1
|
Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Eur J Appl Physiol 2022; 122:1797-1810. [PMID: 35362800 PMCID: PMC9287254 DOI: 10.1007/s00421-022-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022]
Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcranial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contractile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
Collapse
|
2
|
Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J Mov Disord 2017; 10:1-17. [PMID: 28122432 PMCID: PMC5288669 DOI: 10.14802/jmd.16062] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
3
|
Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1252690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Mirai Takahashi
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuhiro Obara
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Chiba
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
4
|
Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A, Aziz TZ, Papa SM, Factor SA, Hallett M. Physiology of freezing of gait. Ann Neurol 2016; 80:644-659. [DOI: 10.1002/ana.24778] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anke H. Snijders
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior; Radboud University Medical Center; Nijmegen the Netherlands
- Maasziekenhuis Pantein; Boxmeer the Netherlands
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering; Asahikawa Medical University; Asahikawa Japan
| | - Bettina Debu
- Joseph Fourier University, Grenoble Universities; Grenoble France
| | - Andres M. Lozano
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
| | - Vibhor Krishna
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
- Department of Neurosurgery; Ohio State University; Columbus OH
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
| | - Tipu Z. Aziz
- John Radcliffe Hospital; Headington Oxford United Kingdom
| | - Stella M. Papa
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Stewart A. Factor
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda MD
| |
Collapse
|
5
|
Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2015; 123:695-729. [PMID: 26497023 PMCID: PMC4919383 DOI: 10.1007/s00702-015-1475-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan.
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Schwarz PB, Mir S, Peever JH. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus. J Physiol 2014; 592:3597-609. [PMID: 24860176 DOI: 10.1113/jphysiol.2014.272633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.
Collapse
Affiliation(s)
- Peter B Schwarz
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Saba Mir
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John H Peever
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Schwarz PB, Yee N, Mir S, Peever JH. Noradrenaline triggers muscle tone by amplifying glutamate-driven excitation of somatic motoneurones in anaesthetized rats. J Physiol 2008; 586:5787-802. [PMID: 18845613 DOI: 10.1113/jphysiol.2008.159392] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Postural muscle tone is potently suppressed during sleep and cataplexy. Since brainstem noradrenergic cell discharge activity is tightly coupled with state-dependent changes in muscle activity, it is assumed that noradrenergic drive on to somatic motoneurones modulates basal muscle tone. However, it has never been determined whether noradrenergic neurotransmission acts to directly regulate motoneurone activity or whether it functions to modulate prevailing synaptic activity. This is an important distinction because noradrenaline regulates cell excitability by both directly depolarizing neurones and by indirectly potentiating glutamate-mediated excitation. We used reverse-microdialysis, electrophysiology, neuro-pharmacological and histological techniques in anaesthetized rats to determine whether strengthening noradrenergic drive (via exogenous noradrenaline application) on to trigeminal motoneurones affects masseter muscle tone by increasing spontaneous motoneurone activity or whether it acts to amplify prevailing glutamate-driven excitation. Although noradrenaline is hypothesized to modulate motor activity, we found that direct stimulation of trigeminal motoneurones by alpha(1)-adrenoceptor activation had no direct effect on basal masseter tone. However, when glutamate-driven excitation was increased at the trigeminal motor pool by either endogenous glutamate release (induced by the monosynaptic masseteric reflex) or exogenous AMPA application, noradrenaline triggered a potent increase in basal masseter tone. The stimulatory effects of noradrenaline were unmasked and rapidly switched on only in the presence of glutamatergic transmission. Blockade of AMPA receptors abolished this excitatory effect, indicating that noradrenergic drive requires ongoing glutamatergic activity. Our data indicate that exogenous noradrenergic drive does not directly affect spontaneous motoneurone discharge activity in anaesthetized rats; rather, it triggers postural muscle tone by amplifying prevailing glutamate-driven excitation.
Collapse
Affiliation(s)
- Peter B Schwarz
- Department Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | | | | | |
Collapse
|
8
|
Lai YY, Hsieh KC, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience 2008; 154:431-43. [PMID: 18487021 DOI: 10.1016/j.neuroscience.2008.03.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 11/29/2022]
Abstract
There is no adequate animal model of restless legs syndrome (RLS) and periodic leg movements disorder (PLMD), disorders affecting 10% of the population. Similarly, there is no model of rapid eye movement (REM) sleep behavior disorder (RBD) that explains its symptoms and its link to Parkinsonism. We previously reported that the motor inhibitory system in the brainstem extends from the medulla to the ventral mesopontine junction (VMPJ). We now examine the effects of damage to the VMPJ in the cat. Based on the lesion sites and the changes in sleep pattern and behavior, we saw three distinct syndromes resulting from such lesions; the rostrolateral, rostromedial and caudal VMPJ syndromes. The change in sleep pattern was dependent on the lesion site, but was not significantly correlated with the number of dopaminergic neurons lost. An increase in wakefulness and a decrease in slow wave sleep (SWS) and REM sleep were seen in the rostrolateral VMPJ-lesioned animals. In contrast, the sleep pattern was not significantly changed in the rostromedial and caudal VMPJ-lesioned animals. All three groups of animals showed a significant increase in periodic and isolated leg movements in SWS and increased tonic muscle activity in REM sleep. Beyond these common symptoms, an increase in phasic motor activity in REM sleep, resembling that seen in human RBD, was found in the caudal VMPJ-lesioned animals. In contrast, the increase in motor activity in SWS in rostral VMPJ-lesioned animals is similar to that seen in human RLS/PLMD patients. The proximity of the VMPJ region to the substantia nigra suggests that the link between RLS/PLMD and Parkinsonism, as well as the progression from RBD to Parkinsonism may be mediated by the spread of damage from the regions identified here into the substantia nigra.
Collapse
Affiliation(s)
- Y-Y Lai
- Department of Psychiatry and Biobehavioral Science, Neurobiology Research, David Geffen School of Medicine, UCLA and Veterans Administration Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | | | |
Collapse
|
9
|
Majczyński H, Cabaj A, Sławińska U, Górska T. Intrathecal administration of yohimbine impairs locomotion in intact rats. Behav Brain Res 2006; 175:315-22. [PMID: 17010450 DOI: 10.1016/j.bbr.2006.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The effects of upper lumbar level intrathecal injection of yohimbine, an alpha2-noradrenergic antagonist, on overground locomotion in intact rats was studied. This treatment caused dose-dependent impairment of hindlimb locomotor movement, which varied from transient hindlimb paralysis at a dose of 200 microg/20 microl to transient trunk instability at 50 microg/20 microl. Repetitive (every 48 h) injections of yohimbine at high (200 microg/20 microl) and medium (100 microg/20 microl) doses caused tachyphylaxis, which usually led to a lack of reaction to the third injection. This phenomenon was not observed after repetitive injections of the low (50 microg/20 microl) dose of the drug. These results show that the noradrenergic system is involved in the control of locomotion, since intrathecal administration of a specific antagonist affects this activity in intact rats.
Collapse
Affiliation(s)
- Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteura Str., 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
10
|
Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005; 568:1003-20. [PMID: 16123113 PMCID: PMC1464186 DOI: 10.1113/jphysiol.2005.085829] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system result in narcolepsy, suggesting that these projections are concerned with switching between locomotor movements and muscular atonia. The present study characterizes the role of these orexinergic projections to the midbrain. In decerebrate cats, injecting orexin-A (60 microm to 1.0 mm, 0.20-0.25 microl) into the MLR reduced the intensity of the electrical stimulation required to induce locomotion on a treadmill (4 cats) or even elicit locomotor movements without electrical stimulation (2 cats). On the other hand, when orexin was injected into either the PPN (8 cats) or the substantia nigra pars reticulata (SNr, 4 cats), an increased stimulus intensity at the PPN was required to induce muscle atonia. The effects of orexin on the PPN and the SNr were reversed by subsequently injecting bicuculline (5 mm, 0.20-0.25 microl), a GABA(A) receptor antagonist, into the PPN. These findings indicate that excitatory orexinergic drive could maintain a higher level of locomotor activity by increasing the excitability of neurones in the MLR, while enhancing GABAergic effects on presumably cholinergic PPN neurones, to suppress muscle atonia. We conclude that orexinergic projections from the hypothalamus to the midbrain play an important role in regulating motor behaviour and controlling postural muscle tone and locomotor movements when awake and during sleep. Furthermore, as the excitability is attenuated in the absence of orexin, signals to the midbrain may induce locomotor behaviour when the orexinergic system functions normally but elicit atonia or narcolepsy when the orexinergic function is disturbed.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Grigoriadis N, Albani M, Simeonidou C, Guiba-Tziampiri O. Recovery, innervation profile, and contractile properties of reinnervating fast muscles following postnatal nerve crush and administration of L-Dopa. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:79-87. [PMID: 15464220 DOI: 10.1016/j.devbrainres.2004.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Muscle and peripheral nerve development is clearly dependent on their interaction during early postnatal life. Furthermore, muscle or peripheral nerve activity plays a crucial role in the maturation of the neuromuscular system. In this study, the possible involvement of spinal catecholamines in fast muscle recovery after nerve crush is investigated. Sciatic nerve crush was performed on the fourth to fifth postnatal day. Following that, L-Dopa was administered daily [150 mg/kg body weight (BW)] i.p., until the 21st day after birth. L-Dopa-treated and control groups were then examined electrophysiologically for the contractile properties of extensor digitorum longus (EDL) muscles. Two experimental groups were included in this study: (i) rats whose sciatic nerve was crushed and were treated with L-Dopa and (ii) rats whose sciatic nerve was crushed and were not treated with L-Dopa. The number of motoneurones for both groups was estimated by HRP retrograde labelling. The results showed that the operated L-Dopa-treated EDL muscles of the rats exhibited limited atrophy, slighter impairment of maximal tetanic tension, lesser resistance to fatigue, and polyneuronal innervation than the controls. The number of motoneurones was the same for the operated muscles in both groups of animals and was within the normal ranges. Our findings suggest that catecholamines of locomotion during the early stages of development may have a beneficial effect on fast muscle recovery following nerve crush. The action of L-Dopa is attributed to noradrenaline, which acts through descending spinal noradrenergic pathways, possibly via a(2)-adrenergic receptors at the spinal level.
Collapse
Affiliation(s)
- Nikolaos Grigoriadis
- Laboratory of Experimental Physiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| | | | | | | |
Collapse
|
12
|
Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M. Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neurosci Res 2004; 50:137-51. [PMID: 15380321 DOI: 10.1016/j.neures.2004.06.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Here we review a role of a basal ganglia-brainstem (BG-BS) system throughout the mesopontine tegmentum in the control of various types of behavioral expression. First the basal ganglia-brainstem system may contribute to an automatic control of movements, such as rhythmic limb movements and adjustment of postural muscle tone during locomotion, which occurs in conjunction with voluntary control processes. Second, the basal ganglia-brainstem system can be involved in the regulation of awake-sleep states. We further propose the possibility that the basal ganglia-brainstem system is responsible for the integration of volitionally-guided and emotionally-triggered expression of motor behaviors. It can be proposed that dysfunction of the basal ganglia-brainstem system together with that of cortico-basal ganglia loop underlies the pathogenesis of behavioral disturbances expressed in basal ganglia dysfunction.
Collapse
Affiliation(s)
- K Takakusaki
- Department of Physiology, Asahikawa Medical College, Midorigaoka-Higashi 2-1, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
13
|
Gottesmann C. Brain inhibitory mechanisms involved in basic and higher integrated sleep processes. ACTA ACUST UNITED AC 2004; 45:230-49. [PMID: 15210306 DOI: 10.1016/j.brainresrev.2004.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Brain function is supported by central activating processes that are significant during waking, decrease during slow wave sleep following waking and increase again during paradoxical sleep during which brain activation is as high as, or higher than, during waking in nearly all structures. However, inhibitory mechanisms are crucial for sleep onset. They were first identified by behavioral, neuroanatomical and electrophysiological criteria, then by pharmacological and neurochemical ones. During slow wave sleep, they are supported by GABAergic mechanisms located at midbrain, mesopontine and pontine levels but are induced and sustained by forebrain and hindbrain influences. GABAergic processes are also responsible for paradoxical sleep occurrence, particularly by suppression of noradrenaline and serotonin (5-HT) inhibition of paradoxical sleep-generating structures. Hindbrain and forebrain modulate these structures situated at the mesopontine level. For sleep mentation, the noradrenergic and serotonergic silence is thought, today, to be directly, or indirectly, responsible for dopamine predominance and glutamate decrease in the nucleus accumbens, which could be the background of the well-known psychotic-like mental activity of dreaming.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Neurobiologie Comportementale, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
| |
Collapse
|
14
|
Takakusaki K, Habaguchi T, Saitoh K, Kohyama J. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 2004; 124:467-80. [PMID: 14980396 DOI: 10.1016/j.neuroscience.2003.12.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 11/23/2022]
Abstract
We have previously reported that electrical stimulation delivered to the ventral part of the pedunculopontine tegmental nucleus (PPN) produced postural atonia in acutely decerebrated cats [Neuroscience 119 (2003) 293]. The present study was designed to elucidate synaptic mechanisms acting on motoneurons during postural atonia induced by PPN stimulation. Intracellular recording was performed from 72 hindlimb motoneurons innervating extensor and flexor muscles, and the changes in excitability of the motoneurons following the PPN stimulation were examined. Repetitive electrical stimulation (20-50 microA, 50 Hz, 5-10 s) of the PPN hyperpolarized the membrane potentials of both the extensor and flexor motoneurons by 2.0-12 mV (6.0 +/- 2.3 mV, n = 72). The membrane hyperpolarization persisted for 10-20 s even after termination of the stimulation. During the PPN stimulation, the membrane hyperpolarization was associated with decreases in the firing capability (n = 28) and input resistance (28.5 +/- 6.7%, n = 14) of the motoneurons. Moreover the amplitude of Ia excitatory postsynaptic potentials was also reduced (44.1 +/- 13.4%, n = 14). After the PPN stimulation, these parameters immediately returned despite that the membrane hyperpolarization persisted. Iontophoretic injections of chloride ions into the motoneurons reversed the polarity of the membrane hyperpolarization during the PPN stimulation. The polarity of the outlasting hyperpolarization however was not reversed. These findings suggest that a postsynaptic inhibitory mechanism, which was mediated by chloride ions, was acting on hindlimb motoneurons during PPN-induced postural atonia. However the outlasting motoneuron hyperpolarization was not due to the postsynaptic inhibition but it could be due to a decrease in the activity of descending excitatory systems. The functional role of the PPN in the regulation of postural muscle tone is discussed with respect to the control of behavioral states of animals.
Collapse
Affiliation(s)
- K Takakusaki
- Department of Physiology II, College of Medicine, Asahikawa Medical College, Midorigaoka Higashi 2-1, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
15
|
Bittencourt AS, Carobrez AP, Zamprogno LP, Tufik S, Schenberg LC. Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-METHYL-d-aspartic acid glutamate receptors. Neuroscience 2004; 125:71-89. [PMID: 15051147 DOI: 10.1016/j.neuroscience.2004.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
The periaqueductal gray matter (PAG) is functionally organized in longitudinal columns arranged along the aqueduct. Stimulation of lateral and dorsal columns produces a complex set of unconditioned behaviors named the 'defense reaction.' Overt responses in rats comprise a tense immobile display, fully opened eyes (herein named exophthalmus), trotting, galloping, jumping, micturition and defecation. Besides, the PAG is rich in glutamate and respective receptors, including the N-methyl-d-aspartic acid (NMDA) type. Therefore, the present study employed regression analysis to map out electrically and NMDA-induced single components of defensive behaviors produced by stepwise increasing stimulation of PAG. Data confirmed the defensive nature of PAG-evoked responses. Neither the appetitive, nor offensive, mouse-killing or male reproductive behaviors were produced by stimulation of PAG in presence of appropriate targets. Threshold and dose-response logistic analyses largely corroborated the columnar organization of PAG-evoked responses. Thus, whereas the defecation was restricted to PAG lateral column, exophthalmus, micturition and somatic defensive responses were similarly organized in dorsolateral and lateral, but not in the ventrolateral column. Moreover, thresholds of dorsolateral and lateral repertoires were strictly hierarchical, with exophthalmus, immobility, trotting, galloping and jumping appearing in this very order. However, the defensive responses of PAG dorsolateral column required NMDA doses significantly lower than those of lateral PAG. Accordingly, NMDA receptors within the dorsolateral PAG are likely to play a major role in the initiation of PAG-evoked defensive responses. In contrast, the present data do not support the organization of unconditioned defensive behaviors in ventrolateral PAG. The neuroanatomical substrate of each response and the role of PAG and NMDA receptors are discussed in relation to the present data. Further, this is the first report on PAG columnar organization of single components of defensive behaviors.
Collapse
Affiliation(s)
- A S Bittencourt
- Departamento de Ciências Fisiológicas-Centro Biomédico (Edifício do Programa de Pós-Graduação em Ciências Fisiológicas), Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125, Vitória ES, Brazil
| | | | | | | | | |
Collapse
|
16
|
Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003; 119:293-308. [PMID: 12763089 DOI: 10.1016/s0306-4522(03)00095-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study is designed to elucidate how basal ganglia afferents from the substantia nigra pars reticulata (SNr) to the mesopontine tegmental area of the brainstem contribute to gait control and muscle-tone regulation. We used unanesthetized and acutely decerebrated cats (n=27) in which the striatum, thalamus and cerebral cortex were removed but the SNr was preserved. Repetitive stimulation (50 Hz, 10-60 microA, for 5-20 s) applied to a mesencephalic locomotor region (MLR), which corresponded to the cuneiform nucleus, and adjacent areas, evoked locomotor movements. On the other hand, stimulation of a muscle-tone inhibitory region in the pedunculopontine tegmental nucleus (PPN) suppressed postural muscle tone. An injection of either glutamatergic agonists (N-methyl-D-aspartic acid and kainic acid) or GABA antagonists (bicuculline and picrotoxin) into the MLR and PPN also induced locomotion and muscle-tone suppression, respectively. Repetitive electrical stimuli (50-100 Hz, 20-60 microA for 5-20 s) delivered to the SNr alone did not alter muscular activity. However stimulating the lateral part of the SNr attenuated and blocked PPN-induced muscle-tone suppression. Moreover, weaker stimulation of the medial part of the SNr reduced the number of step cycles and disturbed the rhythmic alternation of limb movements of MLR-induced locomotion. The onset of locomotion was delayed as the stimulus intensity was increased. At a higher strength SNr stimulation abolished the locomotion. An injection of bicuculline into either the PPN or the MLR diminished the SNr effects noted above. These results suggest that locomotion and postural muscle tone are subject to modulation by GABAergic nigrotegmental projections which have a partial functional topography: a lateral and medial SNr, for regulation of postural muscle tone and locomotion, respectively. We conclude that disorders of the basal ganglia may include dysfunction of the nigrotegmental (basal ganglia-brainstem) systems, which consequently leads to the production of abnormal muscle tone and gait disturbance.
Collapse
Affiliation(s)
- K Takakusaki
- Department of Physiology, College of Medicine, Asahikawa Medical College, Midorigaoka-Higashi 2-1, Asahikawa 078-8510, Japan.
| | | | | | | | | |
Collapse
|
17
|
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:33-84. [PMID: 12668290 DOI: 10.1016/s0165-0173(03)00143-7] [Citation(s) in RCA: 1702] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Through a widespread efferent projection system, the locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. Initial studies provided critical insight into the basic organization and properties of this system. More recent work identifies a complicated array of behavioral and electrophysiological actions that have in common the facilitation of processing of relevant, or salient, information. This involves two basic levels of action. First, the system contributes to the initiation and maintenance of behavioral and forebrain neuronal activity states appropriate for the collection of sensory information (e.g. waking). Second, within the waking state, this system modulates the collection and processing of salient sensory information through a diversity of concentration-dependent actions within cortical and subcortical sensory, attention, and memory circuits. Norepinephrine-dependent modulation of long-term alterations in synaptic strength, gene transcription and other processes suggest a potentially critical role of this neurotransmitter system in experience-dependent alterations in neural function and behavior. The ability of a given stimulus to increase locus coeruleus discharge activity appears independent of affective valence (appetitive vs. aversive). Combined, these observations suggest that the locus coeruleus-noradrenergic system is a critical component of the neural architecture supporting interaction with, and navigation through, a complex world. These observations further suggest that dysregulation of locus coeruleus-noradrenergic neurotransmission may contribute to cognitive and/or arousal dysfunction associated with a variety of psychiatric disorders, including attention-deficit hyperactivity disorder, sleep and arousal disorders, as well as certain affective disorders, including post-traumatic stress disorder. Independent of an etiological role in these disorders, the locus coeruleus-noradrenergic system represents an appropriate target for pharmacological treatment of specific attention, memory and/or arousal dysfunction associated with a variety of behavioral/cognitive disorders.
Collapse
Affiliation(s)
- Craig W Berridge
- Departments of Psychology and Psychiatry, University of Wisconsin, Madison, WI 53706,USA.
| | | |
Collapse
|
18
|
Lai YY, Siegel JM. Physiological and anatomical link between Parkinson-like disease and REM sleep behavior disorder. Mol Neurobiol 2003; 27:137-52. [PMID: 12777684 PMCID: PMC8801047 DOI: 10.1385/mn:27:2:137] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that is caused by a loss of neurons in the ventral midbrain. Parkinsonian patients often experience insomnia, parasomnias, and daytime somnolence. REM sleep behavior disorder (RBD) is characterized by vigorous movements during REM sleep, and may also be caused by neuronal degeneration in the central nervous system (CNS); however, the site of degeneration remains unclear. Both Parkinsonism and RBD become more prevalent with aging, with onset usually occurring in the sixties. Recent findings show that many individuals with RBD eventually develop Parkinsonism. Conversely, it is also true that certain patients diagnosed with Parkinsonism subsequently develop RBD. Postmortem examination reveals that Lewy bodies, Lewy neurites, and alpha-synuclein are found in brainstem nuclei in both Parkinsonism and RBD patients. In this article, we will discuss evidence that Parkinsonism and RBD are physiologically and anatomically linked, based on our animal experiments and other studies on human patients.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry, School of Medicine, UCLA and Neurobiology Research (151A3) VAGLAHS Sepulveda, North Hills, CA 91343, USA.
| | | |
Collapse
|
19
|
GULYANI S, WU MF, NIENHUIS R, JOHN J, SIEGEL JM. Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 2002; 112:355-65. [PMID: 12044453 PMCID: PMC8789328 DOI: 10.1016/s0306-4522(02)00089-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The amygdala plays an important role in the interpretation of emotionally significant stimuli and has strong projections to brainstem regions regulating muscle tone and sleep. Cataplexy, a symptom of narcolepsy, is a loss of muscle tone usually triggered by sudden, strong emotions. Extracellular single-unit recordings were carried out in the amygdala of narcoleptic dogs to test the hypothesis that abnormal activity of a subpopulation of amygdala neurons is linked to cataplexy. Of the 218 cells recorded, 31 were sleep active, 78 were active in both waking and rapid-eye-movement sleep, 88 were maximally active during waking, and 21 were state independent. Two populations of cells showed a significant change in activity with cataplexy. A population of sleep active cells localized to central and basal nucleus increased discharges prior to and during cataplexy. A population of wake active cells localized to the cortical nucleus decreased activity prior to and during cataplexy. We hypothesize that these cell populations have a role in mediation or modulation of cataplexy through interactions with meso-pontine regions controlling atonia. The anticholinesterase physostigmine, at doses which increased cataplexy, did not alter the activity of the cataplexy-related cells or of other amygdala cells, suggesting that its effect on cataplexy is mediated 'downstream' of the amygdala. The alpha-1 blocker prazosin, at doses which increased cataplexy, increased discharge in a subgroup of the cataplexy active cells and in a number of other amygdala cells, indicating that prazosin may modulate cataplexy by its action on amygdala cells or their afferents.
Collapse
Affiliation(s)
- S. GULYANI
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
| | - M.-F. WU
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
| | - R. NIENHUIS
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
| | - J. JOHN
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
| | - J. M. SIEGEL
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
- Correspondence to: J.M. Siegel, Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA. Tel.: +1-818-891-7711, or -7581; fax: +1-818-895-9575. (J. M. Siegel)
| |
Collapse
|
20
|
Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J Neurosci 2001. [PMID: 11549748 DOI: 10.1523/jneurosci.21-18-07384.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A complete suppression of muscle tone in the postural muscles and a reduction of muscle tone in the respiratory related musculature occur in rapid eye movement (REM) sleep. Previous studies have emphasized the role of glycine in generating these changes. Because the activity of norepinephrine- and serotonin-containing neurons is known to decrease in REM sleep, we hypothesized that a decrease in release in one or both of these transmitters might be detected at the motoneuronal level during muscle tone suppression elicited by brainstem stimulation in the decerebrate animal. We compared release in the ventral horn with that in the hypoglossal nucleus to determine whether the mechanism of muscle tone suppression differs in these nuclei as has been hypothesized. Electrical stimulation and cholinergic agonist injection into the mesopontine reticular formation produced a suppression of tone in the postural and respiratory muscles and simultaneously caused a significant reduction of norepinephrine and serotonin release of similar magnitude in both hypoglossal nucleus and spinal cord. Norepinephrine and serotonin release in the motoneuron pools was unchanged when the stimulation was applied to brainstem areas that did not generate bilateral suppression. No change in dopamine release in the motoneuron pools was seen during mesopontine stimulation-induced atonia. We hypothesize that the reduction of monoamine release that we observe exerts a disfacilitatory effect on both ventral horn and hypoglossal motoneurons and that this disfacilitatory mechanism contributes to the muscle atonia elicited in the decerebrate animal and in the intact animal during REM sleep.
Collapse
|
21
|
Kiyashchenko LI, Mileykovskiy BY, Lai YY, Siegel JM. Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol 2001; 85:2008-16. [PMID: 11353017 PMCID: PMC8792979 DOI: 10.1152/jn.2001.85.5.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orexin-A (OX-A) and orexin-B (OX-B) (hypocretin 1 and hypocretin 2) are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. The locus coeruleus (LC) receives the densest extrahypothalamic projections of the orexin (OX) system. Recent evidence suggests that descending projections of the LC have a facilitatory role in the regulation of muscle tone. The pontine inhibitory area (PIA), located ventral to LC, receives a moderate OX projection and participates in the suppression of muscle tone in rapid-eye-movement sleep. We have examined the role of OX-A and -B in muscle-tone control using microinjections (0.1 microM to 1 mM, 0.2 microl) into the LC and PIA in decerebrate rats. OX-A and -B microinjections into the LC produced ipsi- or bilateral hindlimb muscle-tone facilitation. The activity of LC units was correlated with the extent of hindlimb muscle-tone facilitation after OX microinjections (100 microM, 1 microl) into fourth ventricle. Microinjections of OX-A and -B into the PIA produced muscle-tone inhibition. We did not observe any significant difference in the effect of OX-A and -B on muscle tone at either site. Our data suggest that OX release activates LC units and increases noradrenergic tonus in the CNS. Moreover, OX-A and -B may also regulate the activity of pontine cholinoceptive and cholinergic neurons participating in muscle-tone suppression. Loss of OX function may therefore disturb both facilitatory and inhibitory motor processes.
Collapse
Affiliation(s)
- L I Kiyashchenko
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | | | |
Collapse
|
22
|
Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2001. [PMID: 11069963 DOI: 10.1523/jneurosci.20-22-08551.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the pontine inhibitory area (PIA) including the middle portion of the pontine reticular nucleus, oral part (PnO), or the gigantocellular reticular nucleus (Gi) suppresses muscle tone in decerebrate animals. The locus coeruleus (LC) and midbrain locomotor region (MLR) have been implicated in the facilitation of muscle tone. In the current study we investigated whether PIA and Gi stimulation causes changes in activity in these brainstem motor facilitatory systems. PIA stimulation evoked bilateral muscle tone suppression and inhibited 26 of 28 LC units and 33 of 36 tonically active units located in the anatomical equivalent of the MLR (caudal half of the cuneiform nucleus and the pedunculopontine tegmental nucleus). Gi stimulation evoked bilateral suppression of hindlimb muscle tone and inhibited 20 of 35 LC units and 24 of 24 neurons located in the MLR as well as facilitated 11 of 35 LC units. GABA and glycine release in the vicinity of LC was increased by 20-40% during ipsilateral PnO stimulation inducing hindlimb muscle tone suppression on the same side of the body. We conclude that activation of pontine and medullary inhibitory regions produces a coordinated reduction in the activity of the LC units and neurons located in the MLR related to muscle tone facilitation. The linkage between activation of brainstem motor inhibitory systems and inactivation of brainstem facilitatory systems may underlie the reduction in muscle tone in sleep as well as the modulation of muscle tone in the isolated brainstem.
Collapse
|
23
|
Leanza G, Cataudella T, Dimauro R, Monaco S, Stanzani S. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat. Eur J Neurosci 1999; 11:1789-99. [PMID: 10215931 DOI: 10.1046/j.1460-9568.1999.00595.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a regulated, impulse-dependent, and a diffuse, paracrine-like, NA outflow may play roles in the recovery of lesion-induced sensory and/or motor impairments previously reported with these types of grafts following transplantation into the severed spinal cord.
Collapse
Affiliation(s)
- G Leanza
- Department of Physiological Sciences, University of Catania, Italy.
| | | | | | | | | |
Collapse
|
24
|
Ciombor KJ, Ennis M, Shipley MT. Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via alpha-1 receptors in vitro. Neuroscience 1999; 90:595-606. [PMID: 10215162 DOI: 10.1016/s0306-4522(98)00437-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A rat olfactory bulb in vitro slice preparation was used to investigate the actions of norepinephrine on spontaneous and afferent (olfactory nerve) evoked activity of mitral cells. Single olfactory nerve shocks elicited a characteristic mitral cell response consisting of distinct, early and late spiking components separated by a brief inhibitory epoch. Bath-applied norepinephrine (1 microM) increased the early spiking component elicited by perithreshold (79% increase, P<0.02), but not by suprathreshold (3% decrease, P>0.05), intensity olfactory nerve shocks. The facilitatory effect of norepinephrine was due to a reduction in the incidence of response failures to perithreshold intensity shocks. Norepinephrine also decreased the inhibitory epoch separating the early and late spiking components by 44% (P<0.05). By contrast, norepinephrine had no consistent effect on the spontaneous discharge rate of the mitral cells. The effects of norepinephrine were mimicked by the al receptor agonist phenylephrine (1 microM, P<0.001). Both norepinephrine and phenylephrine modulation of mitral cell responses were blocked by the al adrenergic antagonist WB-4101 (1 microM). These findings are consistent with observations that the main olfactory bulb exhibits the highest density of alpha1 receptors in the brain. The alpha2 receptor agonist clonidine (100 nM) and the beta receptor agonist isoproterenol (1 microM) had inconsistent effects on mitral cell spontaneous and olfactory nerve-evoked activity. These results indicate that norepinephrine increases mitral cell excitatory responses to weak but not strong olfactory nerve inputs in vitro via activation of al receptors. This is consistent with recent findings in vivo that synaptically released norepinephrine preferentially increases mitral cell excitatory responses to weak olfactory nerve inputs. Taken together, these results suggest that the release of norepinephrine in the olfactory bulb may increase the sensitivity of mitral cells to weak odors. Olfactory cues evoke norepinephrine release in the main olfactory bulb, and norepinephrine plays important roles in early olfactory learning and reproductive/maternal behaviors. By increasing mitral cell responses to olfactory nerve input, norepinephrine may play a critical role in modulating olfactory function, including formation and/or recall of specific olfactory memories.
Collapse
Affiliation(s)
- K J Ciombor
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
25
|
Lucchi ML, Callegari E, Barazzoni AM, Chiocchetti R, Clavenzani P, Bortolami R. Cerebellar and spinal projections of the coeruleus complex in the duck: a fluorescent retrograde double-labeling study. Anat Rec (Hoboken) 1998; 251:392-7. [PMID: 9669767 DOI: 10.1002/(sici)1097-0185(199807)251:3<392::aid-ar15>3.0.co;2-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The double fluorescent retrograde tracing technique was used to identify, within the coeruleus complex (Co complex) of the duck, the nerve cells projecting to the cerebellar cortex and to the spinal cord. This technique was also used to investigate the possibility that the cerebellar and spinal projections of the Co complex are collaterals of the same axons. In the same animal, nuclear Diamidino yellow dihydrochloride (DY) fluorescent tracer was placed into the cerebellar cortex of folia V-VII, and cytoplasmic fluorescent Fast blue (FB) dye was injected into C3-C4 spinal cord segments. FB labeled multipolar somata and DY fluorescent nuclei were intermingled within the dorsal caudal region of the locus coeruleus (LCo) and within the dorsal division of the nucleus subcoeruleus (dSCo). Moreover, in the LCo, a low proportion of double-labeled neurons (about 3-4% of labelings) was evidenced among single-labeled neurons. In the ventral division of the nucleus subcoeruleus (vSCo), occasional DY labeled nuclei were found, whereas FB-labeled cells were frequently present. The present findings reveal the location of the coeruleocerebellar and coeruleospinal projecting neurons within the Co complex of the duck. They are intermingled in the caudal portion of the LCo and along the rostrocaudal extent of the subjacent dSco. The LCo and the dSCo are the major source of the projections to the folia V-VII, whereas the vSCo contributes very slightly to the innervation of the cerebellar injected areas. Moreover, the double-labeling study demonstrates that in the duck a low percentage of neurons within the ventrolateral portion of the caudal region of the LCo projects both to the cerebellar cortex of folia V-VII and to C3-C4 spinal cord segments via collaterals. Therefore, these neurons simultaneously influence the cerebellar cortex and spinal cord. The possibility that the projections studied are noradrenergic and that they play a role in feeding is discussed.
Collapse
Affiliation(s)
- M L Lucchi
- Department of Veterinary Morphophysiology and Animal Productions, University of Bologna, Ozzano Emilia, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Leanza G, Maccavino MC, Stanzani S. Noradrenergic neurotransmission in the ventral spinal cord: basic characteristics and effects of denervating lesions, as studied in the awake rat by microdialysis. Brain Res 1996; 738:281-91. [PMID: 8955524 DOI: 10.1016/s0006-8993(96)00796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular levels of noradrenaline (NA) were measured in the ventral horn of the lumbar spinal cord in awake unrestrained rats using in vivo microdialysis coupled to a highly sensitive radioenzymatic assay. In normal animals, baseline NA output averaged 13.4 +/- 2.2 fmol/30 microliters. KCl (100 mM) or desipramine (5 microM) added to the perfusion fluid increased NA levels 11.2-fold and 2.2-fold, respectively, whereas neuronal impulse blockade by tetrodotoxin (1 microM) added in the presence of desipramine stimulation produced a 88% reduction of extracellular NA levels. Noradrenergic denervation of the spinal cord by either electrolytic destruction of the noradrenaline-containing axon terminals or intraventricular 6-hydroxydopamine produced, 3-4 weeks later, dramatic 84 and 91% reductions in baseline NA release associated to a marked loss of immunoreactive noradrenergic fibers throughout the spinal cord or caudal to the site of electrolytic damage and almost completely abolished responses to pharmacological manipulations. The results support the view that spinal extracellular NA levels are neuronally derived, also suggesting that noradrenergic neurotransmission in the ventral spinal cord largely (by at least 85%) depends on the integrity of descending brainstem afferents. The microdialysis technique, thus, appears to be a useful tool for future studies on strategies aimed at promoting reinnervation and functional recovery in the deafferented spinal cord.
Collapse
Affiliation(s)
- G Leanza
- Institute of Human Physiology, University of Catania, Italy
| | | | | |
Collapse
|
27
|
White SR, Fung SJ, Jackson DA, Imel KM. Serotonin, norepinephrine and associated neuropeptides: effects on somatic motoneuron excitability. PROGRESS IN BRAIN RESEARCH 1996; 107:183-99. [PMID: 8782520 DOI: 10.1016/s0079-6123(08)61865-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S R White
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164, USA
| | | | | | | |
Collapse
|
28
|
Liu RH, Fung SJ, Reddy VK, Barnes CD. Localization of glutamatergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat with a proposed role of glutamate on lumbar motoneuron activity. Neuroscience 1995; 64:193-208. [PMID: 7708205 DOI: 10.1016/0306-4522(94)00354-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate is considered to be a major excitatory neurotransmitter in the central nervous system. The presence of glutamate-like immunoreactive neurons in the rodent locus coeruleus has been reported previously. In this study we used both immunohistochemical and electrophysiological techniques to answer two major questions: (1) Is there any glutamate-like immunoreactivity in the catecholaminergic coeruleospinal system of the cat? (2) What is the physiological role, if any, of glutamate in descending locus coeruleus control of spinal motoneurons? Following injections of rhodamine-labeled latex microspheres or Fast Blue into the seventh lumbar segment of the spinal cord of the cat, retrogradely labeled cells were found throughout the rostrocaudal extent of the dorsolateral pontine tegmentum. They were primarily observed in the nucleus locus coeruleus and the Kolliker-Fuse nucleus. Some labeled cells were also present in the nucleus subcoeruleus and, to a lesser extent, in the parabrachial nuclei. Data from immunohistochemical studies indicate that 86% of all dorsolateral pontine tegmentum neurons that project to the spinal cord contain glutamate-like immunoreactivity, and 77% co-contain both glutamate- and tyrosine hydroxylase-like immunoreactivity. Electrical stimulation (four pulses of 500 microseconds duration at 500 Hz; intensity = 50-200 microA) of the locus coeruleus, in decerebrate cats, consistently induced lumbar motoneuron discharges recordable ipsilaterally as ventral root responses. These motoneuronal responses were reversibly antagonized following chemical inactivation of noradrenergic locus coeruleus neurons by local infusion of the alpha 2-adrenergic agonist clonidine, suggesting the locus coeruleus neurons to be the main source of evoked ventral root responses. Additionally, the evoked ventral root responses were reversibly reduced by 34.20 +/- 4.45% (mean +/- S.E.M.) upon intraspinal injections of the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, into the ventral horn of seventh lumbar spinal cord segment (three to four injections, 20 nmol in 0.2 microliter of 0.1 M Tris-buffered saline for each injection). Similar volumes of vehicle injections had no significant effect on the locus coeruleus-evoked ventral root responses. These ventral root responses were also partially blocked (62.30 +/- 11.76%) by intravenous administration of the alpha 1-adrenergic receptor antagonist prazosin (20 micrograms/kg). In the light of several anatomical reports of noradrenergic and glutamatergic terminals in close contact with spinal motoneurons, our present findings suggest that the locus coeruleus-evoked ventral root response probably involves the synaptic release of both norepinephrine and glutamate onto lumbar motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R H Liu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The function of descending noradrenergic systems in the spinal ventral horn has not been fully elucidated. We have reviewed our own findings and those of others relating to motor function of these noradrenergic systems. We studied the effects of adrenergic drugs on spinal reflexes, decerebrate rigidity, and noradrenaline release from the spinal cord in rats, and motoneuron activity in spinal cord slices isolated from adult rats. It was shown that the descending noradrenergic systems were facilitatory to the motor system, and that alpha 1-antagonistic action at the spinal cord and alpha 2-agonistic action at the brainstem inhibited spinal motor activity by blocking spinal alpha 1-receptors and by reducing the release of noradrenaline in the spinal cord, respectively.
Collapse
Affiliation(s)
- H Ono
- Department of Pharmacy, Branch Hospital, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
30
|
Fung SI, Chan JY, Manzoni D, White SR, Lai YY, Strahlendorf HK, Zhuo H, Liu RH, Reddy VK, Barnes CD. Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Res Bull 1994; 35:423-32. [PMID: 7859099 DOI: 10.1016/0361-9230(94)90155-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article reviews evidence for a direct noradrenergic projection from the dorsolateral pontine tegmentum (DLPT) to spinal motoneurons. The existence of this direct pathway was first inferred by the observation that antidromically evoked responses occur in single cells in the locus coeruleus (LC), a region within the DLPT, following electrical stimulation of the ventral horn of the lumbar spinal cord of the cat. We subsequently confirmed that there is a direct noradrenergic pathway from the LC and adjacent regions of the DLPT to the lumbar ventral horn using anatomical studies that combined retrograde tracing with immunohistochemical identification of neurotransmitters. These anatomical studies further revealed that many of the noradrenergic neurons in the LC and adjacent regions of the DLPT of the cat that send projections to the spinal cord ventral horn also contain colocalized glutamate (Glu) or enkephalin (ENK). Recent studies from our laboratory suggest that Glu and ENK may function as cotransmitters with norepinephrine (NE) in the descending pathway from the DLPT. Electrical stimulation of the LC evokes a depolarizing response in spinal motoneurons that is only partially blocked by alpha 1 adrenergic antagonists. In addition, NE mimicks only the slowly developing and not the fast component of LC-evoked depolarization. Furthermore, the depolarization evoked by LC stimulation is accompanied by a decrease in membrane resistance, whereas that evoked by NE is accompanied by an increased resistance. That Glu may be a second neurotransmitter involved in LC excitation of motoneurons is supported by our observation that the excitatory response evoked in spinal cord ventral roots by electrical stimulation of the LC is attenuated by a non-N-methyl-D-aspartate glutamatergic antagonist. ENK may participate as a cotransmitter with NE to mediate LC effects on lumbar monosynaptic reflex (MSR) amplitude. Electrical stimulation of the LC has a biphasic effect on MSR amplitude, facilitation followed by inhibition. Adrenergic antagonists block only the facilitator effect of LC stimulation on MSR amplitude, whereas the ENK antagonist naloxone reverses the inhibition. The chemical heterogeneity of the cat DLPT system and the differential responses of motoneurons to the individual cotransmitters help to explain the diversity of postsynaptic potentials that occur following LC stimuli.
Collapse
Affiliation(s)
- S I Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99163-6520
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhuo H, Fung SJ, Barnes CD. Opioid action on spinal cord reflexes due to dorsolateral pontine tegmentum stimulation. Neuropharmacology 1993; 32:621-31. [PMID: 8361578 DOI: 10.1016/0028-3908(93)90075-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrical stimulation of the dorsolateral pontine tegmentum (DLPT) produces phasic facilitatory and inhibitory actions on the lumbar spinal monosynaptic reflexes (MSRs) of both flexor and extensor muscle nerves in the decerebrate cat. Naloxone, an opioid receptor antagonist, given intravenously or intraspinally enhanced the DLPT-induced potentiation of MSRs in most of the reflexes studied. However, systemic naloxone had no significant effect on the unconditioned MSR of the spinal cord. Intraspinal microinjections of naloxone significantly attenuated the DLPT-induced inhibition of MSRs of both flexors and extensors, similar to the action of systemic injection of naloxone, indicating a direct opioid action at the spinal ventral horn level upon DLPT stimulation. Results of the present experiment further support the anatomical finding that there are pontospinal enkephalinergic pathways in the cat, and indicate that these descending pathways modulate spinal motor outflow.
Collapse
Affiliation(s)
- H Zhuo
- Department of VCAPP, Washington State University, Pullman 99164-6520
| | | | | |
Collapse
|
32
|
Simmons KE, Jones DJ. 6-Hydroxydopamine treatment of neonatal rats. I. Effects on the development of the spinal cord noradrenergic system. Brain Res 1993; 611:222-30. [PMID: 7687504 DOI: 10.1016/0006-8993(93)90506-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The spinal cord contains noradrenergic (NA) pathways which descend from cell bodies in the medulla oblongata and pons to terminate at all levels in the spinal gray matter. The present studies sought to determine the patterns of postnatal development of pre- and postsynaptic elements of NA transmission in the spinal cord. Significant presynaptic development is evident at birth as reflected by substantial high-affinity uptake of norepinephrine (NE) into synaptosomes (0.65-0.90 pmol/mg protein). There is a subsequent increase in uptake on postnatal day (PND) 5, followed by a decrease in 5-10 days to essentially adult levels, starting on PND 20 (0.30-0.35 pmol/mg protein). This decrease in NE uptake occurs coincident with increases in the density of postsynaptic alpha 1 and beta adrenergic receptors and also NE-stimulated accumulation of 3',5'-cyclic adenosine monophosphate (cAMP). Peaks in the development of alpha 1 receptors (PND 10) and beta receptors (PND 20) and NE-stimulated cAMP accumulation (PND 15) were also followed by decreases to adult levels. The neurotoxin 6-hydroxydopamine (6-OHDA) was administered at birth to determine the effects of denervation on the development of the spinal NA systems. At each day following 6-OHDA, synaptosomal uptake of [3H]NE was reduced by two-thirds compared with control values. alpha 1 and beta adrenergic receptor binding are uniformly increased along with a parallel increase in NE-stimulated accumulation of cAMP. While uniformly increased over control, the pattern of postnatal increases and decreases in receptors and cAMP accumulation is maintained.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K E Simmons
- Department of Pharmacology, University of Texas Health Science Center, San Antonio 78284-7838
| | | |
Collapse
|
33
|
Sakashita M, Toyoda K, Kitahara M, Tsuruzoe N, Nakayama S, Oguchi K. Mechanisms of the hypolipidemic effect of NIP-200 in rats. JAPANESE JOURNAL OF PHARMACOLOGY 1993; 62:87-91. [PMID: 8341028 DOI: 10.1254/jjp.62.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We studied the mechanisms of hypolipidemic effects of NIP-200 (3,5-dimethyl-4,6-diphenyltetrahydro-2H-1,3,5-thiadiazine- 2-thione), a potent hypolipidemic compound, in cholesterol biosynthesis in the liver, cholesterol absorption in small intestine, and cholesterol catabolism and excretion in rats. NIP-200 did not reduce cholesterol biosynthesis and had no effects on cholesterol absorption in the small intestine. In the cholesterol catabolism and excretion, NIP-200 induced increases in cholesterol and bile acids levels in the bile and acidic steroids in the feces, and it enhanced cholesterol 7 alpha-hydroxylase activity in the liver. These results suggest that NIP-200 increases the synthesis of bile acids as a result of the activation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in the conversion of cholesterol to bile acids. Therefore, it is considered that one of the probable mechanisms of the serum total cholesterol lowering action of NIP-200 involves the enhancement of catabolism and excretion of cholesterol in the liver.
Collapse
Affiliation(s)
- M Sakashita
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
O'Kusky JR, Boyes BE, Walker DG, McGeer EG. Cytomegalovirus infection of the developing brain alters catecholamine and indoleamine metabolism. Brain Res 1991; 559:322-30. [PMID: 1724407 DOI: 10.1016/0006-8993(91)90019-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tissue concentrations of noradrenaline (NA), serotonin (5-HT), dopamine (DA) and selected metabolites were measured in the spinal cord, cerebellum, cerebral cortex and caudate-putamen of developing mice following intraventricular inoculation with murine cytomegalovirus (MCMV) on postnatal day 10. MCMV-infected animals exhibited transient signs of neurological impairment, including apparent hypertonicity of hindlimb extensors and abnormal gait, beginning on days 14-16 and continuing for 3-5 days. At the onset of neurological impairment, tissue concentrations of NA were significantly reduced in the spinal cord (20%), cerebellum (32%) and cerebral cortex (40%) of infected animals. Levels of 5-HT were significantly increased in the caudate-putamen (50%), while 5-hydroxyindoleacetic acid (5-HIAA) was increased in both the spinal cord (94%) and caudate-putamen (65%). The ratio of 5-HIAA/5-HT, which is frequently used as an estimate of turnover of 5-HT, was significantly increased in the spinal cord (90%) at the onset of neurological impairment. In the caudate-putamen of MCMV-infected animals, there were significant increases in the tissue levels of DA (37%), homovanillic acid (HVA, 41%) and 3,4-dihydroxyphenylacetic acid (DOPAC, 34%). All neurochemical parameters were normal in the MCMV-infected animals by postnatal day 70, approximately 50 days after the resolution of neurological signs. These results indicate transient alterations in monoamine metabolism in the developing nervous system during the pathogenesis of cytomegalovirus-induced movement and postural disorders.
Collapse
Affiliation(s)
- J R O'Kusky
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
Spinally projecting neuropeptide Y (NPY)-immunoreactive cells were sought in the feline locus coeruleus (LC) nuclear complex after horseradish peroxidase (HRP) injection into the lumbar cord; HRP injection was followed by intracerebroventricular colchicine administration. Our results revealed that a significant number (approximately 20% of all descending cells from the LC complex) of spinally projecting NPY-immunoreactive neurons arise from the LC alpha, the subcoeruleus and the Kölliker-Fuse nuclei. Other nonspinally projecting NPY-containing cells were also evident in the laterodorsal tegmental nucleus and the LCd, in addition to those occurring in the aforementioned LC nuclear complex.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, College of Veterinary Medicine, Washington State University, Pullman 99164-6520
| | | | | | | | | |
Collapse
|
36
|
Abstract
Descending supraspinal and propriospinal neurons projecting to the female rat sacrocaudal spinal cord, the portion of the spinal cord that innervates the tail, were identified following injection of Fluoro-Gold into the S1-Ca2 spinal cord segments. This study attempted to determine anatomical substrates for propriospinal and supraspinal control of the tail. Propriospinal neurons were identified throughout laminae V-VIII and X at all levels of the spinal cord. The greatest density of labeling was in the lumbar enlargement, followed by the cervical enlargement, with least in the thoracic spinal cord. Within a given cord level, labeling was greatest within the intermediate zone. In addition, other prominent spinal cord collections included neurons in 1) lamina V of the lumbar enlargement, 2) dorsal lamina X of the cervical enlargement, and 3) the lateral spinal nucleus within the cervical enlargement. Supraspinal cells were identified within raphe nuclei, reticular formation nuclei, dorsal column nuclei, vestibular nuclei, noradrenergic groups, the red nucleus, the periaqueductal gray, the hypothalamus, and the motor cortex. These data indicate that there are significant descending projections to the sacrocaudal spinal cord, with distributions similar to those of other cord levels. Functionally, important supraspinal and propriospinal influences on tail, pelvic viscera and limbs, such as with locomotion, balance, defense, micturition, defecation, and sexual functions, may be mediated by these connections.
Collapse
Affiliation(s)
- R L Masson
- Department of Neurological Surgery, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
37
|
Fung SJ, Manzoni D, Chan JY, Pompeiano O, Barnes CD. Locus coeruleus control of spinal motor output. PROGRESS IN BRAIN RESEARCH 1991; 88:395-409. [PMID: 1667549 DOI: 10.1016/s0079-6123(08)63825-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using electrophysiological techniques, we investigated the functional properties of the coeruleospinal system for regulating the somatomotor outflow at lumbar cord levels. Many of the fast-conducting, antidromically activated coeruleospinal units were shown to exhibit the alpha 2-receptor response common to noradrenergic locus coeruleus (LC) neurons. Electrically activating the coeruleospinal system potentiated the lumbar monosynaptic reflex and depolarized hindlimb flexor and extensor motoneurons via an alpha 1-receptor mechanism. The latter synaptically induced membrane depolarization was mimicked by norepinephrine applied iontophoretically to motoneurons. That LC inhibited Renshaw cell activity and induced a positive dorsal root potential at the lumbar cord also reinforced LC's action on motor excitation. We conclude that LC augments the somatomotor output, at least in part, via an alpha 1-adrenoceptor-mediated excitation of ventral horn motoneurons. Such process is being strengthened by LC's suppression of the recurrent inhibition pathway as well as by its presynaptic facilitation of afferent impulse transmission at the spinal cord level.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman
| | | | | | | | | |
Collapse
|
38
|
Reddy VK, Fung SJ, Zhuo H, Barnes CD. Pontospinal transmitters and their distribution. PROGRESS IN BRAIN RESEARCH 1991; 88:103-21. [PMID: 1687616 DOI: 10.1016/s0079-6123(08)63802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dorsolateral pontine tegmentum of the cat is known to contain a large population of catecholaminergic neurons. Additionally, several studies have also shown the presence of other neurochemicals (acetylcholine, enkephalin, neuropeptide Y, serotonin, somatostatin and substance P). In this study, we have employed retrograde transport of horseradish peroxidase in combination with immunocytochemistry to determine the locations of pontospinal neurons which contain catecholamine, enkephalin, neuropeptide Y, and serotonin. Furthermore, we have combined the retrograde transport of Fast Blue and immunofluorescence histochemistry to determine whether enkephalin-containing neurons are catecholaminergic. All pontospinal neurons, irrespective of the neurochemical content, were observed in the ventral and lateral parts of the dorsolateral pontine tegmentum at coronal levels P1.8-P4.0. These neurons were located in the nuclei locus coeruleus alpha and subcoeruleus and the Kölliker-Fuse nucleus. A high concentration of these neurons was evident in the Kölliker-Fuse nucleus when compared to the nuclei locus coeruleus alpha and subcoeruleus. Quantitative data have revealed that enkephalin is contained in a large proportion of the pontospinal catecholaminergic neurons (75%). The observations suggest that catecholaminergic neurons may contain one or more putative peptide neurotransmitters.
Collapse
Affiliation(s)
- V K Reddy
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman
| | | | | | | |
Collapse
|
39
|
White SR, Fung SJ, Barnes CD. Norepinephrine effects on spinal motoneurons. PROGRESS IN BRAIN RESEARCH 1991; 88:343-50. [PMID: 1813925 DOI: 10.1016/s0079-6123(08)63821-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intracellular recordings from cat spinal motoneurons in situ demonstrated that microiontophoretic application of NE with low-intensity ejection currents produces a slowly developing, small-amplitude depolarization of the cells, in contrast to early reports of NE-induced hyperpolarization. This depolarization was associated with an increase in excitability of the cells and a decrease in membrane conductance. These observations are consistent with the hypothesis that NE reduces potassium conductance in spinal motoneurons as has been proposed for facial motoneurons (VanderMaelen and Aghajanian, 1980) and thalamic neurons (McCormick and Prince, 1988). The time course of the facilitatory effects of NE on cat motoneuron excitability recorded intracellularly agreed very closely with the time course of NE-induced facilitation of glutamate-evoked excitability in rat spinal motoneurons recorded extracellularly. The similarity of the observations in rats and cats suggests that NE functions generally to enhance mammalian motoneuron responsiveness to excitatory input.
Collapse
Affiliation(s)
- S R White
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman
| | | | | |
Collapse
|
40
|
Proudfit HK, Clark FM. The projections of locus coeruleus neurons to the spinal cord. PROGRESS IN BRAIN RESEARCH 1991; 88:123-41. [PMID: 1813919 DOI: 10.1016/s0079-6123(08)63803-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spinally projecting noradrenergic neurons located in the locus coeruleus/subcoeruleus (LC/SC) are a major source of the noradrenergic innervation of the spinal cord. However, the specific terminations of these neurons have not been clearly defined. The purpose of this chapter is to describe the results of experiments that used the anterograde tracer Phaseolus vulgaris leucoagglutinin in combination with dopamine-beta-hydroxylase immunocytochemistry to more precisely determine the spinal cord terminations of neurons located in the LC/SC. The results of these experiments indicate that the axons of LC neurons are located primarily in the ipsilateral ventral funiculus and terminate most heavily in the medial part of laminae VII and VIII, the motoneuron pool of lamina IX, and lamina X. LC neurons provide a moderately dense innervation of the ventral part of the dorsal horn, but only a very sparse innervation of the superficial dorsal horn. The SC projects ipsilaterally in the ventrolateral funiculus and terminates diffusely in the intermediate and ventral laminae of the spinal cord. Finally, the results of preliminary experiments indicate that different rat substrains may have LC neurons that exhibit qualitatively different termination patterns in the spinal cord. More specifically, LC neurons in some rat substrains innervate the dorsal horn, while those in other substrains primarily innervate the ventral horn and intermediate zone.
Collapse
Affiliation(s)
- H K Proudfit
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | | |
Collapse
|
41
|
Pompeiano O, Manzoni D, Barnes CD. Responses of locus coeruleus neurons to labyrinth and neck stimulation. PROGRESS IN BRAIN RESEARCH 1991; 88:411-34. [PMID: 1813928 DOI: 10.1016/s0079-6123(08)63826-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electrical activity of a large population of locus coeruleus (LC)-complex neurons, some of which were antidromically activated by stimulation of the spinal cord at T12-L1, was recorded in precollicular decerebrate cats during labyrinth and neck stimulation. Some of these neurons showed physiological characteristics attributed to norepinephrine (NE)-containing LC neurons, i.e., (i) a slow and regular resting discharge; (ii) a typical biphasic response to compression of the paws consisting of short impulse bursts followed by a silent period, which was attributed to recurrent and/or lateral inhibition of the corresponding neurons; and (iii) a suppression of the resting discharge during episodes of postural atonia, associated with rapid eye movements (REM), induced by systemic injection of an anticholinesterase, a finding which closely resembled that occurring in intact animals during desynchronized sleep. Among the neurons tested, 80 of 141 (i.e., 56.7%) responded to the labyrinth input elicited by sinusoidal tilt about the longitudinal axis of the whole animal at the standard parameters of 0.15 Hz, +/- 10 degrees, and 73 of 99 (i.e., 73.7%) responded to the neck input elicited by rotation of the body about the longitudinal axis at the same parameters, while maintaining the head stationary. A periodic modulation of firing rate of the units was observed during the sinusoidal stimuli. In particular, most of the LC-complex units were maximally excited during side-up tilt of the animal and side-down neck rotation, the response peak occurring with an average phase lead of about +17.9 degrees and +34.2 degrees with respect to the extreme animal and neck displacements, respectively. Similar results were also obtained from the antidromically identified coeruleospinal (CS) neurons. The degree of convergence and the modalities of interaction of vestibular and neck inputs on LC-complex neurons were also investigated. In addition to the results described above, the LC-complex neurons were also tested to changing parameters of stimulation. In particular, both static and dynamic components of single unit responses were elicited by increasing frequencies of animal tilt and neck rotation. Moreover, the relative stability of the phase angle of the responses evaluated with respect to the animal position in most of the units tested at increasing frequencies of tilt allowed the conclusion to attribute these responses to the properties of macular ultricular receptors. This conclusion is supported by the results of experiments showing that LC-complex neurons displayed steady changes in their discharge rate during static tilt of the animal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O Pompeiano
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
42
|
Tanabe M, Ono H, Fukuda H. Spinal alpha 1- and alpha 2-adrenoceptors mediate facilitation and inhibition of spinal motor transmission, respectively. JAPANESE JOURNAL OF PHARMACOLOGY 1990; 54:69-77. [PMID: 2177121 DOI: 10.1254/jjp.54.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of descending noradrenergic fibers in the spinal motor systems was investigated using spinal reflexes in acutely spinalized rats. In rats pretreated with the MAO inhibitor clorgyline-HCl (1 mg/kg, i.v.), L-3,4-dihydroxyphenylalanine (L-dopa) (5 mg/kg, i.v.), a precursor of dopamine and noradrenaline, markedly potentiated the mono- (MSR) and polysynaptic reflexes (PSR). Selective blockade of alpha 1-adrenoceptors by pretreatment with prazosin-HCl abolished these facilitatory effects on the MSR and the PSR and revealed the inhibitory effect of L-dopa on the PSR. The depression of PSR was antagonized by the alpha 2-antagonist piperoxan. Clonidine-HCl (0.05 mg/kg, i.v.), a so-called alpha 2-agonist, and tizanidine-HCl (0.1 mg/kg, i.v.) decreased the MSR and the PSR in rats pretreated with prazosin. These inhibitions were antagonized by piperoxan. These results suggest that alpha 1- and alpha 2-adrenoceptors mediate facilitation and attenuation of motor transmission in the rat spinal cord, respectively.
Collapse
Affiliation(s)
- M Tanabe
- Department of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
43
|
Fritschy JM, Grzanna R. Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 1990; 291:553-82. [PMID: 2329191 DOI: 10.1002/cne.902910406] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rat spinal cord receives noradrenergic (NA) projections from the locus coeruleus (LC) and the A5 and A7 groups. In contradiction to previous statements about the distribution of descending NA axons, we have recently proposed that in the rat LC neurons project primarily to the dorsal horn and intermediate zone, whereas A5 and A7 neurons project to somatic motoneurons and the intermediolateral cell column. The aim of the present study was to determine the funicular course and terminal distribution of descending NA axons from the LC and from the A5 and A7 groups. The organization of the coeruleospinal projection was analyzed by using the anterograde tracer Phaseolus vulgaris leucoagglutinin in combination with dopamine-beta-hydroxylase immunohistochemistry. The trajectory of A5 and A7 axons was studied in spinal cord sections of rats following ablation of the coeruleospinal projection with the neurotoxin DSP-4. To assess the relative contribution of the LC and the A5 and A7 groups to the NA innervation of the spinal cord, unilateral injections of the retrograde tracer True Blue were made at cervical, thoracic, and lumbar levels, and retrogradely labeled NA neurons were identified by dopamine-beta-hydroxylase immunofluorescence. The results of the anterograde tracing experiments confirm our previous findings that LC neurons project most heavily to the dorsal horn and intermediate zone. Analysis of horizontal sections revealed that LC axons descend the length of the spinal cord within layers I and II. In contrast to the intragriseal course of LC fibers, A5 and A7 axons travel in the ventral and dorsolateral funiculi and terminate in the ventral horn and the intermediolateral cell column. Retrograde transport studies indicate that the contribution of the A5 and A7 groups to the NA projection to the spinal cord is greater than that of the LC. We conclude that descending axons of the LC and A5 and A7 groups differ in their course and distribution within the spinal cord. The documentation of a definite topographic order in the bulbospinal NA projections suggests that the LC and the A5 and A7 groups have different functional capacities. The LC is in a position to influence the processing of sensory inputs, in particular nociceptive inputs, whereas A5 and A7 neurons are likely to influence motoneurons.
Collapse
Affiliation(s)
- J M Fritschy
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
44
|
Reddy VK, Fung SJ, Zhuo H, Barnes CD. Localization of enkephalinergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat. J Comp Neurol 1990; 291:195-202. [PMID: 1967617 DOI: 10.1002/cne.902910204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dorsolateral pontine tegmentum of the cat is known to contain enkephalinergic neurons, with most of the enkephalin co-contained in the catecholaminergic neurons; however, enkephalinergic cells projecting to the spinal cord have not been identified. This study employs retrograde transport of horseradish peroxidase in combination with methionine-enkephalin or tyrosine hydroxylase immunocytochemistry to 1) determine the locations of pontospinal enkephalinergic neurons and 2) compare these with the locations of pontospinal catecholaminergic neurons. Pontospinal enkephalinergic neurons were observed in the nuclei locus coeruleus and subcoeruleus and the Kölliker-Fuse nucleus. A high concentration of these neurons was evident in the Kölliker-Fuse nucleus when compared to the nuclei locus coeruleus and subcoeruleus (P less than .01). Both the enkephalinergic and catecholaminergic neurons projecting to the spinal cord were located in the same general areas of the dorsolateral pontine tegmentum and there was no significant difference in the mean diameters of these two neuronal types (P greater than .05). Quantitative data concerning the pontospinal enkephalinergic neurons correlated well with previous data on pontospinal catecholaminergic neurons (Reddy et al., Brain Res. 491:144-149, '89). A majority of the descending neurons from the dorsolateral pontine tegmentum contain enkephalin (72-80%) and catecholamine (80-87%). The observations suggest that enkephalin is contained in many of the pontospinal catecholaminergic neurons.
Collapse
Affiliation(s)
- V K Reddy
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman 99164-6520
| | | | | | | |
Collapse
|
45
|
Palmeri A, Wiesendanger M. Concomitant depression of locus coeruleus neurons and of flexor reflexes by an alpha 2-adrenergic agonist in rats: a possible mechanism for an alpha 2-mediated muscle relaxation. Neuroscience 1990; 34:177-87. [PMID: 1970136 DOI: 10.1016/0306-4522(90)90311-q] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alpha 2-agonist tizanidine, clinically used as an antispastic drug, also strongly reduces polysynaptic flexor reflexes. The hypothesis was tested that the noradrenergic coerulespinal system exerts a tonic facilitation on spinal reflexes and that the depressant effects of tizanidine may be explained by an alpha 2-mediated autoinhibition of the tonic activity of locus coeruleus neurons, resulting in a disfacilitation of the spinal reflexes. The following results support this working hypothesis: (1) systemic injections of tizanidine markedly decreased the spontaneous activity of locus coeruleus neurons, but not of non-locus coeruleus neurons. The alpha 2-antagonist yohimbine reversed this effect. (2) The time course of diminished locus coeruleus activity paralleled that of depressed flexor reflexes. (3) Flexor reflexes were also markedly depressed by the alpha 1-adrenergic antagonist prazosin, administered alone, which is in line with the proposition that the noradrenergic system exerts a tonic facilitation on spinal neurons by way of alpha 1-adrenergic receptor activation. (4) Flexor reflexes were facilitated by conditioning microstimulation of locus coeruleus neurons, and this effect was reversed by prazosin. (5) Flexor reflexes significantly diminished in size following placement of an irreversible lesion in the ipsilateral locus coeruleus. Although these results strongly support the above hypothesis regarding a descending modulatory function of the descending locus coeruleus system on spinal reflexes, possible additional mechanisms, perhaps also involving the ascending projection of the locus coeruleus to supraspinal motor structures, remain to be elucidated.
Collapse
Affiliation(s)
- A Palmeri
- Institut de Physiologie, Université de Fribourg, Switzerland
| | | |
Collapse
|
46
|
Pompeiano O, Manzoni D, Barnes CD, Stampacchia G, d'Ascanio P. Responses of locus coeruleus and subcoeruleus neurons to sinusoidal stimulation of labyrinth receptors. Neuroscience 1990; 35:227-48. [PMID: 2381509 DOI: 10.1016/0306-4522(90)90078-i] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In precollicular decerebrate cats the electrical activity of 141 individual neurons located in the locus coeruleus-complex, i.e. in the dorsal (n = 41) and ventral parts (n = 67) as well as in the locus subcoeruleus (n = 33), was recorded during sinusoidal tilt about the longitudinal axis of the whole animal, leading to stimulation of labyrinth receptors. Some of these neurons showed physiological characteristics attributed to the norepinephrine-containing locus coeruleus neurons, namely, (i) a slow and regular resting discharge, and (ii) a typical biphasic response to fore- and hindpaw compression consisting of short impulse bursts followed by a silent period, which has been attributed to recurrent and/or lateral inhibition of the norepinephrine-containing neurons. Furthermore, 16 out of the 141 neurons were activated antidromically by stimulation of the spinal cord at T12 and L1, thus being considered coeruleospinal or subcoeruleospinal neurons. A large number of tested neurons (80 out of 141, i.e. 56.7%) responded to animal rotation at the standard frequency of 0.15 Hz and at the peak amplitude of 10 degrees. However, the proportion of responsive neurons was higher in the locus subcoeruleus (72.7%) and the dorsal locus coeruleus (61.0%) than in the ventral locus coeruleus (46.3%). A periodic modulation of firing rate of the units was observed during the sinusoidal stimulus. In particular, 45 out of the 80 units (i.e. 56.2%) were excited during side-up and depressed during side-down tilt (beta-responses), whereas 20 of 80 units (i.e. 25.0%) showed the opposite behavior (alpha-responses). In both instances, the response peak occurred with an average phase lead of about + 18 degrees, with respect to the extreme side-up or side-down position of the animal; however, the response gain (imp./s per deg) was, on average, more than two-fold higher in the former than in the latter group. The remaining 15 units (i.e. 18.7%) showed a prominent phase shift of this response peak with respect to animal position. Similar results were obtained from the subpopulation of locus coeruleus-complex neurons which fired at a low rate (less than 5.0 imp./s), as well as for the antidromically identified coeruleospinal neurons. The response gain of locus coeruleus-complex neurons, including the coeruleospinal neurons, did not change when the peak amplitude of tilt was increased from 5 degrees to 20 degrees at the fixed frequency of 0.15 Hz. This indicates that the system was relatively linear with respect to the amplitude of displacement.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy
| | | | | | | | | |
Collapse
|
47
|
Herr DW, Mailman RB, Tilson HA. Blockade of only spinal alpha 1 adrenoceptors is insufficient to attenuate DDT-induced alterations in motor function. Toxicol Appl Pharmacol 1989; 101:11-26. [PMID: 2552613 DOI: 10.1016/0041-008x(89)90207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Male Fischer 344N rats were chronically implanted with an intrathecal cannula and gavaged with p,p'-DDT (1,1,1-trichloro-2,2-bis[p-chlorophenyl]ethane; 30 or 45 mg/kg) or corn oil. Seven hours later, subjects were intrathecally infused with vehicle, 15, 30, 60, or 120 micrograms of prazosin (an alpha 1-adrenergic antagonist). Spectral analysis of bodily movements was performed 7.5, 8, and 10 hr after DDT administration. In control rats, 15 micrograms of prazosin reduced the spectral profiles of spontaneous movements. A 30-micrograms dose produced motor impairments, without significantly changing the spectral profiles. Tremulous movements induced by DDT were unaffected by 15 or 30 micrograms, whereas 60 or 120 micrograms of intrathecal prazosin significantly reduced the spectral profiles of rats pretreated with 45 mg/kg of DDT. Other subjects were administered vehicle or DDT (45 mg/kg), intrathecally infused with 15 or 60 micrograms of prazosin (7 hr), and sacrificed (7.5 hr). Noncannulated rats were gavaged with 60 mg/kg of DDT, injected subcutaneously (sc) with 0.5 mg/kg of prazosin (5.5 hr), and sacrificed (8 hr). Cortical and spinal tissues were used in ex vivo binding assay utilizing [3H]prazosin. Fifteen or sixty micrograms of intrathecal prazosin occupied similar percentages of spinal [3H]prazosin binding sites, but produced a dose-related increase in cortical prazosin equivalents. Sixty micrograms of intrathecal or 0.5 mg/kg of sc prazosin resulted in similar concentrations of cortical prazosin equivalents. Together, these data indicate that while intrathecal prazosin will attenuate DDT-induced motor dysfunction, this effect requires blockade of alpha 1 adrenoceptors in regions other than solely the spinal cord.
Collapse
Affiliation(s)
- D W Herr
- Curriculum in Toxicology, University of North Carolina, Chapel Hill 27514
| | | | | |
Collapse
|
48
|
Reddy VK, Fung SJ, Zhuo H, Barnes CD. Spinally projecting noradrenergic neurons of the dorsolateral pontine tegmentum: a combined immunocytochemical and retrograde labeling study. Brain Res 1989; 491:144-9. [PMID: 2569906 DOI: 10.1016/0006-8993(89)90096-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two to three days following injection of horseradish peroxidase (HRP) into the spinal cords of 5 cats, the animals were sacrificed and perfused, and the brainstems removed and sectioned. The sections were then processed for HRP and, immunocytochemically, for tyrosine hydroxylase (TH). The dorsolateral pontine tegmentum was divided into the locus coeruleus, subcoeruleus and Kölliker-Fuse nucleus; the mean percentage of pontospinal neurons containing TH were found to be 85.5 +/- 2.5 (S.E.M.), 79.6 +/- 5.6 and 87.1 +/- 3.1, respectively. The cell diameters of locus coeruleus cells were also measured.
Collapse
Affiliation(s)
- V K Reddy
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology College of Veterinary Medicine, Washington State University, Pullman 99164-6520
| | | | | | | |
Collapse
|
49
|
Barnes CD, Fung SJ, Pompeiano O. Descending catecholaminergic modulation of spinal cord reflexes in cat and rat. Ann N Y Acad Sci 1989; 563:45-58. [PMID: 2672951 DOI: 10.1111/j.1749-6632.1989.tb42189.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C D Barnes
- Department of VCAPP, Washington State University, Pullman 99164
| | | | | |
Collapse
|
50
|
Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, d'Ascanio P. Convergence and interaction of neck and macular vestibular inputs on locus coeruleus and subcoeruleus neurons. Pflugers Arch 1989; 413:580-98. [PMID: 2657645 DOI: 10.1007/bf00581807] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extracellular recordings were obtained in precollicular decerebrate cats from 90 neurons located in the noradrenergic area of the dorsal pontine tegmentum, namely in the dorsal (LCd, n = 24) and the ventral part (LC alpha, n = 40) of the locus coeruleus (LC) as well as in the locus subcoeruleus (SC, n = 26). Among these units of the LC complex, 13 were coerulospinal (CS) neurons antidromically identified following stimulation of the spinal cord at T12-L1. Some of these neurons showed the main physiological characteristics of the norepinephrine (NE)-containing LC neurons, i.e., a slow and regular resting discharge and a typical biphasic response to fore- and hindpaw compression consisting of a short burst of excitation followed by a period of quiescence, due, in part at least, to recurrent and/or lateral inhibition. Unit firing rate was analyzed under separate stimulation of macular vestibular, neck, or combined receptors by using sinusoidal rotation about the longitudinal axis at 0.15 Hz, +/- 10 degrees peak amplitude. Among the 90 LC-complex neurons, 60 (66.7%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 67 (74.4%) responded to neck rotation. Convergence of macular and neck inputs was found in 52/90 (57.8%) LC-complex neurons; in these units, the gain and the sensitivity of the first harmonic of the response corresponded on the average to 0.34 +/- 0.45, SD, impulses.s-1.deg-1 and 3.55 +/- 2.82, SD, %/deg for the neck responses and to 0.23 +/- 0.29, SD, impulses.s-1.deg-1 and 3.13 +/- 3.04, SD, %/deg for the macular responses. In addition to these convergent units, 8/90 (8.9%) and 15/90 (16.7%) LC-complex units responded to selective stimulation either of macular or of neck receptors only. These units displayed a significantly lower response gain and sensitivity to animal tilt and neck rotation with respect to those obtained from convergent units. Most of the convergent LC-complex units were maximally excited by the direction of stimulus orientation, the first harmonic of responses showing an average phase lead of about +31.0 degrees with respect to neck position and +17.6 degrees with respect to animal position. Two populations of convergent neurons were observed. The first group of units (43/52, i.e., 82.7%) showed reciprocal ("out of phase") responses to the two inputs; moreover, most of these units were excited during side-down neck rotation, but inhibited during side-down animal tilt.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Manzoni
- Dipartimento di Fisiologia e Biochimica, Universita di Pisa, Italy
| | | | | | | | | |
Collapse
|