlation between the increase in the frontal lobe phosphocreatine (PCr) and negative symptomatology, data related to changes in high-energy phosphates are contradictory. No consensus on the effect of neuroleptics on phosphorus metabolites has been achieved. Methodological problems inherent in 31P-MRS may have contributed to the confusion in understanding available data. Future directions of MRS studies are suggested in the last section of the paper.
Collapse
Affiliation(s)
- H Fukuzako
- Department of Neuropsychiatry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
41
|
Mahadik SP, Evans D, Lal H. Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:463-93. [PMID: 11370992 DOI: 10.1016/s0278-5846(00)00181-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1. Schizophrenia is a major mental disorder that has a lifetime risk of 1% and affects at young age (average age at the onset 24 +/- 4.6 years) in many cultures around the world. The etiology is unknown, the pathophysiology is complex, and most of the patients need treatment and care for the rest of their lives. 2. Cellular oxidative stress is inferred from higher tissue levels of reactive oxygen species (ROS, e.g., O2*-, OH*, OH-, NO* and ONOO--) than its antioxidant defense that cause peroxidative cell injury, i.e., peroxidation of membrane phospholipids, particularly esterified essential polyunsaturated fatty acids (EPUFAS), proteins and DNA. 3. Oxidative stress can lead to global cellular with predominantly neuronal peroxidation, since neurons are enriched in highly susceptible EPUFAs and proteins, and damages DNA is not repaired effectively. 4. Such neuronal peroxidation may affect its function (i.e., membrane transport, loss of mitochondrial energy production, gene expression and therefore receptor-mediated phospholipid-dependent signal transduction) that may explain the altered information processing in schizophrenia. 5. It is possible that the oxidative neuronal injury can be prevented by dietary supplementation of antioxidants (e.g., vitamins E, C and A; beta-carotene, Q-enzyme, flavons, etc.) and that membrane phospholipids can be corrected by dietary supplementation of EPUFAs. 6. It may be that the oxidative stress is lower in populations consuming a low caloric diet rich in antioxidants and EPUFAs, and minimizing smoking and drinking. 7. Oxidative stress exists in schizophrenia based on altered antioxidant enzyme defense, increased lipid peroxidation and reduced levels of EPUFAs. The life style of schizophrenic patients is also prooxidative stress, i.e., heavy smoking, drinking, high caloric intake with no physical activity and treatment with pro-oxidant drugs. 8. The patients in developed countries show higher levels of lipid peroxidation and lower levels of membrane phospholipids as compared to patients in the developing countries. 9. Initial observations on the improved outcome of schizophrenia in patients supplemented with EPUFAs and antioxidants suggest the possible beneficial effects of dietary supplementation. 10. Since the oxidative stress exists at or before the onset of psychosis the use of antioxidants from the very onset of psychosis may reduce the oxidative injury and dramatically improve the outcome of illness.
Collapse
Affiliation(s)
- S P Mahadik
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, USA.
| | | | | |
Collapse
|
42
|
Maurer I, Zierz S, Möller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48:125-36. [PMID: 11278159 DOI: 10.1016/s0920-9964(00)00075-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In-vivo imaging studies and post-mortem studies have demonstrated an impairment of energy metabolism in brains of patients with schizophrenia. Decreased oxidative metabolism has been consistently documented in the frontal lobes. However, the biochemical basis of these changes is unclear. The changes could be caused by reduced requirement of the cells for metabolic energy or an abnormality in energy generation. Neurons generate energy through the respiratory chain in the mitochondria. The respiratory chain consists of five enzyme complexes (I-V). The purpose of the present study was to assess mitochondrial function and test the hypothesis of an underlying oxidative phosphorylation defect in schizophrenia. We analysed spectrophotometrically post-mortem brain specimens of frontal cortex, temporal cortex, basal ganglia, and cerebellum of 12 patients who met the DSM-IV criteria for schizophrenia and of 13 healthy controls for the specific activities of respiratory chain enzymes in the mitochondria. The major finding was that the activity of complex IV was significantly reduced in the frontal cortex (40.9+/-6.7 vs. 87.3+/-12, P=0.003) and in the temporal cortex (39.5+/-6.8 vs. 78+/-10.8, P=0.006) of schizophrenics. In addition, the activity of complexes I+III was significantly reduced in the temporal cortex (2.2+/-0.6 vs. 4.4+/-0.5, P=0.01) and basal ganglia (1.6+/-0.5 vs. 3.4+/-0.3, P=0.015) in schizophrenia. All other enzyme activities showed no differences to healthy controls. The results confirm a defect of oxidative phosphorylation in brains from patients with schizophrenia, which may contribute to impaired energy generation.
Collapse
Affiliation(s)
- I Maurer
- Department of Psychiatry, Friedrich-Schiller Universität, Philosophenweg 3, 07740, Jena, Germany.
| | | | | |
Collapse
|
43
|
Keshavan MS, Stanley JA, Pettegrew JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings--part II. Biol Psychiatry 2000; 48:369-80. [PMID: 10978720 DOI: 10.1016/s0006-3223(00)00940-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnetic resonance spectroscopy allows investigation of in vivo neurochemical pathology of schizophrenia. "First generation" studies, focusing on phosphorus and proton magnetic resonance spectroscopy, have suggested alterations in membrane phospholipid metabolism and reductions in N-acetyl aspartate in the frontal and temporal lobes. Some discrepancies remain in the literature, perhaps related to the variations in medication status and phase of illness in the patients examined, as well as in magnetic resonance spectroscopy methodology; the pathophysiologic significance of the findings also remains unclear. Technologic advances in magnetic resonance spectroscopy in recent years have expanded the potential to measure several other metabolites of interest such as the neurotransmitters glutamate and gamma-aminobutyric acid and macromolecules such as membrane phospholipids and synaptic proteins. Issues of sensitivity, specificity, measurement reliability, and functional significance of the magnetic resonance spectroscopy findings need to be further clarified. The noninvasive nature of magnetic resonance spectroscopy allows longitudinal studies of schizophrenia both in its different phases and among individuals at genetic risk for this illness. Future studies also need to address confounds of prior treatment and illness chronicity, take advantage of current pathophysiologic models of schizophrenia, and be hypothesis driven.
Collapse
Affiliation(s)
- M S Keshavan
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
44
|
Volz HR, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry 2000; 47:954-61. [PMID: 10838063 DOI: 10.1016/s0006-3223(00)00235-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND (31)Phosphorous magnetic resonance spectroscopy has been widely used to evaluate schizophrenic patients in comparison to control subjects, because it allows the investigation of both phospholipid and energy metabolism in vivo; however, the results achieved so far are inconsistent. Chemical shift imaging (CSI) has the advantage that instead of only one or a few preselected voxels the tissue of a whole brain slice can be examined. The aim of the present investigation was to determine whether the results of previous studies of our group, showing that phosphodiesters (PDE) are decreased in the frontal lobe of schizophrenic patients as compared to control subjects, might be confirmed in an independent unmedicated patient sample using the CSI technique. METHODS A carefully selected new cohort including 11 neuroleptic-free schizophrenic patients and 11 age- and gender-matched healthy control subjects was recruited. CSI was applied and an innovative analysis method for CSI data based on a general linear model was used. RESULTS PDE, phosphocreatine, and adenosine triphosphate (ATP) were found to be significantly decreased in the frontal lobe of patients with schizophrenia. CONCLUSIONS Because PDE was decreased in schizophrenic patients, the membrane phospholipid hypothesis of schizophrenia could not be corroborated. Further results indicate decreased ATP production in the frontal lobe of patients with schizophrenia.
Collapse
Affiliation(s)
- H R Volz
- Department of Psychiatry, University of Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vance AL, Velakoulis D, Maruff P, Wood SJ, Desmond P, Pantelis C. Magnetic resonance spectroscopy and schizophrenia: what have we learnt? Aust N Z J Psychiatry 2000; 34:14-25. [PMID: 11185927 DOI: 10.1046/j.1440-1614.2000.00702.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been increasingly used to investigate the in vivo biochemistry of particular regions of the brain in patients with schizophrenia. We review the literature and discuss the theoretical constructs that form the presumed impetus for these studies in light of the current methodological limitations. Future directions are noted. METHOD The available published literature in English formed the basis for this review. RESULTS The results of 31P-MRS have been interpreted as reflecting a relative increase in cell membrane degradation in prefrontal cortical regions at certain phases of schizophrenia. 1H-MRS studies, though less consistent, provide evidence suggestive of a decrease in neuronal cell mass in the hippocampal region, which supports the findings of volumetric studies. Both groups of MRS studies support a neuro-developmental hypothesis of brain dysfunction in schizophrenia. However, current methodological problems limit the reliable interpretation of MRS data. A clear understanding of the methodology and its reliable interpretation is yet to emerge. CONCLUSIONS MRS remains a research instrument that is yet to be fully utilised in schizophrenia research. A few replicated findings are emerging, although the interpretation of these spectroscopic findings needs to be validated.
Collapse
Affiliation(s)
- A L Vance
- Cognitive Neuropsychiatry Unit, Mental Health Research Institute of Victoria, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Fenton WS, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47:8-21. [PMID: 10650444 DOI: 10.1016/s0006-3223(99)00092-x] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that deficient uptake or excessive breakdown of membrane phospholipids may be associated with schizophrenia. We review available clinical research on abnormalities in membrane fatty acid composition and metabolism in schizophrenia, and therapeutic trials of fatty acid in this disorder. All potentially relevant English-language articles were identified from the medical and psychiatric literature with the aid of computer searches using key words such as lipids, phospholipids, prostaglandins and schizophrenia. All studies which include human subjects are reviewed. Empirical studies related to membrane hypotheses of schizophrenia focus on: 1) assessment of prostaglandins (PG) and their essential fatty acid (EFA) precursors in the tissues of patients with schizophrenia; 2) evaluation of the niacin flush test as a possible diagnostic marker; 3) evaluation of phospholipase enzyme activity; 4) NMR spectroscopy studies of brain phospholipid metabolism; and 5) therapeutic trials of PG precursors for the treatment of schizophrenia. The most consistent clinical findings include red blood cell fatty acid membrane abnormalities, NMR spectroscopy evidence of increased phospholipid turnover and a therapeutic effect of omega-3 fatty acid supplementation of neuroleptic treatment in some schizophrenia patients. Studies of EFA metabolism have proved fruitful for generating and testing novel etiologic hypotheses and new therapeutic agents for schizophrenia. Greater attention to factors that influence tissue EFA levels such as diet, tobacco and alcohol are required to reconcile inconsistent findings. Treatment studies, although promising, require independent replication.
Collapse
Affiliation(s)
- W S Fenton
- Stanley Treatment Programs at Chestnut Lodge, Bethesda (MK), Maryland, USA
| | | | | |
Collapse
|
47
|
Riehemann S, Volz HP, Wenda B, Hübner G, Rössger G, Rzanny R, Sauer H. Frontal lobe in vivo (31)P-MRS reveals gender differences in healthy controls, not in schizophrenics. NMR IN BIOMEDICINE 1999; 12:483-489. [PMID: 10668040 DOI: 10.1002/(sici)1099-1492(199912)12:8<483::aid-nbm589>3.0.co;2-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) has gained much interest in schizophrenia research in recent years since it allows the non-invasive measurement of high-energy phosphates and phospholipids in vivo. However, until now only differences in metabolite concentrations between certain brain areas of schizophrenic patients and healthy controls have been examined. We investigated the influence of gender on the concentrations of different phosphorus compounds. For this purpose, well-defined volumes in the frontal lobe of 32 healthy controls and 51 schizophrenic in-patients were examined with an image selected in vivo spectroscopy (ISIS) sequence on a whole-body scanner at 1.5 T. Healthy females exhibited increased values of inorganic phosphate (P(i)) and decreased values of phosphocreatine (PCr) in comparison to their male counterparts. In schizophrenic patients such gender differences were not present. Thus, the results can be interpreted in the sense that frontal energy demanding processes are enhanced in female compared to male healthy volunteers; schizophrenia seems to reduce these gender differences.
Collapse
Affiliation(s)
- S Riehemann
- Department of Psychiatry, University of Jena, Philosophenweg 3, D-07740 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T. Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 1999; 156:1205-8. [PMID: 10450261 DOI: 10.1176/ajp.156.8.1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors examined phospholipids and high-energy phosphorus metabolism in the temporal lobes of drug-naive schizophrenic patients. METHOD In vivo 31P magnetic resonance spectroscopy was performed on 17 first-episode, drug-naive schizophrenic patients and 17 age- and gender-matched healthy subjects. RESULTS Patients showed higher levels of phosphodiesters and lower levels of phosphomonoesters than the comparison group. Phosphocreatine levels were increased in the left temporal lobes of patients. CONCLUSIONS The results suggest disturbed membrane phospholipid metabolism in both temporal lobes and decreased energy demands in the left temporal lobes of drug-naive schizophrenic patients.
Collapse
Affiliation(s)
- H Fukuzako
- Department of Neuropsychiatry, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Potwarka JJ, Drost DJ, Williamson PC, Carr T, Canaran G, Rylett WJ, Neufeld RW. A 1H-decoupled 31P chemical shift imaging study of medicated schizophrenic patients and healthy controls. Biol Psychiatry 1999; 45:687-93. [PMID: 10187998 DOI: 10.1016/s0006-3223(98)00136-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current 31P spectroscopy research in schizophrenia has examined phospholipid metabolism by measuring the sum of phosphomonoesters and the sum of phosphodiester-containing molecules. Proton decoupling was implemented to measure the individual phosphomonoester and phosphodiester components. This is the first study employing this technique to examine schizophrenic patients. METHODS Multivoxel two-dimensional chemical shift in vivo phosphorous-31 magnetic resonance spectroscopy with proton decoupling was used to examine a 50-cm3 volume in prefrontal, motor, and parieto-occipital regions in the brain. Eleven chronic medicated schizophrenic patients were compared to 11 healthy controls of comparable gender, education, parental education, and handedness. RESULTS A significant increase in the mobile phospholipid peak area and its full width at half maximum was observed in the medicated schizophrenic patients compared to the healthy controls in the prefrontal region. Inorganic orthophosphate and phosphocholine were lower in the schizophrenic group in the prefrontal region. CONCLUSIONS The increased sum of phosphodiester [mobile phospholipid + glycerol-3-phosphoethanolamine (GPEth) + glycerol-3-phosphocholine (GPCh)] in schizophrenic patients, measured in earlier studies, arises from the phospholipid peak (MP) and not the more mobile phosphodiesters (GPEth, GPCh) as was originally suspected. A decrease in the phosphocholine component of the phosphomonoesters was also observed in the schizophrenic patients. These findings are consistent with an abnormality in membrane metabolism in the prefrontal region in schizophrenics.
Collapse
Affiliation(s)
- J J Potwarka
- Department of Nuclear Medicine and Magnetic Resonance, St. Joseph's Health Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Blüml S, Tan J, Harris K, Adatia N, Karme A, Sproull T, Ross B. Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 1999; 23:272-5. [PMID: 10096336 DOI: 10.1097/00004728-199903000-00017] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative proton MR spectroscopy (MRS) and proton-decoupled phosphorus MRS were applied in the parietal cortex of 13 schizophrenic subjects (11 drug-treated and 2 neuroleptic-naive) and 15 normal control subjects. Significantly increased concentrations of glycerophosphorylcholine (1.18 +/- 0.16 vs. 0.93 +/- 0.14 mmol/kg brain; p < 0.001), glycerophosphoethanolomine (0.70 +/- 0.19 vs. 0.59 +/- 0.07 mmol/kg; p < 0.04), and phosphocreatine (3.73 +/- 0.39 vs. 3.41 +/- 0.13 mmol/kg; p < 0.007), but no differences in N-acetylaspartate, total creatine, or myo-inositol, were determined in treated schizophrenic subjects. Identical abnormalities were found in two neuroleptic-naive patients. These results provide new evidence of disordered cerebral membrane and high energy phosphate metabolism in schizophrenia.
Collapse
Affiliation(s)
- S Blüml
- Clinical Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | | | | | | | | | | | |
Collapse
|