1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Boi L, Johansson Y, Tonini R, Moratalla R, Fisone G, Silberberg G. Serotonergic and dopaminergic neurons in the dorsal raphe are differentially altered in a mouse model for parkinsonism. eLife 2024; 12:RP90278. [PMID: 38940422 PMCID: PMC11213571 DOI: 10.7554/elife.90278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Yvonne Johansson
- Department of Neuroscience, Karolinska InstituteStockholmSweden
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di TecnologiaGenovaItaly
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC)MadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | | |
Collapse
|
3
|
Gianni G, Pasqualetti M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 2023; 14:4093-4104. [PMID: 37966717 DOI: 10.1021/acschemneuro.3c00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Giulia Gianni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
4
|
Cover KK, Mathur BN. Axo-axonic synapses: Diversity in neural circuit function. J Comp Neurol 2021; 529:2391-2401. [PMID: 33314077 PMCID: PMC8053672 DOI: 10.1002/cne.25087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
The chemical synapse is the principal form of contact between neurons of the central nervous system. These synapses are typically configured as presynaptic axon terminations onto postsynaptic dendrites or somata, giving rise to axo-dendritic and axo-somatic synapses, respectively. Beyond these common synapse configurations are less-studied, non-canonical synapse types that are prevalent throughout the brain and significantly contribute to neural circuit function. Among these are the axo-axonic synapses, which consist of an axon terminating on another axon or axon terminal. Here, we review evidence for axo-axonic synapse contributions to neural signaling in the mammalian nervous system and survey functional neural circuit motifs enabled by these synapses. We also detail how recent advances in microscopy, transgenics, and biological sensors may be used to identify and functionally assay axo-axonic synapses.
Collapse
Affiliation(s)
- Kara K. Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| |
Collapse
|
5
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
7
|
Cover KK, Gyawali U, Kerkhoff WG, Patton MH, Mu C, White MG, Marquardt AE, Roberts BM, Cheer JF, Mathur BN. Activation of the Rostral Intralaminar Thalamus Drives Reinforcement through Striatal Dopamine Release. Cell Rep 2020; 26:1389-1398.e3. [PMID: 30726725 PMCID: PMC6402336 DOI: 10.1016/j.celrep.2019.01.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Glutamatergic projections of the thalamic rostral intralaminar nuclei of the thalamus (rILN) innervate the dorsal striatum (DS) and are implicated in dopamine (DA)-dependent incubation of drug seeking. However, the mechanism by which rILN signaling modulates reward seeking and striatal DA release is unknown. We find that activation of rILN inputs to the DS drives cholinergic interneuron burst-firing behavior and DA D2 receptor-dependent post-burst pauses in cholinergic interneuron firing. In vivo, optogenetic activation of this pathway drives reinforcement in a DA D1 receptor-dependent manner, and chemogenetic suppression of the rILN reduces dopaminergic nigrostriatal terminal activity as measured by fiber photometry. Altogether, these data provide evidence that the rILN activates striatal cholinergic interneurons to enhance the pursuit of reward through local striatal DA release and introduce an additional level of complexity in our understanding of striatal DA signaling. Cover et al. identify a glutamatergic thalamostriatal pathway that locally elicits striatal dopamine release to drive reward-related behavior in mice.
Collapse
Affiliation(s)
- Kara K Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Utsav Gyawali
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Willa G Kerkhoff
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chaoqi Mu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley E Marquardt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bradley M Roberts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Gorbachevskaya AI, Saulskaya NB. Analysis of the Pathways of the Influences of the Dorsal Raphe Nucleus on the Basal Ganglia Based on the Topography of the Projections between Them. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s11055-019-00841-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Turner BD, Kashima DT, Manz KM, Grueter CA, Grueter BA. Synaptic Plasticity in the Nucleus Accumbens: Lessons Learned from Experience. ACS Chem Neurosci 2018; 9:2114-2126. [PMID: 29280617 DOI: 10.1021/acschemneuro.7b00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity contributes to behavioral adaptations. As a key node in the reward pathway, the nucleus accumbens (NAc) is important for determining motivation-to-action outcomes. Across animal models of motivation including addiction, depression, anxiety, and hedonic feeding, selective recruitment of neuromodulatory signals and plasticity mechanisms have been a focus of physiologists and behaviorists alike. Experience-dependent plasticity mechanisms within the NAc vary depending on the distinct afferents and cell-types over time. A greater understanding of molecular mechanisms determining how these changes in synaptic strength track with behavioral adaptations will provide insight into the process of learning and memory along with identifying maladaptations underlying pathological behavior. Here, we summarize recent findings detailing how changes in NAc synaptic strength and mechanisms of plasticity manifest in various models of motivational disorders.
Collapse
Affiliation(s)
- Brandon D. Turner
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
| | - Daniel T. Kashima
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. Manz
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie A. Grueter
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
10
|
Badin AS, Fermani F, Greenfield SA. The Features and Functions of Neuronal Assemblies: Possible Dependency on Mechanisms beyond Synaptic Transmission. Front Neural Circuits 2017; 10:114. [PMID: 28119576 PMCID: PMC5223595 DOI: 10.3389/fncir.2016.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
"Neuronal assemblies" are defined here as coalitions within the brain of millions of neurons extending in space up to 1-2 mm, and lasting for hundreds of milliseconds: as such they could potentially link bottom-up, micro-scale with top-down, macro-scale events. The perspective first compares the features in vitro versus in vivo of this underappreciated "meso-scale" level of brain processing, secondly considers the various diverse functions in which assemblies may play a pivotal part, and thirdly analyses whether the surprisingly spatially extensive and prolonged temporal properties of assemblies can be described exclusively in terms of classic synaptic transmission or whether additional, different types of signaling systems are likely to operate. Based on our own voltage-sensitive dye imaging (VSDI) data acquired in vitro we show how restriction to only one signaling process, i.e., synaptic transmission, is unlikely to be adequate for modeling the full profile of assemblies. Based on observations from VSDI with its protracted spatio-temporal scales, we suggest that two other, distinct processes are likely to play a significant role in assembly dynamics: "volume" transmission (the passive diffusion of diverse bioactive transmitters, hormones, and modulators), as well as electrotonic spread via gap junctions. We hypothesize that a combination of all three processes has the greatest potential for deriving a realistic model of assemblies and hence elucidating the various complex brain functions that they may mediate.
Collapse
Affiliation(s)
- Antoine-Scott Badin
- Neuro-Bio Ltd., Culham Science CentreAbingdon, UK; Department of Physiology, Anatomy and Genetics, Mann Group, University of OxfordOxford, UK
| | | | | |
Collapse
|
11
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
12
|
Voisin AN, Mnie-Filali O, Giguère N, Fortin GM, Vigneault E, El Mestikawy S, Descarries L, Trudeau LÉ. Axonal Segregation and Role of the Vesicular Glutamate Transporter VGLUT3 in Serotonin Neurons. Front Neuroanat 2016; 10:39. [PMID: 27147980 PMCID: PMC4828685 DOI: 10.3389/fnana.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
A subset of monoamine neurons releases glutamate as a cotransmitter due to presence of the vesicular glutamate transporters VGLUT2 or VGLUT3. In addition to mediating vesicular loading of glutamate, it has been proposed that VGLUT3 enhances serotonin (5-HT) vesicular loading by the vesicular monoamine transporter (VMAT2) in 5-HT neurons. In dopamine (DA) neurons, glutamate appears to be released from specialized subsets of terminals and it may play a developmental role, promoting neuronal growth and survival. The hypothesis of a similar developmental role and axonal localization of glutamate co-release in 5-HT neurons has not been directly examined. Using postnatal mouse raphe neurons in culture, we first observed that in contrast to 5-HT itself, other phenotypic markers of 5-HT axon terminals such as the 5-HT reuptake transporter (SERT) show a more restricted localization in the axonal arborization. Interestingly, only a subset of SERT- and 5-HT-positive axonal varicosities expressed VGLUT3, with SERT and VGLUT3 being mostly segregated. Using VGLUT3 knockout mice, we found that deletion of this transporter leads to reduced survival of 5-HT neurons in vitro and also decreased the density of 5-HT-immunoreactivity in terminals in the dorsal striatum and dorsal part of the hippocampus in the intact brain. Our results demonstrate that raphe 5-HT neurons express SERT and VGLUT3 mainly in segregated axon terminals and that VGLUT3 regulates the vulnerability of these neurons and the neurochemical identity of their axonal domain, offering new perspectives on the functional connectivity of a cell population involved in anxiety disorders and depression.
Collapse
Affiliation(s)
- Aurore N. Voisin
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Ouissame Mnie-Filali
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Nicolas Giguère
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Guillaume M. Fortin
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital Research Center, McGill UniversityMontreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital Research Center, McGill UniversityMontreal, QC, Canada
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1130Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8246Paris, France
- Institut de Biologie Paris-Seine (IBPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris, UM119 Neuroscience Paris SeineParis, France
| | - Laurent Descarries
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
13
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
14
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson's Disease. Curr Top Behav Neurosci 2016; 29:313-332. [PMID: 26475156 DOI: 10.1007/7854_2015_396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The classic rodent model of Parkinson's disease (PD) is produced by unilateral lesioning of pars compacta substantia nigra (SNpc) in adult rats, producing unilateral motor deficits which can be assessed by dopamine (DA) D2 receptor (D2-R) agonist induction of measurable unilateral rotations. Bilateral SNpc lesions in adult rats produce life-threatening aphagia, adipsia, and severe motor disability resembling paralysis-a PD model that is so compromised that it is seldom used. Described in this paper is a PD rodent model in which there is bilateral 99 % loss of striatal dopaminergic innervation, produced by bilateral intracerebroventricular or intracisternal 6-hydroxydopamine (6-OHDA) administration to perinatal rats. This procedure produces no lethality and does not shorten the life span, while rat pups continue to suckle through the pre-weaning period; and eat without impairment post-weaning. There is no obvious motor deficit during or after weaning, except with special testing, so that parkinsonian rats are indistinguishable from control and thus allow for behavioral assessments to be conducted in a blinded manner. L-DOPA (L-3,4-dihydroxyphenylalanine) treatment increases DA content in striatal tissue, also evokes a rise in extraneuronal (i.e., in vivo microdialysate) DA, and is able to evoke dyskinesias. D2-R agonists produce effects similar to those of L-DOPA. In addition, effects of both D1- and D2-R agonist effects on overt or latent receptor supersensitization are amenable to study. Elevated basal levels of reactive oxygen species (ROS), namely hydroxyl radical, occurring in dopaminergic denervated striatum are suppressed by L-DOPA treatment. Striatal serotoninergic hyperinnervation ensuing after perinatal dopaminergic denervation does not appear to interfere with assessments of the dopaminergic system by L-DOPA or D1- or D2-R agonist challenge. Partial lesioning of serotonin fibers with a selective neurotoxin either at birth or in adulthood is able to eliminate serotoninergic hyperinnervation and restore the normal level of serotoninergic innervation. Of all the animal models of PD, that produced by perinatal 6-OHDA lesioning provides the most pronounced destruction of nigrostriatal neurons, thus representing a model of severe PD, as the neurochemical outcome resembles the status of severe PD in humans but without obvious motor deficits.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Department of Toxicology and Occupational Health Protection, Public Health Faculty, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|
15
|
Gagnon D, Gregoire L, Di Paolo T, Parent M. Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct 2015; 221:3675-91. [DOI: 10.1007/s00429-015-1125-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022]
|
16
|
Zhang Y, Meredith GE, Mendoza-Elias N, Rademacher DJ, Tseng KY, Steece-Collier K. Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses. J Neurosci 2013; 33:11655-67. [PMID: 23843533 PMCID: PMC3724545 DOI: 10.1523/jneurosci.0288-13.2013] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022] Open
Abstract
We examined the structural plasticity of excitatory synapses from corticostriatal and thalamostriatal pathways and their postsynaptic targets in adult Sprague-Dawley rats to understand how these striatal circuits change in l-DOPA-induced dyskinesias (LIDs). We present here detailed electron and light microscopic analyses that provide new insight into the nature of the structural and synaptic remodeling of medium spiny neurons in response to LIDs. Numerous studies have implicated enhanced glutamate signaling and persistent long-term potentiation as central to the behavioral sensitization phenomenon of LIDs. Moreover, experience-dependent alterations in behavior are thought to involve structural modifications, specifically alterations in patterns of synaptic connectivity. Thus, we hypothesized that in the striatum of rats with LIDs, one of two major glutamatergic pathways would form new or altered contacts, especially onto the spines of medium spiny neuron (MSNs). Our data provide compelling evidence for a dramatic rewiring of the striatum of dyskinetic rats and that this rewiring involves corticostriatal but not thalamostriatal contacts onto MSNs. There is a dramatic increase in corticostriatal contacts onto spines and dendrites that appear to be directly linked to dyskinetic behaviors, since they were not seen in the striatum of animals that did not develop dyskinesia. There is also an aberrant increase in spines receiving more than one excitatory contact(i.e., multisynaptic spines) in the dyskinetic animals compared with the 6-hydroxydopamine-treated and control rats. Such alterations could substantially impair the ability of striatal neurons to gate cortically driven signals and contribute to the loss of bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Yiyue Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | | | - Nasya Mendoza-Elias
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - David J. Rademacher
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
17
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
18
|
Eid L, Champigny MF, Parent A, Parent M. Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 2013; 37:1659-68. [PMID: 23432025 DOI: 10.1111/ejn.12164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Abstract
The present immunohistochemical study was aimed at characterizing the serotonin (5-HT) innervation of the internal (GPi) and external (GPe) pallidal segments in the squirrel monkey (Saimiri sciureus) with an antibody against the 5-HT transporter (SERT). At the light microscopic level, unbiased counts of SERT+ axon varicosities showed that the density of innervation is similar in the GPi (0.57 ± 0.03 × 10(6) varicosities/mm(3) of tissue) and the GPe (0.60 ± 0.04 × 10(6) ), with the anterior half of both segments being more densely innervated than the posterior half. Dorsoventral and mediolateral decreasing gradients of SERT varicosities occur in both pallidal segments, but are statistically significant only in the GPi. The neuronal density being significantly greater in the GPe (3.41 ± 0.23 × 10(3) neurons/mm(3) ) than in the GPi (2.90 ± 0.11 × 103), the number of 5-HT axon varicosities per pallidal neuron was found to be superior in the GPi (201 ± 27) than in the GPe (156 ± 26). At the electron microscopic level, SERT+ axon varicosities are comparable in size and vesicular content in GPi and GPe, where they establish mainly asynaptic contacts with unlabeled profiles. Less than 25% of SERT+ varicosities display a synaptic specialization, which is of the symmetrical or asymmetrical type and occurs exclusively on pallidal dendrites. No SERT+ axo-axonic synapses are present, suggesting that 5-HT exerts its well-established modulatory action upon various pallidal afferents mainly through diffuse transmission, whereas its direct control of pallidal neurons results from both volumic and synaptic release of the transmitter.
Collapse
Affiliation(s)
- Lara Eid
- Centre de Recherche de l'Institut Universitaire en santé Mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada, G1J 2G3
| | | | | | | |
Collapse
|
19
|
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter released throughout the brain. The serotonergic system is implicated in a host of neuropsychiatric disorders including, but not limited to, Parkinson's disease and L-DOPA-induced dyskinesia. These are pathological and drug-induced states that center on dysfunction of the striatum, a basal ganglia structure necessary for voluntary movement control and action learning. 5-HT is released by dorsal raphe nucleus neurons into the dorsal striatum where it acts upon diverse 5-HT receptors that are expressed on various pre- and postsynaptic components. Here, we review the literature on serotonergic effects on dorsal striatal function and discuss possible roles for the striatal serotonergic system in physiological and parkinsonian states.
Collapse
Affiliation(s)
- Brian N Mathur
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD 20852-9411, USA
| | | |
Collapse
|
20
|
Bérubé-Carrière N, Guay G, Fortin GM, Kullander K, Olson L, Wallén-Mackenzie Å, Trudeau LE, Descarries L. Ultrastructural characterization of the mesostriatal dopamine innervation in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons. Eur J Neurosci 2012; 35:527-38. [PMID: 22330100 DOI: 10.1111/j.1460-9568.2012.07992.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the increasing use of genetically modified mice to investigate the dopamine (DA) system, little is known about the ultrastructural features of the striatal DA innervation in the mouse. This issue is particularly relevant in view of recent evidence for expression of the vesicular glutamate transporter 2 (VGLUT2) by a subset of mesencephalic DA neurons in mouse as well as rat. We used immuno-electron microscopy to characterize tyrosine hydroxylase (TH)-labeled terminals in the core and shell of nucleus accumbens and the neostriatum of two mouse lines in which the Vglut2 gene was selectively disrupted in DA neurons (cKO), their control littermates, and C57BL/6/J wild-type mice, aged P15 or adult. The three regions were also examined in cKO mice and their controls of both ages after dual TH-VGLUT2 immunolabeling. Irrespective of the region, age and genotype, the TH-immunoreactive varicosities appeared similar in size, vesicular content, percentage with mitochondria, and exceedingly low frequency of synaptic membrane specialization. No dually labeled axon terminals were found at either age in control or in cKO mice. Unless TH and VGLUT2 are segregated in different axon terminals of the same neurons, these results favor the view that the glutamatergic cophenotype of mesencephalic DA neurons is more important during the early development of these neurons than for the establishment of their scarce synaptic connectivity. They also suggest that, in mouse even more than rat, the mesostriatal DA system operates mainly through non-targeted release of DA, diffuse transmission and the maintenance of an ambient DA level.
Collapse
Affiliation(s)
- Noémie Bérubé-Carrière
- Department of Pathology and Cell Biology, Faculty of Medicine, C.P. 6128, Succursale Centre-Ville, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Steece-Collier K, Rademacher DJ, Soderstrom K. Anatomy of Graft-induced Dyskinesias: Circuit Remodeling in the Parkinsonian Striatum. ACTA ACUST UNITED AC 2012; 2:15-30. [PMID: 22712056 DOI: 10.1016/j.baga.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The goal of researchers and clinicians interested in re-instituting cell based therapies for PD is to develop an effective and safe surgical approach to replace dopamine (DA) in individuals suffering from Parkinson's disease (PD). Worldwide clinical trials involving transplantation of embryonic DA neurons into individuals with PD have been discontinued because of the often devastating post-surgical side-effect known as graft-induced dyskinesia (GID). There have been many review articles published in recent years on this subject. There has been a tendency to promote single factors in the cause of GID. In this review, we contrast the pros and cons of multiple factors that have been suggested from clinical and/or preclinical observations, as well as novel factors not yet studied that may be involved with GID. It is our intention to provide a platform that might be instrumental in examining how individual factors that correlate with GID and/or striatal pathology might interact to give rise to dysfunctional circuit remodeling and aberrant motor output.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | | | | |
Collapse
|
22
|
McCollum LA, Roche JK, Roberts RC. Immunohistochemical localization of enkephalin in the human striatum: a postmortem ultrastructural study. Synapse 2011; 66:204-19. [PMID: 22034050 DOI: 10.1002/syn.21502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/07/2011] [Indexed: 02/02/2023]
Abstract
Within the basal ganglia, the functionally defined region referred to as the striatum contains a subset of GABAergic medium spiny neurons expressing the neuropeptide enkephalin. Although the major features of ultrastructural enkephalin localization in striatum have been characterized among various species, its ultrastructural organization has never been studied in the human brain. Human striatal tissue was obtained from the Maryland and Alabama Brain Collections from eight normal controls. The brains were received and fixed within 8 h of death allowing for excellent preservation suitable for electron microscopy. Tissue from the dorsal striatum was processed for enkephalin immunoreactivity and prepared for electron microscopy. General morphology of the dorsal striatum was consistent with light microscopy in human. The majority of neurons labeled with enkephalin was medium-sized and had a large nonindented nucleus with a moderate amount of cytoplasm, characteristic of medium spiny neurons. Of the spines receiving synapses in dorsal striatum, 39% were labeled for enkephalin and were of varied morphologies. Small percentages (2%) of synapses were formed by labeled axon terminals. Most (82%) labeled terminals formed symmetric synapses. Enkephalin-labeled terminals showed no preference toward spines or dendrites for postsynaptic targets, whereas in rat and monkey, the vast majority of synapses in the neuropil are formed with dendritic shafts. Thus, there is an increase in the prevalence of axospinous synapses formed by enkephalin-labeled axon terminals in human compared with other species. Quantitative differences in synaptic features were also seen between the caudate nucleus and the putamen in the human tissue.
Collapse
Affiliation(s)
- Lesley A McCollum
- Department of Neuroscience, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
23
|
Abstract
The striatum has important roles in motor control and action learning and, like many brain regions, receives multiple monoaminergic inputs. We have examined serotonergic modulation of rat and mouse corticostriatal neurotransmission and find that serotonin (5-HT) activates 5-HT(1b) receptors resulting in a long-term depression (LTD) of glutamate release and striatal output that we have termed 5-HT-LTD. 5-HT-LTD is presynaptically mediated, cAMP pathway dependent, and inducible by endogenous striatal 5-HT, as revealed by application of a selective 5-HT reuptake inhibitor. 5-HT-LTD is mutually occlusive with dopamine/endocannabinoid-dependent LTD, suggesting that these two forms of LTD act on the same corticostriatal terminals. Thus, serotonergic and dopaminergic mechanisms exist that may interact to persistently sculpt corticostriatal circuits, potentially influencing action learning and striatal-based disorders.
Collapse
|
24
|
Parent M, Wallman MJ, Gagnon D, Parent A. Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 2011; 41:256-65. [PMID: 21664455 DOI: 10.1016/j.jchemneu.2011.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/29/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
This review paper summarizes our previous contributions to the study of serotonin (5-hydroxytryptamine; 5-HT) innervation of basal ganglia in human and nonhuman primates under normal conditions. We have visualized the 5-HT neuronal system in squirrel monkey (Saimiri sciureus) and human postmortem materials with antibodies directed against either 5-HT, 5-HT transporter (SERT) or 5-HT synthesizing enzyme tryptophan hydroxylase (TPH). Confocal microscopy was used to compare the distribution of 5-HT and dopamine (DA; tyrosine hydroxylase-immunolabeled) axons in human, while the ultrastructural features of 5-HT axon terminals in monkey subthalamic nucleus were characterized at electron microscopic level. In monkeys and humans, midbrain raphe neurons emit axons that traverse the brainstem via the transtegmental system, ascend within the medial forebrain bundle and reach their targets by coursing along the major output pathways of the basal ganglia. These 5-HT axons arborize in virtually all basal ganglia components with the substantia nigra receiving the densest innervation and the striatum the most heterogeneous one. Although the striatum - the major basal ganglia input structure - appears to be a common termination site for many of 5-HT ascending axons, our results reveal that the widely distributed 5-HT neuronal system can also act directly upon neurons located within the two major output structures of the basal ganglia, namely the internal pallidum and the substantia nigra pars reticulata in monkeys and humans. This system also has a direct access to neurons of the DA nigrostriatal pathway, a finding that underlines the importance of the 5-HT/DA interactions in the physiopathology of basal ganglia.
Collapse
Affiliation(s)
- Martin Parent
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada.
| | | | | | | |
Collapse
|
25
|
|
26
|
Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl) 2011; 213:213-42. [PMID: 20953589 DOI: 10.1007/s00213-010-2029-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 11/27/2022]
Abstract
RATIONALE The influences of the serotonergic system on dopamine (DA) neuron activity have received considerable attention during the last three decades due to the real opportunity to improve disorders related to central DA neuron dysfunctions such as Parkinson's disease, schizophrenia, or drug abuse with serotonergic drugs. Numerous biochemical and behavioral data indicate that serotonin (5-HT) affects dopaminergic terminal function in the striatum. OBJECTIVE The authors propose a thorough examination of data showing controversial effects induced by striatal 5-HT on dopaminergic activity. RESULTS Inhibitory and excitatory effects of exogenous 5-HT have been reported on DA release and synthesis, involving various striatal 5-HT receptors. 5-HT also promotes an efflux of DA through reversal of the direction of DA transport. By analogy with the mechanism of action described for amphetamine, the consequences of 5-HT entering DA terminals might explain both the excitatory and inhibitory effects of 5-HT on presynaptic DA terminal activity, but the physiological relevance of this mechanism is far from clear. The recent data suggest that the endogenous 5-HT system affects striatal DA release in a state-dependent manner associated with the conditional involvement of various 5-HT receptors such as 5-HT(2A), 5-HT(2C), 5-HT(3), and 5-HT(4) receptors. CONCLUSION Methodological and pharmacological issues have prevented a comprehensive overview of the influence of 5-HT on striatal DA activity. The distribution of striatal 5-HT receptors and their restricted influence on DA neuron activity suggest that the endogenous 5-HT system exerts multiple and subtle influences on DA-mediated behaviors.
Collapse
Affiliation(s)
- Sylvia Navailles
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5227, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | |
Collapse
|
27
|
De Deurwaerdère P, Mignon L, Chesselet MF. Physiological and Pathophysiological Aspects of 5-HT2c Receptors in Basal Ganglia. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
28
|
Descarries L, Riad M, Parent M. Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Abstract
A limited number of studies have considered whether the activity of serotonin (5-hydroxytryptamine [5-HT]) contributes to the problems experienced by youngsters with attention-deficit/hyperactivity disorder (ADHD). The aim of this article is to review this work and propose interpretations. Peripheral measures of 5-HT and its metabolite do not point to a widespread association with the diagnosis. However, separate consideration of the major domains of dysfunction (motor activity, inattention and impulsivity) support a more differentiated assessment. The marked innervation of motor regions of the brain by 5-HT projections and the clear involvement of 5-HT systems in the control of locomotion in animals suggests a likely node for dysfunction in ADHD. The few relevant studies do not show evidence of this, but more attention should be accorded to the issue. The situation is different for attention-related processes; here, there are deficiencies in perceptual sensitivity and the appropriate designation of saliency to stimulation. These are attributable, in part, to altered 5-HT activity. Marked and opposite changes of 5-HT responsivity are associated with behavioral and cognitive impulsivity. There is also a growing series of studies demonstrating preferential transmission of various genetic markers for 5-HT receptors that are expressed in ADHD. Currently, the heterogeneity of methods in this young discipline restricts the possibilities of definition of these markers and the types of ADHD in which they are expressed.
Collapse
Affiliation(s)
- Robert D Oades
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Virchowstr 174, 45147 Essen, Germany.
| |
Collapse
|
30
|
Adachi YU, Yamada S, Satomoto M, Higuchi H, Watanabe K, Kazama T, Mimuro S, Sato S. Isoflurane anesthesia inhibits clozapine- and risperidone-induced dopamine release and anesthesia-induced changes in dopamine metabolism was modified by fluoxetine in the rat striatum: an in vivo microdialysis study. Neurochem Int 2007; 52:384-91. [PMID: 17719143 DOI: 10.1016/j.neuint.2007.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 07/17/2007] [Indexed: 11/24/2022]
Abstract
Previously, we have reported that halothane anesthesia increases the extracellular concentrations of dopamine (DA) metabolites in the rat striatum using in vivo microdialysis techniques, and we have suggested that volatile anesthetics affect DA release and metabolism in various ways. The present investigation assesses the effect of isoflurane, widely used in clinical anesthesia, on DA release and metabolism. A microdialysis probe was implanted in the striatum of male Sprague-Dawley rats (n=5-7 per group). After recovery, the probe was perfused with modified Ringer's solution and 40 microl of dialysate were injected into a high performance liquid chromatograph every 20 min. The rats were given saline or the same volume of 10 mg kg(-1) clozapine, risperidone, fluoxetine or citalopram. After the pharmacological treatment, the rats were anesthetized with 1.0% or 2.5% isoflurane for 1h. The data were analyzed using two-way analysis of variance (ANOVA). For each drug with significant (p<0.05) drug-time interactions, the statistical analysis included one-way ANOVA and Newman-Keuls post hoc comparisons. A high concentration of isoflurane (2.5%) anesthesia increased the extracellular concentration of DA metabolites during emergence from anesthesia. The levels of DA metabolites increased in an isoflurane concentration-dependent manner. Isoflurane attenuated DA release induced by clozapine and risperidone. Fluoxetine, but not citalopram, antagonized the isoflurane-induced increase in metabolites. The results of current investigation suggest that isoflurane enhances presynaptic DA metabolism, and that the oxidation of DA might be partially modulated by the activities of the dopaminergic-serotonergic pathway at a presynaptic site in the rat striatum.
Collapse
Affiliation(s)
- Yushi U Adachi
- Intensive Care Unit of University Hospital, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Anguiano-Rodríguez PB, Gaytán-Tocavén L, Olvera-Cortés ME. Striatal serotonin depletion facilitates rat egocentric learning via dopamine modulation. Eur J Pharmacol 2007; 556:91-8. [PMID: 17126827 DOI: 10.1016/j.ejphar.2006.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 10/16/2006] [Accepted: 10/19/2006] [Indexed: 11/28/2022]
Abstract
Egocentric spatial learning has been defined as the ability to navigate in an environment using only proprioceptive information, thereby performing a motor response based on one's own movement. This form of learning has been associated with the neural memory system, including the striatum body. Cerebral serotonin depletion induces better performance, both in tasks with strong egocentric components and in egocentric navigation in the Morris' maze. Based on this, we propose that the striatal serotonergic depletion must facilitate egocentric learning. Fifteen female Sprague Dawley rats weighing 250-350 g and maintained under standard conditions were chronically implanted with infusion cannulas for bilateral application of drugs into the striatum. The animals were evaluated for egocentric navigation using the Morris' maze, under different conditions: saline solution infusion, serotonin depletion by infusion of 5,7-Dihydroxytryptamine (25 microg of free base solved in 2.5 microl of ascorbic acid 1% in saline solution), infusion of mixed dopamine D(1) and D(2) receptor antagonists (0.5 microl/min during 5 min of mixed spiperone 20 microM and SCH23390 10 microM), or serotonin depletion and dopamine blockade simultaneously. Striatal serotonin depletion facilitated egocentric learning, which was demonstrated as shorter escape latencies and the display of a defined sequence of movements for reaching the platform. The facilitation was not observed under condition of simultaneous dopamine blockade. Striatal serotonin depletion produced a dopamine-dependent facilitation of egocentric learning. A role for serotonin in the inhibition of striatal-mediated learning strategies is proposed.
Collapse
Affiliation(s)
- Patricia B Anguiano-Rodríguez
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, A.P. 7-70, C.P. 58261, Morelia, Mich., México
| | | | | |
Collapse
|
32
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Abstract
In the neostriatum, GABAergic inhibition arises from the action of at least two classes of inhibitory interneurons, and from recurrent collaterals of the principal cells. Interneurons receive excitatory input only from extrinsic sources, and so act in a purely feedforward capacity. Feedback inhibition arises from the recurrent collaterals of the principal cells. These two kinds of inhibition have functionally distinct effects on the principal cells. Inputs from interneurons are not very convergent. There are few inhibitory neurons, and so each principal cell receives inhibitory synaptic input from very few interneurons. But, they are individually powerful, and a single interneuron can substantially delay action potentials in a group of nearby principal cells. Recurrent inhibition is highly convergent, with each principal cell receiving inhibitory input from several hundred other such cells. Feedback inhibitory synaptic inputs individually have very weak effects, as seen from the soma. The differences in synaptic strength are not caused by differences in the release of transmitter or in sensitivity of the postsynaptic membrane. Rather, they arise from differences in the number of synaptic contacts formed on individual principal cells by feedforward or feedback axons, and from differences in synaptic location. Interneurons form their powerful synapses near the somata of principal cells, while most feedback synapses are more distal, where they interact with the two-state nonlinear properties of the principal cells' dendrite. This arrangement suggests that feedforward inhibition may serve in the traditional role for inhibition, adjusting the excitability of the principle neuron near the site of action potential generation. Feedback inhibitory synapses may interact with voltage-sensitive conductances in the dendrite to alter the electrotonic structure of the spiny cell.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio, 6900 N. Loop 1604 W, San Antonio, TX 78249, USA.
| |
Collapse
|
34
|
Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 2006; 30:203-14. [PMID: 16157378 DOI: 10.1016/j.neubiorev.2005.06.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
The limbic system is composed of cortical as well as subcortical structures, which are intimately interconnected. The resulting macrostructure is responsible for the generation and expression of motivational and affective states. Especially high levels of serotonin are found in limbic forebrain structures. Serotonin projections to these structures, which arise from serotonergic cell body groups in the midbrain, form a dense plexus of axonal processes. In many areas of the limbic system, serotonergic neurotransmission can best be described as paracrine or volume transmission, and thus serotonin is believed to play a neuromodulatory role in the brain. Serotonergic projections to limbic structures, arising primarily from the dorsal and median raphe nuclei, compose two distinct serotonergic systems differing in their topographic organization, electrophysiological characteristics, morphology, as well as sensitivity to neurotoxins and perhaps psychoactive or therapeutic agents. These differences may be extremely important in understanding the role of these two serotonergic systems in normal brain function and in mental illness. Central serotonergic neurons or receptors are targets for a variety of therapeutic agents used in the treatment of disorders of the limbic system.
Collapse
Affiliation(s)
- Julie G Hensler
- Department of Pharmacology, MC 7764, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
35
|
Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP. GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience 2005; 136:1083-95. [PMID: 16226840 DOI: 10.1016/j.neuroscience.2005.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/06/2005] [Accepted: 07/01/2005] [Indexed: 12/12/2022]
Abstract
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- C J Lacey
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | | | | | | | | | | |
Collapse
|
36
|
Oliva JM, Urigüen L, Pérez-Rial S, Manzanares J. Time course of opioid and cannabinoid gene transcription alterations induced by repeated administration with fluoxetine in the rat brain. Neuropharmacology 2005; 49:618-26. [PMID: 15936043 DOI: 10.1016/j.neuropharm.2005.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/05/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
This study examined the time course effects (8, 16 and 31 days) of fluoxetine administration (1 mg/kg, p.o./day) on serotonin transporter (5-HTT), opioid, tyrosine hydroxylase (TH) and cannabinoid CB1 receptor gene expressions in selected regions of the rat brain. Treatment with fluoxetine progressively decreased (35-55%) 5-HTT gene expression in dorsal raphe nucleus at 8, 16 and 31 days. The results revealed that fluoxetine administration decreased (30%) proenkephalin gene expression in nucleus accumbens shell (AcbS) and caudate-putamen (CPu) (31 days) but was without effect in nucleus accumbens core AcbC. A pronounced and time related decrease (25-65%) in prodynorphin gene expression was detected in AcbC, AcbS, CPu, hypothalamic supraoptic and paraventricular nuclei at all time points as well as in proopiomelanocortin gene expression (20-30%) in the arcuate nucleus (ARC) of the hypothalamus. On days 16 and 31, tyrosine hydroxylase gene expression in ventral tegmental area and substantia nigra and cannabinoid CB1 receptor gene expression in the CPu decreased (approximately 45-50% from vehicle). In conclusion, fluoxetine by inhibiting the reuptake of serotonin produced pronounced and time related alterations in genes involved in the regulation of emotional behaviour, suggesting that these neuroplastic changes may be involved, at least in part, in the clinical efficacy of this drug in neuropsychiatric disorders.
Collapse
Affiliation(s)
- José M Oliva
- Servicio de Psiquiatría y Unidad de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Petit A, Kennedy TE, Bagnard D, Doucet G. Membrane-associated guidance cues direct the innervation of forebrain and midbrain by dorsal raphe-derived serotonergic axons. Eur J Neurosci 2005; 22:552-68. [PMID: 16101737 DOI: 10.1111/j.1460-9568.2005.04249.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Unlike many neurons that extend an axon precisely to a single target, individual dorsal raphe 5-HT neurons project to multiple brain regions and their axon terminals often lack classical synaptic specializations. It is not known how 5-HT axon collaterals select between multiple target fields, or even if 5-HT axons require specific guidance cues to innervate their targets. Nor is it known how these axon collaterals are restrained within specific innervation target regions. To investigate this, we challenged explants of dorsal raphe with co-explants, or cell membrane preparations of ventral midbrain, striatum or cerebral cortex. We provide evidence for membrane-associated cues that promote 5-HT axon growth into each of these three target regions. The axon growth-promoting activity was heat-, protease- and phosphatidylinositol-phospholipase-C (PI-PLC)-sensitive. Interestingly, 5-HT axons specifically lost the ability to grow in heterotypic explants, or membrane carpets, following contact with ventral midbrain or striatal, but not cortical, explants or membranes. This inductive activity associated with striatal and ventral midbrain membranes was sensitive to both high salt extraction and PI-PLC treatment. By contrast, the activity that inhibited 5-HT axon growth onto heterotypic membranes was sensitive only to high salt extraction. These results provide evidence that a glycosylphosphatidylinositol (GPI)-linked membrane protein promotes 5-HT axon growth, and that short-range membrane-bound, as well as GPI-linked, molecules contribute to the guidance of 5-HT axon collaterals. These findings suggest that 5-HT axon collaterals acquire a target-induced growth-inhibitory response to alternative targets, increasing their selectivity for the newly innervated field.
Collapse
Affiliation(s)
- Audrey Petit
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | | | | | | |
Collapse
|
38
|
Adachi YU, Aramaki Y, Satomoto M, Higuchi H, Watanabe K. Halothane attenuated haloperidol and enhanced clozapine-induced dopamine release in the rat striatum. Neurochem Int 2003; 43:113-9. [PMID: 12620279 DOI: 10.1016/s0197-0186(02)00227-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of halothane anesthesia on changes in the extracellular concentrations of dopamine (DA) and its metabolites (3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA)) induced by neuroleptics was studied using in vivo microdialysis techniques. Halothane attenuated haloperidol-induced dopamine release and enhanced clozapine-induced dopamine release in the rat striatum.A microdialysis probe was implanted into the right striatum of male SD rats. Rats were given saline or the same volume of 200 microg kg(-1) haloperidol (D(2) receptor antagonist), 10 mg kg(-1) sulpiride (D(2) and D(3) antagonist), or 10 mg kg(-1) clozapine (D(4) and 5-HT(2) antagonist) intraperitoneally with or without 1-h halothane anesthesia (0.5 or 1.5%). Halothane anesthesia did not change the extracellular concentration of DA, but increased the metabolite concentrations in a dose-dependent manner. The increased DA concentration induced by haloperidol was significantly attenuated by halothane anesthesia, whereas the metabolite concentrations were unaffected. Halothane had no effect on the changes in the concentrations of DA or its metabolites induced by sulpiride. The clozapine-induced increases in DA and its metabolites were enhanced by halothane anesthesia. Our results suggest that halothane anesthesia modifies the DA release modulated by antipsychotic drugs in different ways, depending on the effects of dopaminergic or serotonergic pathways.
Collapse
Affiliation(s)
- Yushi U Adachi
- Medical Clinic of Kumagaya Base, Japan Air Self Defense Force, 839 Jurokuken, Kumagaya City, 360-0846, Saitama, Japan.
| | | | | | | | | |
Collapse
|
39
|
Pickel VM, Garzón M, Mengual E. Electron microscopic immunolabeling of transporters and receptors identifies transmitter-specific functional sites envisioned in Cajal's neuron. PROGRESS IN BRAIN RESEARCH 2002; 136:145-55. [PMID: 12143378 DOI: 10.1016/s0079-6123(02)36014-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neuronal arborizations that were so elegantly demonstrated in the early drawings of Santiago Ramón y Cajal can now be viewed by high resolution electron microscopic immunocytochemical localization of vesicular and plasmalemmal neurotransmitter transporters and receptors. The subcellular distribution of these proteins confers both chemical selectivity and functional specificity to the dendritic and axonal arborizations described by Cajal. This is illustrated by central dopaminergic and cholinergic neurons. Dopamine terminals in the striatum and ventral pallidum, as well as dendrites of midbrain dopaminergic neurons in the ventral tegmental area and substantia nigra express the plasmalemmal dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). In forebrain regions, the dopamine D2 receptor (D2R) autoreceptor is localized to dopamine terminals, but also is targeted to pre- and postsynaptic neuronal profiles at a distance from the dopamine terminals. In somata and dendrites of the midbrain dopaminergic neurons, D2R labeling is expressed in most dendrites that contain VMAT2 storage vesicles, as well as in both excitatory and inhibitory afferents. Together, these observations indicate that dopamine is stored in and released from vesicles in both dendrities and axons, and may activate either local or more distant receptors through volume transmission. By analogy, the vesicular acetylcholine transporter (VachT) is similarly localized to the membranes of axon terminals and tubulovesicles in dendrities in the mesopontine tegmental cholinergic nuclei, suggesting that there also may be release of acetylcholine from both dendrities and axons. These results identify chemically selective functional sites for neuronal signaling envisioned by Cajal and redefined by modern technology.
Collapse
Affiliation(s)
- Virginia M Pickel
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th St., New York, NY 10021, USA.
| | | | | |
Collapse
|
40
|
Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 2002; 110:245-56. [PMID: 11958867 DOI: 10.1016/s0306-4522(01)00575-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dopaminergic innervation of the developing caudate-putamen (patches and matrix) and nucleus accumbens (shell and core) of the rat was examined with light and electron microscope immunocytochemistry, using antibodies against dopamine. Light microscopic analysis showed, in accordance with previous studies, that early in life, dopaminergic fibers were relatively thick and present throughout the striatum. Their distribution was heterogeneous, showing dense aggregations, the so-called dopamine islands. The pattern of innervation became more uniform during the third postnatal week with most of the dopamine islands no longer detectable. For electron microscopic analysis, parts of the caudate-putamen containing dopamine islands or matrix, and of the nucleus accumbens, from the shell and the core of the nucleus, were selected. This analysis revealed that symmetrical synapses between immunoreactive profiles and unlabeled dendritic shafts predominated throughout development but, at the late stages, symmetrical axospinous synapses also became a prominent feature. These findings indicate that: (1) although the caudate-putamen and the nucleus accumbens have different connections and functions, they exhibit similar types of dopaminergic synapses, and (2) the relatively late detection of dopaminergic axospinous synapses suggests that the development of the dopaminergic system in the striatum is an active process, which parallels the morphological changes of striatal neurons and may contribute to their maturation.
Collapse
Affiliation(s)
- J Antonopoulos
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
41
|
Rio JP, Repérant J, Miceli D, Medina M, Kenigfest-Rio N. Serotonergic innervation of the isthmo-optic nucleus of the pigeon centrifugal visual system. An immunocytochemical electron microscopic study. Brain Res 2002; 924:127-31. [PMID: 11744006 DOI: 10.1016/s0006-8993(01)03262-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultrastructural features of serotonergic fibers, terminals and synaptic contacts were studied with the pre-embedding immunocytochemical method in the isthmo-optic nucleus of the pigeon centrifugal visual system. The 5-HT immunoreactive (-ir) profiles were diffusely distributed and their density was low. The labeled axons were thin and unmyelinated (mean diameter=0.21+/-0.03 microm) though a few larger myelinated axons were observed (mean diameter=0.51+/-0.07 microm). The 5-HT-ir terminals or varicosities were small (diameter=0.71+/-0.54 microm) and contained small agranular synaptic vesicles (diameter=28.5+/-6.9 nm) and large granular vesicles (diameter=102.2+/-19.5 nm). The latter only constituted approximately 1% of the total profiles containing synaptic vesicles in the isthmo-optic nucleus. In single thin sections, only 5% of the 5-HT-ir varicosities exhibited an active asymmetrical zone synapsing upon dendritic profiles of centrifugal visual neurons. Calculations indicated that 17% of these 5-HT-ir varicosities were actually engaged in junctional synaptic relationships, whereas the remaining (83%) were nonjunctional. The data suggest that, within the isthmo-optic nucleus, 5-HT acts both at synaptic junctions (wiring transmission) and at a distance via the extracellular space (volume transmission). These 5-HT afferents could thus modulate the activity of the retinopetal neurons and visual information processing.
Collapse
Affiliation(s)
- J P Rio
- INSERM U 106, Neuromorphologie: Développement, Evolution, Hôpital de la Salpêtrière, 47, Bd. de l'Hôpital, 75651 Paris Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Jansson A, Tinner B, Bancila M, Vergé D, Steinbusch HW, Agnati LF, Fuxe K. Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 2001; 22:185-203. [PMID: 11522440 DOI: 10.1016/s0891-0618(01)00133-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The distributions of 5-hydroxytryptamine (5-HT)-immunoreactive (IR) varicosities and 5-hydroxytryptamine-2A receptor (5-HT2A)-IR neuronal structures in the rat brain have previously been described individually. Using double labeling immunocytochemistry, the relationships between 5-HT2A-IR and 5-HT-IR elements in the forebrain of male rats has been studied at the light microscopic level. In neocortical regions (frontal, parietal and retrosplenial cortex), the strongest 5-HT2A-IR was found in the apical dendrites of pyramidal cells in layers III-V, while 5-HT-IR terminal-like varicosities were present in all layers but most prominently in the outer layers. In other forebrain regions, the olfactory bulb, the hippocampal formation, and the islands of Calleja and Calleja magna, localized discrepancies were present between the 5-HT2A-IR neuronal profiles and the 5-HT-IR terminal-like varicosities. Hardly any additional juxtapositions between the 5-HT2A-IR neuronal profiles and 5-HT-IR terminal-like varicosities were revealed when the intraneuronal level of 5-HT was increased by monoamine oxidase inhibitor pretreatment (nialamide, 250 mg/kg, 3 h). Thus, in most forebrain regions, there were overall few juxtapositions between 5-HT terminal-like varicosities and 5-HT2A-IR neuronal structures. This observation suggests that 5-HT2A receptor mediated 5-HT transmission in the rat forebrain is mainly a volume transmission process mediated via short distance diffusion in the extra-cellular space.
Collapse
Affiliation(s)
- A Jansson
- Department of Neuroscience, Division of Cellular and Molecular Neurochemistry, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 125:27-47. [PMID: 11098652 DOI: 10.1016/s0079-6123(00)25005-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- L Descarries
- Département de pathologie, Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Canada.
| | | |
Collapse
|
44
|
Okumura T, Dobolyi A, Matsuyama K, Mori F, Mori S. The cat neostriatum: relative distribution of cholinergic neurons versus serotonergic fibers. Brain Dev 2000; 22 Suppl 1:S27-37. [PMID: 10984658 DOI: 10.1016/s0387-7604(00)00141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distribution of choline acetyltransferase (ChAT)-containing neurons and serotonin (5-HT)-containing nerve fibers in the cat neostriatum was investigated by use of immunohistochemical techniques. Both ChAT- and 5-HT-staining techniques were applied to alternate brain sections, thereby allowing a precise comparison of the distribution pattern of ChAT-immunopositive cells (ChAT cells) and 5-HT-immunopositive fibers (5-HT fibers). In the neostriatum, ChAT cells were strongly stained throughout their cell bodies and proximal (first-order) dendrites. The majority of them were multipolar cells with a soma diameter of 20-50 microm (long axis)x10-30 microm (short axis). In the caudate nucleus, ChAT cells were evenly and diffusely distributed except for the dorsolateral region of its rostral half, in which latter region they were distributed in loosely formed clusters. In the rostral portion of the putamen, the density of ChAT-cell distribution was like that in the medial region of the caudate nucleus. In contrast, this distribution was more dense in the caudomedial region of the putamen, adjacent to the globus pallidus. 5-HT fibers in the neostriatum were dark-stained, of quite fine diameter (<0.6 microm), and they contained small, round varicosities (diameter, usually 0.5-1.0 microm, but some >1.0 microm). Such 5-HT fibers were distributed abundantly throughout the caudate nucleus and putamen. In the rostrocaudal portion of the caudate nucleus, their density was high in its dorsal and ventral components, and low in the middle component. Throughout the putamen, 5-HT fibers were distributed homogeneously in the mediolateral and dorsoventral directions. In the caudal portion of the putamen adjacent to the globus pallidus, the 5-HT fibers had a higher density while maintaining their homogenous distribution pattern. In the two main divisions of the striatum, the so-called 'patch' (acetylcholinesterase (AChE)-poor) and 'matrix' (AChE-rich) compartments, there was a near-even distribution of 5-HT fibers and terminals. The above results suggest that the 5-HT-dominated, raphe-striatal pathway is optimally arranged for modulating the activity of both the intrinsic and the projection neurons of the neostriatum.
Collapse
Affiliation(s)
- T Okumura
- Department of Biological Control System, National Institute for Physiological Sciences, Myodaiji, 444-8585, Okazaki, Japan
| | | | | | | | | |
Collapse
|
45
|
Lucas G, De Deurwaerdère P, Porras G, Spampinato U. Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 2000; 39:1984-95. [PMID: 10963742 DOI: 10.1016/s0028-3908(00)00020-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we use in vivo microdialysis to investigate the influence of endogenous serotonin (5-HT) on striatal dopamine (DA) and 5-hydroxyidoleacetic acid (5-HIAA) efflux in both basal and activated conditions. The selective serotonin reuptake inhibitors citalopram and fluoxetine were used to mobilize endogenous 5-HT. In halothane-anaesthetized rats, citalopram (5 mg/kg, i.p.), administered either alone or in combination with the 5-HT(1A) receptor antagonist WAY 100635 (0.1 mg/kg, s.c.), while reducing striatal 5-HIAA outflow (-25 and -15%, respectively), had no effect on basal DA output. When locally applied into the striatum, citalopram had no effect at 1 microM concentration, but enhanced DA release after its perfusion at 25 and 100 mircroM concentrations (+27% and +67%, respectively). However, the injection of the neurotoxin 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, failed to modify the effect of 25 microM citalopram. In freely-moving rats, the intrastriatal infusion of citalopram or fluoxetine (1 microM each), had no effect on its own, but significantly enhanced the increase in DA outflow induced by the subcutaneous administration of 0.01 mg/kg haloperidol (+31% and +30% for citalopram and fluoxetine, respectively). These findings indicate that, in the striatum, endogenous 5-HT has no influence on DA release under basal conditions, but positively modulates DA outflow when nigro-striatal DA transmission is activated.
Collapse
Affiliation(s)
- G Lucas
- Laboratoire de Neuropsychobiologie des Désadaptations, UMR-CNRS 5541, Université Victor Segalen Bordeaux 2, Boîte Postale 31, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
46
|
Bolaños CA, Trksak GH, Glatt SJ, Jackson D. Prenatal cocaine exposure increases serotonergic inhibition of electrically evoked acetylcholine release from rat striatal slices at adulthood. Synapse 2000; 36:1-11. [PMID: 10700021 DOI: 10.1002/(sici)1098-2396(200004)36:1<1::aid-syn1>3.0.co;2-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study tests the hypothesis that prenatal cocaine (pCOC) exposure (20 mg/kg, bidaily from embryonic days 15-21) modifies 5-HT(3) receptor regulation of electrically-evoked [(3)H]acetylcholine (ACh) overflow from adult male and female (proestrus, diestrus) rat striatal slices. Also, the influence of endogenous dopamine (DA) on serotonin (5-HT) regulation of ACh overflow was determined by assessing the effects alpha-methyl-para-tyrosine (AMPT) pretreatment or sulpiride. Phenylbiguanide (PBG, 5-HT(3) agonist) superfusion dose-dependently inhibited ACh overflow in all groups except the diestrus pCOC group in which there was an enhanced sensitivity to PBG. PBG (10, 30, and 60 microM) produced greater effects in the pCOC male than in the prenatal saline (pSAL) group. The pCOC male group also exhibited greater sensitivity to PBG (30 and 60 microM) than the pCOC proestrus group. PBG inhibition of ACh overflow was comparable in the pSAL male and female (proestrus) groups. PBG inhibition of ACh overflow was greater in the pCOC diestrus group than in the pCOC proestrus (10, 30, and 60 microM), the pSAL diestrus (10 and 30 microM), and the pCOC male (10 microM) conditions. In slices from untreated rats superfused with 30 microM PBG, AMPT pretreatment (68% DA loss) reduced inhibition of ACh overflow, and 1 microM sulpiride increased ACh overflow. ICS205-930 (5-HT(3) antagonist) reduced effectiveness of PBG indicating 5-HT(3) receptor specificity for PBG. In summary, pCOC exposure enhances modulatory effects of 5-HT (via 5-HT(3) receptors) on striatal ACh release in male and females rats and the inhibitory actions of 5-HT(3) receptors are mediated by DA.
Collapse
Affiliation(s)
- C A Bolaños
- Psychology Department (125 NI), Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
47
|
Rodríguez JJ, Garcia DR, Pickel VM. Subcellular distribution of 5-hydroxytryptamine2A and N-methyl-D-aspartate receptors within single neurons in rat motor and limbic striatum. J Comp Neurol 1999; 413:219-31. [PMID: 10524335 DOI: 10.1002/(sici)1096-9861(19991018)413:2<219::aid-cne4>3.0.co;2-f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dorsolateral caudate-putamen nucleus (CPN) and the nucleus accumbens (NAc) shell, respectively, are involved in many motor and limbic functions that are affected by activation of the 5-hydroxytryptamine2A receptor (5HT2AR) and the N-methyl-D-aspartate subtype of glutamate receptor (NMDAR). We examined the functional sites for 5HT2AR activation and potential interactions involving the NMDAR subunit NR1 (NMDAR1) within these striatal regions. For this examination, sequence-specific antipeptide antisera against these receptors were localized by electron microscopic dual-labeling immunocytochemistry in the rat brain. In the dorsolateral CPN and the NAc shell, the 5HT2AR-labeled profiles were mainly dendrites, but somata and axons were also immunoreactive. The neuronal somata contained round unindented nuclei that are typical of spiny striatal neurons, although few dendritic spines were 5HT2AR immunolabeled. In all neuronal profiles, the 5HT2AR labeling was primarily associated with cytoplasmic organelles and more rarely was localized to synaptic or nonsynaptic plasma membranes. Colocalization of 5HT2AR and NMDAR1 was seen primarily in somata and dendrites. Significantly greter numbers of 5HT2AR- or 5HT2AR- and NMDAR1-containing dendrites were seen in the dorsolateral CPN than in the NAc shell. As compared with 5HT2AR, NMDAR1 labeling was more often observed in dendritic spines, and these were also more numerous in the CPN. These results indicate that 5HT2A and NMDA receptors are coexpressed but differentially targeted in single spiny striatal neurons and are likely to play a major role in control of motor functions involving the dorsolateral CPN.
Collapse
Affiliation(s)
- J J Rodríguez
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
48
|
Grkovic I, Edwards SL, Murphy SM, Anderson CR. Chemically distinct preganglionic inputs to iris-projecting postganglionic neurons in the rat: A light and electron microscopic study. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991004)412:4<606::aid-cne3>3.0.co;2-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
De Deurwaerdère P, Spampinato U. Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 1999; 73:1033-42. [PMID: 10461892 DOI: 10.1046/j.1471-4159.1999.0731033.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Antipsychotic Agents/pharmacology
- Chromatography, High Pressure Liquid
- Dopamine/metabolism
- Electric Stimulation
- Hydroxyindoleacetic Acid/metabolism
- Male
- Microdialysis
- Neostriatum/metabolism
- Nucleus Accumbens/metabolism
- Raphe Nuclei/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2B
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Ritanserin/pharmacology
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- P De Deurwaerdère
- Laboratoire de Neuropsychobiologie des Désadaptations, UMR CNRS 5541-Université Victor Segalen Bordeaux 2, France
| | | |
Collapse
|
50
|
Kachidian P, Masson J, Aïdouni Z, Gaspar P, Hamon M, El Mestikawy S, Kerkerian-Le Goff L. The "orphan" Na+/Cl(-)-dependent transporter, Rxt1, is primarily localized within nerve endings of cortical origin in the rat striatum. J Neurochem 1999; 73:623-32. [PMID: 10428058 DOI: 10.1046/j.1471-4159.1999.0730623.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that the striatum expresses very low levels of Na+/Cl(-)-dependent "orphan" transporter Rxt1 transcripts but contains high levels of protein. This study investigated the origin of Rxt1 expression in rat striatum. Striatal Rxt1 contents assessed by immunocytochemistry or western blotting were found to be significantly reduced after corticostriatal denervation but not after striatal or thalamic lesion with kainic acid or selective 6-hydroxydopamine-induced nigrostriatal deafferentation. Corticostriatal neurons retrogradely labeled by intrastriatal fluorogold injections were shown to express Rxt1 mRNA. Combination of anterograde biotin-dextran amine labeling of the corticostriatal pathway with Rxt1 immunogold detection at the ultrastructural level demonstrated the presence of Rxt1 in about one-third of the corticostriatal synaptic terminals and in numerous unidentified synaptic terminals. All the Rxt1-positive terminals formed asymmetrical contacts on spines. These data provide evidence that striatal Rxt1 immunoreactivity is mainly of extrinsic origin and more specifically associated with the corticostriatal pathway. Rxt1 appears as a selective presynaptic marker of synapses formed by presumably excitatory amino acid afferents, but it segregates a subclass of these synapses, thereby revealing a functional heterogeneity among excitatory amino acid systems.
Collapse
|