1
|
Rubio S, Somers V, Fraussen J. The macrophage migration inhibitory factor/CD74 axis in traumatic spinal cord injury: lessons learned from animal and human studies. Eur J Immunol 2024; 54:e2451333. [PMID: 39491805 DOI: 10.1002/eji.202451333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Traumatic spinal cord injury (SCI) is a severe condition leading to long-term impairment of motor, sensory, and autonomic functions. Following the initial injury, a series of additional events is initiated further damaging the spinal cord. During this secondary injury phase, both an inflammatory and immune modulatory response are triggered that have damaging and anti-inflammatory properties, respectively. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) and its receptor CD74 have been extensively studied in traumatic SCI. MIF expression is increased in spinal cord tissue after experimental SCI, mainly in astrocytes and microglia, as well as in the plasma of SCI patients. Functionally, MIF and CD74 were shown to regulate astrocyte viability, proliferation and cholesterol metabolism, microglia migration, and neuronal viability. Moreover, inhibition of the MIF/CD74 axis improved the functional recovery of SCI animals. We provide a detailed overview of studies analyzing the role of MIF and CD74 in traumatic SCI. We describe results from animal studies, using rat and mouse models for SCI, and human studies. Furthermore, we propose a new path for investigation, focused on B cells, that might lead to a better understanding of how MIF and CD74 contribute to the secondary injury cascade following traumatic SCI.
Collapse
Affiliation(s)
- Serina Rubio
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Judith Fraussen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| |
Collapse
|
2
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
3
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
4
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
5
|
Nelson AN, Calhoun MS, Thomas AM, Tavares JL, Ferretti DM, Dillon GM, Mandelblat-Cerf Y. Temporal Progression of Excitotoxic Calcium Following Distal Middle Cerebral Artery Occlusion in Freely Moving Mice. Front Cell Neurosci 2021; 14:566789. [PMID: 33424552 DOI: 10.3389/fncel.2020.566789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is recognized as one of the leading causes of adult disability, morbidity, and death worldwide. Following stroke, acute neuronal excitotoxicity can lead to many deleterious consequences, one of which is the dysregulation of intracellular calcium ultimately culminating in cell death. However, to develop neuroprotective treatments that target neuronal excitotoxicity, it is essential to know the therapeutic time window for intervention following an ischemic event. To address this question, the current study aimed to characterize the magnitude and temporal progression of neuronal intracellular calcium observed following distal middle cerebral artery occlusion (dMCAO) in mice. Using the calcium fluorescence indicator, GCaMP, we tracked neuronal population response in freely moving animals immediately following dMCAO in both the core infarct and peri-infarct regions. Our results demonstrate that calcium excitotoxicity following artery occlusion can be generally characterized by two phases: a transient increase in activity that lasts tens of minutes, followed by a long, slow sustained increase in fluorescence signal. The first phase is primarily thought to represent neuronal hyperexcitability, defining our therapeutic window, while the second may represent gradual cell death. Importantly, we show that the level of intracellular calcium following artery occlusion correlated with the infarct size at 24 h demonstrating a direct connection between excitotoxicity and cell death in our stroke model. In addition, we show that administration of the NMDA antagonist MK-801 resulted in both a decrease in calcium signal and a subsequent reduction in the infarct size. Altogether, this study represents the first demonstration in freely moving animals characterizing the temporal progression of toxic calcium signaling following artery occlusion. In addition, these results define a critical time window for neuroprotective therapeutic intervention in mice.
Collapse
|
6
|
Krasil'nikova I, Surin A, Sorokina E, Fisenko A, Boyarkin D, Balyasin M, Demchenko A, Pomytkin I, Pinelis V. Insulin Protects Cortical Neurons Against Glutamate Excitotoxicity. Front Neurosci 2019; 13:1027. [PMID: 31611766 PMCID: PMC6769071 DOI: 10.3389/fnins.2019.01027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Glutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer's disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca2+ ([Ca2+] i ), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research. In the present study, we investigated the effects of short-term insulin exposure on the dynamics of [Ca2+] i and mitochondrial potential in cultured rat cortical neurons during glutamate excitotoxicity. We found that insulin ameliorated the glutamate-evoked rise of [Ca2+] i and prevented the onset of DCD, the postulated point-of-no-return in excitotoxicity. Additionally, insulin significantly improved the glutamate-induced drop in mitochondrial potential, ATP depletion, and depletion of brain-derived neurotrophic factor (BDNF), which is a critical neuroprotector in excitotoxicity. Also, insulin improved oxygen consumption rates, maximal respiration, and spare respiratory capacity in neurons exposed to glutamate, as well as the viability of cells in the MTT assay. In conclusion, the short-term insulin exposure in our experiments was evidently a protective treatment against excitotoxicity, in a sharp contrast to chronic insulin exposure causal to neuronal insulin resistance, the adverse factor in excitotoxicity.
Collapse
Affiliation(s)
| | - Alexander Surin
- National Medical Research Center for Children's Health, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Sorokina
- National Medical Research Center for Children's Health, Moscow, Russia
| | - Andrei Fisenko
- National Medical Research Center for Children's Health, Moscow, Russia
| | - Dmitry Boyarkin
- National Medical Research Center for Children's Health, Moscow, Russia
| | - Maxim Balyasin
- Department of Advanced Cell Technologies, Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna Demchenko
- Department of Advanced Cell Technologies, Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Pomytkin
- Department of Advanced Cell Technologies, Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Scientific Center for Biomedical Technologies, Federal Medical and Biological Agency, Svetlye Gory, Moscow, Russia
| | - Vsevolod Pinelis
- National Medical Research Center for Children's Health, Moscow, Russia
| |
Collapse
|
7
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
8
|
Bano D, Ankarcrona M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663:79-85. [DOI: 10.1016/j.neulet.2017.08.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
|
9
|
Anilkumar U, Weisova P, Schmid J, Bernas T, Huber HJ, Düssmann H, Connolly NMC, Prehn JHM. Defining external factors that determine neuronal survival, apoptosis and necrosis during excitotoxic injury using a high content screening imaging platform. PLoS One 2017; 12:e0188343. [PMID: 29145487 PMCID: PMC5690623 DOI: 10.1371/journal.pone.0188343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Petronela Weisova
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jasmin Schmid
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tytus Bernas
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heinrich J. Huber
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M. C. Connolly
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
10
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
11
|
Abstract
Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.
Collapse
|
12
|
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast 2016; 2016:2701526. [PMID: 27630777 PMCID: PMC5007376 DOI: 10.1155/2016/2701526] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.
Collapse
|
13
|
Hypoxia can impair doxorubicin resistance of non-small cell lung cancer cells by inhibiting MRP1 and P-gp expression and boosting the chemosensitizing effects of MRP1 and P-gp blockers. Cell Oncol (Dordr) 2016; 39:411-433. [PMID: 27306525 DOI: 10.1007/s13402-016-0285-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-small cell lung cancers (NSCLCs) frequently exhibit resistance to therapeutic drugs, which seriously hampers their treatment. Here, we set out to assess the roles of the multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) in the doxorubicin (DOX) resistance of NSCLC cells, as well as the putative therapeutic efficacy of MRP1 and P-gp blockers on DOX-treated NSCLC cells. METHODS The impact of DOX on cell survival, DOX efflux and MRP1 and P-gp expression was assessed in 5 different NSCLC-derived cell lines (parental CH27, A549, H1299, H460, and DOX resistant CH27) in the absence or presence of MK571 (MRP1 inhibitor) or Verapamil (P-gp inhibitor), under both normoxic and hypoxic conditions. RESULTS We found that in response to DOX treatment, NSCLC cells that express high levels of MRP1 and P-gp (such as CH27) showed a better DOX efflux and a higher DOX resistance. MK571 and Verapamil were found to abolish DOX resistance and to act as chemosensitizers for DOX therapy in all cell lines tested. We also found that hypoxia could inhibit MRP1 and P-gp expression in a HIF-1α-dependent manner, abolish DOX resistance and boost the chemosensitizer effect of MK571 and Verapamil on DOX treatment of all the NSCLC cells tested, except the DOX-resistant CH27 cells. CONCLUSIONS From our data we conclude that MRP1 and P-gp play critical roles in the DOX resistance of the NSCLC cells tested. MRP1 and P-gp targeted therapy using MK571, Verapamil, CoCl2 or ambient hypoxia appeared to be promising in abolishing the DOX efflux and DOX resistance of the NSCLC cells. The putative therapeutic efficacies of MRP1 and/or P-gp blockers on NSCLC cells are worthy of note.
Collapse
|
14
|
Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, Juaristi I, Martinez-Valero P, Pardo B, Del Arco A, Satrustegui J. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1158-1166. [PMID: 27060251 DOI: 10.1016/j.bbabio.2016.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23). In addition, after Ca(2+) entry into the matrix through the mitochondrial Ca(2+) uniporter (MCU), it activates mitochondrial dehydrogenases. In response to pathological glutamate stimulation during excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), mitochondrial dysfunction and delayed Ca(2+) deregulation (DCD) lead to neuronal death. Glutamate-induced respiratory stimulation is rapidly inactivated through a mechanism involving Poly (ADP-ribose) Polymerase-1 (PARP-1) activation, consumption of cytosolic NAD(+), a decrease in matrix ATP and restricted substrate supply. Glutamate-induced Ca(2+)-activation of SCaMC-3 imports adenine nucleotides into mitochondria, counteracting the depletion of matrix ATP and the impaired respiration, while Aralar-dependent lactate metabolism prevents substrate exhaustion. A second mechanism induced by excitotoxic glutamate is permeability transition pore (PTP) opening, which critically depends on ROS production and matrix Ca(2+) entry through the MCU. By increasing matrix content of adenine nucleotides, SCaMC-3 activity protects against glutamate-induced PTP opening and lowers matrix free Ca(2+), resulting in protracted appearance of DCD and protection against excitotoxicity in vitro and in vivo, while the lack of lactate protection during in vivo excitotoxicity explains increased vulnerability to kainite-induced toxicity in Aralar +/- mice. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Carlos B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Irene Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Javier Traba
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, 20892 Bethesda, MD, USA
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 13560-970 São Paulo, Brazil
| | - Paloma Gonzalez-Sanchez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Inés Juaristi
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Paula Martinez-Valero
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| | - Araceli Del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain; Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo 45071, Spain
| | - Jorgina Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Spain
| |
Collapse
|
15
|
Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission. PLoS One 2016; 11:e0148110. [PMID: 26934214 PMCID: PMC4775070 DOI: 10.1371/journal.pone.0148110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
Abstract
Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.
Collapse
|
16
|
Lin CH, Wang CH, Hsu SL, Liao LY, Lin TA, Hsueh CM. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS One 2016; 11:e0146692. [PMID: 26745377 PMCID: PMC4706329 DOI: 10.1371/journal.pone.0146692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ting-An Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Doeppner TR, Pehlke JR, Kaltwasser B, Schlechter J, Kilic E, Bähr M, Hermann DM. The indirect NMDAR antagonist acamprosate induces postischemic neurologic recovery associated with sustained neuroprotection and neuroregeneration. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219600 PMCID: PMC4671132 DOI: 10.1038/jcbfm.2015.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebral ischemia stimulates N-methyl-d-aspartate receptors (NMDARs) resulting in increased calcium concentration and excitotoxicity. Yet, deactivation of NMDAR failed in clinical studies due to poor preclinical study designs or toxicity of NMDAR antagonists. Acamprosate is an indirect NMDAR antagonist used for patients with chronic alcohol dependence. We herein analyzed the therapeutic potential of acamprosate on brain injury, neurologic recovery and their underlying mechanisms. Mice were exposed to cerebral ischemia, treated with intraperitoneal injections of acamprosate or saline (controls), and allowed to survive until 3 months. Acamprosate yielded sustained neuroprotection and increased neurologic recovery when given no later than 12 hours after stroke. The latter was associated with increased postischemic angioneurogenesis, albeit acamprosate did not stimulate angioneurogenesis itself. Rather, increased angioneurogenesis was due to inhibition of calpain-mediated pro-injurious signaling cascades. As such, acamprosate-mediated reduction of calpain activity resulted in decreased degradation of p35, increased abundance of the pro-survival factor STAT6, and reduced N-terminal-Jun-kinase activation. Inhibition of calpain was associated with enhanced stability of the blood-brain barrier, reduction of oxidative stress and cerebral leukocyte infiltration. Taken into account its excellent tolerability, its sustained effects on neurologic recovery, brain tissue survival, and neural remodeling, acamprosate is an intriguing candidate for adjuvant future stroke treatment.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Jens R Pehlke
- Department of Addiction Disorders, LWL-Klinik Muenster, Muenster, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Jana Schlechter
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Mathias Bähr
- Department of Neurology, University of Goettingen Medical School, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
18
|
Wang X, Wang L, Jiang R, Yuan Y, Yu Q, Li Y. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons. Brain Res 2015; 1627:101-8. [DOI: 10.1016/j.brainres.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
19
|
Safina DR, Surin AM, Pinelis VG, Kostrov SV. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells. J Neurosci Res 2015; 93:1865-73. [DOI: 10.1002/jnr.23667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Dina R. Safina
- Laboratory of Protein Engineering; Institute of Molecular Genetics, Russian Academy of Sciences; Moscow Russia
| | - Alexander M. Surin
- Laboratory of Ionic Transport and Intracellular Signaling Pathology; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences; Moscow Russia
- Laboratory of Molecular; Genetic, and Cell Biology, Scientific Center for Children's Health, Russian Academy of Medical Sciences; Moscow Russia
- Laboratory of Electrophysiology; Pirogov Russian National Research Medical University; Moscow Russia
| | - Vsevolod G. Pinelis
- Laboratory of Molecular; Genetic, and Cell Biology, Scientific Center for Children's Health, Russian Academy of Medical Sciences; Moscow Russia
| | - Sergey V. Kostrov
- Laboratory of Protein Engineering; Institute of Molecular Genetics, Russian Academy of Sciences; Moscow Russia
- Centre for Convergence of Nano-, Bio-, Information, and Cognitive Sciences and Technologies, National Research Centre “Kurchatov Institute,”; Moscow Russia
| |
Collapse
|
20
|
Mitochondrial ATP-Mg/Pi carrier SCaMC-3/Slc25a23 counteracts PARP-1-dependent fall in mitochondrial ATP caused by excitotoxic insults in neurons. J Neurosci 2015; 35:3566-81. [PMID: 25716855 DOI: 10.1523/jneurosci.2702-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier. This fall is associated with blunted increases in respiration and a delayed decrease in cytosolic ATP levels, which are prevented by PARP-1 inhibitors or by SCaMC-3 activity promoting adenine nucleotide uptake into mitochondria. SCaMC-3 KO neurons show an earlier delayed Ca(2+) deregulation, and SCaMC-3-deficient mitochondria incubated with ADP or ATP-Mg had reduced Ca(2+) retention capacity, suggesting a failure to maintain matrix adenine nucleotides as a cause for premature delayed Ca(2+) deregulation. SCaMC-3 KO neurons have higher vulnerability to in vitro excitotoxicity, and SCaMC-3 KO mice are more susceptible to kainate-induced seizures, showing that early PARP-1-dependent fall in mitochondrial ATP levels, counteracted by SCaMC-3, is an early step in the excitotoxic cascade.
Collapse
|
21
|
TGFβ can stimulate the p(38)/β-catenin/PPARγ signaling pathway to promote the EMT, invasion and migration of non-small cell lung cancer (H460 cells). Clin Exp Metastasis 2014; 31:881-95. [PMID: 25168821 DOI: 10.1007/s10585-014-9677-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
Signaling pathway(s) responsible for transforming growth factor β (TGFβ)-induced epithelial mesenchymal transition (EMT), invasion and migration of H460 cells (non-small cell lung cancer/NSCLC) was identified in the study. The results showed that TGFβ-induced p(38)/β-catenin/PPARγ signaling pathway played a critical role in the promotion of EMT, invasion and migration of H460 cells. All these pathological outcomes attributed to PPARγ-increased expression of p-EGFR, p-c-MET and Vimentin and the decrease of E-cadherin. Transforming growth factor β and p(38)-induced β-catenin not only stimulated the expression of PPARγ but also physically interacted with it. Blocking the ligand binding domain of PPARγ (with GW9662) could significantly interfere the binding between PPARγ and β-catenin, and interrupt the nuclear infiltration of both factors. These findings suggested that β-catenin was an upstream regulator and a ligand of PPARγ, and the binding between these two molecules was critical for their nuclear infiltration. Transforming growth factor β-induced tumor invasion and migration was also seen in U373 cells (brain glioma, with high inducible PPARγ) in a PPARγ-dependent manner, but not in CH27 cells (squamous NSCLC, with low PPARγ). PPARγ shRNA, GW9662, JW67 and 2,4-diaminoquinazoline were all revealed to have important values in the control of the intrinsic and TGFβ-induced EMT, tumor invasion and migration of H460 cells. The results further suggested that PPARγ and β-catenin may be the potential markers for the early diagnosis and/or treatment of metastatic tumors.
Collapse
|
22
|
Park HS, Hong C, Kim BJ, So I. The Pathophysiologic Roles of TRPM7 Channel. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:15-23. [PMID: 24634592 PMCID: PMC3951819 DOI: 10.4196/kjpp.2014.18.1.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to Mg2+ and Ca2+, and its channel activity is negatively regulated by free Mg2+ and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.
Collapse
Affiliation(s)
- Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
23
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 794] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
24
|
Brittain MK, Brustovetsky T, Brittain JM, Khanna R, Cummins TR, Brustovetsky N. Ifenprodil, a NR2B-selective antagonist of NMDA receptor, inhibits reverse Na+/Ca2+ exchanger in neurons. Neuropharmacology 2012; 63:974-82. [PMID: 22820271 DOI: 10.1016/j.neuropharm.2012.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
Glutamate-induced delayed calcium dysregulation (DCD) is causally linked to excitotoxic neuronal death. The mechanisms of DCD are not completely understood, but it has been proposed that the excessive influx of external Ca(2+) is essential for DCD. The NMDA-subtype of glutamate receptor (NMDAR) and the plasmalemmal Na(+)/Ca(2+) exchanger operating in the reverse mode (NCX(rev)) have been implicated in DCD. In experiments with "younger" neurons, 6-8 days in vitro (6-8 DIV), in which the NR2A-containing NMDAR expression is low, ifenprodil, an inhibitor of NR2B-containing NMDAR, completely prevented DCD whereas PEAQX, another NMDAR antagonist that preferentially interacts with NR2A-NMDAR, was without effect. With "older" neurons (13-16 DIV), in which NR2A- and NR2B-NMDARs are expressed to a greater extent, both ifenprodil and PEAQX applied separately failed to prevent DCD. However, combined application of ifenprodil and PEAQX completely averted DCD. Ifenprodil and ifenprodil-like NR2B-NMDAR antagonists Ro 25-6981 and Co 101244 but not PEAQX or AP-5 inhibited gramicidin- and Na(+)/NMDG-replacement-induced increases in cytosolic Ca(2+) mediated predominantly by NCX(rev). This suggests that ifenprodil, Ro 25-6981, and Co 101244 inhibit NCX(rev). The ability of ifenprodil to inhibit NCX(rev) correlates with its efficacy in preventing DCD and emphasizes an important role of NCX(rev) in DCD. Overall our data suggest that both NR2A- and NR2B-NMDARs are involved in DCD in "older" neurons, and it is necessary to inhibit both NMDARs and NCX(rev) to prevent glutamate-induced DCD.
Collapse
Affiliation(s)
- Matthew K Brittain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
25
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
26
|
Brittain MK, Brustovetsky T, Sheets PL, Brittain JM, Khanna R, Cummins TR, Brustovetsky N. Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiol Dis 2012; 46:109-17. [PMID: 22249110 DOI: 10.1016/j.nbd.2011.12.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/12/2011] [Accepted: 12/31/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate-induced delayed calcium dysregulation (DCD) is a causal factor leading to neuronal death. The mechanism of DCD is not clear but Ca2+ influx via N-methyl-d-aspartate receptors (NMDAR) and/or the reverse plasmalemmal Na+/Ca2+ exchanger (NCXrev) could be involved in DCD. However, the extent to which NMDAR and NCX(rev) contribute to glutamate-induced DCD is uncertain. Here, we show that both NMDAR and NCX(rev) are critical for DCD in neurons exposed to excitotoxic glutamate. In rat cultured hippocampal neurons, 25 μM glutamate produced DCD accompanied by sustained increase in cytosolic Na+ ([Na+]c) and plasma membrane depolarization. MK801 and memantine, noncompetitive NMDAR inhibitors, added shortly after glutamate, completely prevented DCD whereas AP-5, a competitive NMDAR inhibitor, failed to protect against DCD. None of the tested inhibitors lowered elevated [Na+]c or restored plasma membrane potential. In the experiments with NCX reversal by gramicidin, MK801 and memantine robustly inhibited NCXrev while AP-5 was much less efficacious. In electrophysiological patch-clamp experiments MK801 and memantine inhibited NCXrev-mediated ion currents whereas AP-5 failed. Thus, MK801 and memantine, in addition to NMDAR, inhibited NCXrev. Inhibition of NCXrev either with KB-R7943, or by collapsing Na+ gradient across the plasma membrane, or by inhibiting Na+/H+ exchanger with 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and thus preventing the increase in [Na+]c failed to preclude DCD. However, NCXrev inhibition combined with NMDAR blockade by AP-5 completely prevented DCD. Overall, our data suggest that both NMDAR and NCXrev are essential for DCD in glutamate-exposed neurons and inhibition of individual mechanism is not sufficient to prevent calcium dysregulation.
Collapse
Affiliation(s)
- Matthew K Brittain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Lin LC, Hsu SL, Wu CL, Liu WC, Hsueh CM. Peroxisome proliferator-activated receptor γ (PPARγ) plays a critical role in the development of TGFβ resistance of H460 cell. Cell Signal 2011; 23:1640-50. [DOI: 10.1016/j.cellsig.2011.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
28
|
Kolikova J, Afzalov R, Surin A, Lehesjoki AE, Khiroug L. Deficient mitochondrial Ca(2+) buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium 2011; 50:491-501. [PMID: 21917311 DOI: 10.1016/j.ceca.2011.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/28/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of genetic childhood-onset progressive brain diseases characterized by a decline in mental and motor capacities, epilepsy, visual loss and premature death. Using patch clamp, fluorescence imaging and caged Ca(2+) photolysis, we evaluated the mechanisms of neuronal Ca(2+) clearance in Cln8(mnd) mice, a model of the human NCL caused by mutations in the CLN8 gene. In Cln8(mnd) hippocampal slices, Ca(2+) clearance efficiency in interneurons and, to some extent, principal neurons declined with age. In cultured Cln8(mnd) hippocampal neurons, clearance of large Ca(2+) loads was inefficient due to impaired mitochondrial Ca(2+) uptake. In contrast, neither Ca(2+) uptake by sarco/endoplasmic reticulum Ca(2+) ATPase, nor Ca(2+) extrusion through plasma membrane was affected by the Cln8 mutation. Excitotoxic glutamate challenge caused Ca(2+) deregulation more readily in Cln8(mnd) than in wt neurons. We propose that neurodegeneration in human CLN8 disorders is primarily caused by reduced mitochondrial Ca(2+) buffering capacity.
Collapse
|
29
|
Bae CYJ, Sun HS. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin 2011; 32:725-33. [PMID: 21552293 DOI: 10.1038/aps.2011.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Searching for effective pharmacological agents for stroke treatment has largely been unsuccessful. Despite initial excitement, antagonists for glutamate receptors, the most studied receptor channels in ischemic stroke, have shown insufficient neuroprotective effects in clinical trials. Outside the traditional glutamate-mediated excitotoxicity, recent evidence suggests few non-glutamate mechanisms, which may also cause ionic imbalance and cell death in cerebral ischemia. Transient receptor potential melastatin 7 (TRPM7) is a Ca(2+) permeable, non-selective cation channel that has recently gained attention as a potential cation influx pathway involved in ischemic events. Compelling new evidence from an in vivo study demonstrated that suppression of TRPM7 channels in adult rat brain in vivo using virally mediated gene silencing approach reduced delayed neuronal cell death and preserved neuronal functions in global cerebral ischemia. In this review, we will discuss the current understanding of the role of TRPM7 channels in physiology and pathophysiology as well as its therapeutic potential in stroke.
Collapse
|
30
|
Weisová P, Dávila D, Tuffy LP, Ward MW, Concannon CG, Prehn JHM. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 2011; 14:1863-76. [PMID: 20712420 DOI: 10.1089/ars.2010.3544] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of cellular energy status. AMPK signaling regulates energy balance at the cellular, organ, and whole-body level. More recently, it has become apparent that AMPK plays also an important role in long-term decisions that determine cell fate, in particular cell cycle progression and apoptosis activation. Here, we describe the diverse mechanisms of AMPK activation and the role of AMPK in the regulation of cellular energy balance. We summarize recent studies implicating AMPK activation in the regulation of neuronal survival and as a key player during ischemic stroke. We also suggest that AMPK activation may have dual functions in the regulation of neuronal survival: AMPK provides a protective effect during transient energy depletion as exemplified in a model of neuronal Ca(2+) overloading, and this effect is partially mediated by the activation of neuronal glucose transporter 3. Prolonged AMPK activation, on the contrary, can lead to neuronal apoptosis via the transcriptional activation of the proapoptotic Bcl-2 family member, bim. Molecular switches that determine the protective versus cell death-inducing effects of AMPK activation are discussed.
Collapse
Affiliation(s)
- Petronela Weisová
- Department of Physiology and Medical Physics, RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
31
|
Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: Possible role of peroxisome proliferator activated receptor-ϒ (PPARϒ) in Huntington's disease. Pharmacol Biochem Behav 2010; 96:115-24. [DOI: 10.1016/j.pbb.2010.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 04/13/2010] [Accepted: 04/25/2010] [Indexed: 01/16/2023]
|
32
|
Abstract
Calcium is an extraordinarily versatile signaling ion, encoding cellular responses to a wide variety of external stimuli. In neurons, mitochondria can accumulate enormous amounts of calcium, with the consequence that mitochondrial calcium uptake, sequestration and release play pivotal roles in orchestrating calcium-dependent responses as diverse as gene transcription and cell death. In this review, we consider the basic chemistry of calcium as a 'sticky' cation, which leads to extremely high bound/free ratios, and discuss areas of current interest or controversy. Topics addressed include methodologies for measuring local intracellular calcium, mitochondrial calcium buffering and loading capacity, mitochondrially directed spatial calcium gradients, and the role of calcium overload-dependent mitochondrial dysfunction in glutamate-evoked excitotoxic injury and neurodegeneration. Finally, we consider the relationship between delayed calcium de-regulation, the mitochondrial permeability transition and the generation of reactive oxygen species, and propose a unified view of the 'source specificity' and 'calcium overload' models of N-methyl-d-aspartate (NMDA) receptor-dependent excitotoxicity. Non-NMDA receptor mechanisms of excitotoxicity are discussed briefly.
Collapse
Affiliation(s)
- Natalia B Pivovarova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4477, USA
| | | |
Collapse
|
33
|
Brustovetsky T, Bolshakov A, Brustovetsky N. Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J Neurosci Res 2010; 88:1317-28. [PMID: 19937813 PMCID: PMC2830319 DOI: 10.1002/jnr.22295] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Delayed calcium deregulation (DCD) plays an essential role in glutamate excitotoxicity, a major detrimental factor in stroke, traumatic brain injury, and various neurodegenerations. In the present study, we examined the role of calpain activation and Na(+)/Ca(2+) exchanger (NCX) degradation in DCD and excitotoxic cell death in cultured hippocampal neurons. Exposure of neurons to glutamate caused DCD accompanied by secondary mitochondrial depolarization. Activation of calpain was evidenced by detecting NCX isoform 3 (NCX3) degradation products. Degradation of NCX isoform 1 (NCX1) was below the detection limit of Western blotting. Degradation of NCX3 was detected only after 1 hr of incubation with glutamate, whereas DCD occurred on average within 15 min after glutamate application. Calpeptin, an inhibitor of calpain, significantly attenuated NCX3 degradation but failed to inhibit DCD and excitotoxic neuronal death. Calpain inhibitors I, III, and VI also failed to influence DCD and glutamate-induced neuronal death. On the other hand, MK801, an inhibitor of the NMDA subtype of glutamate receptors, added shortly after the initial glutamate-induced jump in cytosolic Ca(2+), completely prevented DCD and activation of calpain and strongly protected neurons against excitotoxicity. Taken together, our results suggest that, in glutamate-treated hippocampal neurons, the initial increase in cytosolic Ca(2+) that precedes DCD is insufficient for sustained calpain activation, which most likely occurs downstream of DCD.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexey Bolshakov
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Abstract
The changes that occur in electrochemical gradients across biological membranes provide us with invaluable information on physiological responses, pathophysiological processes and drug actions/toxicity. This chapter aims to provide researchers with sufficient information to carry out a quantitative assessment of mitochondrial energetics at a single-cell level thereby providing output on changes in the mitochondrial membrane potential (Deltapsi(m)) through the utilization of potentiometric fluorescent probes (TMRM, TMRE, Rhodamine 123). As these cationic probes behave in a Nernstian fashion, changes at the plasma membrane potential (Deltapsi(p)) need also to be accounted for in order to validate the responses obtained with Deltapsi(m)-sensitive fluorescent probes. To this end techniques that utilize Deltapsi(p)-sensitive anionic fluorescent probes to monitor changes in the plasma membrane potential will also be discussed. In many biological systems multiple changes occur at both a Deltapsi(m) and Deltapsi(p) level that often makes the interpretation of the cationic fluorescent responses much more difficult. This problem has driven the development of computational modelling techniques that utilize the redistribution properties of the cationic and anionic fluorescent probes within the cell to provide output on changes in Deltapsi(m) and Deltapsi(p).
Collapse
|
35
|
Delay of LPS-induced acute lung injury resolution by soluble immune complexes is neutrophil dependent. Shock 2009; 32:276-85. [PMID: 19106808 DOI: 10.1097/shk.0b013e31819962b2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathophysiological role of soluble immune complexes (SICXs) and its relationship with neutrophils were investigated in LPS-induced acute lung injury (ALI) animal model (Sprague-Dawley rat) and through the in vitro studies. Results showed that LPS-induced SICX was timely related to changes of tumor necrosis factor alpha and macrophage inflammatory protein 2 (inflammatory cytokines) in bronchoalveolar lavage fluid. In vitro study showed that SICX can bind to Fc gammaR (CD64 and CD32 or CD16) to prevent the apoptosis of neutrophils. The SICX-mediated apoptosis inhibition was extracellular signal-regulated kinase (ERK) or phosphoinositide 3 kinase dependent and was interrupted by PD98059 and LY294002. In vivo, additional amount of SICX exacerbated the lung injury caused by LPS. LPS-induced lung injury and macrophage inflammatory protein 2 release, however, were prevented by CD64 and CD32 blockers (decoy antibodies). In conclusion, excessive amount of SICX in lung can act through Fc gammaRs to protect bronchoalveolar lavage fluid neutrophils from apoptosis that eventually lead to delayed resolution of ALI caused by LPS. Blockade of SICX engagement of CD32 and CD64 (with decoy antibodies) could interrupt SICX-mediated protection of neutrophils and protect lung from LPS-induced injury. The decoy antibodies may therefore have therapeutic utility in ALI.
Collapse
|
36
|
Cheng YJ, Jiang HS, Hsu SL, Lin LC, Wu CL, Ghanta VK, Hsueh CM. XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol 2009; 627:75-84. [PMID: 19903469 DOI: 10.1016/j.ejphar.2009.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Molecular mechanism(s) responsible for drug resistance of non-small cell lung cancer (NSCLC) cells to cisplatin was investigated. Results showed that cisplatin (50muM)-induced cell death (apoptosis) was more significant in CH27 and A549 cell lines than in H460. The high protein levels of X-linked inhibitor-of-apoptosis protein (XIAP) observed in H460 cells appeared to play a key role in the regulation of cisplatin resistance of H460 cells. XIAP can bind to and suppress the activities of caspase 3 in H460 cells and lead to apoptosis inhibition of these cells. Blockade of XIAP activity by Embelin (XIAP inhibitor) or siRNA has increased caspase 3 activities and promoted cisplatin-induced cell death of H460 cells. The results indicate a therapeutic value of Embelin and/or XIAP siRNA in the control of cisplatin-resistant NSCLC cells (H460).
Collapse
Affiliation(s)
- Yow-Jyun Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Storozhevykh TP, Senilova YE, Brustovetsky T, Pinelis VG, Brustovetsky N. Neuroprotective Effect of KB-R7943 Against Glutamate Excitotoxicity is Related to Mild Mitochondrial Depolarization. Neurochem Res 2009; 35:323-35. [DOI: 10.1007/s11064-009-0058-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2009] [Indexed: 01/08/2023]
|
38
|
Li V, Brustovetsky T, Brustovetsky N. Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death. Exp Neurol 2009; 218:171-82. [PMID: 19236863 PMCID: PMC2710407 DOI: 10.1016/j.expneurol.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/05/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
In the present study we tested the hypothesis that the cyclophilin D-dependent (CyD) mitochondrial permeability transition (CyD-mPT) plays an important role in glutamate-triggered delayed calcium deregulation (DCD) and excitotoxic neuronal death. We used cultured cortical neurons from wild-type C57BL/6 and cyclophilin D-knockout mice (Ppif(-/-)). Induction of the mPT was identified by following the rapid secondary acidification of mitochondrial matrices monitored with mitochondrially targeted pH-sensitive yellow fluorescent protein. Suppression of the CyD-mPT due to genetic CyD ablation deferred DCD and mitochondrial depolarization, and increased the survival rate after exposure of neurons to 10 microM glutamate, but not to 100 microM glutamate. Ca(2+) influx into Ppif(-/-) neurons was not diminished in comparison with WT neurons judging by (45)Ca accumulation. In both types of neurons, 100 microM glutamate produced greater Ca(2+) influx than 10 microM glutamate. We hypothesize that greater Ca(2+) influx produced by higher glutamate rapidly triggered the CyD-independent mPT in both WT and Ppif(-/-) neurons equalizing their responses to supra-physiologic excitotoxic insults. In neurons exposed to moderate but pathophysiologically-relevant glutamate concentrations, an induction of the CyD-mPT appears to play an important role in mitochondrial injury contributing to DCD and cell death.
Collapse
Affiliation(s)
- Viacheslav Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis IN 46202, USA
| |
Collapse
|
39
|
Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons. J Neurosci 2009; 29:2997-3008. [PMID: 19261894 DOI: 10.1523/jneurosci.0354-09.2009] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ischemic and excitotoxic events within the brain result in rapid and often unfavorable depletions in neuronal energy levels. Here, we investigated the signaling pathways activated in response to the energetic stress created by transient glutamate excitation in cerebellar granule neurons. We characterized a glucose dependent hyperpolarization of the mitochondrial membrane potential (Delta psi(m)) in the majority of neurons after transient glutamate excitation. Expression levels of the primary neuronal glucose transporters (GLUTs) isoforms 1, 3, 4, and 8 were found to be unaltered within a 24 h period after excitation. However, a significant increase only in GLUT3 surface expression was identified 30 min after excitation, with this high surface expression remaining significantly above control levels in many neurons for up to 4 h. Glutamate excitation induced a rapid alteration in the AMP:ATP ratio that was associated with the activation of the AMP-activated protein kinase (AMPK). Interestingly, pharmacological activation of AMPK with AICAR (5-aminoimidazole-4-carboxamide riboside) alone also increased GLUT3 surface expression, with a hyperpolarization of Delta psi(m) evident in many neurons. Notably, inhibition of the CaMKK (calmodulin-dependent protein kinase kinase) had little affect on GLUT translocation, whereas the inhibition or knockdown of AMPK (compound C, siRNA) activity prevented GLUT3 translocation to the cell surface after glutamate excitation. Furthermore, gene silencing of GLUT3 eradicated the increase in Delta psi(m) associated with transient glutamate excitation and potently sensitized neurons to excitotoxicity. In summary, our data suggest that the activation of AMPK and its regulation of cell surface GLUT3 expression is critical in mediating neuronal tolerance to excitotoxicity.
Collapse
|
40
|
Abstract
Mitochondrial dysfunction is implicated in many forms of cell death, particularly in the central nervous system. The mitochondria are required at the same time to generate adenosine 5'-triphosphate (ATP) for the cell, sequester excess cytoplasmic Ca(2+), and both produce and detoxify superoxide free radicals. The electron transport chain and proton circuit are central in keeping these three balls in the air at the same time. We have investigated the bioenergetics of the in situ mitochondria in cultured neurons exposed to pathological glutamate concentrations to model glutamate excitotoxicity and have revised the conventional view that mitochondrial calcium loading results in increased oxidative stress that damages the mitochondrion and ultimately the cell. Instead, a central role is played under these conditions by limitations in mitochondrial and cellular ATP generating capacity. Sodium and calcium entering via the N-methyl-D-aspartate receptor impose a large energetic load on cells and can use the entire respiratory capacity of the in situ mitochondria. As a result, even modest restrictions in mitochondrial capacity -- caused by low concentrations of electron transport chain inhibitors such as rotenone, as in models of Parkinson's disease; low concentrations of uncouplers, to test the so-called neuroprotective mild uncoupling hypothesis; or preexisting oxidative stress -- greatly potentiate glutamate excitotoxicity. Our findings may lead to a reevaluation of the potential for mild uncoupling to provide a neuroprotective role in aging-related neurodegenerative disorders because the deleterious consequences of restricting ATP generating capacity greatly outweigh the negligible effects on the levels of mitochondrial superoxide radicals in intact neurons.
Collapse
|
41
|
Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 2008; 1239:24-35. [PMID: 18804095 DOI: 10.1016/j.brainres.2008.08.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/08/2008] [Accepted: 08/24/2008] [Indexed: 02/03/2023]
Abstract
Conditioned medium (CM) collected from cultures of ischemic microglia, astrocytes, and neurons were protective to astrocytes under the in vitro ischemic condition (deprivation of oxygen, glucose and serum). Molecular and signaling pathway(s) responsible for the CMs protective activity were investigated. Results showed that CMs from the ischemic microglia (MCM), astrocytes (ACM) and neurons (NCM) contained glial cell line-derived neurotrophic factor (GDNF), which protects astrocytes against the in vitro ischemia. Expression of extra cellular signal-regulated kinase (ERK1/2) and nuclear factor-kappa B (NF-kB) by GDNF led to the inhibition of apoptosis of the ischemic astrocytes in a caspase 3-independent manner. However, CMs- and GDNF-mediated protection of the ischemic astrocytes was protein kinase B (Akt) independent. These results provided mechanistic data regarding how GDNF- and CMs-mediated protection of the ischemic astrocytes is taking place. These observations provide information for the use of GDNF and GDNF containing CMs in the control of cerebral ischemia.
Collapse
Affiliation(s)
- Lan-Feng Chu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Bolshakov AP. Glutamate neurotoxicity: Perturbations of ionic homeostasis, mitochondrial dysfunction, and changes in cell functioning. NEUROCHEM J+ 2008. [DOI: 10.1134/s181971240803001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Krnjević K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008; 55:319-33. [DOI: 10.1016/j.neuropharm.2008.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|
44
|
Storozhevykh TP, Sorokina EG, Vabnitz AV, Senilova YE, Tukhbatova GR, Pinelis VG. Na+/Ca2+ exchange and regulation of cytoplasmic concentration of calcium in rat cerebellar neurons treated with glutamate. BIOCHEMISTRY (MOSCOW) 2007; 72:750-9. [PMID: 17680767 DOI: 10.1134/s0006297907070097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na+o/Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 microM glutamate induced in the neurons a biphasic and irreversible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na+o had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na+o/Li+ substitution and ouabain. KB-R7943 (10 microM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP.
Collapse
Affiliation(s)
- T P Storozhevykh
- Research Center for Children's Health, Russian Academy of Medical Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
45
|
Ward MW, Huber HJ, Weisová P, Düssmann H, Nicholls DG, Prehn JHM. Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate-induced necrosis, apoptosis, and tolerance. J Neurosci 2007; 27:8238-49. [PMID: 17670970 PMCID: PMC6673046 DOI: 10.1523/jneurosci.1984-07.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A failure of mitochondrial bioenergetics has been shown to be closely associated with the onset of apoptotic and necrotic neuronal injury. Here, we developed an automated computational model that interprets the single-cell fluorescence for tetramethylrhodamine methyl ester (TMRM) as a consequence of changes in either delta psi(m) or delta psi(p), thus allowing for the characterization of responses for populations of single cells and subsequent statistical analysis. Necrotic injury triggered by prolonged glutamate excitation resulted in a rapid monophasic or biphasic loss of delta psi(m) that was closely associated with a loss of delta psi(p) and a rapid decrease in neuronal NADPH and ATP levels. Delayed apoptotic injury, induced by transient glutamate excitation, resulted in a small, reversible decrease in TMRM fluorescence, followed by a sustained hyperpolarization of delta psi(m) as confirmed using the delta psi(p)-sensitive anionic probe DiBAC2(3). This hyperpolarization of delta psi(m) was closely associated with a significant increase in neuronal glucose uptake, NADPH availability, and ATP levels. Statistical analysis of the changes in delta psi(m) or delta psi(p) at a single-cell level revealed two major correlations; those neurons displaying a more pronounced depolarization of delta psi(p) during the initial phase of glutamate excitation entered apoptosis more rapidly, and neurons that displayed a more pronounced hyperpolarization of delta psi(m) after glutamate excitation survived longer. Indeed, those neurons that were tolerant to transient glutamate excitation (18%) showed the most significant increases in delta psi(m). Our results indicate that a hyperpolarization of delta psi(m) is associated with increased glucose uptake, NADPH availability, and survival responses during excitotoxic injury.
Collapse
Affiliation(s)
- Manus W. Ward
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heinrich J. Huber
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Siemens Medical Division, Siemens Ireland, Dublin 2, Ireland, and
| | - Petronela Weisová
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - David G. Nicholls
- Buck Institute for Age Research, Mitochondrial Physiology, Novato, California 94945
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
46
|
Yadava N, Nicholls DG. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci 2007; 27:7310-7. [PMID: 17611283 PMCID: PMC6794596 DOI: 10.1523/jneurosci.0212-07.2007] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.
Collapse
|
47
|
Pottorf WJ, Johanns TM, Derrington SM, Strehler EE, Enyedi A, Thayer SA. Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 2006; 98:1646-56. [PMID: 16923173 PMCID: PMC3873837 DOI: 10.1111/j.1471-4159.2006.04063.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca2+ dysregulation is a hallmark of excitotoxicity, a process that underlies multiple neurodegenerative disorders. The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Here, we show that the rate of PMCA-mediated Ca2+ efflux from rat hippocampal neurons decreased following treatment with an excitotoxic concentration of glutamate. PMCA-mediated Ca2+ extrusion following a brief train of action potentials exhibited an exponential decay with a mean time constant (tau) of 8.8 +/- 0.2 s. Four hours following the start of a 30 min treatment with 200 microm glutamate, a second population of cells emerged with slowed recovery kinetics (tau = 16.5 +/- 0.3 s). Confocal imaging of cells expressing an enhanced green fluorescent protein (EGFP)-PMCA4b fusion protein revealed that glutamate treatment internalized EGFP and that cells with reduced plasma membrane fluorescence had impaired Ca2+ clearance. Treatment with inhibitors of the Ca2+-activated protease calpain protected PMCA function and prevented EGFP-PMCA internalization. PMCA internalization was triggered by activation of NMDA receptors and was less pronounced for a non-toxic concentration of glutamate relative to one that produces excitotoxicity. PMCA isoform 2 also internalized following exposure to glutamate, although the Na+/K+ ATPase did not. These data suggest that glutamate exposure initiated protease-mediated internalization of PMCAs with a corresponding loss of function that may contribute to the Ca2+ dysregulation that accompanies excitotoxicity.
Collapse
Affiliation(s)
- William J Pottorf
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Lin CH, Cheng FC, Lu YZ, Chu LF, Wang CH, Hsueh CM. Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp Neurol 2006; 201:225-33. [PMID: 16765947 DOI: 10.1016/j.expneurol.2006.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 01/14/2023]
Abstract
An in vitro ischemia model (oxygen, glucose, and serum deprivation) is used to investigate the possible cellular and molecular mechanisms responsible for cerebral ischemia. We have previously demonstrated that supernatants derived from ischemic microglia can protect ischemic brain cells by releasing GDNF and TGF-beta1. In the present study, we investigate whether products of ischemic astrocytes can also protect ischemic microglia, astrocytes, and neurons in a similar manner. Supernatants from ischemic astrocytes were collected after various periods of ischemia and incubated with microglia, astrocytes, or neurons individually, under in vitro ischemic conditions. The components responsible for the protective effects of astrocyte-derived supernatants were then identified by Western blot, ELISA, trypan blue dye exclusion, and immunoblocking assays. Results showed that under conditions of in vitro ischemia the number of surviving microglia, astrocytes, and neurons was significantly increased by the incorporation of the astrocyte-derived supernatants. Astrocyte supernatant-mediated protection of ischemic microglia was dependent on TGF-beta1 and NT-3, ischemic astrocytes were protected by GDNF, and ischemic neurons were protected by NT-3. In addition, protein expression of TGF-beta1 and NT-3 receptors in microglia, GDNF receptors in astrocytes, and NT-3 receptors in neurons was increased by in vitro ischemia. These results suggest that astrocyte-derived protection of ischemic brain cells is dependent not only on factors released from the ischemic astrocytes, but also on the type of receptor present on the responding cells. Therapeutic potential of TGF-beta1, GDNF, and NT-3 in the control of cerebral ischemia is further suggested.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Norris CM, Blalock EM, Thibault O, Brewer LD, Clodfelter GV, Porter NM, Landfield PW. Electrophysiological mechanisms of delayed excitotoxicity: positive feedback loop between NMDA receptor current and depolarization-mediated glutamate release. J Neurophysiol 2006; 96:2488-500. [PMID: 16914613 PMCID: PMC2756090 DOI: 10.1152/jn.00593.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Delayed excitotoxic neuronal death after insult from exposure to high glutamate concentrations appears important in several CNS disorders. Although delayed excitotoxicity is known to depend on NMDA receptor (NMDAR) activity and Ca(2+) elevation, the electrophysiological mechanisms underlying postinsult persistence of NMDAR activation are not well understood. Membrane depolarization and nonspecific cationic current in the postinsult period were reported previously, but were not sensitive to NMDAR antagonists. Here, we analyzed mechanisms of the postinsult period using parallel current- and voltage-clamp recording and Ca(2+) imaging in primary hippocampal cultured neurons. We also compared more vulnerable older neurons [about 22 days in vitro (DIV)] to more resistant younger (about 15 DIV) neurons, to identify processes selectively associated with cell death in older neurons. During exposure to a modest glutamate insult (20 microM, 5 min), similar degrees of Ca(2+) elevation, membrane depolarization, action potential block, and increased inward current occurred in younger and older neurons. However, after glutamate withdrawal, these processes recovered rapidly in younger but not in older neurons. The latter also exhibited a concurrent postinsult increase in spontaneous miniature excitatory postsynaptic currents, reflecting glutamate release. Importantly, postinsult NMDAR antagonist administration reversed all of these persisting responses in older cells. Conversely, repolarization of the membrane by voltage clamp immediately after glutamate exposure reversed the NMDAR-dependent Ca(2+) elevation. Together, these data suggest that, in vulnerable neurons, excitotoxic insult induces a sustained positive feedback loop between NMDAR-dependent current and depolarization-mediated glutamate release, which persists after withdrawal of exogenous glutamate and drives Ca(2+) elevation and delayed excitotoxicity.
Collapse
Affiliation(s)
- C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, MS-305, UKMC, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273:433-50. [PMID: 16420469 DOI: 10.1111/j.1742-4658.2005.05103.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Szentagothai Knowledge Center, Budapest, Hungary
| | | |
Collapse
|