1
|
Morgenstern NA, Esposito MS. The Basal Ganglia and Mesencephalic Locomotor Region Connectivity Matrix. Curr Neuropharmacol 2024; 22:1454-1472. [PMID: 37559244 PMCID: PMC11097982 DOI: 10.2174/1570159x21666230809112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually reciprocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies revealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in addition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations located in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, forelimb- related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework considering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.
Collapse
Affiliation(s)
- Nicolás A. Morgenstern
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Instituto De Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Maria S. Esposito
- Department of Medical Physics, Centro Atomico Bariloche, CNEA, CONICET, Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
2
|
Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, Rodrigues AJ. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun 2019; 10:4138. [PMID: 31515512 PMCID: PMC6742663 DOI: 10.1038/s41467-019-11557-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nivaldo A P Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| |
Collapse
|
3
|
Vitale F, Capozzo A, Mazzone P, Scarnati E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiol Dis 2019. [DOI: 10.1016/j.nbd.2018.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 2014; 34:4509-18. [PMID: 24671996 PMCID: PMC3965779 DOI: 10.1523/jneurosci.5071-13.2014] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/24/2014] [Accepted: 02/15/2014] [Indexed: 02/01/2023] Open
Abstract
Cholinergic transmission in the striatal complex is critical for the modulation of the activity of local microcircuits and dopamine release. Release of acetylcholine has been considered to originate exclusively from a subtype of striatal interneuron that provides widespread innervation of the striatum. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental (LDT) nuclei indirectly influence the activity of the dorsal striatum and nucleus accumbens through their innervation of dopamine and thalamic neurons, which in turn converge at the same striatal levels. Here we show that cholinergic neurons in the brainstem also provide a direct innervation of the striatal complex. By the expression of fluorescent proteins in choline acetyltransferase (ChAT)::Cre(+) transgenic rats, we selectively labeled cholinergic neurons in the rostral PPN, caudal PPN, and LDT. We show that cholinergic neurons topographically innervate wide areas of the striatal complex: rostral PPN preferentially innervates the dorsolateral striatum, and LDT preferentially innervates the medial striatum and nucleus accumbens core in which they principally form asymmetric synapses. Retrograde labeling combined with immunohistochemistry in wild-type rats confirmed the topography and cholinergic nature of the projection. Furthermore, transynaptic gene activation and conventional double retrograde labeling suggest that LDT neurons that innervate the nucleus accumbens also send collaterals to the thalamus and the dopaminergic midbrain, thus providing both direct and indirect projections, to the striatal complex. The differential activity of cholinergic interneurons and cholinergic neurons of the brainstem during reward-related paradigms suggest that the two systems play different but complementary roles in the processing of information in the striatum.
Collapse
Affiliation(s)
- Daniel Dautan
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom
- School of Psychology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Icnelia Huerta-Ocampo
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom
| | - Ilana B. Witten
- Princeton Neuroscience Institute, Princeton New Jersey 08540, and
| | - Karl Deisseroth
- Department of Psychiatry, Stanford University, Stanford, California 94305
| | - J. Paul Bolam
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom
| | - Todor Gerdjikov
- School of Psychology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Juan Mena-Segovia
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom
| |
Collapse
|
5
|
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res 2011; 221:412-23. [PMID: 21129408 PMCID: PMC3075367 DOI: 10.1016/j.bbr.2010.11.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
Abstract
The striatum is one of the major forebrain regions that strongly expresses muscarinic and nicotinic cholinergic receptors. This article reviews the current knowledge and our new findings about the striatal cholinoceptive organization and its role in a variety of cognitive functions. Pharmacological and genetic manipulations have indicated that the cholinergic and dopaminergic system in the striatum modulate each other's function. In addition to modulating the dopaminergic system, nicotinic cholinergic receptors facilitate GABA release, whereas muscarinic receptors attenuate GABA release. The striatal cholinergic system has also been implicated in various cognitive functions including procedural learning and intradimensional set shifting. Together, these data indicate that the cholinergic system in the striatum is involved in a diverse set of cognitive functions through interactions with other neurotransmitter systems including the dopaminergic and GABAergic systems.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, 433 S University Avenue, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
6
|
Volz TJ, Farnsworth SJ, Rowley SD, Hanson GR, Fleckenstein AE. Methylphenidate-induced increases in vesicular dopamine sequestration and dopamine release in the striatum: the role of muscarinic and dopamine D2 receptors. J Pharmacol Exp Ther 2008; 327:161-7. [PMID: 18591219 PMCID: PMC2574590 DOI: 10.1124/jpet.108.139386] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate (MPD) administration alters the subcellular distribution of vesicular monoamine transporter-2 (VMAT-2)-containing vesicles in rat striatum. This report reveals previously undescribed pharmacological features of MPD by elucidating its receptor-mediated effects on VMAT-2-containing vesicles that cofractionate with synaptosomal membranes after osmotic lysis (referred to herein as membrane-associated vesicles) and on striatal dopamine (DA) release. MPD administration increased DA transport into, and decreased the VMAT-2 immunoreactivity of, the membrane-associated vesicle subcellular fraction. These effects were mimicked by the D2 receptor agonist quinpirole and blocked by the D2 receptor antagonist eticlopride. Both MPD and quinpirole increased vesicular DA content. However, MPD increased, whereas quinpirole decreased, K(+)-stimulated DA release from striatal suspensions. Like MPD, the muscarinic receptor agonist, oxotremorine, increased K(+)-stimulated DA release. Both eticlopride and the muscarinic receptor antagonist scopolamine blocked MPD-induced increases in K(+)-stimulated DA release, whereas the N-methyl-d-aspartate receptor antagonist (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) was without effect. This suggests that D2 receptors mediate both the MPD-induced redistribution of vesicles away from synaptosomal membranes and the MPD-induced up-regulation of vesicles remaining at the membrane. This results in a redistribution of DA within the striatum from the cytoplasm into vesicles, leading to increased DA release. However, D2 receptor activation alone is not sufficient to mediate the MPD-induced increases in striatal DA release because muscarinic receptor activation is also required. These novel findings provide insight into the mechanism of action of MPD, regulation of DA sequestration/release, and treatment of disorders affecting DA disposition, including attention-deficit hyperactivity disorder, substance abuse, and Parkinson's disease.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
7
|
Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. BRAIN RESEARCH REVIEWS 2008; 58:265-71. [PMID: 18343506 DOI: 10.1016/j.brainresrev.2008.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
Dopamine neurons in the midbrain respond to behavioral events and environmental stimuli. Their different patterns of activation in turn modulate the activity of forebrain regions and modulate the expression of selective behavioral responses. However, their activity is closely dependent on the cholinergic systems in the brainstem. Ascending cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei target dopaminergic neurons in the substantia nigra compacta and ventral tegmental area following a topographical gradient. These projections, by means of the activation of acetylcholine receptors, influence the firing of dopamine neurons and therefore their responsiveness, ultimately affecting the release of dopamine in their forebrain targets. Brainstem cholinergic neurons are thus in a position to critically influence the activity of dopaminergic neurons in the midbrain, and thereby have a critical role in the expression of behavior.
Collapse
Affiliation(s)
- J Mena-Segovia
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | |
Collapse
|
8
|
Winn P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies. J Neurol Sci 2006; 248:234-50. [PMID: 16765383 DOI: 10.1016/j.jns.2006.05.036] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review presents the hypothesis that the best way to consider the pedunculopontine tegmental nucleus is by analogy with the substantia nigra. The substantia nigra contains two main compartments: the pars compacta and the pars reticulata. The former contains dopamine neurons that project widely within the basal ganglia while the latter is in receipt of corticostriatal output. Similarly, the PPTg contains the Ch5 acetylcholine containing neurons that project to the thalamus and corticostriatal systems (notably the pars compacta of substantia nigra and the subthalamic nucleus) while the non-cholinergic neurons of the pedunculopontine are in receipt of corticostriatal output. Assessment of the location, composition and connections of the pedunculopontine tegmental nucleus is made to support the hypothesis that it has structural similarities with substantia nigra. Assessment of the motor, sensory and cognitive functions of the pedunculopontine is also made, suggesting functional similarities exist also. Having a clear model of pedunculopontine structure and function is a matter of some importance. It is clearly involved in Parkinson's disease and could potentially be a target for therapeutic intervention. If this is to be realized it will be best to have as clear an understanding as possible of pedunculopontine structure and function in order to maximize positive benefits.
Collapse
Affiliation(s)
- Philip Winn
- School of Psychology, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife KY16 9JP, United Kingdom.
| |
Collapse
|
9
|
Jeltsch H, Lazarus C, Cosquer B, Galani R, Cassel JC. No facilitation of amphetamine- or cocaine-induced hyperactivity in adult rats after various 192 IgG-saporin lesions in the basal forebrain. Brain Res 2004; 1029:259-71. [PMID: 15542081 DOI: 10.1016/j.brainres.2004.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/25/2022]
Abstract
Lesions of basal forebrain cholinergic neurons by intracerebroventricular (i.c.v.) injections of 192 IgG-saporin increased the locomotor response to 0.5 and 1.5 mg/kg of D-amphetamine in adult rats [A. Mattsson, S.O. Ogren, L. Olson, Facilitation of dopamine_mediated locomotor activity in adult rats following cholinergic denervation, Exp Neurol. 174 (2002) 96-108.]. In the present study, adult male rats were subjected to bilateral injections of 192 IgG-saporin either into the septum (Sp), the nucleus basalis magnocellularis (Nbm), both structures (SpNbm) or i.c.v. Locomotor activity was assessed in the home cage 23 days after surgery, and, subsequently, thrice after an intraperitoneal injection of D-amphetamine (1 mg/kg) and twice after an injection of cocaine (15 mg/kg). Analysis of AChE-stained material showed that Sp lesions induced preferentially hippocampal denervation, Nbm lesions induced preferentially cortical denervation, while both SpNbm and i.c.v. lesions deprived the hippocampus and the cortex of almost all AChE-positive reaction products. The spontaneous and drug-induced locomotor activity of all lesioned rats did not differ significantly from that of control rats, except in rats subjected to i.c.v. injections, in which the locomotor response was significantly increased after the second administration of cocaine. In addition, in Nbm and SpNbm rats, the locomotor reaction to cocaine was weaker right after the second injection. The present results do not confirm the report by Mattsson et al. on the potentiation of amphetamine-induced locomotion by i.c.v. injections of 192 IgG-saporin, but suggest that cocaine-induced locomotion can be increased by such lesions and, to some respect, attenuated by cholinergic damage in the Nbm.
Collapse
Affiliation(s)
- Hélène Jeltsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 Université Louis Pasteur/CNRS IFR 37 Neurosciences 12, rue Goethe 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
10
|
Wirtshafter D. Role of dopamine D1 receptors in the striatal and cortical fos expression induced by the muscarinic agonist pilocarpine. Eur J Pharmacol 2004; 488:85-90. [PMID: 15044039 DOI: 10.1016/j.ejphar.2004.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/20/2004] [Accepted: 02/10/2004] [Indexed: 11/24/2022]
Abstract
Injections of the muscarinic cholinergic receptor agonist pilocarpine (50 mg/kg) induced pronounced expression of the immediate early gene (IEG) product Fos in the striatum and cortex of rats. Pretreatment with the dopamine D1 receptor antagonist 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-H-3-benzazepine hydrochloride (SCH-23390; 0.2-2.0 mg/kg) drastically attenuated the pilocarpine response in the striatum, but had no effect in the cortex. In contrast, the muscarinic receptor antagonist scopolamine (0.75-3.00 mg/kg) virtually abolished the Fos response at both sites. These results suggest that stimulation of dopamine D1 receptors may mediate the effects of muscarinic agonists on Fos expression in the striatum, but not the cortex.
Collapse
Affiliation(s)
- David Wirtshafter
- Laboratory of Integrative Neuroscience, Department of Psychology, University of Illinois at Chicago, 1007 West Harrison, Chicago, IL 60607-7137, USA.
| |
Collapse
|
11
|
Alderson HL, Faulconbridge LFH, Gregory LP, Latimer MP, Winn P. Behavioural sensitisation to repeated d-amphetamine: effects of excitotoxic lesions of the pedunculopontine tegmental nucleus. Neuroscience 2003; 118:311-5. [PMID: 12699767 DOI: 10.1016/s0306-4522(03)00152-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) interacts with anatomical systems thought to be involved in mediating sensitisation of the locomotor response to repeated d-amphetamine. The PPTg has direct and indirect connections with the nucleus accumbens and prefrontal cortex, and also influences midbrain dopamine activity through direct projections to substantia nigra and ventral tegmental area. In this experiment, the development of behavioural sensitisation to the locomotor stimulant effects of repeated d-amphetamine was examined in rats bearing excitotoxic lesions of the PPTg, and sham-lesioned controls. Rats were given repeated d-amphetamine (1.5 mg/kg i.p.) treatment in an on-off procedure, with saline and d-amphetamine given on alternate days, such that rats received a total of seven d-amphetamine and seven saline treatments. Locomotor responses were measured in photocell cages. On the first day of d-amphetamine treatment, there was no difference between excitotoxin and sham-lesioned rats. Development of sensitisation to the locomotor stimulant effects of d-amphetamine was delayed in PPTg-lesioned rats, relative to the sham-lesioned control rats. However, there was no difference between lesion and control groups in the locomotion seen on saline-treatment days. These data suggest that the PPTg is involved in the development of behavioural sensitisation to the locomotor stimulant effects of repeated d-amphetamine, and indicate that traditional striatal circuitry models of the mechanisms underlying sensitisation should be extended to include the PPTg.
Collapse
Affiliation(s)
- H L Alderson
- School of Psychology, University of St Andrews, St Andrews, Fife, KY16 9JU, UK.
| | | | | | | | | |
Collapse
|
12
|
Steiniger B, Kretschmer BD. Glutamate and GABA modulate dopamine in the pedunculopontine tegmental nucleus. Exp Brain Res 2003; 149:422-30. [PMID: 12677322 DOI: 10.1007/s00221-003-1382-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 12/23/2002] [Indexed: 12/18/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABA(B) receptors. Stimulation of the GABA(B) receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 microM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABA(B) receptor agonist baclofen (100 and 200 microM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABA(B) receptor stimulation seems to be behaviorally relevant.
Collapse
Affiliation(s)
- Björn Steiniger
- Department of Neuropharmacology, University of Tübingen, Mohlstr 54/1, 72074 Tübingen, Germany.
| | | |
Collapse
|
13
|
Miller AD, Forster GL, Metcalf KM, Blaha CD. Excitotoxic lesions of the pedunculopontine differentially mediate morphine- and d-amphetamine-evoked striatal dopamine efflux and behaviors. Neuroscience 2002; 111:351-62. [PMID: 11983320 DOI: 10.1016/s0306-4522(01)00595-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholinergic and glutamatergic cells in the pedunculopontine tegmental nucleus are a principal source of excitatory input to midbrain dopamine neurons projecting to the striatum. Disruption of these brainstem inputs has been shown to respectively enhance and reduce psychostimulant and opiate self-administration in rats. In the present study, d-amphetamine- and morphine-induced behaviors and dorsal striatal dopamine efflux, measured using in vivo chronoamperometry, were investigated 21 days after bilateral excitotoxic (ibotenate) lesions of the pedunculopontine in rats. Compared to sham-operated controls, pedunculopontine lesions enhanced stereotyped behaviors induced by a challenge injection of d-amphetamine (1.5 mg/kg, i.p.) to an extent that markedly interfered with the expression of locomotor behavior. A significant augmentation in striatal dopamine efflux was also observed in these lesioned animals under urethane anesthesia in response to a similar challenge injection of d-amphetamine (1.5 mg/kg, i.v.) 2 days following these behavioral observations. In direct contrast, pedunculopontine lesions in a separate group of rats significantly attenuated morphine-induced (2 mg/kg, i.p.) stereotyped activity, although no significant differences were observed in locomotion compared to sham-operated animals. Under urethane anesthesia, these lesions attenuated striatal dopamine efflux evoked by a similar challenge injection of morphine (2 mg/kg, i.v.). These findings indicate that the pedunculopontine differentially mediates the pharmacological actions of two diverse drugs of abuse on striatal dopamine neurotransmission and resultant behaviors. These results also imply that the pedunculopontine tegmental nucleus may serve as a major striatal-motor interface in the processing of salient environmental stimuli, and their incentive rewarding impact on dopamine-mediated behavioral responses.
Collapse
Affiliation(s)
- A D Miller
- Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
14
|
Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 2001; 98:15312-7. [PMID: 11752469 PMCID: PMC65026 DOI: 10.1073/pnas.261583798] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acetylcholine serves an important modulatory role in the central nervous system. Pharmacological evidence has suggested that cholinergic activity can modulate central dopaminergic transmission; however, the nature of this interaction and the receptors involved remain undefined. In this study we have generated mice lacking the M1 muscarinic acetylcholine receptor and examined the effects of M1 deletion on dopaminergic transmission and locomotor behavior. We report that M1 deficiency leads to elevated dopaminergic transmission in the striatum and significantly increased locomotor activity. M1-deficient mice also have an increased response to the stimulatory effects of amphetamine. Our results provide direct evidence for regulation of dopaminergic transmission by the M1 receptor and are consistent with the idea that M1 dysfunction could be a contributing factor in psychiatric disorders in which altered dopaminergic transmission has been implicated.
Collapse
Affiliation(s)
- D J Gerber
- Howard Hughes Medical Institute, RIKEN-Massachusetts Institute of Technology Neuroscience Research Center, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
15
|
Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 2000; 98:97-110. [PMID: 10858616 DOI: 10.1016/s0306-4522(00)00099-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To reveal the somatotopy of the pedunculopontine tegmental nucleus that functions as a brainstem motor center, we examined the distribution patterns of corticotegmental inputs from the somatic motor areas of the frontal lobe in the macaque monkey. Based on the somatotopical map prepared by intracortical microstimulation, injections of the anterograde tracers, biotinylated dextran amine and wheat germ agglutinin-conjugated horseradish peroxidase, were made into the following motor-related areas: the primary motor cortex, the supplementary and presupplementary motor areas, the dorsal and ventral divisions of the premotor cortex, and the frontal eye field. Data obtained from the present experiments were as follows: (i) Corticotegmental inputs from orofacial, forelimb, and hindlimb representations of the primary motor cortex tended to be arranged orderly from medial to lateral in the pedunculopontine tegmental nucleus. However, the distribution areas of these inputs considerably overlapped; (ii) The major input zones from distal representations of the forelimb and hindlimb regions of the primary motor cortex were located medial to those from their proximal representations, although there was a substantial overlap between the distribution areas of distal versus proximal limb inputs; (iii) The main terminal zones from the forelimb regions of the primary motor cortex, the supplementary and presupplementary motor areas, and the dorsal and ventral divisions of the premotor cortex appeared to overlap largely in the mediolaterally middle aspect of the pedunculopontine tegmental nucleus; and (iv) Corticotegmental input from the frontal eye field was scattered over the pedunculopontine tegmental nucleus.Thus, the present results indicate that the pedunculopontine tegmental nucleus is likely to receive partly separate but essentially convergent cortical inputs not only from multiple motor-related areas representing the same body part, but also from multiple regions representing diverse body parts. This suggests that somatotopical representations are intermingled rather than segregated in the pedunculopontine tegmental nucleus.
Collapse
Affiliation(s)
- M Matsumura
- Department of Neurosurgery, Gunma University School of Medicine, 371-8513, Maebashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Takada M, Matsumura M, Kojima J, Yamaji Y, Inase M, Tokuno H, Nambu A, Imai H. Protection against dopaminergic nigrostriatal cell death by excitatory input ablation. Eur J Neurosci 2000; 12:1771-80. [PMID: 10792454 DOI: 10.1046/j.1460-9568.2000.00062.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of enhanced glutamatergic neurotransmission in the basal ganglia and related structures has recently been highlighted in the development of Parkinson's disease. The pedunculopontine tegmental nucleus (PPN) is the major origin of excitatory, glutamatergic input to dopaminergic nigrostriatal neurons of which degeneration is well known to cause Parkinson's disease. Based on the concept that an excitatory mechanism mediated by glutamatergic neurotransmission underlies the pathogenesis of neurodegenerative disorders, we made an attempt to test the hypothesis that removal of the glutamatergic input to the nigrostriatal neurons by PPN lesions might prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. The PPN was lesioned unilaterally with microinjection of kainic acid, and, then, MPTP was administered systemically. In these monkeys, the degree of parkinsonian motor signs was behaviourally evaluated, and the histological changes in the dopaminergic nigrostriatal system were analysed by means of tyrosine hydroxylase immunohistochemistry. The present results revealed that nigrostriatal cell loss and parkinsonian motor deficits were largely attenuated in the MPTP-treated monkey group whose PPN had been lesioned, compared with the control, MPTP-treated monkey group with the PPN intact. This clearly indicates that the onset of MPTP neurotoxicity is suppressed or delayed by experimental ablation of the glutamatergic input to the nigrostriatal neurons. Such a protective action of excitatory input ablation against nigrostriatal cell death defines evidence that nigral excitation driven by the PPN may be implicated in the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- M Takada
- Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Winn P. Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: a short theoretical review. Brain Res Bull 1998; 47:551-63. [PMID: 10078613 DOI: 10.1016/s0361-9230(98)00136-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this review, it is argued that the consequence of bilateral damage to the pedunculopontine tegmental nucleus (PPTg) in experimental animals is the production of a form of frontal syndrome. Frontal syndrome is a term used to describe the behavioural consequences of damage to the frontal lobes in human patients. These behavioural changes can be classified as disinhibition of behaviour (a release of behavioural control), the production of inappropriate behaviour (which in patients can be either inappropriate actions or verbal behaviour), and the production of perseverative behaviour (the maintenance of an action beyond the point at which it should have been terminated). The psychological changes which underlie these behavioural changes are thought to involve executive functions, which include such things as the prospective planning of sequences of actions, attentional shifting and working memory. In this review, I attempt to demonstrate two things: first, that there are significant anatomical connections from frontostriatal systems to the PPTg. The motor cortex projects directly to the PPTg while the prefrontal cortex contacts it via striatal circuitry, forming clear routes by which the frontal lobes can communicate with the PPTg. Second, having established the existence of connections between frontostriatal systems and the PPTg, behavioural data are described. Experimental animals bearing bilateral lesions of the PPTg have been examined in a wide variety of tasks. Animals bearing such lesions are not impaired in basic processes of feeding, drinking, locomotion, or grooming and simple observation of lesioned rats' normal behaviour reveals no obvious gross impairment in function. However, the results of more subtle tests reveal a wide variety of deficits in various tasks. The outcome of these experiments are in many ways contradictory, but in the vast majority of cases, the changes can be described as involving disinhibition of behaviour, the release of inappropriate behaviour, and the production of perseverative behaviour. Anatomical and behavioural data support the conclusion that there are functional connections between frontal systems and the PPTg. This review also discusses what psychological processes might be served by such connections.
Collapse
Affiliation(s)
- P Winn
- School of Psychology, University of St. Andrews, Fife, UK.
| |
Collapse
|
18
|
Bezard E, Gross CE. Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Prog Neurobiol 1998; 55:93-116. [PMID: 9618745 DOI: 10.1016/s0301-0082(98)00006-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper provides an overview of the compensatory mechanisms which come into action during experimental and human parkinsonism. The intrinsic properties of the dopaminergic neurones of the substantia nigra pars compacta (SNc) which degenerate during Parkinson's disease are described in detail. It is generally considered that the nigrostriatal pathway is principally responsible for the compensatory preservation of dopaminergic function. It is also becoming clear that the morphological characteristics of dopaminergic neurones and the dual character, synaptic and asynaptic, of striatal dopaminergic innervation engender two modes of transmission, wiring and volume, and that both these modes play a role in the preservation of dopaminergic function. The plasticity of the dopamine neurones, extrinsic or intrinsic to the striatum, can thus be regarded as another compensatory mechanism. Recent anatomical and electrophysiological studies have shown that the SNc receives both glutamatergic and cholinergic inputs. The dynamic role this innervation plays in compensatory mechanisms in the course of the disease is explained and discussed. Recent developments in the field of compensatory mechanisms speak for the urgence to develop a valid chronic model of Parkinson's disease, integrating all the clinical features, even resting tremor, and illustrating the gradual evolution of nigral degeneration observed in human Parkinson's disease. Only a dynamic approach to the physiopathological study of compensatory mechanisms in the basal ganglia will be capable of elucidating these complex questions.
Collapse
Affiliation(s)
- E Bezard
- Laboratoire de Neurophysiologie, CNRS UMR 5543, Université de Bordeaux II, France.
| | | |
Collapse
|
19
|
Yeomans J, Baptista M. Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 1997; 57:915-21. [PMID: 9259024 DOI: 10.1016/s0091-3057(96)00467-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholinergic neurons of the pedunculopontine tegmental nucleus (Ch5) and laterodorsal tegmental nucleus (Ch6) monosynaptically activate dopamine neurons of the substantia nigra and ventral tegmental area (VTA) via nicotinic and muscarinic receptors. The nicotinic receptors near the VTA have been proposed to be important for nicotine self-administration in rats and for tobacco smoking in humans. Nicotinic and muscarinic blockers were microinjected into the VTA of rats trained to lever-press for lateral hypothalamic stimulation via an ipsilateral electrode. The competitive nicotinic blocker dihydro-beta-erythroidine (DH beta E; 5-60 micrograms) shifted rate-frequency curves to the right by a mean of 6-27% in a dose-related manner; the noncompetitive nicotinic blocker mecamylamine (10-300 micrograms) produced similar shifts of 7-21%. Atropine (30 micrograms) shifted the curves to the right by a mean of 82% in three of the sites tested with DH beta E. All blockers decreased maximum bar-pressing rates significantly in some sites when the shifts were large. Therefore, nicotinic receptors in the VTA make small contributions to the maintained rewarding effect of brain-stimulation reward in rats, but muscarinic receptors in the VTA appear to be more important.
Collapse
Affiliation(s)
- J Yeomans
- Department of Psychology, University of Toronto, Canada.
| | | |
Collapse
|
20
|
Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H. Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 1997; 226:111-4. [PMID: 9159502 DOI: 10.1016/s0304-3940(97)00254-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopaminergic nigrostriatal neurons, degeneration of which causes Parkinson's disease, are known to receive excitatory input almost exclusively from the pedunculopontine tegmental nucleus (PPN). We report here that excitotoxic lesions of the PPN produce abnormal motor signs relevant to hemiparkinsonism in the macaque monkey. Under the guidance of extracellular unit recordings, the electrophysiologically identified PPN was injected unilaterally with kainic acid. These PPN-lesioned monkeys exhibited mild to moderate levels of flexed posture and hypokinesia in the upper and lower limbs contralateral to the lesion. In most of the monkeys, such pathophysiological events were gradually improved and became stationary in 1-2 weeks. The hemiparkinsonian symptoms observed after PPN destruction might be ascribed to a decrease in nigrostriatal neuron activity due to excitatory input ablation.
Collapse
Affiliation(s)
- J Kojima
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chapman CA, Yeomans JS, Blaha CD, Blackburn JR. Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience 1997; 76:177-86. [PMID: 8971770 DOI: 10.1016/s0306-4522(96)00358-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cholinergic cells of the tegmental pedunculopontine nucleus monosynaptically excite dopaminergic neurons of the substantia nigra. In vivo electrochemical methods were used to monitor dorsal striatal dopamine efflux in awake rats following intraperitoneal scopolamine injections and following the direct application of scopolamine to the tegmental pedunculopontine nucleus. Systemic injections of scopolamine (1.0, 3.0 or 10.0 mg/kg) resulted in dose-related increases in peak striatal dopamine oxidation currents of between 1.1 and 2.0 nA. Increases began within 10-20 min after injection and peaked after 40-90 min. Unilateral microinjections of scopolamine into the tegmental pedunculopontine nucleus (10, 50 or 100 micrograms/0.5 microliter) resulted in dose-related increases in dopamine oxidation currents that peaked 60-90 min postinjection (2.9-5.0 nA). Carbachol (4.0 micrograms/0.5 microliter) injected unilaterally into the tegmental pedunculopontine nucleus 20 min before 100 micrograms tegmental pedunculopontine nucleus scopolamine, or injected bilaterally 20 min before 3.0 mg/kg systemic scopolamine, attenuated the increases produced by scopolamine alone. The carbachol preinjection tests suggest that the effects of both systemic and tegmental pedunculopontine nucleus scopolamine treatments are mediated largely by muscarinic receptors near the tegmental pedunculopontine nucleus. These findings are consistent with the proposal that enhanced activation of substantia nigra dopamine cells results from scopolamine-induced disinhibition of the tegemental pedunculopontine nucleus cholinergic cell group via blockade of their inhibitory autoreceptors.
Collapse
Affiliation(s)
- C A Chapman
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Hawkins CA, Greenfield SA. Comparison of the behavioural effects of infusion of carbachol and acetylcholinesterase into the rat substantia nigra. Pharmacol Biochem Behav 1996; 55:67-80. [PMID: 8870040 DOI: 10.1016/0091-3057(96)00050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been postulated for many years that acetylcholinesterase (AChE) may play a nonclassical role in the substantia nigra, unrelated to its ability to hydrolyse acetylcholine. In this study the behavioural effects of unilateral infusion of AChE and a cholinergic agonist, carbachol, were compared. Carbachol induced ipsiversive circling over a very short time scale (minutes), whereas AChE induced contraversive circling, but over a longer time course-10 days. Both agents showed selectivity of response within the substantia nigra: acetylcholinesterase was only effective when infused into the most rostral region of the substantia nigra and its effects were limited to the pars compacta. In contrast, carbachol had effects in both the pars compacta and reticulata, with a graded sensitivity to carbachol in the rostral/caudal plane; infusions into rostral regions induced high rates of circling compared to more caudal areas, suggesting that the cholinergic input to the substantia nigra is not homogenous, but greater in rostral regions. This disparity between the effects of carbachol and AChE would, therefore, suggest that AChE is not exerting its long-term behavioural actions via a cholinergic mechanism, both in terms of time course of the response and the areas within the substantia nigra sensitive to these agents.
Collapse
Affiliation(s)
- C A Hawkins
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
23
|
Góngora-Alfaro JL, Hernández-López S, Martínez-Fong D, Flores G, Aceves J. Circling behavior elicited by cholinergic transmission in the substantia nigra pars compacta: involvement of nicotinic and muscarinic receptors. Neuroscience 1996; 71:729-34. [PMID: 8867045 DOI: 10.1016/0306-4522(95)00485-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of cholinergic transmission within the substantia nigra pars compacta on circling behavior was assessed in male rats. Microinjection of physostigmine (6-37 nmol) into the caudal part of the substantia nigra pars compacta elicited a dose-dependent contralateral circling. The circling was inhibited 93 +/- 3% by the dopamine antagonist haloperidol (53 nmol) injected into the neostriatum 90 min before the injection of physostigmine (37 nmol) into the ipsilateral substantia nigra pars compacta. The effect of haloperidol was reversible, since the circling behavior was fully restored when physostigmine was applied to the same animals 24 h later. The circling was completely blocked when physostigmine (37 nmol) was applied simultaneously with the muscarinic M1 antagonist pirenzepine (2 nmol). The M2 antagonist AF-DX 116 (2 nmol) only partially blocked the circling induced by a lower dose of physostigmine (12 nmol). The nicotinic antagonist mecamylamine (5 nmol) also inhibited the circling, but only during the 5 min following co-injection of the drugs. These results indicate that endogenous acetylcholine stimulates muscarinic and nicotinic receptors of nigrostriatal dopaminergic neurons which, in turn, increase their firing rate and cause the circling behavior. We conclude that the pedunculopontine cholinergic neurons, which innervate the substantia nigra pars compacta, modulate the motor behavior by increasing the activity of dopaminergic nigrostriatal pathway.
Collapse
Affiliation(s)
- J L Góngora-Alfaro
- Laboratorio de Patología Experimental, Universidad Autónoma de Yucatán, México
| | | | | | | | | |
Collapse
|
24
|
Inglis WL, Winn P. The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 1995; 47:1-29. [PMID: 8570851 DOI: 10.1016/0301-0082(95)00013-l] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pedunculopontine tegmental nucleus (PPTg) contains a population of cholinergic neurons (the Ch5 group) and non-cholinergic neurons. There appears to be functional interdigitation between these two groups, which both have extensive projections. The principal ascending connections are with thalamic nuclei and structures associated with the striatum, including the substantial nigra pars compacta. The descending connections are with a variety of nuclei in the pons, medulla and spinal cord, concerned with autonomic and motor functions. In the past, emphasis has been laid on the role of the PPTg in locomotion and behavioural state control. In this review, we emphasise the role of the PPTg in processing outputs from the striatum. The non-cholinergic neurons receive outflow from both dorsal and vental striatum, and lesions of the PPTg disrupt behaviour associated with each of these. Our review indicates that the PPTg is less concerned with the induction of locomotion and more concerned with relating reinforcement (information about which comes from the ventral striatum) with motor output from the dorsal striatum. The conclusions we draw are: (1) the PPTg is an outflow system for the striatum, but also forms a 'subsidiary circuit', returning information to striatal circuitry; in this, the PPTg has an anatomical organisation that resembles that of the substantia nigra. (2) As well as a role in the mediation of REM sleep, cholinergic PPTg neurons have an important role in the waking state, providing feedback into the thalamus and striatum. (3) The precise function of the computations performed on striatal outflow by the PPTg is uncertain. We discuss whether this function is complementary (parallel to other routes of striatal outflow), integrative (modifying other forms of striatal outflow) or both.
Collapse
Affiliation(s)
- W L Inglis
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
25
|
Anglade P, Tsuji S, Agid Y, Hirsch EC. Neuronal plasticity and Parkinson disease. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 24:251-5. [PMID: 7632329 DOI: 10.1007/bf02962152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Anglade
- INSERM U289, Hopital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
26
|
Anglade P, Tsuji S, Javoy-Agid F, Agid Y, Hirsch EC. Plasticity of nerve afferents to nigrostriatal neurons in Parkinson's disease. Ann Neurol 1995; 37:265-72. [PMID: 7847868 DOI: 10.1002/ana.410370219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical symptoms in Parkinson's disease do not appear until almost total depletion of dopamine has occurred in the striatum, suggesting the existence of compensatory mechanisms to offset the loss of nigrostriatal dopaminergic neurons. This compensation has been attributed mainly to an increased turnover of dopamine in the remaining dopaminergic neurons. Besides this biochemical phenomenon intrinsic to dopaminergic neurons, we tested whether morphological changes in the nerve afferents to the dopaminergic neurons could participate in these compensatory mechanisms. The afferents to the dendrites of dopaminergic neurons were analyzed ultrastructurally in the substantia nigra of parkinsonian patients and matched controls, using simultaneous histochemical detection of acetylcholine-like cation and tyrosine hydroxylase. The size of acetylcholine-like cation-containing terminals in contact with dopaminergic dendrites increased significantly by 38% in the substantia nigra of parkinsonian patients; whereas their number per section of dopaminergic dendrite showed an increase of 60%, although not reaching statistical significance. The number of the terminals devoid of acetylcholine-like cation per section of dopaminergic dendrite decreased significantly by 52% in the substantia nigra of parkinsonian patients. These results suggest (1) a plasticity of excitatory cholinergic neurons targeting nigral dopaminergic neurons and (2) an involution of noncholinergic nerve terminals, mostly originating from inhibitory nigral, pallidal, and striatal GABAergic neurons. The findings provide evidence of a capacity for neuronal plasticity in the elderly human brain, even in the presence of neurodegenerative disorders.
Collapse
Affiliation(s)
- P Anglade
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology. Neuroscience 1995; 64:385-95. [PMID: 7700528 DOI: 10.1016/0306-4522(94)00410-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-affinity nicotine binding, considered to primarily reflect the presence of CNS alpha 4 beta 2 nicotinic receptor subunits, was examined autoradiographically in brain regions most severely affected by Alzheimer and Parkinson types of pathology. In the midbrain, the high density of binding associated with the pars compacta of the substantia nigra was extensively reduced (65-75%, particularly in the lateral portion) in both Lewy body dementia and Parkinson's disease. Since loss of dopaminergic neurons in Lewy body dementia was only moderate (40%), loss or down-regulation of the nicotinic receptor may precede degeneration of dopaminergic neurons in this region. In the dorsolateral tegmentum, where diffuse cholinergic perikarya are located, nicotine binding was highly significantly decreased in both Lewy body dementia and Parkinson's disease with almost no overlap between the normal and disease groups, indicative of a major pathological involvement in or around the pedunculopontine cholinergic neurons. In the hippocampus, binding was decreased around the granular layer in Lewy body dementia and Alzheimer's disease, although unchanged in the stratum lacunosum moleculare, where binding was relatively higher. Dense bands of receptor binding in the presubiculum and parahippocampal gyrus--areas of highest binding in human cortex--were diminished in Alzheimer's disease but not Lewy body dementia. In temporal neocortex there were reductions in Alzheimer's disease throughout the cortical layers but in Lewy body dementia only in lower layers, in which Lewy bodies are concentrated. Abnormalities of the nicotinic receptor in the diseases examined appear to be closely associated with primary histopathological changes: dopaminergic cell loss in Parkinson's disease and Lewy body dementia, amyloid plaques and tangles in subicular and entorhinal areas in Alzheimer's disease. Loss or down-regulation of the receptor may precede neurodegeneration.
Collapse
Affiliation(s)
- E K Perry
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hernández-López S, Góngora-Alfaro JL, Martínez-Fong D, Rosales MG, Aceves J. Cholinergic stimulation of rostral and caudal substantia nigra pars compacta produces opposite effects on circling behavior and striatal dopamine release measured by brain microdialysis. Neuroscience 1994; 62:441-7. [PMID: 7830890 DOI: 10.1016/0306-4522(94)90378-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Turning in circles is among the behaviors elicited by unilateral cholinergic stimulation of the substantia nigra. Recent studies have shown that microinjection of cholinergic agonists into the substantia nigra pars compacta increases dopamine release and turnover in the striatum of anesthetized rats [Hernández-López et al. (1992) Brain. Res. 598, 114-120; Blaha and Winn (1993) J. Neurosci, 13, 1035-1044]. In this study, the relationship between circling behavior and striatal dopamine release following cholinergic stimulation of the substantia nigra pars compacta neurons was assessed by brain microdialysis in awake rats. The results indicate that cholinergic stimulation of the substantia nigra pars compacta with the mixed nicotinic-muscarinic cholinergic agonist carbachol modulates striatal dopamine release, and this effect is accompanied by circling behavior and stereotypies. Microinjection of carbachol (109 nmol) in the caudal portions of the substantia nigra pars compacta induced contralateral circling associated with an increase of dopamine release in neostriatum. On the contrary, ipsilateral circling and reduction of striatal dopamine release was elicited when the same dose of the drug was applied in the rostral portions of the substantia nigra pars compacta. The above findings are in accordance with recent electrophysiological studies suggesting the existence of sub-populations of nigrostriatal dopaminergic neurons, and indicate that the substantia nigra pars compacta is functionally compartmentalized. We conclude that the cholinergic input to the substantia nigra pars compacta could modulate the motor behavior through regulating the firing rate of nigrostriatal dopaminergic neurons and dopamine release in the neostriatum.
Collapse
Affiliation(s)
- S Hernández-López
- Departamento de Fisiología, Biofisica y Neurociencias, Centro de Investigación y Estudios Avanzados del I.P.N., México, D.F
| | | | | | | | | |
Collapse
|
29
|
Männistö PT, Tuomainen P, Kutepova O, Borisenko SA, Zolotov N, Voronina T. Effects of bilateral cholinotoxin infusions on the behavior and brain biochemistry of the rats. Pharmacol Biochem Behav 1994; 49:33-40. [PMID: 7816887 DOI: 10.1016/0091-3057(94)90453-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined behavioral and biochemical specificity and the general usefulness of the proposed rat model of Alzheimer's disease. Bilateral infusions of ethylcholine aziridinium (AF64A) into the basal magnocellular nuclei caused a deterioration of learning in passive and active avoidance tests, increased emotional reactivity, and decreased motoric activity. Choline acetyltransferase activity was decreased by 22% in the frontal cortex but increased by 8-10% in the hippocampus and hypothalamus. Noradrenaline and dopamine levels in the frontal cortex were decreased by 20%. In striatum, dopamine and its metabolites were strongly suppressed (by 50-60%). Also striatal noradrenaline (-48%) and 5-hydroxytryptamine (-34%) were significantly decreased. Hypothalamic 5-hydroxytryptamine was increased (+25%). Bilateral AF64A lesions decreased significantly (by 14-20%) activities of prolyl endopeptidase, dipeptidyl peptidase II and IV in hippocampal and frontal cortical brain homogenates. These results show that AF64A can be used to induce long-term learning deficits in the rat. However, striatal amine levels are also strongly suppressed, and are reflected as hypomotility and increased emotional reactivity. These changes may limit the usefulness of the rat model. Universally decreased peptidase activities offer interesting views regarding the role of peptidase inhibitors in amnestic disorders.
Collapse
Affiliation(s)
- P T Männistö
- Department of Pharmacology and Toxicology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Rebec GV, Pierce RC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 1994; 43:537-65. [PMID: 7816935 DOI: 10.1016/0301-0082(94)90052-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ascorbate is an antioxidant vitamin that the brain accumulates from the blood supply and maintains at a relatively high concentration under widely varying conditions. Although neurons are known to use this vitamin in many different chemical and enzymatic reactions, only recently has sufficient evidence emerged to suggest a role for ascorbate in interneuronal communication. Ascorbate is released from glutamatergic neurons as part of the glutamate reuptake process, in which the high-affinity glutamate transporter exchanges ascorbate for glutamate. This heteroexchange process, which also may occur in glial cells, ensures a relatively high level of extracellular ascorbate in many forebrain regions. Ascorbate release is regulated, at least in part, by dopaminergic mechanisms, which appear to involve both the D1 and D2 family of dopamine receptors. Thus, amphetamine, GBR-12909, apomorphine, and the combined administration of D1 and D2 agonists all facilitate ascorbate release from glutamatergic terminals in the neostriatum, and this effect is blocked by dopamine receptor antagonists. Even though the neostriatum itself contains a high concentration of dopamine receptors, the critical site for dopamine-mediated ascorbate release in the neostriatum is the substantia nigra. Intranigral dopamine regulates the activity of nigrothalamic efferents, which in turn regulate thalamocortical fibers and eventually the glutamatergic corticoneostriatal pathway. In addition, neostriatonigral fibers project to nigrothalamic efferents, completing a complex multisynaptic loop that plays a major role in neostriatal ascorbate release. Although extracellular ascorbate appears to modulate the synaptic action of dopamine, the mechanisms underlying this effect are unclear. Evidence from receptor binding studies suggests that ascorbate alters dopamine receptors either as an allosteric inhibitor or as an inducer of iron-dependent lipid peroxidation. The applicability of these studies to dopamine receptor function, however, remains to be established in view of reports that ascorbate can protect against lipid peroxidation in vivo. Nevertheless, ample behavioral evidence supports an antidopaminergic action of ascorbate. Systemic, intraventricular, or intraneostriatal ascorbate administration, for example, attenuates the behavioral effects of amphetamine and potentiates the behavioral response to haloperidol. Some of these behavioral effects, however, may be dose-dependent in that treatment with relatively low doses of ascorbate has been reported to enhance dopamine-mediated behaviors. Ascorbate also appears to modulate glutamatergic transmission in the neostriatum. In fact, by facilitating glutamate release, ascorbate may indirectly oppose the action of dopamine, though the nature of the neostriatal dopaminergic-glutamatergic interaction is far from settled. Ascorbate also may alter the redox state of the NMDA glutamate receptor thus block NMDA-gated channel function.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G V Rebec
- Department of Psychology, Indiana University, Bloomington 47405
| | | |
Collapse
|
31
|
Steckler T, Inglis W, Winn P, Sahgal A. The pedunculopontine tegmental nucleus: a role in cognitive processes? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1994; 19:298-318. [PMID: 7820134 DOI: 10.1016/0165-0173(94)90016-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cholinergic pedunculopontine tegmental nucleus, located in the brainstem and part of the reticular formation, has been traditionally linked to motor function, arousal and sleep. Its anatomical connections, however, raise the possibility that the pedunculopontine tegmental nucleus is also involved in other aspects of behaviour such as motivation, attention and mnemonic processes. This is of obvious importance, since the pedunculopontine tegmental nucleus undergoes degeneration in human neurodegenerative disorders also characterized by attentional and/or mnemonic deficits. Moreover, recent behavioural animal work suggests that cognitive processes may be represented in the pedunculopontine tegmental nucleus. The difficulty that faces research in this area, however is the possible influence of cognition by other processes, such as arousal state, motivation and motor function. Nevertheless, by reviewing the literature, the pedunculopontine tegmental nucleus seems to be involved in attentional and possibly also in learning processes. These processes could be mediated by influencing cortical function via the thalamus, basal forebrain and basal ganglia. The involvement of the pedunculopontine tegmental nucleus in mechanisms of memory, however, seems to be rather unlikely.
Collapse
Affiliation(s)
- T Steckler
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
32
|
Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 1994; 344:232-41. [PMID: 7915727 DOI: 10.1002/cne.903440205] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution and chemospecificity of the pedunculonigral neurons have been studied in squirrel monkeys (Saimiri sciureus) with cholera toxin subunit B (CTb) and fluorogold (FG) as retrograde tracers combined with immunohistochemistry for choline acetyltransferase (ChAT), glutamate, and the calcium binding protein calbindin D-28k. The injection of either CTb or FG into the substantia nigra produces prominent retrograde cell labeling in the mesopontine tegmentum. Labeled neurons are particularly numerous at the level of the decussation of the superior cerebellar peduncle, where they abound principally in the pars dissipata of the pedunculopontine nucleus (PPN). A significant proportion of retrogradely labeled neurons in the PPN display ChAT immunoreactivity. Within the entire PPN, approximately 25% of the retrogradely labeled neurons express ChAT immunoreactivity, but proportions of doubly labeled neurons are about 35%, 25%, and 15% in the rostral, middle, and caudal thirds of the PPN, respectively. These doubly labeled neurons are scattered among numerous retrogradely labeled neurons that are ChAT-negative and whose number increases along the rostrocaudal extent of the PPN. Several retrogradely labeled neurons in the PPN display glutamate immunoreactivity, but very few express calbindin. This study provides the first direct evidence for the involvement of cholinergic and glutamatergic neurons in the pedunculonigral projection in primates. Furthermore, the fact that some neurons of the PPN display both ChAT and glutamate immunoreactivity indicates that single neurons in the mesopontine tegmentum may exert a two-fold effect upon dopaminergic neurons of the substantia nigra. This dual cholinergic and glutamatergic pedunculonigral projection may play a crucial role in the functional organization of primate basal ganglia.
Collapse
Affiliation(s)
- B Lavoie
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | |
Collapse
|
33
|
Herrero MT, Hirsch EC, Javoy-Agid F, Obeso JA, Agid Y. Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Res 1993; 624:281-5. [PMID: 7902770 DOI: 10.1016/0006-8993(93)90088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parkinson's disease is characterized by a loss of dopaminergic neurons in the substantia nigra and, in the most severe cases, by degeneration of mesopontine cholinergic neurons. In a monkey model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine we report that, despite a severe loss of dopaminergic neurons, in the mesopontine tegmentum cholinergic neurons are preserved in the same region. This suggests that the loss of mesopontine cholinergic neurons in parkinsonian patients may represent an end-stage degenerative process, the cause of which may be independent of the mechanism of dopaminergic cell death.
Collapse
Affiliation(s)
- M T Herrero
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|