1
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Guselnikova VV, Razenkova VA, Sufieva DA, Korzhevskii DE. Microglia and putative macrophages of the subfornical organ: structural and functional features. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ is an important regulator of water-salt metabolism and energy balance of the body, involved in the control of the cardiovascular system and immune regulation. The organ comprises several cell populations, among which microglia and macrophages remain uncharacterized. This study aimed at structural, cytochemical, and functional characterization of microglia and macrophages of the subfornical organ in rats. Brain specimens were collected from mature male Wistar rats (n = 8). Microglia and macrophages were revealed by immunostaining with poly- and monoclonal antibodies against calcium-binding protein Iba1 and lysosomal protein CD68; the slides were examined by light and confocal laser microscopy. The study provides a comprehensive morphological characterization of microglial cells and macrophages of the subfornical organ. We demonstrate that the majority of Iba1-expressing cells in this area of the brain are microglial cells, not macrophages. Pre-activated state of the subfornical organ microglia may reflect structural and functional features of this organ and specific functions of local microglia. Subependymal microglial cells, the processes of which penetrate into the third ventricle of the brain, constitute a distinct subpopulation among the Iba1-expressing cells of the subfornical organ. Apart from microglial elements, the subfornical organ contains few tissue macrophages with characteristic strong expression of CD68 accompanied by undetectable or weak expression of Iba1.
Collapse
Affiliation(s)
- VV Guselnikova
- Institute of Experimental Medicine, St Petersburg, Russia
| | - VA Razenkova
- Institute of Experimental Medicine, St Petersburg, Russia
| | - DA Sufieva
- Institute of Experimental Medicine, St Petersburg, Russia
| | - DE Korzhevskii
- Institute of Experimental Medicine, St Petersburg, Russia
| |
Collapse
|
3
|
Abstract
Thirst is a highly potent drive that motivates organisms to seek out and consume balance-restoring stimuli. The detection of dehydration is well understood and involves signals of peripheral origin and the sampling of internal milieu by first order homeostatic neurons within the lamina terminalis-particularly glutamatergic neurons of the subfornical organ expressing CaMKIIa (SFOCaMKIIa). However, it remains unknown whether mesolimbic dopamine pathways that are critical for motivation and reinforcement integrate information from these "early" dehydration signals. We used in vivo fiber photometry in the ventral tegmental area and measured phasic dopamine responses to a water-predictive cue. Thirst, but not hunger, potentiated the phasic dopamine response to the water cue. In euvolemic rats, the dipsogenic hormone angiotensin II, but not the orexigenic hormone ghrelin, potentiated the dopamine response similarly to that observed in water-deprived rats. Chemogenetic manipulations of SFOCaMKIIa revealed bidirectional control of phasic dopamine signaling during cued water reward. Taking advantage of within-subject designs, we found predictive relationships between changes in cue-evoked dopamine response and changes in behavioral responses-supporting a role for dopamine in motivation induced by homeostatic need. Collectively, we reveal a putative mechanism for the invigoration of goal-directed behavior: internal milieu communicates to first order, need state-selective circuits to potentiate the mesolimbic dopamine system's response to cues predictive of restorative stimuli.
Collapse
|
4
|
Involvement of glutamatergic mechanisms in the median preoptic nucleus in the dipsogenic response induced by angiotensinergic activation of the subfornical organ in rats. Exp Brain Res 2019; 238:73-80. [PMID: 31784800 DOI: 10.1007/s00221-019-05681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Experiments were done to investigate the role of glutamatergic systems in the median preoptic nucleus (MnPO) in the water ingestion induced by administration of angiotensin II (ANG II) in the subfornical organ (SFO) in the awake rat. Microdialysis methods were utilized to quantify the extracellular content of glutamate (Glu) in the region of MnPO. Microinjection of ANG II (10-10 M) into the SFO significantly increased the release of Glu in the MnPO in the rats under the condition that water is available for drinking and the rats under the condition that water is not available for drinking. The amount of initial maximal increases in the Glu levels elicited by the ANG II injection was quite similar in drinking and non-drinking rats, whereas the duration of the response was much longer in non-drinking than in drinking rats. The amount of water ingestion in 20 min immediately after the ANG II injection was significantly enhanced by previous injections of N-methyl-D-aspartate (NMDA, 10 μM) into the MnPO, while the ANG II-induced water ingestion was attenuated by pretreatment with the NMDA antagonist dizocilpine (MK-801, 10 μM). The amount of water intake elicited by the ANG II injection into the SFO was enhanced by previous injections of either the non-NMDA agonist kainic acid (KA, 50 μM) or quisqualic acid (QA, 50 μM) into the MnPO. On the contrary, the ANG II-induced drinking response was diminished by pretreatment with the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) in the MnPO. Each injection of NMDA, KA, and QA into the MnPO produced drinking behavior. These results imply that the glutamatergic neural pathways to the MnPO may transmit the information for eliciting drinking in response to ANG II acting at the SFO. Our data further provide evidence that the ANG II-induced dipsogenic response may be mediated through both NMDA and non-NMDA glutamatergic receptor mechanisms in the MnPO.
Collapse
|
5
|
Electrophysiological properties of rat subfornical organ neurons expressing calbindin D28K. Neuroscience 2019; 404:459-469. [DOI: 10.1016/j.neuroscience.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/13/2023]
|
6
|
Peterson CS, Huang S, Lee SA, Ferguson AV, Fry WM. The transcriptome of the rat subfornical organ is altered in response to early postnatal overnutrition. IBRO Rep 2018; 5:17-23. [PMID: 30135952 PMCID: PMC6095096 DOI: 10.1016/j.ibror.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023] Open
Abstract
Early postnatal overnutrition in humans is associated with long-term negative outcomes including obesity, increased risk of type-II diabetes, and cardiovascular disease. Hypothalamic neurons from rodents exposed to early postnatal overnutrition show altered expression of satiety signals and receptors, and exhibit altered responses to many satiety signals, suggesting a hypothalamic link between early overnutrition and development of these sequelae. Importantly, several hypothalamic nuclei receive information regarding circulating hormones (such as insulin, leptin and ghrelin) from the subfornical organ (SFO), a forebrain sensory circumventricular organ which lacks a blood brain barrier. Previous transcriptomic studies indicate that challenges to energy balance and hydration status stimulate changes in gene expression within the SFO, including genes encoding ion channels and receptors. In order to determine if early postnatal overnutrition also causes changes in SFO gene expression which may be associated with homeostatic dysregulation, we performed whole transcriptome sequencing on SFO tissue from rats raised in small (4 pups), or control (large, 12 pups) litters. Illumina RNA sequencing was performed on SFO tissue from rats raised from small and large litters, and read sequences were aligned to the Rat Rnor_6.0 genome. Control data were further compared to previously published microarray data set for validation. We found statistically significant (p < 0.05) changes in expression of 12 transcripts, three of which have likely roles in neuronal excitability, neurite outgrowth and differentiation, and food intake (Manf, Slc24a4, Cracr2b). Additionally, gene ontology analysis identified a trend among significantly altered transcripts in roles for oxidative stress response. We conclude that the SFO transcriptome is subtly altered by early postnatal overnutrition, and recommend further investigation of the effect of early postnatal overnutrition on SFO physiology and morphology.
Collapse
Affiliation(s)
- Colleen S Peterson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shuo Huang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Samantha A Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
7
|
Mourão AA, de Mello ABS, Dos Santos Moreira MC, Rodrigues KL, Lopes PR, Xavier CH, Gomes RM, Freiria-Oliveira AH, Blanch GT, Colombari E, Pedrino GR. Median preoptic nucleus excitatory neurotransmitters in the maintenance of hypertensive state. Brain Res Bull 2018; 142:207-215. [PMID: 29944948 DOI: 10.1016/j.brainresbull.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
The crucial role of the median preoptic nucleus (MnPO) in the maintenance of hydroelectrolytic balance and autonomic regulation have been highlighted. Recently, the participation of the MnPO in the control of sympathetic nerve activity was demonstrated in essential hypertension model. However, peculiarities on the neurochemical changes underlying the differential role of MnPO during hypertension remain to be clarified. Therefore, this study aimed to investigate the main excitatory pathways that modulate MnPO neurons in hypertensive rats. Spontaneously hypertensive rats (SHR) and rats submitted previously to the Goldblatt protocol (two kidneys; one clip; 2K1C) were used. Rats of both groups (250 to 350 g, n = 6) were anesthetized with urethane (1.2 g/kg,i.v.) and instrumented to record mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA). Nanoinjection (100 nl) of saline (NaCl, 150 mM), losartan (AT1 receptor antagonist; 10 mM) and kynurenic acid (glutamate receptor antagonist; 50 mM) into the MnPO were performed. In 2K1C rats, glutamatergic blockade promoted decreases in MAP and RSNA (-19.1 ± 0.9 mmHg, -21.6 ± 2.8%, p < 0.05) when compared to saline (-0.4 ± 0.6 mmHg, 0.2 ± 0.7%, p < 0.05). Angiotensinergic inhibition also reduced these parameters (-11.5 ± 1.2 mmHg, -10.5 ± 1.0%, p < 0.05) in 2K1C. In SHR, Kynurenic acid nanoinjections produced hypotension and sympathoinhibition (-21.0 ± 2.5 mmHg, -24.7 ± 2.4%, p < 0.05), as well losartan nanoinjections (-9.7 ± 1.2 mmHg; p < 0.05) and RSNA (-12.0 ± 2.4%, p < 0.05). These findings support the conclusion that a tonic excitatory neurotransmission exerted by angiotensin II, and mostly by glutamate in the MnPO could participate in the modulation of blood pressure and RSNA independent on whether hypertension is primarily neurogenic or is secondary to stenosis in renal artery.
Collapse
Affiliation(s)
- Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Aryanne B Soares de Mello
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Marina C Dos Santos Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Karla L Rodrigues
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Carlos H Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Rodrigo M Gomes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - André H Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Graziela T Blanch
- School of Medicine, Pharmacy and Biomedicine, Pontifical Catholic University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
8
|
Takahashi M, Tanaka J. Noradrenaline receptor mechanisms modulate the angiotensin II-induced water intake in the subfornical organ in rats. Exp Brain Res 2016; 235:833-839. [DOI: 10.1007/s00221-016-4844-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
|
9
|
Takahashi M, Nomura M, Tanaka J. GABAergic modulation of serotonin release in the rat subfornical organ area. Neurosci Lett 2016; 630:114-119. [DOI: 10.1016/j.neulet.2016.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
|
10
|
Santollo J, Marshall A, Curtis KS, Speth RC, Clark SD, Daniels D. Divergent effects of ERα and ERβ on fluid intake by female rats are not dependent on concomitant changes in AT1R expression or body weight. Am J Physiol Regul Integr Comp Physiol 2016; 311:R14-23. [PMID: 27122368 DOI: 10.1152/ajpregu.00102.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
Abstract
Estradiol (E2) decreases both water and saline intakes by female rats. The ERα and ERβ subtypes are expressed in areas of the brain that control fluid intake; however, the role that these receptors play in E2's antidipsogenic and antinatriorexigenic effects have not been examined. Accordingly, we tested the hypothesis that activation of ERα and ERβ decreases water and saline intakes by female rats. We found a divergence in E2's inhibitory effect on intake: activation of ERα decreased water intake, whereas activation of ERβ decreased saline intake. E2 decreases expression of the angiotensin II type 1 receptor (AT1R), a receptor with known relevance to water and salt intakes, in multiple areas of the brain where ERα and ERβ are differentially expressed. Therefore, we tested for agonist-induced changes in AT1R mRNA expression by RT-PCR and protein expression by analyzing receptor binding to test the hypothesis that the divergent effects of these ER subtypes are mediated by region-specific changes in AT1R expression. Although we found no changes in AT1R mRNA or binding in areas of the brain known to control fluid intake associated with agonist treatment, the experimental results replicate and extend previous findings that body weight changes mediate alterations in AT1R expression in distinct brain regions. Together, the results reveal selective effects of ER subtypes on ingestive behaviors, advancing our understanding of E2's inhibitory role in the controls of fluid intake by female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Anikó Marshall
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University, Tulsa, Oklahoma
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida; Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC; and
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York;
| |
Collapse
|
11
|
Cancelliere NM, Black EAE, Ferguson AV. Neurohumoral Integration of Cardiovascular Function by the Lamina Terminalis. Curr Hypertens Rep 2016; 17:93. [PMID: 26531751 DOI: 10.1007/s11906-015-0602-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms involved in cardiovascular regulation, such as vascular tone, fluid volume and blood osmolarity, are quite often mediated by signals circulating in the periphery, such as angiotensin II and sodium concentration. Research has identified areas within the lamina terminalis (LT), specifically the sensory circumventricular organs (CVOs), the subfornical organ and the organum vasculosum of the lamina terminalis, as playing crucial roles detecting and integrating information derived from these circulating signals. The median preoptic nucleus (MnPO) is a third integrative structure within the LT that influences cardiovascular homeostasis, although to date, its role is not as clearly elucidated. More recent studies have demonstrated that the CVOs are not only essential in the detection of traditional cardiovascular signals but also signals primarily considered to be important in the regulation of metabolic, reproductive and inflammatory processes that have now also been implicated in cardiovascular regulation. In this review, we highlight the critical roles played by the LT in the detection and integration of circulating signals that provide critical feedback control information contributing to cardiovascular regulation.
Collapse
Affiliation(s)
- Nicole M Cancelliere
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Emily A E Black
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
12
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
13
|
Coble JP, Cassell MD, Davis DR, Grobe JL, Sigmund CD. Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am J Physiol Regul Integr Comp Physiol 2014; 307:R376-86. [PMID: 24965793 DOI: 10.1152/ajpregu.00216.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pressure, and resting metabolic rate. Renin and angiotensinogen are coexpressed within the same cells of the subfornical organ, and the production and action of ANG II through the ANG II type 1 receptor in the subfornical organ (SFO) are necessary for fluid intake due to increased activity of the brain renin-angiotensin system. We generated an inducible model of ANG II production by breeding transgenic mice expressing human renin in neurons controlled by the synapsin promoter with transgenic mice containing a Cre-recombinase-inducible human angiotensinogen construct. Adenoviral delivery of Cre-recombinase causes SFO-selective induction of human angiotensinogen expression. Selective production of ANG II in the SFO results in increased water intake but did not change blood pressure or resting metabolic rate. The increase in water intake was ANG II type 1 receptor-dependent. When given a choice between water and 0.15 M NaCl, these mice increased total fluid and sodium, but not water, because of an increased preference for NaCl. When provided a choice between water and 0.3 M NaCl, the mice exhibited increased fluid, water, and sodium intake, but no change in preference for NaCl. The increase in fluid intake was blocked by an inhibitor of PKC, but not ERK, and was correlated with increased phosphorylated cyclic AMP response element binding protein in the subfornical organ. Thus, increased production and action of ANG II specifically in the subfornical organ are sufficient on their own to mediate an increase in drinking through PKC.
Collapse
Affiliation(s)
- Jeffrey P Coble
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Martin D Cassell
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
14
|
Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JMG, Sullivan MN, Earley S, Danser AHJ, Ichihara A, Feng Y. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 2013; 63:316-23. [PMID: 24246383 DOI: 10.1161/hypertensionaha.113.02041] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin-angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt-induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription-polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt-induced hypertension, possibly through diminished angiotensin II formation.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Biomedical Science, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity. J Neurosci 2013; 33:4825-33. [PMID: 23486953 DOI: 10.1523/jneurosci.3806-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Obesity is associated with increased levels of angiotensin-II (Ang-II), which activates angiotensin type 1a receptors (AT1a) to influence cardiovascular function and energy homeostasis. To test the hypothesis that specific AT1a within the brain control these processes, we used the Cre/lox system to delete AT1a from the paraventricular nucleus of the hypothalamus (PVN) of mice. PVN AT1a deletion did not affect body mass or adiposity when mice were maintained on standard chow. However, maintenance on a high-fat diet revealed a gene by environment interaction whereby mice lacking AT1a in the PVN had increased food intake and decreased energy expenditure that augmented body mass and adiposity relative to controls. Despite this increased adiposity, PVN AT1a deletion reduced systolic blood pressure, suggesting that this receptor population mediates the positive correlation between adiposity and blood pressure. Gene expression studies revealed that PVN AT1a deletion decreased hypothalamic expression of corticotrophin-releasing hormone and oxytocin, neuropeptides known to control food intake and sympathetic nervous system activity. Whole-cell patch-clamp recordings confirmed that PVN AT1a deletion eliminates responsiveness of PVN parvocellular neurons to Ang-II, and suggest that Ang-II responsiveness is increased in obese wild-type mice. Central inflammation is associated with metabolic and cardiovascular disorders and PVN AT1a deletion reduced indices of hypothalamic inflammation. Collectively, these studies demonstrate that PVN AT1a regulate energy balance during environmental challenges that promote metabolic and cardiovascular pathologies. The implication is that the elevated Ang-II that accompanies obesity serves as a negative feedback signal that activates PVN neurons to alleviate weight gain.
Collapse
|
16
|
Xiao L, Haack KKV, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 2013; 304:C1073-9. [PMID: 23535237 DOI: 10.1152/ajpcell.00364.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain ANG II plays an important role in modulating sympathetic function and homeostasis. The generation and degradation of ANG II are carried out, to a large extent, through the angiotensin-converting enzyme (ACE) and ACE2, respectively. In disease states, such as hypertension and chronic heart failure, central expression of ACE is upregulated and ACE2 is decreased in central sympathoregulatory neurons. In this study, we determined the expression of ACE and ACE2 in response to ANG II in a neuronal cell culture and the subsequent signaling mechanism(s) involved. A mouse catecholaminergic neuronal cell line (CATH.a) was treated with ANG II (30, 100, and 300 nM) for 24 h, and protein expression was determined by Western blot analysis. ANG II induced a significant dose-dependent increase in ACE and decrease in ACE2 mRNA and protein expression in CATH.a neurons. This effect was abolished by pretreatment of the cells with the p38 MAPK inhibitor SB-203580 (10 μM) 30 min before administration of ANG II or the ERK1/2 inhibitor U-0126 (10 μM). These data suggest that ANG II increases ACE and attenuates ACE2 expression in neurons via the ANG II type 1 receptor, p38 MAPK, and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
17
|
Mecawi AS, Vilhena-Franco T, Fonseca FV, Reis LC, Elias LLK, Antunes-Rodrigues J. The role of angiotensin II on sodium appetite after a low-sodium diet. J Neuroendocrinol 2013; 25:281-91. [PMID: 23002791 DOI: 10.1111/j.1365-2826.2012.02388.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/23/2012] [Accepted: 09/16/2012] [Indexed: 12/01/2022]
Abstract
The present study aimed to investigate the role of angiotensin II (Ang II) on sodium appetite in rats subjected to a normal or a low-sodium diet (1% or > 0.1% NaCl) for 4 days. During sodium restriction, a reduction in water intake, urinary volume and sodium excretion was observed. After a low-sodium diet, we observed decreased plasma protein concentrations and haematocrit associated with a slight reduction in arterial pressure, without any significant changes in heart rate, natraemia, corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus and corticosterone levels. After providing hypertonic saline, there was an increase in saline intake followed by a small increase in water intake, resulting in an enhanced saline intake ratio and the recovery of arterial pressure. Sodium deprivation increased plasma but not brain Ang I and II concentrations. A low-sodium diet increased kidney renin and liver angiotensinogen mRNA levels but not lung angiotensin-converting enzyme mRNA expression. Moreover, Ang II type 1a receptor mRNA expression was increased in the subfornical organ and the dorsal raphe nucleus and decreased in the medial preoptic nuclei, without changes in the paraventricular nucleus and the nucleus of solitary tract after a low-sodium diet. Blockade of AT(1) receptors or brain Ang II synthesis led to a reduction in sodium intake after a low-sodium diet. Intracerebroventricular injection of Ang II led to a similar increase in sodium and water intake in the control and low-sodium diet groups. In conclusion, the results of the present study suggest that Ang II is involved in the increased sodium appetite after a low-sodium diet.
Collapse
Affiliation(s)
- A S Mecawi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
19
|
Sigmund CD. Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2011; 302:R313-20. [PMID: 22049229 DOI: 10.1152/ajpregu.00575.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is two-fold. First, I will highlight recent advances in our understanding of the mechanisms regulating angiotensin II (ANG II) synthesis in the brain, focusing on evidence that renin is expressed in the brain and is expressed in two forms: a secreted form, which may catalyze extracellular ANG I generation from glial or neuronal angiotensinogen (AGT), and an intracellular form, which may generate intracellular ANG in neurons that may act as a neurotransmitter. Second, I will discuss recent studies that advance the concept that the renin-angiotensin system (RAS) in the brain not only is a potent regulator of blood pressure and fluid intake but may also regulate metabolism. The efferent pathways regulating the blood pressure/dipsogenic effects and the metabolic effects of elevated central RAS activity appear different, with the former being dependent upon the hypothalamic-pituitary-adrenal axis, and the latter being dependent upon an interaction between the brain and the systemic (or adipose) RAS.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
20
|
Smith PM, Ferguson AV. Circulating signals as critical regulators of autonomic state--central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2010; 299:R405-15. [PMID: 20463185 DOI: 10.1152/ajpregu.00103.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To maintain homeostasis autonomic control centers in the hypothalamus and medulla must respond appropriately to both external and internal stimuli. Although protected behind the blood-brain barrier, neurons in these autonomic control centers are known to be influenced by changing levels of important signaling molecules in the systemic circulation (e.g., osmolarity, glucose concentrations, and regulatory peptides). The subfornical organ belongs to a group of specialized central nervous system structures, the circumventricular organs, which are characterized by the lack of the normal blood-brain barrier, such that circulating lipophobic substances may act on neurons within this region and via well-documented efferent neural projections to hypothalamic autonomic control centers, influence autonomic function. This review focuses on the role of the subfornical organ in sensing peripheral signals and transmitting this information to autonomic control centers in the hypothalamus.
Collapse
Affiliation(s)
- Pauline M Smith
- Dept. of Physiology, Queen's Univ., Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
21
|
Henry M, Grob M, Mouginot D. Endogenous angiotensin II facilitates GABAergic neurotransmission afferent to the Na+-responsive neurons of the rat median preoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2009; 297:R783-92. [DOI: 10.1152/ajpregu.00226.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The median preoptic nucleus (MnPO) is densely innervated by efferent projections from the subfornical organ (SFO) and, therefore, is an important relay for the peripheral chemosensory and humoral information (osmolality and serum levels ANG II). In this context, controlling the excitability of MnPO neuronal populations is a major determinant of body fluid homeostasis and cardiovascular regulation. Using a brain slice preparation and patch-clamp recordings, our study sought to determine whether endogenous ANG II modulates the strength of the SFO-derived GABAergic inputs to the MnPO. Our results showed that the amplitude of the inhibitory postsynaptic currents (IPSCs) were progressively reduced by 44 ± 2.3% by (Sar1, Ile8)-ANG II, a competitive ANG type 1 receptor (AT1R) antagonist. Similarly, losartan, a nonpeptidergic AT1R antagonist decreased the IPSC amplitude by 40.4 ± 5.6%. The facilitating effect of endogenous ANG II on the GABAergic input to the MnPO was not attributed to a change in GABA release probability and was mimicked by exogenous ANG II, which potentiated the amplitude of the muscimol-activated GABAA/Cl− current by 53.1 ± 11.4%. These results demonstrate a postsynaptic locus of action of ANG II. Further analysis reveals that ANG II did not affect the reversal potential of the synaptic inhibitory response, thus privileging a cross talk between postsynaptic AT1 and GABAA receptors. Interestingly, facilitation of GABAergic neurotransmission by endogenous ANG II was specific to neurons responding to changes in the ambient Na+ level. This finding, combined with the ANG II-mediated depolarization of non-Na+-responsive neurons reveals the dual actions of ANG II to modulate the excitability of MnPO neurons.
Collapse
|
22
|
Hindmarch C, Fry M, Yao ST, Smith PM, Murphy D, Ferguson AV. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1914-20. [DOI: 10.1152/ajpregu.90560.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have employed microarray technology using Affymetrix 230 2.0 genome chips to initially catalog the transcriptome of the subfornical organ (SFO) under control conditions and to also evaluate the changes (common and differential) in gene expression induced by the challenges of fluid and food deprivation. We have identified a total of 17,293 genes tagged as present in one of our three experimental conditions, transcripts, which were then used as the basis for further filtering and statistical analysis. In total, the expression of 46 genes was changed in the SFO following dehydration compared with control animals (22 upregulated and 24 downregulated), with the largest change being the greater than fivefold increase in brain-derived neurotrophic factor (BDNF) expression, while significant changes in the expression of the calcium-sensing (upregulated) and apelin (downregulated) receptors were also reported. In contrast, food deprivation caused greater than twofold changes in a total of 687 transcripts (222 upregulated and 465 downregulated), including significant reductions in vasopressin, oxytocin, promelanin concentrating hormone, cocaine amphetamine-related transcript (CART), and the endothelin type B receptor, as well as increases in the expression of the GABAB receptor. Of these regulated transcripts, we identified 37 that are commonly regulated by fasting and dehydration, nine that were uniquely regulated by dehydration, and 650 that are uniquely regulated by fasting. We also found five transcripts that were differentially regulated by fasting and dehydration including BDNF and CART. In these studies we have for the first time described the transcriptome of the rat SFO and have in addition identified genes, the expression of which is significantly modified by either water or food deprivation.
Collapse
|
23
|
Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda) 2008; 23:187-93. [PMID: 18697992 DOI: 10.1152/physiol.00002.2008] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The renin-angiotensin system in the brain acts to regulate a number of physiological processes. Evidence suggests that angiotensin peptides may act as neurotransmitters, although their biosynthetic pathways are poorly understood. We review evidence for neuronal production of angiotensin peptides and hypothesize that angiotensin may be synthesized intracellularly in neurons.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
24
|
Abstract
Central injection of hypocretins/orexins in rats induces water intake. As the subfornical organ (SFO) plays an important role in drinking behavior, hypocretins may excite SFO neurons. In this study, effects of hypocretins on SFO neurons were investigated electrophysiologically in slice preparations. In extracellular recordings, hypocretin-1 excited SFO neurons, but hypocretin-2 did not or it was little. After the block of synaptic inputs, the excitatory responses to hypocretin-1 remained, but some disappeared. In whole-cell patch-clamp recordings, hypocretin-1 reduced the frequencies of miniature inhibitory presynaptic currents with inward currents occasionally in SFO neurons, but hypocretin-2 did not. These results suggest that hypocretin-1 excites SFO neurons via the activation of hcrtR1 on premembranes and postmembranes.
Collapse
|
25
|
Duan PG, Kawano H, Masuko S. Collateral projections from the subfornical organ to the median preoptic nucleus and paraventricular hypothalamic nucleus in the rat. Brain Res 2008; 1198:68-72. [DOI: 10.1016/j.brainres.2008.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/21/2007] [Accepted: 01/05/2008] [Indexed: 11/29/2022]
|
26
|
Khan AM, Ponzio TA, Sanchez-Watts G, Stanley BG, Hatton GI, Watts AG. Catecholaminergic control of mitogen-activated protein kinase signaling in paraventricular neuroendocrine neurons in vivo and in vitro: a proposed role during glycemic challenges. J Neurosci 2007; 27:7344-60. [PMID: 17611287 PMCID: PMC6794600 DOI: 10.1523/jneurosci.0873-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022] Open
Abstract
Paraventricular hypothalamic (PVH) corticotropin-releasing hormone (CRH) neuroendocrine neurons mount neurosecretory and transcriptional responses to glycemic challenges [intravenous 2-deoxyglucose (2-DG) or insulin]. Although these responses require signals from intact afferents originating from hindbrain CA (catecholaminergic) neurons, the identity of these signals and the mechanisms by which they are transduced by PVH neurons during glycemic challenge remain unclear. Here, we tested whether the prototypical catecholamine, norepinephrine (NE), can reproduce PVH neuroendocrine responses to glycemic challenge. Because these responses include phosphorylation of p44/42 mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinases 1/2 (ERK1/2)], we also determined whether NE activates ERK1/2 in PVH neurons and, if so, by what mechanism. We show that systemic insulin and 2-DG, and PVH-targeted NE microinjections, rapidly elevated PVH phospho-ERK1/2 levels. NE increased Crh and c-fos expression, together with circulating ACTH/corticosterone. However, because injections also increased c-Fos mRNA in other brain regions, we used hypothalamic slices maintained in vitro to clarify whether NE activates PVH neurons without contribution of inputs from distal regions. In slices, bath-applied NE triggered robust phospho-ERK1/2 immunoreactivity in PVH (including CRH) neurons, which attenuated markedly in the presence of the alpha1 adrenoceptor antagonist, prazosin, or the MAP kinase kinase (MEK) inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene). Therefore, at a systems level, local PVH delivery of NE is sufficient to account for hindbrain activation of CRH neuroendocrine neurons during glycemic challenge. At a cellular level, these data provide the first demonstration that MAP kinase signaling cascades (MEK-->ERK) are intracellular transducers of noradrenergic signals in CRH neurons, and implicate this transduction mechanism as an important component of central neuroendocrine responses during glycemic challenge.
Collapse
Affiliation(s)
- Arshad M Khan
- Neuroscience Research Institute and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Fry M, Ferguson AV. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 2007; 91:413-23. [PMID: 17531276 DOI: 10.1016/j.physbeh.2007.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensory circumventricular organs (CVOs) are specialized areas of the brain that lack a normal blood-brain barrier, and therefore are in constant contact with signaling molecules circulating in the bloodstream. Neurons of the CVOs are well endowed with a wide spectrum of receptors for hormones and other signaling molecules, and they have strong connections to hypothalamic and brainstem nuclei. Therefore, lying at the blood-brain interface, the sensory CVOs are in a unique position of being able to detect and integrate humoral and neural information and relay the resulting signals to autonomic control centers of the hypothalamus and medulla. This review focuses primarily on the roles played by the sensory CVOs in fluid balance and energy metabolism.
Collapse
Affiliation(s)
- Mark Fry
- Department of Physiology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
28
|
Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. DIALOGUES IN CLINICAL NEUROSCIENCE 2007. [PMID: 17290797 PMCID: PMC3181830 DOI: 10.31887/dcns.2006.8.4/ssmith] [Citation(s) in RCA: 1001] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Animals respond to stress by activating a wide array of behavioral and physiological responses that are collectively referred to as the stress response. Corticotropin-releasing factor (CRF) plays a central role in the stress response by regulating the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, CRF initiates a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. As a result of the great number of physiological and behavioral effects exerted by glucocorticoids, several mechanisms have evolved to control HPA axis activation and integrate the stress response. Glucocorticoid feedback inhibition plays a prominent role in regulating the magnitude and duration of glucocorticoid release. In addition to glucocorticoid feedback, the HPA axis is regulated at the level of the hypothalamus by a diverse group of afferent projections from limbic, mid-brain, and brain stem nuclei. The stress response is also mediated in part by brain stem noradrenergic neurons, sympathetic andrenornedullary circuits, and parasympathetic systems. In summary, the aim of this review is to discuss the role of the HPA axis in the integration of adaptive responses to stress. We also identify and briefly describe the major neuronal and endocrine systems that contribute to the regulation of the HPA axis and the maintenance of homeostasis in the face of aversive stimuli.
Collapse
Affiliation(s)
- Sean M Smith
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
29
|
Bealer SL, Metcalf CS, Heyborne R. Increased dietary sodium alters Fos expression in the lamina terminalis during intravenous angiotensin II infusion. Exp Neurol 2007; 204:299-306. [PMID: 17214984 PMCID: PMC1853275 DOI: 10.1016/j.expneurol.2006.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 11/24/2022]
Abstract
These studies examined the effects of increased dietary sodium on expression of Fos, the protein product of c-fos, in forebrain structures in the rat following intravenous infusion with angiotensin II (AngII). Animals were provided with either tap water (Tap) or isotonic saline solution (Iso) as their sole drinking fluid for 3-5 weeks prior to testing. Rats were then implanted with catheters in a femoral artery and vein. The following day, the conscious, unrestrained animals received iv infusion of either isotonic saline (Veh), AngII, or phenylephrine (Phen) for 2 h. Blood pressure and heart rate were monitored continuously throughout the procedure. Brains were subsequently processed for evaluation of Fos-like immunoreactivity (Fos-Li IR) in the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO), and the median preoptic nucleus (MnPO). Fos-Li IR was significantly increased in the SFO and OVLT of animals consuming both Tap and Iso following AngII, but not Phen, compared to Veh infusions. Furthermore, Fos-Li IR in the MnPO was increased following AngII infusion in rats consuming a high sodium diet, but not in animals drinking Tap. These data suggest that increased dietary sodium sensitizes the MnPO neurons to excitatory input from brain areas responding to circulating AngII.
Collapse
Affiliation(s)
- Steven L Bealer
- Department of Pharmacology and Toxicology, College of Pharmacy, 20 South 3000 East, Rm 201, University of Utah, Salt Lake City, UT 84121, USA.
| | | | | |
Collapse
|
30
|
Thomas MA, Lemmer B. The use of heat-induced hydrolysis in immunohistochemistry on angiotensin II (AT1) receptors enhances the immunoreactivity in paraformaldehyde-fixed brain tissue of normotensive Sprague–Dawley rats. Brain Res 2006; 1119:150-64. [PMID: 17010318 DOI: 10.1016/j.brainres.2006.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
The research on components of the renin-angiotensin system delivered a broad image of angiotensin II-binding sites. Especially, immunohistochemistry (IHC) provided an exact anatomical localization of the AT(1) receptor in the rat brain. Yet, controversial results between in vitro receptor autoradiography and IHC as well as between immunohistochemical studies using various antisera started a vehement discussion concerning specificity and cross-reactivity of these antisera. In particular the magnocellular subdivision of the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) provided controversial results on the localization of AT(1) receptors. Both areas are known for angiotensin II-induced release of vasopressin (VP) and oxytocin (OXT). To evaluate the significance of the appropriate method of antigen retrieval and its relevance for the detection of AT(1) receptors we performed IHC on AT(1) receptors in paraformaldehyde-fixed and paraffin-embedded brain tissue of Sprague-Dawley rats using either the detergent Triton X-100 or microwave oven heating. This study demonstrates that heat-induced hydrolysis enhances the quality and quantity of immunoreactivity (IR) in IHC on AT(1) receptors. In the organum vasculosum lamina terminalis and in the parvocellular subdivisions of the PVN we report a distribution of AT(1)-like-IR similar to that observed with other methods. However, in addition, we provide evidence that distinct AT(1)-like-IR is also localized in few magnocellular neurons of the PVN and in few parvocellular neurons of the dorsal SON but not in magnocellular neurons of the SON. Moreover, parallel IHC indicates that few magnocellular OXT- or VP-releasing neurons of the PVN as well as parvocellular OXT-releasing neurons of the SON do also contain AT(1) receptors.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, 68169 Mannheim, Germany.
| | | |
Collapse
|
31
|
Shekhar A, Johnson PL, Sajdyk TJ, Fitz SD, Keim SR, Kelley PE, Gehlert DR, DiMicco JA. Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus. J Neurosci 2006; 26:9205-15. [PMID: 16957077 PMCID: PMC6674511 DOI: 10.1523/jneurosci.2491-06.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/15/2006] [Accepted: 07/17/2006] [Indexed: 11/21/2022] Open
Abstract
Intravenous sodium lactate infusions or the noradrenergic agent yohimbine reliably induce panic attacks in humans with panic disorder but not in healthy controls. However, the exact mechanism of lactate eliciting a panic attack is still unknown. In rats with chronic disruption of GABA-mediated inhibition in the dorsomedial hypothalamus (DMH), achieved by chronic microinfusion of the glutamic acid decarboxylase inhibitor L-allylglycine, sodium lactate infusions or yohimbine elicits panic-like responses (i.e., anxiety, tachycardia, hypertension, and tachypnea). In the present study, previous injections of the angiotensin-II (A-II) type 1 receptor antagonist losartan and the nonspecific A-II receptor antagonist saralasin into the DMH of "panic-prone" rats blocked the anxiety-like and physiological components of lactate-induced panic-like responses. In addition, direct injections of A-II into the DMH of these panic-prone rats also elicited panic-like responses that were blocked by pretreatment with saralasin. Microinjections of saralasin into the DMH did not block the panic-like responses elicited by intravenous infusions of the noradrenergic agent yohimbine or by direct injections of NMDA into the DMH. The presence of the A-II type 1 receptors in the region of the DMH was demonstrated using immunohistochemistry. Thus, these results implicate A-II pathways and the A-II receptors in the hypothalamus as putative substrates for sodium lactate-induced panic-like responses in vulnerable subjects.
Collapse
Affiliation(s)
- Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
DONG HONGWEI, SWANSON LARRYW. Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 2006; 494:75-107. [PMID: 16304681 PMCID: PMC2707828 DOI: 10.1002/cne.20790] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The overall projection pattern of a tiny bed nuclei of the stria terminalis anteromedial group differentiation, the dorsomedial nucleus (BSTdm), was analyzed with the Phaseolus vulgaris-leucoagglutinin anterograde pathway tracing method in rats. Many brain regions receive a relatively moderate to strong input from the BSTdm. They fall into eight general categories: humeral sensory-related (subfornical organ and median preoptic nucleus, involved in initiating drinking behavior and salt appetite), neuroendocrine system (magnocellular: oxytocin, vasopressin; parvicellular: gonadotropin-releasing hormone, somatostatin, thyrotropin-releasing hormone, corticotropin-releasing hormone), central autonomic control network (central amygdalar nucleus, BST anterolateral group, descending paraventricular hypothalamic nucleus, retrochiasmatic area, ventrolateral periaqueductal gray, Barrington's nucleus), hypothalamic visceromotor pattern-generator network (five of six known components), behavior control column (ingestive: descending paraventricular nucleus; reproductive: lateral medial preoptic nucleus; defensive: anterior hypothalamic nucleus; foraging: ventral tegmental area, along with interconnected nucleus accumbens and substantia innominata), orofacial motor control (retrorubral area), thalamocortical feedback loops (paraventricular, central medial, intermediodorsal, and medial mediodorsal nuclei; nucleus reuniens), and behavioral state control (subparaventricular zone, ventrolateral preoptic nucleus, tuberomammillary nucleus, supramammillary nucleus, lateral habenula, and raphé nuclei). This pattern of axonal projections, and what little is known of its inputs suggest that the BSTdm is part of a striatopallidal differentiation involved in coordinating the homeostatic and behavioral responses associated thirst and salt appetite, although clearly it may relate them to other functions as well. The BSTdm generates the densest known inputs directly to the neuroendocrine system from any part of the cerebral hemispheres.
Collapse
Affiliation(s)
| | - LARRY W. SWANSON
- Correspondence to: Dr. L.W. Swanson, Hedco Neuroscience Building, 3641 Watt Way, University of Southern California, Los Angeles, California 90089-2520. Voice: (213) 740-5892 / Fax: (213) 741-0561.
| |
Collapse
|
33
|
Pediconi D, Martarelli D, Fontanazza A, Pompei P. Effects of losartan and irbesartan administration on brain angiotensinogen mRNA levels. Eur J Pharmacol 2006; 528:79-87. [PMID: 16321381 DOI: 10.1016/j.ejphar.2005.10.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 10/25/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
Losartan, 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'(1H-tetrazol-5-yl)-biphenil-4-yl)methyl]imidazole, and Irbesartan, 2-n-butyl-3-[(2'-(1H-tetrazol-5-yl)-biphenyl-4-yl)methyl]-1,3-diaza-spiro[4,4]non-1-en-4-one, are two angiotensin AT1 receptor antagonists largely used in human health care as antihypertensive agents. Their ability to cross the blood-brain barrier and to influence the central renin-angiotensin system are widely investigated, but how this brain system responds to the subchronic and chronic block of the angiotensin AT1 receptor is still unknown. Normotensive rats were intragastrically implanted for 7- and 30-day administration, with a dose of 3 and 30 mg/kg body weight. Treatments were shown to influence, in a dose-, time- and brain-area-dependent manner, angiotensinogen mRNA levels in scanned areas. This study showed a general up-regulation of angiotensinogen mRNA expression after 7 days and a widespread down-regulation or basal level of expression after a 30-day administration of two angiotensin AT1 receptor antagonists.
Collapse
Affiliation(s)
- Dario Pediconi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino (MC), Italy
| | | | | | | |
Collapse
|
34
|
Daniels D, Yee DK, Faulconbridge LF, Fluharty SJ. Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology 2005; 146:5552-60. [PMID: 16123155 DOI: 10.1210/en.2005-0774] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central injections of angiotensin II (AngII) increase both water and NaCl intake. These effects of AngII occur largely through stimulation of the AngII type 1 (AT(1)) receptor. Stimulation of the AT(1) receptor leads to a number of intracellular events, including phospholipase C (PLC) activation and the subsequent formation of diacylglycerol and inositol trisphosphate (IP(3)), which then activate protein kinase C (PKC) and increase intracellular calcium, respectively. In addition, AT(1) receptor stimulation leads to the activation of MAPK family members. Recent experiments using mutated AT(1) receptor constructs or the AngII analog Sar(1),Ile(4),Ile(8)-AngII (SII) revealed that MAPK activation can occur independent of PLC/PKC/IP(3) activation. The present experiments used in vitro and in vivo approaches to clarify the cellular and behavioral responses to SII. Specifically, SII mimicked AngII stimulation of MAPK in AT(1) receptor-transfected COS-1 cells and rat brain but blocked the effects of AngII in two distinct settings: in vitro stimulation of IP(3) and in vivo increases in water intake. Moreover, SII increased intake of 1.5% NaCl, despite the SII blockade of IP(3) formation and water intake. Examination of brain tissue showed increases in Fos expression in several AngII-sensitive brain areas after injection of AngII, but not SII. The lack of SII-induced IP(3) production, water intake, and Fos expression strongly suggest that the PLC/PKC/IP(3) pathway is required for water intake, but not NaCl consumption stimulated by AngII. Collectively, these results support the hypothesis that divergent intracellular signals from a single receptor type can give rise to separable behavioral phenomena.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/analogs & derivatives
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin Receptor Antagonists
- Animals
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- COS Cells
- Chlorocebus aethiops
- Drinking/drug effects
- Injections, Intraventricular
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Membranes/metabolism
- Male
- Mitogen-Activated Protein Kinases/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Angiotensin/metabolism
- Signal Transduction/physiology
- Sodium Chloride
- Transfection
- Water
Collapse
Affiliation(s)
- Derek Daniels
- Department of Animal Biology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
35
|
Sherrod M, Davis DR, Zhou X, Cassell MD, Sigmund CD. Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1763-9. [PMID: 16109805 DOI: 10.1152/ajpregu.00435.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.
Collapse
Affiliation(s)
- Mikhiela Sherrod
- Genetics Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Univ. of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
36
|
Stocker SD, Toney GM. Median preoptic neurones projecting to the hypothalamic paraventricular nucleus respond to osmotic, circulating Ang II and baroreceptor input in the rat. J Physiol 2005; 568:599-615. [PMID: 16081482 PMCID: PMC1474729 DOI: 10.1113/jphysiol.2005.094425] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present study sought to determine whether individual neurones of the median preoptic nucleus (MnPO) with axonal projections to the hypothalamic paraventricular nucleus (MnPO-PVN) respond to osmotic, circulating angiotensin II (Ang II), and baroreceptor stimulation. Hypertonic NaCl (0.75 or 1.5 osmol l(-1)) or Ang II (150 ng) was injected into the internal carotid artery (ICA). Baroreceptor stimulation was performed by i.v. injection of phenylephrine or sodium nitroprusside to increase or decrease arterial blood pressure, respectively. Of 65 MnPO neurones, 50 units were antidromically activated from the PVN with an average onset latency of 11.3 +/- 0.7 ms. Only 9.5% of MnPO-PVN neurones were antidromically activated from the PVN bilaterally. Type I MnPO-PVN neurones (n = 14) responded to osmotic but not Ang II stimulation. In 79% (11/14) of these type I neurones, the response was an increase in cell discharge. Type II MnPO-PVN neurones (n = 7) displayed a significant increase in cell discharge in response to ICA injection of Ang II but not hypertonic NaCl. Type III MnPO-PVN neurones (n = 16) responded to both ICA injection of hypertonic NaCl and Ang II. In 88% (14/16) of type III neurones, osmotic and Ang II stimulation each increased cell discharge. Type IV MnPO-PVN neurones (n = 13) displayed no change in cell discharge in response to ICA injection of hypertonic NaCl or Ang II. Baroreceptor stimulation altered the discharge in subpopulations of type I, II and III MnPO-PVN neurones (43-63% depending on neuronal type). Only one MnPO-PVN neurone responded solely to baroreceptor stimulation (type IV). In addition, a subset of type I, II and III neurones displayed a significant correlation with sympathetic nerve activity and/or the cardiac cycle. These findings suggest that a significant population of MnPO-PVN neurones respond to osmotic and circulating Ang II stimulation and thereby represents a neural substrate through which neurohumoral inputs are integrated within the forebrain lamina terminalis.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Physiology, University of Kentucky College of Medicine, Lexington, 40526-0298, USA.
| | | |
Collapse
|
37
|
Spanswick D, Renaud LP. Angiotensin II induces calcium-dependent rhythmic activity in a subpopulation of rat hypothalamic median preoptic nucleus neurons. J Neurophysiol 2005; 93:1970-6. [PMID: 15774710 DOI: 10.1152/jn.00769.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings revealed a subpopulation (16%, n = 18/112) of rat median preoptic nucleus (MnPO) neurons responded to bath-applied angiotensin II (Ang II; 100 nM to 5 microM; 30-90 s) with a prolonged TTX-resistant membrane depolarization and rhythmic bursting activity. At rest, cells characteristically displayed relatively low input resistance and negative resting potentials. Ang-II-induced responses featured increased input resistance, a reversal potential of -95 +/- 2 mV, an increase in action potential duration from 2.9 +/- 0.5 to 4.3 +/- 0.8 ms, and the appearance of a rebound excitation at the offset of membrane responses to hyperpolarizing current injection. The latter was sensitive to Ni2+ (0.5-1 mM; n = 5), insensitive to extracellular Cs+ (1 mM, n = 7), and intracellular QX-314 (4 mM, n = 5), consistent with activation of a T-type Ca2+ conductance. Coincident with the Ang-II-induced depolarization was the appearance of rhythmic depolarizing shifts at a frequency of 0.14 +/- 0.09 Hz with superimposed bursts of 4-22 action potentials interspersed with silent periods persisting for >1 h after washout. These TTX-resistant depolarizing shifts increased in amplitude and decreased in frequency with membrane hyperpolarization with activity ceasing beyond approximately -80 mV, and were abolished in low-Ca(2+)/high-Mg2+ bathing medium (n = 6), Co2+ (1 mM; n = 6), or Ni2+ (0.5-1 mM; n = 8). Thus in a subpopulation of MnPO neurons, Ang II induces "pacemaker-like" activity by reducing a K(+)-dependent leak conductance that contributes to resting membrane potential and promoting of Ca(2+)-dependent regenerative auto-excitation mediated, in part, by a T-type Ca2+ conductance.
Collapse
Affiliation(s)
- David Spanswick
- Neurosciences Program, Ottawa Health Research Institute and University of Ottawa, 725 Parkdale Ave., Ottawa, Ontario, Canada K1Y 4E9
| | | |
Collapse
|
38
|
Cottrell GT, Ferguson AV. Sensory circumventricular organs: central roles in integrated autonomic regulation. ACTA ACUST UNITED AC 2004; 117:11-23. [PMID: 14687696 DOI: 10.1016/j.regpep.2003.09.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circumventricular organs (CVO) play a critical role as transducers of information between the blood, neurons and the cerebral spinal fluid (CSF). They permit both the release and sensing of hormones without disrupting the blood-brain barrier (BBB) and as a consequence of such abilities the CVOs are now well established to have essential regulatory actions in diverse physiological functions. The sensory CVOs are essential signal transducers located at the blood-brain interface regulating autonomic function. They have a proven role in the control of cardiovascular function and body fluid regulation, and have significant involvement in central immune response, feeding behavior and reproduction, the extent of which is still to be determined. This review will attempt to summarize the research on these topics to date. The complexities associated with sensory CVO exploration are intense, but should continue to result in valuable contributions to our understanding of brain function.
Collapse
Affiliation(s)
- G Trevor Cottrell
- Department of Physiology, Queen's University, Botterell Hall, 4th Floor, Kingston, ON, Canada K7L 3N6
| | | |
Collapse
|
39
|
Sakamaki K, Nomura M, Yamato K, Tanaka J. GABA-mediated attenuation of noradrenaline release in the rat median preoptic area caused by intravenous injection of metaraminol. Auton Neurosci 2004; 111:7-14. [PMID: 15109934 DOI: 10.1016/j.autneu.2003.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Previous studies have shown that the noradrenergic system in the median preoptic nucleus (MnPO) play an important role in the control of the body fluid balance and cardiovascular function and that the release of noradrenaline in the MnPO is regulated by gamma-aminobutyric acid (GABA) receptor mechanisms. The present study was carried out to examine whether the GABAergic system is involved in the modulation of the noradrenaline release in the MnPO in response to an elevation in blood pressure using in vivo microdialysis techniques. In urethane-anaesthetised male rats, the rise in arterial pressure caused by intravenous administration of the alpha-agonist metaraminol significantly decreased dialysate noradrenaline concentration in the MnPO area. The decrease in the noradrenaline level elicited by the metaraminol administration was significantly attenuated by perfusion with either bicuculline (10 microM), a GABA(A) receptor antagonist, or phaclofen (10 microM), a GABA(B) receptor antagonist, through a microdialysis probe. The amount of the antagonist-induced attenuation was much greater in the bicuculline-treated group than in the phaclofen-treated group. These results suggest that the release of noradrenaline in the MnPO area may be modulated by neural inputs from the peripheral baroreceptors, and that the neural inputs may be mediated in part through GABA(A) receptors rather than GABA(B) receptors in the MnPO area.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Physiology, Saitama Medical School, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | |
Collapse
|
40
|
Donadio MVF, Sagae SC, Franci CR, Anselmo-Franci JA, Lucion AB, Sanvitto GL. Angiotensin II receptors in the arcuate nucleus mediate stress-induced reduction of prolactin secretion in steroid-primed ovariectomized and lactating rats. Brain Res 2004; 1006:59-65. [PMID: 15047024 DOI: 10.1016/j.brainres.2004.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2004] [Indexed: 11/24/2022]
Abstract
Angiotensin II (Ang II) is a peptide that exerts an inhibitory effect upon pituitary prolactin (PRL) release through the hypothalamic arcuate nucleus (ARC). Since both PRL and Ang II are known to be affected by stress, the experiments reported here were conducted to investigate the possible participation of Ang II in the stress-induced response of PRL in situations in which pre-stress PRL levels are high, as during the PRL surge induced by estradiol (E(2)) and progesterone (P) in ovariectomized rats (OVXE(2)P) and lactating females on day 7 post-partum. Adult female rats were stereotactically implanted with bilateral guide-cannulae in the ARC; 3 days later, they were microinjected with saline or losartan and, after a 15-min interval, they were submitted to stress by ether inhalation during 1 min. Five minutes after stress, trunk blood samples were collected. Plasma PRL was measured by radioimmunoassay (RIA). In OVXE(2)P and lactating rats, a significant reduction in PRL levels was detected after stress compared to non-stressed animals. The microinjection of losartan in the ARC before stress blocked the reduction of PRL in both OVXE(2)P and lactating females. In conclusion, the stress-induced reduction of plasma PRL in OVXE(2)P and lactating rats is mediated by Ang II through AT(1) receptors in the ARC.
Collapse
Affiliation(s)
- Márcio Vinícius Fagundes Donadio
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite 500, Porto Alegre, RS 90050-170, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Bagi EE, Fekete E, Bányai D, Lénárd L. Effects of angiotensin II and AIII microinjections into the zona incerta after intra- and extracellular fluid loss. Brain Res 2004; 1002:110-9. [PMID: 14988040 DOI: 10.1016/j.brainres.2004.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Our recent results showed that angiotensin II or III (AII, AIII) microinjected into the zona incerta (ZI) significantly increased water intake. The most effective doses of AII and AIII were also defined. The two neuropeptides had their effects differently on drinking via different receptors. AII bound to AT(1) that was blocked by AT(1) receptor antagonist Losartan and the effect of AIII was eliminated by prior application of AT(2) receptor antagonist PD 123319. After different hydrational challenges, the effects of AII and AIII in the ZI have never been experimented, however. In the present experiments, the previously defined effective doses of AII (100 ng) or AIII (200 ng) were microinjected into the ZI after different types of challenges: (1). lowered thirst motivation when animals ingested approximately 40% of their daily fluid need during the consequent 60-min-daily-drinking period before the injection, (2). 48-h water deprivation, (3). intracellular dehydration and (4). extracellular dehydration. In all of the cases, incertally injected AII increased the animals' water ingestion. While Losartan could block these effects, PD 123319 was ineffective. Experiments were repeated by AIII, but in none of the cases differences were experienced between the groups. The finding that following hydrational challenges water intake increased only after AII injections and it could be blocked only by Losartan suggests that AII and AT(1) receptor play a pivotal role in the ZI in maintaining the body water balance.
Collapse
Affiliation(s)
- Eva Eszter Bagi
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences and Pécs University Medical School, H-7602 Pécs Pf.: 99., Hungary
| | | | | | | |
Collapse
|
42
|
Kolaj M, Bai D, Renaud LP. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. J Neurophysiol 2004; 92:111-22. [PMID: 14973311 DOI: 10.1152/jn.00014.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular and behavioral responses to circulating angiotensin require intact connectivity along the upper lamina terminalis joining the subfornical organ (SFO) with the median preoptic nucleus (MnPO). Whole cell patch-clamp recordings in sagittal rat brain slice preparations revealed that 28/40 MnPO neurons responded to electrical stimulation of SFO efferents with bicuculline-sensitive GABA(A) receptor-mediated inhibition and glutamate-mediated postsynaptic excitation involving AMPA and N-methyl-d-aspartate (NMDA) receptor subtypes, blockable with 2,3-dioxo-6nitro-1, 2,3,4-tetrahydrobenzo [f] quinoxaline-7-sulfoamide disodium (NBQX) and d-2-amino-4-phosphonovaleric acid (d-APV), respectively. Bath applications of baclofen induced a concentration-dependent (0.3-10 microM) reduction in these SFO-evoked postsynaptic currents, attenuation of SFO-evoked paired-pulse depression, and reduction in frequency (but not amplitude) of miniature postsynaptic currents, consistent with an action at presynaptic GABA(B) receptors. Baclofen's effects on miniature currents lacked sensitivity to barium, omega-conotoxin GVIA, and cadmium. Acting at postsynaptic GABA(B) receptors, baclofen hyperpolarized a majority of MnPO neurons by increasing a G protein-coupled inwardly rectifying potassium conductance and suppressing an N-type high-voltage-activated calcium conductance. The latter contributed to reduction in action potential afterhyperpolarization and enhanced cell firing and spike frequency adaptation when tested with a depolarizing stimulus. All baclofen-induced effects were blockable with CGP52432. CGP52432 alone had no significant effect on SFO-evoked postsynaptic current amplitudes or paired-pulse ratios, but did induce an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in 2/4 cells tested, indicating that ambient levels of GABA could activate presynaptic GABA(B) receptors on undefined inputs. These observations indicate that MnPO neurons receive both a GABAergic and glutamatergic innervation from SFO. Both forms of rapid neurotransmission are subject to modulation via pre- and postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program, Ottawa Health Research Institute, University of Ottawa, 725 Parkdale Ave., Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|
43
|
Grob M, Trottier JF, Mouginot D. Heterogeneous co-localization of AT1A receptor and Fos protein in forebrain neuronal populations responding to acute hydromineral deficit. Brain Res 2004; 996:81-8. [PMID: 14670634 DOI: 10.1016/j.brainres.2003.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study investigates co-localization of AT(1A) receptor subtype and Fos protein in neuronal populations of the lamina terminalis (LT) that have been recruited during acute Na(+) and water depletion mediated by furosemide injections. For that purpose, we combined high cellular resolution of in situ hybridization technique to reveal neurons expressing AT(1A) receptor gene (AT(1A) mRNA) with the specificity of Fos protein immunoreactivity as a marker of neuronal activation (Fos-ir). As expected, furosemide treatment dramatically increased the density of Fos-immunoreactive neuronal population in all the regions of the LT compared to control (saline-injected animals). Distribution analysis of Fos-ir neurons and AT(1A) receptor-expressing neurons performed consecutively to furosemide-induced Na(+) and water depletion indicated that double-labeled neurons (AT(1A) mRNA+Fos-ir) represented the majority (67%) of the neuronal population that expressed AT(1A) receptor in the rim of the vascular organ of the lamina terminalis (OVLT). Double-labeled neurons amounted about 60% of the neurons that expressed AT(1A) receptor in the core of the subfornical organ (SFO) and 34% in the periphery of the SFO. In the median preoptic nucleus (MnPO), the density of the double-labeled neuronal population observed in the furosemide-treated animals remained weak compared to the control group of animals. Double-labeled neuronal population estimated in the MnPO of the furosemide-treated group of animals represented 17% of the neurons that express AT(1A) receptor gene. Our results report a heterogeneous distribution of the neuronal populations that co-localize AT(1A) receptor and Fos protein in the lamina terminalis after an acute Na(+) and water depletion. This study gives anatomical support to a direct action of endogenous AngII on c-fos transcription via binding on AT(1A) receptor in specific areas of the circumventricular organs (rim of the OVLT and core of the SFO). In the MnPO, our data indicate that intracellular signaling pathways unlikely couple AT(1A) receptor with c-fos transcription. The expression of Fos protein in this nucleus might be therefore secondary to the recruitment of excitatory inputs different from AngII. This observation underlines the complexity of molecules and neurocircuits in the preoptic region that are involved in the control of acute Na(+) and water deficit.
Collapse
Affiliation(s)
- Magali Grob
- Centre de Recherche en Neurosciences, Centre Hospitalier de l'Université Laval, CHUL, RC 9800, 2705, boulevard Laurier, Sainte-Foy, QC, Canada G1V 4G2
| | | | | |
Collapse
|
44
|
Ando M, Mukuda T, Kozaka T. Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:621-33. [PMID: 14662289 DOI: 10.1016/s1096-4959(03)00179-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eels seem to be a suitable model system for analysing regulatory mechanisms of drinking behavior in vertebrates, since most dipsogens and antidipsogens in mammals influence the drinking rate in the seawater eels similarly. The drinking behavior in fishes consists of swallowing alone, since they live in water and water is constantly held in the mouth for respiration. Therefore, contraction of the upper esophageal sphincter (UES) muscle limits the drinking rate in fishes. The UES of the eel was innervated by the glossopharyngeal-vagal motor complex (GVC) in the medulla oblongata (MO). The GVC neurons were immunoreactive to an antibody raised against choline acetyltransferase (ChAT), an acetylcholine (ACh) synthesizing enzyme, indicating that the eel UES muscle is controlled cholinergically by the GVC. The neuronal activity of the GVC was inhibited by adrenaline or dopamine, suggesting catecholaminergic innervation to the GVC. The AP and the commissural nucleus of Cajal (NCC) in the MO projected to the GVC and were immunoreactive to an antibody raised against tyrosine hydroxylase (TH), rate limiting enzyme to produce catecholamines from tyrosine. Therefore, it is likely that activation in the AP or the NCC may inhibit the GVC and thus relaxes the UES muscle, which allows for water to enter into the esophagus. During passing through the esophagus, the imbibed sea water (SW) was desalted to approximately 1/2 SW, which was further diluted in the stomach and arrived at the intestine as approximately 1/3 SW, almost isotonic to the plasma. Finally, from the diluted SW, the eel intestine absorbed water following the Na(+)-K(+)-2Cl(-) cotransport (NKCC2) system. The NaCl and water absorption across the intestine was regulated by various factors, especially by peptides such as atrial natriuretic peptide (ANP) and somatostatin (SS-25 II). During desalination in the esophagus, however, excess salt enters into the blood circulation, which is liable to raise the plasma osmolarity. However, the eel heart was constricted powerfully by the hyperosmolarity, suggesting that the hyperosmolarity enhances the stroke volume to the gill, where excess salt was extruded powerfully via Na(+)-K(+)-2Cl(-) cotransport (NKCC1) system.
Collapse
Affiliation(s)
- Masaaki Ando
- Laboratory of Integrative Physiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | | | | |
Collapse
|
45
|
Grob M, Trottier JF, Drolet G, Mouginot D. Characterization of the neurochemical content of neuronal populations of the lamina terminalis activated by acute hydromineral challenge. Neuroscience 2003; 122:247-57. [PMID: 14596865 DOI: 10.1016/j.neuroscience.2003.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The lamina terminalis (LT) contains three main regions, namely the subfornical organ (SFO), the median preoptic nucleus (MnPO) and the vascular organ of the LT (OVLT). Although LT is recognized of paramount importance in the regulation of hydromineral homeostasis, identity of the neurocircuits interconnecting the SFO and OVLT to the MnPO is not known. Furthermore, the phenotype of neuronal populations activated during acute hydromineral challenge is not yet determined. By using the high cellular resolution of the in situ hybridization histochemistry (ISHH), we investigated whether a furosemide-induced fluid and electrolyte depletion might modify both putative GABAergic and glutamatergic systems within the LT. We show that acute furosemide treatment (4 h) significantly reduced the expression of GAD67 mRNA, the active holoenzyme predictive of GABA synthesis, within the SFO. A strong tendency toward a reduction of GAD67 signal was also observed in the OVLT and MnPO. The hydromineral challenge did not alter the expression of GAD65 and type 2 vesicular glutamate transporter (vGlut2) mRNA in all the structures of the LT. Furosemide treatment was associated with a reduction in the population of GAD67-containing neurons in the periphery of the SFO and dorsal part of the MnPO. Contrastingly, GAD65-containing cells were shown to be increased in the OVLT and no change was observed for the vGlut2-containing neurons in the whole LT. By combining ISHH with immunohistochemistry (Fos immunoreactivity), we report that furosemide-induced water and sodium depletion did essentially recruit a glutamatergic network throughout the LT, although GABAergic neurons were specifically activated in the ring of the SFO and in the OVLT. The MnPO, the region of the LT that is considered as being an integrative area for sensory inputs arising from the SFO and OVLT, showed exclusive activation of excitatory neuronal populations. Taken together these results suggest that acute water and Na(+) depletion diminish the efficacy of the GABAergic system and mainly activates excitatory neuronal pathways in the regions of the LT.
Collapse
Affiliation(s)
- M Grob
- Centre de Recherche en Neurosciences, Centre Hospitalier de l'Université Laval, RC9800, 2705, boulevard Laurier, Sainte-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
46
|
Sunn N, McKinley MJ, Oldfield BJ. Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J Neuroendocrinol 2003; 15:725-31. [PMID: 12834432 DOI: 10.1046/j.1365-2826.2003.00969.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to determine, in conscious rats, whether elevated concentrations of circulating angiotensin II activate neurones in both the subfornical organ and organum vasculosum of the lamina terminalis (OVLT) that project to the bed nucleus of the stria terminalis (BNST). The strategy employed was to colocalize retrogradely transported cholera toxin B subunit (CTB) from the BNST, with elevated levels of Fos protein in response to angiotensin II. Circulating angiotensin II concentrations were increased by either intravenous infusion of angiotensin II or subcutaneous injection of isoproterenol. Neurones exhibiting Fos in response to angiotensin II were present in the subfornical organ, predominantly in its central core but with some also seen in its peripheral aspect, the dorsal and lateral margins of the OVLT, the supraoptic nucleus and the parvo- and magnocellular divisions of the paraventricular nucleus. Fos-labelling was not apparent in control rats infused with isotonic saline intravenously or injected with either CTB or CTB conjugated to gold particles (CTB-gold) only. Of the neurones in the subfornical organ that were shown by retrograde labelling to project to BNST, approximately 50% expressed Fos in response to isoproterenol. This stimulus also increased Fos in 33% of neurones in the OVLT that project to BNST. Double-labelled neurones were concentrated in the central core of the subfornical organ and lateral margins of the OVLT in response to increased circulating angiotensin II resulting from isoproterenol treatment. These data support a role for circulating angiotensin II acting either directly or indirectly on neurones in subfornical organ and OVLT that project to the BNST and provide further evidence of functional regionalization within the subfornical organ and the OVLT. The function of these pathways is yet to be determined; however, a role in body fluid homeostasis is possible.
Collapse
Affiliation(s)
- N Sunn
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
47
|
Son YJ, Hur MK, Ryu BJ, Park SK, Damante G, D'Elia AV, Costa ME, Ojeda SR, Lee BJ. TTF-1, a homeodomain-containing transcription factor, participates in the control of body fluid homeostasis by regulating angiotensinogen gene transcription in the rat subfornical organ. J Biol Chem 2003; 278:27043-52. [PMID: 12730191 DOI: 10.1074/jbc.m303157200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In recent years, it has become increasingly evident that angiotensins synthesized in the brain contribute to regulating body fluid homeostasis. Although angiotensinogen, the unique angiotensin precursor, is produced in the brain, the factors that regulate its gene expression remain unknown. We recently found that TTF-1, a homeodomain-containing transcription factor essential for the development of the fetal diencephalon, is postnatally expressed in discrete areas of the hypothalamus. We now report that the subfornical organ, an important site of angiotensinogen synthesis, is an extra-hypothalamic site of TTF-1 expression. Double in situ hybridization histochemistry demonstrated the presence of TTF-1 mRNA in angiotensinogen-producing cells of the rat subfornical organ. RNase protection assays showed that TTF-1 and angiotensinogen mRNA levels are simultaneously increased in the subfornical organ by water deprivation. The angiotensinogen promoter contains seven presumptive TTF-1 binding motifs, four of which are recognized by the TTF-1 homeodomain. In the C6 glioma cell line, TTF-1 transactivates the angiotensinogen promoter in a dose-dependent manner. This transactivation is abolished by deletion of the TTF-1 binding motif at -125. Intracranial administration of an antisense TTF-1 oligodeoxynucleotide decreased angiotensinogen mRNA in the subfornical organ and dramatically reduced the animal's water intake while increasing urine excretion. Moreover, plasma arginine vasopressin content was decreased by the same treatment. These results demonstrate a novel role for TTF-1 in the regulation of body fluid homeostasis, exerted via the transactivational control of angiotensinogen synthesis in the subfornical organ.
Collapse
Affiliation(s)
- Young June Son
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bagi EE, Fekete E, Lénárd L. Angiotensin II and III microinjections into the zona incerta influence drinking behavior. Brain Res 2003; 977:199-208. [PMID: 12834880 DOI: 10.1016/s0006-8993(03)02680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Different doses of angiotensin II (AII) or angiotensin III (AIII) microinjections into the zona incerta have been studied on drinking of rats in separate experiments during the consequent 60-min-daily-drinking period. Also, the dipsogen power of only the effective dose of AII and AIII was compared to vehicle treated rats. After, angiotensin receptor (AT(1), AT(2)) antagonists on AII or AIII induced drinking were tested. In the first and second experiments only the 100 ng AII and the 200 ng AIII increased water intake significantly. In the third experiment the AII started its dipsogen effect earlier, at the 5 min measuring time, compared to the AIII. Both effects kept on lasting parallel from the 10 min on. Considering the antagonist pre-treatments in the fourth experiment, animals were injected with 90 ng losartan, an AT(1) antagonist, 180 ng PD 123319 or 200 ng CGP 42112, both AT(2) antagonists, respectively. Both AII and AIII increased water consumption. The effect of AII could be blocked by losartan, but not by PD 123319 or CGP 42112. On the other hand, the effect of AIII could not be blocked by losartan, but by both the PD 123319 and CGP 42112. Since, the effects of AII, AIII and angiotensin antagonists have not been tested in the zona incerta, the finding that water intake increased after AII or AIII injections and it could be blocked only by either of the antagonists suggests that AT(1) and AT(2) receptors play partially different roles in the regulation of water intake.
Collapse
Affiliation(s)
- Eva Eszter Bagi
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University Medical School, Szigeti Street 12, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
49
|
Sakamaki K, Nomura M, Hatakenaka S, Miyakubo H, Tanaka J. GABAergic modulation of noradrenaline release in the median preoptic nucleus area in the rat. Neurosci Lett 2003; 342:77-80. [PMID: 12727322 DOI: 10.1016/s0304-3940(03)00242-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microdialysis was employed to investigate whether gamma-aminobutyric acid (GABA) receptor mechanisms are involved in the regulation of noradrenaline (NA) release in the median preoptic nucleus (MnPO) in awake, freely moving rats. Perfusion with the GABA receptor antagonists as well as agonists was performed in the region of the MnPO through a microdialysis probe and dialysate levels of NA were measured. Perfusion with either bicuculline (10 and 50 microM), a GABA(A) receptor antagonist, or phaclofen (10 and 50 microM), a GABA(B) receptor antagonist, enhanced the release of NA in the MnPO area. Higher-dose perfusion with the GABA(A) agonist muscimol (50 microM) or the GABA(B) agonist baclofen (250 microM) decreased dialysate NA in the MnPO area. An iso-osmotic reduction of fluid volume following subcutaneous treatment with polyethylene glycol (PEG, 30%, 5 ml) significantly increased the NA level in the MnPO area. The increased levels of NA caused by the PEG treatment were attenuated by perfusion with muscimol (10 microM), but not by baclofen (50 microM). These results show the participation of both GABA(A) and GABA(B) receptors in the modulation of the release of NA in the MnPO area, and imply that the GABA(A) receptor mechanism may play an important role in the noradrenergic regulatory system of body fluid balance.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Physiology, Saitama Medical School, Iruma-gun, 350-0495, Saitama, Japan
| | | | | | | | | |
Collapse
|
50
|
Tanaka J, Hatakenaka S, Miyakubo H, Nomura M. Noradrenaline release in the median preoptic nucleus area caused by hemorrhage in the rat. Brain Res Bull 2003; 60:233-40. [PMID: 12754085 DOI: 10.1016/s0361-9230(03)00039-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was designed to examine whether noradrenergic projections from the A1 cell group in the ventrolateral medulla to the median preoptic nucleus (MnPO) transmit information from the peripheral baroreceptors. In urethane-anesthetized male rats, extracellular concentrations of noradrenaline (NA) in the region of the MnPO in response to hemorrhage (5 or 10 ml/kg) were monitored with in vivo microdialysis methods. Hemorrhage significantly increased the NA release in the MnPO area. The enhancement of NA release in the MnPO area caused by hemorrhage was significantly attenuated by previous injections of the local anesthetic lidocaine (2 %, 0.2 microl), but not by saline (0.2 microl), into the A1 region. These results suggest that the noradrenergic projections from the A1 region are important for carrying the peripheral baroreceptor information to the MnPO.
Collapse
Affiliation(s)
- Junichi Tanaka
- Department of Curriculum, Teaching and Memory, Naruto University of Education, Takashima, Naruto-cho, Naruto, Tokushima 772-8502, Japan.
| | | | | | | |
Collapse
|