1
|
Abstract
Global and focal ischemias induce a variety of gene families, including immediate early genes, cytokines, neurotransmitter receptors, and heat-shock proteins. The Janus-like effects of several of these gene prod ucts promote neuronal survival and degeneration. Therefore, determining the molecular pathways respon sible for the differential regulation of these genes is of paramount importance. The discovery of apoptosis as a mediator of delayed neuronal death has led to the identification of a number of other genes involved in postischemic brain damage. Future neuroprotective therapies for cerebral ischemia may be directed at preventing alterations in gene expression. NEUROSCIENTIST 5:238-253, 1999
Collapse
Affiliation(s)
- Sean I. Savitz
- Department of Neurology, Neuroscience, Albert Einstein
College of Medicine Bronx, New York
| | - Daniel M. Rosenbaum
- Department of Neurology, Neuroscience and Ophthalmology
Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
2
|
Miao W, Qu Z, Shi K, Zhang D, Zong Y, Zhang G, Zhang G, Hu S. RIP3 S-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res 2015; 1627:165-76. [DOI: 10.1016/j.brainres.2015.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
|
3
|
Twohig JP, Cuff SM, Yong AA, Wang ECY. The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis. Rev Neurosci 2011; 22:509-33. [PMID: 21861782 DOI: 10.1515/rns.2011.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members' roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined.
Collapse
Affiliation(s)
- Jason P Twohig
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | | |
Collapse
|
4
|
Barca O, Carneiro C, Costoya JA, Señarís RM, Arce VM. Resistance of neonatal primary astrocytes against Fas-induced apoptosis depends on silencing of caspase 8. Neurosci Lett 2010; 479:206-10. [DOI: 10.1016/j.neulet.2010.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 01/06/2023]
|
5
|
Phanithi PB, Yoshida Y, Santana A, Su M, Kawamura S, Yasui N. Mild hypothermia mitigates post‐ischemic neuronal death following focal cerebral ischemia in rat brain: Immunohistochemical study of Fas, caspase‐3 and TUNEL. Neuropathology 2008. [DOI: 10.1111/j.1440-1789.2000.00346.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prakasa Babu Phanithi
- Pathology and
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | | | - Adrian Santana
- Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan and
| | | | - Shingo Kawamura
- Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan and
| | - Nobuyuki Yasui
- Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan and
| |
Collapse
|
6
|
Expression and localization of Fas-associated proteins following focal cerebral ischemia in rats. Brain Res 2007; 1191:30-8. [PMID: 18096138 DOI: 10.1016/j.brainres.2007.10.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 10/15/2007] [Accepted: 10/29/2007] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the changes of expression of Fas-associated proteins and its cellular localization in the peri-infarct region following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAo) for 2 h and reperfusion for 1, 3, 6, 12 and 24 h. The expression of Fas-associated death domain protein (FADD), Fas-associated phosphatase-1 (FAP-1) caspase-8 and death-associated protein (Daxx), the pro-apoptotic genes, were examined by methods of RT-PCR, immunohistochemistry and Western blot. The results showed that the expression levels of mRNA and protein for FADD and caspase-8 increased significantly at 1-3 h after reperfusion, peaked at 12 h, then declined markedly at 24 h. The time course change of FAP-1 was consistent with that of FADD. The expression level of mRNA and protein for death-associated protein (Daxx) increased significantly at 3 h after reperfusion and persisted for 24 h at a high level. Immunofluorescence double-staining laser scanning showed that the immunoreactivity of FADD was localized in cytoplasm, and Daxx immunoreactivity was translocated from nucleus to cytoplasm at 3 h after reperfusion. The TUNEL-positive cells could be found in peri-infarct region at 3 h and increased with time after reperfusion. Our findings suggest a possible association between expression of FADD, caspase-8, Daxx and FAP-1 genes and apoptosis following ischemia.
Collapse
|
7
|
Shrestha B, Diamond MS. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 2007; 81:11749-57. [PMID: 17804505 PMCID: PMC2168805 DOI: 10.1128/jvi.01136-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that causes encephalitis, most frequently in elderly and immunocompromised humans. Previous studies demonstrated that CD8+ T cells utilize perforin-dependent cytolytic mechanisms to limit WNV infection. Nonetheless, the phenotype of perforin-deficient CD8+ T cells was not as severe as that of an absence of CD8+ T cells, suggesting additional effector control mechanisms. In this study, we evaluated the contribution of Fas-Fas ligand (FasL) interactions to CD8+ T-cell-mediated control of WNV infection. Notably, the cell death receptor Fas was strongly upregulated on neurons in culture and in vivo after WNV infection. gld mice that were functionally deficient in FasL expression showed increased susceptibility to lethal WNV infection. Although antigen-specific priming of CD8+ T cells in peripheral lymphoid tissues was normal in gld mice, increased central nervous system (CNS) viral burdens and delayed clearance were observed. Moreover, the adoptive transfer of WNV-primed wild-type but not gld CD8+ T cells to recipient CD8(-/-) or gld mice efficiently limited infection in the CNS and enhanced survival rates. Overall, our data suggest that CD8+ T cells also utilize FasL effector mechanisms to contain WNV infection in Fas-expressing neurons in the CNS.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
8
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
9
|
Abstract
Perinatal hypoxic-ischaemic injury (HII) is a significant cause of neurodevelopmental impairment and disability. Studies employing 31P magnetic resonance spectroscopy to measure phosphorus metabolites in situ in the brains of newborn infants and animals have demonstrated that transient hypoxia-ischaemia leads to a delayed disruption in cerebral energy metabolism, the magnitude of which correlates with the subsequent neurodevelopmental impairment. Prominent among the biochemical features of HII is the loss of cellular ATP, resulting in increased intracellular Na+ and Ca2+, and decreased intracellular K+. These ionic imbalances, together with a breakdown in cellular defence systems following HII, can contribute to oxidative stress with a net increase in reactive oxygen species. Subsequent damage to lipids, proteins, and DNA and inactivation of key cellular enzymes leads ultimately to cell death. Although the precise mechanisms of neuronal loss are unclear, it is now clear both apoptosis and necrosis are the significant components of cell death following HII. A number of different factors influence whether a cell will undergo apoptosis or necrosis, including the stage of development, cell type, severity of mitochondrial injury and the availability of ATP for apoptotic execution. This review will focus on some pathological mechanisms of cell death in which there is a disruption to oxidative metabolism. The first sections will discuss the process of damage to oxidative metabolism, covering the data collected both from human infants and from animal models. Following sections will deal with the molecular mechanisms that may underlie cerebral energy failure and cell death in this form of brain injury, with a particular emphasis on the role of apoptosis and mitochondria.
Collapse
Affiliation(s)
- Deanna L. Taylor
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - A. David Edwards
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Huseyin Mehmet
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
10
|
Felderhoff-Mueser U, Taylor DL, Greenwood K, Kozma M, Stibenz D, Joashi UC, Edwards AD, Mehmet H. Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol 2006; 10:17-29. [PMID: 10668892 PMCID: PMC8098164 DOI: 10.1111/j.1750-3639.2000.tb00239.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fas/CD95/Apo-1 is a cell surface receptor that transduces apoptotic death signals following activation and has been implicated in triggering apoptosis in infected or damaged cells in disease states. Apoptosis is a major mechanism of neuronal loss following hypoxic-ischemic injury to the developing brain, although the role of Fas in this process has not been studied in detail. In the present study, we have investigated the expression and function of Fas in neuronal cells in vitro and in vivo. Fas was found to be expressed in the 14 day old rat brain, with strongest expression in the cortex, hippocampus and cerebellum. Cross-linking of Fas induced neuronal apoptosis both in neuronal PC12 cells in culture and following intracerebral injection in vivo, indicating that neuronal Fas was functional as a death receptor. This death was shown to be caspase dependent in primary neuronal cultures and was blocked by the selective caspase 8 inhibitor IETD. Finally, cerebral hypoxia-ischemia resulted in a strong lateralised upregulation of Fas in the hippocampus, that peaked six to twelve hours after the insult and was greater on the side of injury. These results suggest that Fas may be involved in neuronal apoptosis following hypoxic-ischemic injury to the developing brain.
Collapse
Affiliation(s)
- U Felderhoff-Mueser
- Division of Paediatrics, Obstetrics and Gynaecology, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sabri F, Granath F, Hjalmarsson A, Aurelius E, Sköldenberg B. Modulation of sFas indicates apoptosis in human herpes simplex encephalitis. J Neuroimmunol 2005; 171:171-6. [PMID: 16325272 DOI: 10.1016/j.jneuroim.2005.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 10/06/2005] [Indexed: 11/20/2022]
Abstract
Herpes simplex encephalitis (HSE) is the most common cause of non-epidemic, acute and fatal viral encephalitis. A pronounced mortality and morbidity remains in HSE despite antiviral treatment. There is evidence of a vigorous intrathecal immune activity in acute phases of HSE and of persistently increased activity at follow-ups after years. The role of apoptosis of neuronal cells in HSE patients as a mechanism of damage has been brought up lately. We hypothesize that the severity and the progression of the cerebral injury resulting from HSE can be evaluated by quantitative measurement of a compartment of immune activation molecules i.e. soluble Fas (sFas) involved in apoptosis through the Fas/Fas Ligand pathway. Consecutive cerebrospinal fluid (CSF) samples from a prospectively followed cohort, included in an antiviral treatment trial in HSE, were enrolled for quantitative measurement of sFas using commercial capture ELISA. In total, CSF samples from 49 patients with HSE, 63 patients with non-HSE encephalitis and 18 healthy individuals were studied. High levels of sFas were expressed in CSF samples collected between days 0-45 after neurological onset in 41/49 (84%) HSE patients, whereas only 21/63 (33%) of non-HSE patients and none of 18 healthy controls demonstrated measurable levels of sFas. Following the consecutive CSF sFas levels over the time and considering the clinical state of patients at admission, their neurological or lethal outcome at 12 months, and antiviral treatment, we observed that HSE patients with severe neurological sequels revealed an increase in changes of CSF sFas as compared to patients with mild or moderate neurological outcome (57.6+/-55.6 pg/ml, n=10 versus 26.3+/-97.5 pg/ml, n=14; P=0.008). Also HSE patients undergoing vidarabine treatment expressed significantly higher levels of changes of CSF sFas when compared to acyclovir-treated patients (63.7+/-52.8 pg/ml, n=9 versus 26.1+/-98.4 pg/ml, n=14; P=0.003). Interestingly, regardless of the clinical state at admission, and subsequent disease progression of the HSE patients, we could not observe any significant differences in the CSF sFas levels during the first 7 days of neurological symptoms. These observations underline the role of immunological response throughout the course of HSV infection in the brain and the role of the Fas/FasL pathway in particular in disease progression of HSE. The findings further enforce the need of expanding the knowledge of the pathogenesis of HSE to direct to more effective, in particular not only antiviral but also anti-apoptotic or anti-inflammatory treatment.
Collapse
Affiliation(s)
- Farideh Sabri
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Krzyzowska M, Cymerys J, Winnicka A, Niemiałtowski M. Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 2005; 115:141-9. [PMID: 16169110 DOI: 10.1016/j.virusres.2005.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/29/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
In this study we showed that the virulent Moscow strain of Ectromelia virus (ECTV-MOS) infection leads to induction of apoptosis in the BALB/c mouse central nervous system. ECTV-MOS-infected cells and inflammation sites were found in brain parenchyma between 5 and 15 days after footpad infection with ECTV-MOS. Infected cells consisted of microglia and monocytes, astrocytes and oligodendrocytes and these type of cells underwent apoptosis within 5-15 days post infection (d.p.i.). The highest number of apoptotic cells was found at 5 and 10 d.p.i. and represented mainly microglia (61.4% and 38.6% of apoptotic cells, respectively) and astrocytes (21% and 8.9%, respectively). The number of apoptotic oligodendrocytes was 5.4% and 4.5%, respectively. Fluorometric assays demonstrated involvement of caspase-1, -3 and -8 but not caspase-9 in apoptosis in ECTV-MOS-infected mouse brains. Expression of Fas/FasL was significantly increased on ECTV-MOS-infected cells between 5 and 15 d.p.i., whereas Fas was up-regulated also on the surrounding, non-infected cells. Taking together we may conclude that ECTV-MOS infection of microglia and astrocytes leads to local inflammation resulting in Fas/FasL up-regulation and apoptosis, which limits mouse central nervous system infection with ECTV-MOS.
Collapse
Affiliation(s)
- Małgorzata Krzyzowska
- Division of Virology, Mycology and Immunology, Department of Preclinical Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | | | | | | |
Collapse
|
13
|
Abstract
Astrocytes are essential for neuronal survival and function, neurogenesis, and neural repair. Although astrocytes are more resistant than neurons to most stress conditions in vitro, certain astrocyte subtypes, such as the glial fibrillary acidic protein (GFAP)-negative protoplasmic astrocytes that predominate in gray matter structures, may be equally or more sensitive than neurons to ischemia in vivo. Programmed cell death differs from passive, necrotic death in that cell constituents actively participate in cell demise. Like neurons, astrocytes undergo programmed cell death during normal development. Cell culture studies have shown that astrocytes can be induced to undergo apoptosis and other forms of programmed cell death by many factors relevant to ischemia, including acidosis, oxidative stress, substrate deprivation, and cytokines. Animal models of cerebral ischemia have confirmed nuclear condensation and upregulation of Bax and caspases in a subset of astrocytes exposed to ischemia, especially in immature brain. A causal role for these events in astrocyte death is supported by improved astrocyte survival after inhibition of caspase-dependent cell death pathways. Astrocyte survival is also improved by blocking the poly(ADP-ribose)-1 cell death pathway. Markers of programmed cell death are generally less evident and less widespread in astrocytes than in neighboring neurons. However, most studies to date have relied only on markers of classical apoptosis. In addition, these studies have relied almost exclusively on GFAP to identify astrocytes. Since most protoplasmic astrocytes are poorly immunoreactive for GFAP, the extent of ischemia-induced programmed cell death in this cell type remains uncertain.
Collapse
Affiliation(s)
- Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Raymond A Swanson
- Department of Neurology, University of California and Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
14
|
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1:112-9. [PMID: 16408008 DOI: 10.1038/nchembio711] [Citation(s) in RCA: 2259] [Impact Index Per Article: 118.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/10/2005] [Indexed: 11/08/2022]
Abstract
The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.
Collapse
Affiliation(s)
- Alexei Degterev
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Falsig J, Pörzgen P, Leist M. Modification of apoptosis-related genes and CD95 signaling in cytokine-treated astrocytes. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/sita.200400031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Cheema ZF, Santillano DR, Wade SB, Newman JM, Miranda RC. The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins. BMC Neurosci 2004; 5:11. [PMID: 15038834 PMCID: PMC395829 DOI: 10.1186/1471-2202-5-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/23/2004] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may significantly influence cortical development. Therefore, in the following studies, we sought to identify developmentally relevant cell biological processes that regulate cell-surface Fas expression and reciprocal consequences of Fas receptor activation. RESULTS Flow-cytometric analyses identified two distinct neural sub-populations that expressed Fas on their cell surface at high (FasHi) or moderate (FasMod) levels. The anti-apoptotic protein FLIP further delineated a subset of Fas-expressing cells with potential apoptosis-resistance. FasMod precursors were mainly in G0, while FasHi precursors were largely apoptotic. However, birth-date analysis indicated that neuroblasts express the highest levels of cell-surface Fas at the end of S-phase, or after their final round of mitosis, suggesting that Fas expression is induced at cell cycle checkpoints or during interkinetic nuclear movements. FasHi expression was associated with loss of cell-matrix adhesion and anoikis. Activation of the transcription factor p53 was associated with induction of Fas expression, while the gonadal hormone estrogen antagonistically suppressed cell-surface Fas expression. Estrogen also induced entry into S-phase and decreased the number of Fas-expressing neuroblasts that were apoptotic. Concurrent exposure to estrogen and to soluble Fas-ligand (sFasL) suppressed p21/waf-1 and PCNA. In contrast, estrogen and sFasL, individually and together, induced cyclin-A expression, suggesting activation of compensatory survival mechanisms. CONCLUSIONS Embryonic cortical neuronal precursors are intrinsically heterogeneous with respect to Fas suicide-sensitivity. Competing intrinsic (p53, cell cycle, FLIP expression), proximal (extra-cellular matrix) and extrinsic factors (gonadal hormones) collectively regulate Fas suicide-sensitivity either during neurogenesis, or possibly during neuronal migration, and may ultimately determine which neuroblasts successfully contribute neurons to the differentiating cortical plate.
Collapse
Affiliation(s)
- Zulfiqar F Cheema
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
- Department of General Surgery, William Beaumont Hospital, Royal Oaks, MI 48073, USA
| | - Daniel R Santillano
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Stephen B Wade
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
- Pediatrics, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Joseph M Newman
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Rajesh C Miranda
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| |
Collapse
|
17
|
Falsig J, Latta M, Leist M. Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis. J Neurochem 2003; 88:181-93. [PMID: 14675162 DOI: 10.1111/j.1471-4159.2004.02144.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complete cytokine mix (CCM) or its individual components tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) were used to switch resting murine astrocytes to reactive states. The transformation process was characterized by differential up-regulation of interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthetase (iNOS) mRNA and protein and a subsequent release of prostaglandin E2, nitric oxide (NO) and IL-6. Both CD95L and anti-CD95 antibodies triggered caspase activation followed by apoptotic death in fully pro-inflammatory astrocytes, whereas resting cells were totally resistant. Two other death-inducing ligands, TNF and TNF-related apoptosis-inducing ligand (TRAIL) did not induce apoptosis in reactive astrocytes. The switch in astrocyte sensitivity was accompanied by up-regulation of caspase-8 and CD95 as well as the capacity to recruit Fas-associated death domain (FADD) to the activated death receptor complex. Neither CD95-mediated death, nor other inflammatory parameters were affected by inhibition of iNOS or COX, respectively. Accordingly, IFN-gamma was absolutely essential for up-regulation of iNOS, but not for the switch in apoptosis sensitivity. In contrast, p38 kinase activity was identified as an important controller of both the inflammatory reaction and apoptosis both in astrocytes stimulated with CCM and in glia exposed to TNF and IL-1 only.
Collapse
|
18
|
|
19
|
Wallace JA, Alexander S, Estrada EY, Hines C, Cunningham LA, Rosenberg GA. Tissue inhibitor of metalloproteinase-3 is associated with neuronal death in reperfusion injury. J Cereb Blood Flow Metab 2002; 22:1303-10. [PMID: 12439287 DOI: 10.1097/01.wcb.0000040943.89393.c1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Programmed cell death occurs in ischemia when cell surface death receptors (DRs) are stimulated by death-inducing ligands (DILs). Matrix metalloproteinases are extracellular matrix-degrading enzymes involved in the shedding of DRs and DILs from the cell surface. Tissue inhibitor of metalloproteinase-3 (TIMP-3), which is bound to the extracellular matrix, has been shown to promote apoptosis in cancer cell lines by inhibiting cell surface sheddases. Since apoptosis is an important mechanism of cell death in ischemia, the authors hypothesized that TIMP-3 would be expressed in ischemic neurons that are undergoing programmed cell death. Spontaneously hypertensive rats had a 90-minute middle cerebral artery occlusion with reperfusion. Transcription of TIMP-3 mRNA was measured by quantitative reverse transcription-polymerase chain reaction at 2, 6, 24 and 48 hours after reperfusion. Western blots were used to measure TIMP-3 protein expression. Spatial distribution and production of TIMP-3 was studied by immunohistochemistry at 3, 24, and 48 hours, 5 days, and 3 weeks. DNA fragmentation in cells dying by necrosis and apoptosis was identified with terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL). After 2 hours of reperfusion, TIMP-3 mRNA increased significantly in both ischemic and nonischemic hemispheres. Western blot analysis confirmed the identity of the TIMP-3, which appeared to be increased on the ischemic side. After 3 hours of reperfusion, TIMP-3 immunostaining was increased in neurons on the ischemic side, and by 24 hours the majority of the ischemic neurons were TIMP-3-positive. Dual-fluorescence staining for TUNEL and TIMP-3 showed that they were coexpressed in many neurons. The results suggest that ischemic neurons express TIMP-3, which may be inhibiting sheddases. The authors propose that TIMP-3 facilitates cell death in ischemic neurons. Further studies are needed to identify the sheddases inhibited by the TIMP-3, and on the effect of inhibition of matrix metalloproteinases on cell death mechanisms.
Collapse
Affiliation(s)
- James A Wallace
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque 87131, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lesné S, Blanchet S, Docagne F, Liot G, Plawinski L, MacKenzie ET, Auffray C, Buisson A, Piétu G, Vivien D. Transforming growth factor-beta1-modulated cerebral gene expression. J Cereb Blood Flow Metab 2002; 22:1114-23. [PMID: 12218417 DOI: 10.1097/00004647-200209000-00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays a central role in the response of the brain to different types of injury. Increased TGF-beta1 has been found in the central nervous system of patients with acute or chronic disorders such as stroke or Alzheimer disease. To further define the molecular targets of TGF-beta1 in cerebral tissues, a selection of high-density cDNA arrays was used to characterize the mRNA expression profile of 7,000 genes in transgenic mice overexpressing TGF-beta1 from astrocytes as compared with the wild-type line. Selected findings were further evaluated by reverse transcription-polymerase chain reactions from independent transgenic and wild-type mice. Furthermore, the expression pattern of seven selected genes such as Delta-1, CRADD, PRSC-1, PAI-1, Apo-1/Fas, CTS-B, and TbetaR-II were confirmed in either cultured cortical neurons or astrocytes following TGF-beta1 treatment. The authors' observations enlarge the repertoire of known TGF-beta1-modulated genes and their possible involvement in neurodegenerative processes.
Collapse
|
21
|
Facchinetti F, Furegato S, Terrazzino S, Leon A. H(2)O(2) induces upregulation of Fas and Fas ligand expression in NGF-differentiated PC12 cells: modulation by cAMP. J Neurosci Res 2002; 69:178-88. [PMID: 12111799 DOI: 10.1002/jnr.10295] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fas, (APO-1/CD95), a transmembrane glycoprotein belonging to the tumor necrosis (TNF) receptor superfamily, transduces apoptotic death upon crosslinking by its cognate ligand (FasL). As upregulation of Fas/FasL expression occurs in neuropathological conditions (e.g., stroke, central nervous system [CNS] trauma and seizures) associated with oxidative damage, we questioned whether reactive oxygen species (ROS) can directly affect Fas and FasL expression in neuronal cells. Utilizing rat PC12 cells neuronally differentiated with nerve growth factor (NGF), we observed that concentrations of H(2)O(2) inducing apoptotic cell death rapidly trigger the expression of Fas mRNA and protein as well as FasL mRNA. Although NGF-addition to naive PC12 downregulated constitutive Fas and FasL transcription, the H(2)O(2)-induced Fas and FasL mRNA upregulation invariably occurred either in the presence or in the absence of NGF. Similarly, phorbol 1,2-myristate 1, 3-acetate (PMA), a potent protein kinase C (PKC) activator, did not modify Fas and FasL mRNA upregulation subsequent to H(2)O(2) exposure. On the contrary, forskolin and dibutyryl cAMP, which elevate intracellular cAMP by independent mechanisms, both counteracted H(2)O(2)-induced Fas, but not FasL, mRNA upregulation and increased constitutive expression of FasL mRNA. Altogether, our data show that oxidative stress is a major stimulus in eliciting Fas and FasL expression in NGF-differentiated PC12 cells. Moreover, we describe here for the first time the existence of cAMP-dependent mechanism(s) modulating Fas and FasL expression.
Collapse
|
22
|
Muessel MJ, Klein RM, Wilson AM, Berman NEJ. Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:12-27. [PMID: 12106688 DOI: 10.1016/s0169-328x(02)00158-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanisms regulating retrograde neuronal degeneration and subsequent death of thalamic neurons following cortical injury are not well understood. However, the delay in the onset of retrograde cell death and observed morphological changes are consistent with apoptosis. Our previous studies demonstrated that monocyte chemoattractant protein-1 (MCP-1), a beta-chemokine that attracts cells of monocytic origin to sites of injury, is rapidly and specifically expressed in the lateral geniculate nucleus following visual cortical lesions. To determine the potential role of MCP-1 in retrograde degeneration, the present study examined the effect of genetic deletion of MCP-1 (MCP-1 KO or -/-) or its high affinity receptor CCR2 (CCR2 KO or -/-) on thalamic microglial activation and neuronal cell death following aspiration lesions of the visual cortex in adult mice. Deletion of the MCP-1 gene delayed microglial activation and transiently improved the survival of thalamic neurons. Deletion of the CCR2 receptor resulted in a significant increase in apoptosis as measured by nucleosomal fragmentation after injury compared to wild-type mice, but did not alter neuron survival, suggesting that glial apoptosis is increased in the receptor knockout mice. Investigation of Bcl-2, Bax, Fas, Fas ligand (FasL) and activated caspase-3, key regulators of apoptosis that can be modulated by cytokines, revealed complex alterations of mRNA and protein levels in MCP-1(-/-) and CCR2(-/-) mice. As examples, Bcl-2 protein was detected in wild-type, but not in MCP-1(-/-) mice. Caspase-3 activity was higher in MCP-1(-/-) mice compared to wild-type and CCR2(-/-) mice at 5 days after injury. High levels of activated caspase-3 correlate with the beginning of a period of delayed, but rapid cell death in the thalami of MCP-1(-/-) mice. In summary, our data strongly suggest that MCP-1 is involved in early microglial response to axotomy and that modulation of this chemokine could provide a novel strategy for improved neuronal survival following injury to the central nervous system.
Collapse
Affiliation(s)
- Michelle J Muessel
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7400, USA
| | | | | | | |
Collapse
|
23
|
Lenzlinger PM, Marx A, Trentz O, Kossmann T, Morganti-Kossmann MC. Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J Neuroimmunol 2002; 122:167-74. [PMID: 11777556 DOI: 10.1016/s0165-5728(01)00466-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms underlying cell death following traumatic brain injury (TBI) are not fully understood. Apoptosis is believed to be one mechanism contributing to a marked and prolonged neuronal cell loss following TBI. Recent data suggest a role for Fas (APO-1, CD95), a type I transmembrane receptor glycoprotein of the nerve growth factor/tumor necrosis factor superfamily, and its ligand (Fas ligand, FasL) in apoptotic events in the central nervous system. A truncated form of the Fas receptor, soluble Fas (sFas) may indicate activation of the Fas/FasL system and act as a negative feedback mechanism, thereby inhibiting Fas mediated apoptosis. Soluble Fas was measured in cerebrospinal fluid (CSF) and serum of 10 patients with severe TBI (GCS< or =8) for up to 15 days post-trauma. No sFas was detected in CSF samples from patients without neurological pathologies. Conversely, after TBI 118 out of 120 CSF samples showed elevated sFas concentrations ranging from 56 to 4327 mU/ml. Paired serum samples showed above normal (8.5 U/ml) sFas concentrations in 5 of 10 patients. Serum levels of sFas were always higher than CSF levels. However, there was no correlation between concentrations measured in CSF and in serum (r(2)=0.078, p=0.02), suggesting that the concentrations in the two compartments are independently regulated. Also, no correlation was found between sFas in CSF and blood brain barrier (BBB) dysfunction as assessed by the albumin CSF/serum quotient (Q(A)), and concentrations of the cytotoxic cytokine tumor necrosis factor-alpha in CSF, respectively. Furthermore, there was no correlation with two markers of immune activation (soluble interleukin-2 receptor and neopterin) in CSF. Maximal CSF levels of sFas correlated significantly (r(2)=0.8191, p<0.001) with the early peaks of neuron-specific enolase in CSF (a marker for neuronal cell destruction), indicating that activation of the Fas mediated pathway of apoptosis may be in part the direct result of the initial trauma. However, the prolonged elevation of sFas in CSF may be caused by the ongoing inflammatory response to trauma and delayed apoptotic cell death.
Collapse
Affiliation(s)
- Philipp M Lenzlinger
- Division of Surgical Research, Department of Surgery, University Hospital Zurich, CH-8091, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab 2001; 21:1411-21. [PMID: 11740202 DOI: 10.1097/00004647-200112000-00005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell death-regulatory genes like caspases and bcl-2 family genes are involved in delayed cell death in the CA1 sector of hippocampus after global cerebral ischemia, but little is known about the mechanisms that trigger their expression. The authors found that expression of Fas and Fas-ligand messenger ribonucleic acid and protein was induced in vulnerable CA1 neurons at 24 and 72 hours after global ischemia. Fas-associating protein with a novel death domain (FADD) also was upregulated and immunoprecipitated and co-localized with Fas. Caspase-10 was activated and interacted with FADD protein to an increasing extent as the duration of ischemia increased. Moreover, caspase-10 co-localized with both FADD and caspase-3. These findings suggest that Fas-mediated death signaling may play an important role in signaling hippocampal neuronal death in CA1 after global cerebral ischemia.
Collapse
Affiliation(s)
- K Jin
- Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | |
Collapse
|
25
|
Badie B, Schartner J, Prabakaran S, Paul J, Vorpahl J. Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 2001; 120:19-24. [PMID: 11694315 DOI: 10.1016/s0165-5728(01)00361-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immune-privileged status of the central nervous system is thought to limit the application of immunotherapy for treatment of malignant brain tumors. Because the Fas pathway has been proposed to play a role in immune evasion, we examined the effect of tumor environment on the expression of Fas ligand (FasL) in a mouse glioma model. Immunoblotting revealed the expression of membrane-bound FasL to nearly double when murine G26 gliomas were propagated intracranially (IC) as compared to subcutaneously (SC). Further analysis by flow cytometry revealed microglia, which were absent in the SC tumors, to account for half of the FasL expression in the IC tumors. Interestingly, when FasL activity was inhibited in IC tumors, the proportion of tumor-infiltrating leukocytes increased three-fold, reaching the same frequency as the SC tumors. These observations suggest that microglia are a major source of FasL expression in brain tumors and possibly contribute to the local immunosuppressive milieu of malignant gliomas.
Collapse
Affiliation(s)
- B Badie
- Neuro-oncology Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine, K3/805 Clinical Science Center, 600 Highland Ave., Madison, WI 53792-3232, USA.
| | | | | | | | | |
Collapse
|
26
|
Tan Z, Levid J, Schreiber SS. Increased expression of Fas (CD95/APO-1) in adult rat brain after kainate-induced seizures. Neuroreport 2001; 12:1979-82. [PMID: 11435933 DOI: 10.1097/00001756-200107030-00040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fas (CD95/APO-1), a transmembrane glycoprotein and receptor for the Fas ligand, plays an important role in apoptosis. The present study examined whether excitotoxic cell death induces Fas expression in the adult rat brain. Although relatively light immunostaining was observed in control brain sections, significantly increased Fas immunoreactivity was seen from 4 h to 5 days after the onset of kainic acid-induced seizures. Increased expression of both Fas mRNA and protein were also evident by reverse transcription polymerase chain reaction and Western blotting, respectively. Fas induction was correlated with neuronal apoptosis as demonstrated by colocalization of Fas and terminal dT-mediated dUTP nick end-labeling (TUNEL). Cells with increased Fas-expression were also immunoreactive for tumor suppressor p53 and neuronal specific nuclear protein (NeuN). These results suggest that Fas receptor may contribute to excitotoxic neuronal death in cooperation with p53, and further implicates the Fas pathway in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Z Tan
- Departments of Neurology, USC Keck School of Medicine, 1333 San Pablo Street MCH 142, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
27
|
Abstract
Fas (APO-1/CD95) is a cell surface receptor initially identified in lymphoid cells, but more recently detected in the central nervous system under pathological, usually inflammatory, conditions. In most Fas expressing cells, triggering of Fas by its ligand or by antagonistic antibodies leads to apoptosis. Human fetal astrocytes (HFA) constitutively express Fas yet are resistant to cell death following Fas ligation. In the current study, using dissociated cultures of human fetal central nervous system-derived cells, we attempted to identify a basis for HFA resistance to Fas-mediated injury. We compared the components of the Fas signaling pathway of HFA to those of two human cell lines susceptible to Fas-mediated injury, U251 glioma and Jurkat T-cells. We found that HFA did not express caspase 8 (FLICE), the caspase primarily activated on Fas signaling. Although we could induce caspase 8 in HFA with the inflammatory cytokines IFNgamma and TNFalpha, HFA remained resistant to Fas-mediated injury. Addition of inflammatory cytokines to the extracellular milieu also increased FLIP mRNA (FLICE inhibitory protein). Furthermore, upon triggering of cytokine-treated cells with FasL, we observed upregulation of the cleavage product of FLIP (p43-FLIP) previously shown to associate with the DISC and to block caspase 8 recruitment, thereby inhibiting Fas-mediated death. Our findings indicate that caspase 8 and its regulators play a central role in determining the response to Fas ligation of HFA and support a role for Fas signaling in the developing central nervous system other than related to cytotoxicity.
Collapse
Affiliation(s)
- K Wosik
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
28
|
Sabri F, De Milito A, Pirskanen R, Elovaara I, Hagberg L, Cinque P, Price R, Chiodi F. Elevated levels of soluble Fas and Fas ligand in cerebrospinal fluid of patients with AIDS dementia complex. J Neuroimmunol 2001; 114:197-206. [PMID: 11240032 DOI: 10.1016/s0165-5728(00)00424-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We measured the levels of sFas and sFasL in CSF and serum of HIV-1 infected patients and related them to AIDS dementia complex (ADC). Specimens were obtained from 51 HIV-1 infected individuals (29 with ADC) and 39 HIV negative individuals. The sFas was detectable in all sera and 98% of CSF specimens. Measurable levels of sFasL were found in 79% of the CSF and 98% of sera samples. According to the presence or absence of ADC, we observed significant differences in CSF sFas (median and IQR 116, 132 vs. 30, 23 pg/ml, P<0.001) and sFasL (median and IQR 127, 290 vs. 15, 73 pg/ml, P<0.001) levels. The sFas in serum differed significantly between HIV-1 infected subjects and non-infected controls (P<0.001), with no correlation to ADC. On the contrary, sFasL in serum differed among HIV-1 infected subjects according to clinical signs of ADC. In the cross-sectional study, the number of cells present in CSF and CD4+ T cell counts in blood did not correlate to the levels of CSF sFas and sFasL. Interestingly, the number of HIV RNA copies in CSF correlated significantly to the levels of CSF sFasL (P=0.001) but not to sFas in the same compartment. Antiretroviral therapy reduced viral load and sFas levels in CSF in the majority of patients. sFas is a useful marker for ADC diagnosis and follow-up during antiviral treatment.
Collapse
Affiliation(s)
- F Sabri
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg, 16, S 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Phanithi PB, Yoshida Y, Santana A, Su M, Kawamura S, Yasui N. Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology 2000; 20:273-82. [PMID: 11211051 DOI: 10.1046/j.1440-1789.2000.00346.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mild hypothermia is considered to have a protective effect during ischemic neuronal cell death. The present study provides experimental evidence for this beneficial role of mild hypothermia using reversible middle cerebral artery occlusion (MCAo) in a Sprague-Dawley (SD) rat model. MCAo was induced in rats for 1 h followed by reperfusion at different periods. Hematoxylin-eosin (HE) staining in normothermic (NT) 37 degrees C and hypothermic (HT) 33 degrees C groups of rats confirmed cerebral infarcts. The mean per cent infarct area was significantly reduced in the HT group of rats. Immunohistochemical analysis was done using anti-Fas and caspase-3 antibodies. The immunohistochemical expression of Fas and caspase-3 was demonstrable as early as 5 h after reperfusion, but the expression pattern maximized at 24 h after reperfusion. The expression of Fas and caspase-3 proteins showed a clear decrease in the HT group over the NT group. In situ detection of DNA fragmentation was done using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling method (TUNEL). TUNEL-positive cells were first observed at 5h after reperfusion and progressively increased by 24h. A higher number of TUNEL-positive cells was found in the NT group, but they were significantly decreased in the HT group. Further, DNA fragmentation was confirmed by size fractionation in agarose gel. These findings demonstrate a positive relation between the expression of Fas, caspase-3 and TUNEL-positive cells.
Collapse
Affiliation(s)
- P B Phanithi
- Department of Pathology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
In vivo models of cerebral hypoxia-ischemia have shown that neuronal death may occur via necrosis or apoptosis. Necrosis is, in general, a rapidly occurring form of cell death that has been attributed, in part, to alterations in ionic homeostasis. In contrast, apoptosis is a delayed form of cell death that occurs as the result of activation of a genetic program. In the past decade, we have learned considerably about the mechanisms underlying apoptotic neuronal death following cerebral hypoxia-ischemia. With this growth in knowledge, we are coming to the realization that apoptosis and necrosis, although morphologically distinct, are likely part of a continuum of cell death with similar operative mechanisms. For example, following hypoxia-ischemia, excitatory amino acid release and alterations in ionic homeostasis contribute to both necrotic and apoptotic neuronal death. However, apoptosis is distinguished from necrosis in that gene activation is the predominant mechanism regulating cell survival. Following hypoxic-ischemic episodes in the brain, genes that promote as well as inhibit apoptosis are activated. It is the balance in the expression of pro- and anti-apoptotic genes that likely determines the fate of neurons exposed to hypoxia. The balance in expression of pro- and anti-apoptotic genes may also account for the regional differences in vulnerability to hypoxic insults. In this review, we will examine the known mechanisms underlying apoptosis in neurons exposed to hypoxia and hypoxia-ischemia.
Collapse
Affiliation(s)
- K J Banasiak
- Department of Pediatrics, Section of Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
31
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rosenbaum DM, Gupta G, D'Amore J, Singh M, Weidenheim K, Zhang H, Kessler JA. Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res 2000; 61:686-92. [PMID: 10972965 DOI: 10.1002/1097-4547(20000915)61:6<686::aid-jnr12>3.0.co;2-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to investigate the role of fas antigen, a member of the TNF receptor family, in cell death after focal cerebral ischemia. Focal ischemia was induced in the Sprague-Dawley rat. Evidence for apoptosis was determined by morphology as well as the presence of DNA fragmentation by the end labeling technique (TUNEL). Immunohistochemistry was performed to detect expression of both fas and fas ligand (fasL). In a separate set of experiments, two groups of mice were studied: lpr (that have a loss of function mutation for fas) and wild type. Infarct volume was measured at 24 hr as well as evidence for apoptosis. Twenty-four hours after ischemia, there was evidence for apoptosis based on morphological criteria as well as the TUNEL technique in the rat. Immunohistochemistry demonstrated increased expression of both fas and fasL in the ischemic region, with maximal staining occurring between 24-48 hr for both. Twenty-four hours after ischemia in the mice, there was evidence of apoptosis in both groups, however, the mutant mice (lpr) had significantly smaller infarcts as compared to the wild type. There was no difference in the cerebrovasculature of the two groups of mice. These data support the hypothesis that apoptosis plays a role in the pathophysiology of focal cerebral ischemia. Furthermore, these data suggest that fas-mediated apoptosis contributes to this process.
Collapse
Affiliation(s)
- D M Rosenbaum
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:397-403. [PMID: 10861077 DOI: 10.4049/jimmunol.165.1.397] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fractalkine is a CX3C-family chemokine, highly and constitutively expressed on the neuronal cell surface, for which a clear CNS physiological function has yet to be determined. Its cognate receptor, CX3CR-1, is constitutively expressed on microglia, the brain-resident macrophages; however, these cells do not express fractalkine. We now show that treatment of microglia with fractalkine maintains cell survival and inhibits Fas ligand-induced cell death in vitro. Biochemical characterization indicates that this occurs via mechanisms that may include 1) activation of the phosphatidylinositol-3 kinase/protein kinase B pathway, resulting in phosphorylation and blockade of the proapoptotic functions of BAD; 2) up-regulation of the antiapoptotic protein Bcl-xL; and 3) inhibition of the cleavage of BH3-interacting domain death agonist (BID). The observation that fractalkine serves as a survival factor for primary microglia in part by modulating the protein levels and the phosphorylation status of Bcl-2 family proteins reveals a novel physiological role for chemokines. These results, therefore, suggest that the interaction between fractalkine and CX3CR-1 may play an important role in promoting and preserving microglial cell survival in the CNS.
Collapse
Affiliation(s)
- S A Boehme
- Neurocrine Biosciences, Inc., San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
34
|
Harrison DC, Roberts J, Campbell CA, Crook B, Davis R, Deen K, Meakin J, Michalovich D, Price J, Stammers M, Maycox PR. TR3 death receptor expression in the normal and ischaemic brain. Neuroscience 2000; 96:147-60. [PMID: 10777386 DOI: 10.1016/s0306-4522(99)00502-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the death receptor family may play a prominent role in developmental and pathological neuronal cell death. We report the expression of the TR3 and TR7 death receptors in the adult human and rat central nervous system. Whereas expression of TR3 appears to be high in the human cerebellum, with lower levels in other brain regions, robust expression is observed in many regions of the rat brain. We also analyzed modulation of death receptor expression in an in vivo rat model of acute stroke. In contrast to tumor necrosis factor receptor 1, Fas and p75(NGFR), which all show up-regulation specifically in lesioned cortex of the permanent middle cerebral artery occlusion model of stroke. TR3 shows a rapid global increase in both lesioned and unlesioned brain. In comparison, the recently described death receptor TR7 shows no change in this model. These data indicate that the death receptors show clear differences in patterns of expression in response to ischemic injury. ¿ 2000 IBRO. Published by Elsevier Science Ltd.
Collapse
Affiliation(s)
- D C Harrison
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Beer R, Franz G, Schöpf M, Reindl M, Zelger B, Schmutzhard E, Poewe W, Kampfl A. Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab 2000; 20:669-77. [PMID: 10779011 DOI: 10.1097/00004647-200004000-00004] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptotic cell death plays an important role in the cascade of neuronal degeneration after traumatic brain injury (TBI), but the underlying mechanisms are not fully understood. However, increasing evidence suggests that expression of Fas and its ligand (FasL) could play a major role in mediating apoptotic cell death in acute and chronic neurologic disorders. To further investigate the temporal pattern of Fas and FasL expression after experimental TBI in the rat, male Sprague Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for Fas and FasL protein expression and for immunohistologic analysis at intervals from 15 minutes to 14 days after injury. Increased Fas and FasL immunoreactivity was seen in the cortex ipsilateral to the injury site from 15 minutes to 72 hours after the trauma, respectively. Immunohistologic investigation demonstrated a differential pattern of Fas and FasL expression in the cortex, respectively: increased Fas immunoreactivity was seen in cortical astrocytes and neurons from 15 minutes to 72 hours after the injury. In contrast, increased expression of FasL was seen in cortical neurons, astrocytes, and microglia from 15 minutes to 72 hours after impact injury. Concurrent double-labeling examinations using terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling identified Fas- and FasL-immunopositive cells with high frequency in the cortex ipsilateral to the injury site. In contrast, there was no evidence of Fas- and FasL-immunopositive cells in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. Further, Fas and FasL immunoreactivity was absent in the contralateral cortex and hippocampus at all time points investigated. These results reveal induction of Fas and FasL expression in the cortex after TBI in the rat. Further, these data implicate an involvement of Fas and FasL in the pathophysiologic mechanism of apoptotic neurodegeneration after TBI. Last, these data suggest that strategies aimed to repress posttraumatic Fas- and FasL-induced apoptosis may open new perspectives for the treatment of TBI.
Collapse
Affiliation(s)
- R Beer
- Department of Neurology, University Hospital Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Badie B, Schartner J, Vorpahl J, Preston K. Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro. Exp Neurol 2000; 162:290-6. [PMID: 10739635 DOI: 10.1006/exnr.1999.7345] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of microglia by interferon-gamma (IFN-gamma) has been implicated in a number of central nervous system (CNS) inflammatory disease processes. Because IFN-gamma has also been shown to play a role in programmed cell death, we investigated its cytotoxicity and its effect on the Fas apoptotic pathway in microglia. Flow cytometry was used to quantify the IFN-gamma-mediated apoptotic response and Fas and Fas ligand (FasL) expression in two well-characterized murine microglia cell lines (BV-2 and N9). Nuclear fragmentation, suggestive of apoptosis, was noted within 24 h of incubation of microglia with IFN-gamma (10 U/ml). After a 72-h incubation, almost every BV-2 and N9 microglia, but not GL261 glioma cells, underwent cell death and detached from the culture plates. This cytotoxicity occurred even at low IFN-gamma concentrations (1 U/ml) and was inhibited by BAF, a pan-caspase inhibitor. Incubation of BV-2 and N9 microglia, but not GL261 glioma cells, with IFN-gamma also potentiated the expression of Fas and FasL in a similar dose-response and time-course manner, as seen for the apoptotic response. Whereas Fas expression increased by 100% in both microglia cells, FasL upregulation was more pronounced and increased by as much as 200% in the N9 cells. These findings suggest that in addition to its role as a microglia activator, IFN-gamma may also induce apoptosis of microglia, possibly through simultaneous upregulation of Fas and FasL. Interferon-gamma modulation of the Fas pathway and apoptosis in microglia may be important in the pathogenesis of inflammatory CNS disease processes.
Collapse
Affiliation(s)
- B Badie
- Neuro-oncology Laboratory, School of Medicine, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
37
|
Raoul C, Pettmann B, Henderson CE. Active killing of neurons during development and following stress: a role for p75(NTR) and Fas? Curr Opin Neurobiol 2000; 10:111-7. [PMID: 10679436 DOI: 10.1016/s0959-4388(99)00055-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Evidence for active triggering of neuronal death continues to accumulate. The transmembrane receptors p75(NTR) and Fas can trigger (and in some cases are required for) programmed cell death of the neurons that express them, through signalling pathways that are regulated by a variety of cytoplasmic effectors. Neuronal death induced by trophic deprivation often requires Fas signalling, further blurring the boundaries between naturally occurring and stress-induced neuronal death.
Collapse
Affiliation(s)
- C Raoul
- INSERM U.382, Developmental Biology Institute of Marseille (CNRS-INSERM - Univ. Méditerranée - AP Marseille), Marseille, 13288, France.
| | | | | |
Collapse
|
38
|
Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, Lo EH. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab 2000; 20:396-404. [PMID: 10698078 DOI: 10.1097/00004647-200002000-00022] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The overall hypothesis that cell death after intracerebral hemorrhage is mediated in part by apoptotic mechanisms was tested. Intracerebral hemorrhage was induced in rats using stereotactic infusions of 0.5 U of collagenase (1-microL volume) into the striatum. After 24 hours, large numbers of TUNEL-positive stained cells with morphologies suggestive of apoptosis were present in the center and periphery of the hemorrhage. Double staining with Nissl and immunocytochemical labeling with antibodies against neuronal nuclei and glial fibrillary acidic protein suggested that these TUNEL-positive cells were mostly neurons and astrocytes. Electrophoresis of hemorrhagic brain extracts showed evidence of DNA laddering into approximately 200-bp fragments. Western blots showed cleavage of the cytosolic caspase substrate gelsolin. The density of TUNEL-positive cells at 24 and 48 hours after hemorrhage was significantly reduced by treatment with the broad-spectrum caspase inhibitor zVADfmk. It was unlikely that apoptotic changes were due to neurotoxicity of injected collagenase because TUNEL-positive cells and DNA laddering were also obtained in an alternative model of hemorrhage where autologous blood was infused into the striatum. Furthermore, equivalent doses of collagenase did not induce cell death in primary neuronal cultures. These results provide initial evidence that apoptotic mechanisms may mediate some of the injury in brain after intracerebral hemorrhage.
Collapse
Affiliation(s)
- K Matsushita
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital East, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Choi C, Park JY, Lee J, Lim JH, Shin EC, Ahn YS, Kim CH, Kim SJ, Kim JD, Choi IS, Choi IH. Fas Ligand and Fas Are Expressed Constitutively in Human Astrocytes and the Expression Increases with IL-1, IL-6, TNF-α, or IFN-γ. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.1889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Fas ligand (FasL) and Fas are mediators of apoptosis, which are implicated in the peripheral deletion of autoimmune cells, activation-induced T cell death, and cytotoxicity mediated by CD8+ T cells. Fas is also believed to be involved in several central nervous system diseases, but until now, the effector cells expressing FasL in the brain have not been identified. We investigated the expression levels of Fas and FasL with the stimulation of cytokines and the possible effector cells targeting Fas-bearing cells. Our data demonstrated that: 1) FasL is expressed constitutively on astrocytes taken from a fetus or an adult and that its expression increases when these cells are treated with IL-1, IL-6, or TNF-α in which the pretreatment of IFN-γ triggers astrocytes to express more FasL; 2) astrocytes induce apoptosis in MOLT-4 cells through FasL; 3) Fas is also expressed constitutively and is up-regulated by IL-1, IL-6, or TNF-α in which the pretreatment of IFN-γ triggers astrocytes to express more Fas; 4) apoptosis occurs when fetal astrocytes are treated with agonistic anti-Fas IgM Ab after culture with IFN-γ and TNF-α; and 5) TNF-related apoptosis inducing ligand is up-regulated in fetal astrocytes with stimuli of IL-1 or TNF-α. These findings suggest a possible role of astrocytes in the induction of apoptosis in central nervous system diseases.
Collapse
Affiliation(s)
- Chulhee Choi
- *Microbiology and Institute for Immunology and Immunological Diseases,
- †Neurology, and
| | - Joo Young Park
- ‡Pharmacology, Yonsei University College of Medicine, Seoul, Korea; and
| | - Jeonggi Lee
- *Microbiology and Institute for Immunology and Immunological Diseases,
| | - Jung-Hee Lim
- *Microbiology and Institute for Immunology and Immunological Diseases,
| | - Eui-Cheol Shin
- *Microbiology and Institute for Immunology and Immunological Diseases,
| | - Young Soo Ahn
- §Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Chul-Hoon Kim
- §Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Se-Jong Kim
- *Microbiology and Institute for Immunology and Immunological Diseases,
| | - Joo-Deuk Kim
- *Microbiology and Institute for Immunology and Immunological Diseases,
| | | | - In-Hong Choi
- *Microbiology and Institute for Immunology and Immunological Diseases,
| |
Collapse
|
40
|
Nakashima K, Yamashita K, Uesugi S, Ito H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J Neurotrauma 1999; 16:143-51. [PMID: 10098959 DOI: 10.1089/neu.1999.16.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is involved in the pathogenesis of cerebral ischemia. Previous studies have confirmed that the brain surrounding an intracerebral hematoma develops ischemia. We investigated the number and distribution of cells exhibiting DNA fragmentation with apoptotic morphology in the transient intracerebral mass lesion to determine whether apoptosis contributed to the lesion progress after intracerebral hemorrhage (ICH). Transient intracerebral mass was created by inflation of a microballoon for 10 min (group A) or 2 h (group B) in the caudoputamen in rats, and brains were examined 1, 3, 6, 24, and 48 h after microballoon deflation. The lesion volume was calculated using parallel coronal sections with cresyl violet staining. Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine (dUTP)-biotin nick end labeling (TUNEL) was used to detect cells undergoing DNA fragmentation. Immunohistochemistry for Fas antigen was also done to ascertain molecular mechanisms of apoptosis. Histological examination of hematoxylin and eosin-stained sections showed the typical appearance of neuronal necrosis in the caudoputaminal lesion. Lesion volume in the caudoputamen gradually increased as time advanced from 1 to 48 h. Cells stained heavily by TUNEL with apoptotic morphology were detected in the lesion, but not in the inner boundary zone of the lesion. The number of these cells significantly increased from 6 to 24 h in each experimental group (p < 0.05). The cells with positive immunoreactivity for Fas antigen was prominently observed in the lesion at 6 h. The distribution of apoptotic cells and the rapid increase in the number of apoptotic cells after 24 h propose that apoptotic cell death may contribute to lesion core formation but not to gradual development of the lesion.
Collapse
Affiliation(s)
- K Nakashima
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | | | | | | |
Collapse
|
41
|
Park C, Sakamaki K, Tachibana O, Yamashima T, Yamashita J, Yonehara S. Expression of fas antigen in the normal mouse brain. Biochem Biophys Res Commun 1998; 252:623-8. [PMID: 9837756 DOI: 10.1006/bbrc.1998.9572] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fas antigen (Fas/Apo-1/CD95) is a cell surface receptor protein that mediates apoptosis-inducing signals and plays an important role in the immune system. In the central nervous system, during the period of naturally occurring cell death many neurons appear to die by apoptosis. We investigated the involvement of Fas in these events. The expression of Fas transcripts and protein was examined in the juvenile mouse brain. By RT-PCR analysis, Fas mRNA was detected in the cerebrum, cerebellum, and hippocampus of the brain. By immunohistochemistry, we found Fas in neurons localized in the CA2 and CA3 sectors of the hippocampus and in the cortical III layer of the cerebrum, but not neurons in the cerebellum. Furthermore, Fas was expressed on the primary cultured hippocampal and cerebral cells using immunofluorescence and flow cytometry. These results suggest that Fas is specifically expressed on neurons in the mouse brain during postnatal development.
Collapse
Affiliation(s)
- C Park
- Department of Neurosurgery, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa, 920-8641, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Frei K, Ambar B, Adachi N, Yonekawa Y, Fontana A. Ex vivo malignant glioma cells are sensitive to Fas (CD95/APO-1) ligand-mediated apoptosis. J Neuroimmunol 1998; 87:105-13. [PMID: 9670851 DOI: 10.1016/s0165-5728(98)00065-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fas (also known as CD95/APO-1) is a cell surface receptor and member of the tumor necrosis factor receptor superfamily which mediates apoptosis in sensitive cells upon oligomerization by specific antibodies or by its ligand (FasL). Recently, human glioma cell lines were found to be susceptible to Fas-mediated apoptosis triggered by alpha-Fas antibodies. However, whether the Fas system can also be targeted in ex vivo high grade gliomas is at present unknown. In the present investigation, alpha-Fas antibodies and FasL were tested in short-term monolayer cultures or in colony forming assays established from freshly resected tumors of patients with anaplastic astrocytomas (WHO grade III) and glioblastoma multiforme (WHO grade IV). Anti-Fas antibodies induced only moderate apoptosis in four of the 19 tested glioma cell cultures. This contrasts FasL which induced apoptosis in all of the 19 tumor cell cultures analyzed. Mean cytotoxicity of glioma cell cultures treated for 48 h with alpha-Fas antibodies or FasL was 9.6% and 44.3%, respectively. Irrespective of whether alpha-Fas antibodies or FasL were used, pretreatment with recombinant hu (rhu) IFN-gamma and rhuTNF-alpha for 48 h did not sensitize glioma cells to Fas-mediated cytotoxicity. The long-term effect by FasL on tumor colony formation was more striking. FasL treatment resulted in more than 90% inhibition of clonal tumor cell growth of all the eight high grade gliomas analyzed. These results suggest that Fas targeting by FasL but not by alpha-Fas antibodies may provide a promising approach for locoregional glioma treatment.
Collapse
Affiliation(s)
- K Frei
- Department of Neurosurgery, University Hospital Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Nishiura Y, Furuya T, Nakamura T, Kawakami A, Tsuboi M, Nakane S, Shirabe S, Nakashima T, Fujiyama K, Eguchi K. Increased Fas-mediated cytotoxicity of CD4-positive T cells in patients with human T-lymphotropic virus type I-associated myelopathy. J Neuroimmunol 1998; 86:198-201. [PMID: 9663566 DOI: 10.1016/s0165-5728(98)00054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a 51Cr release assay, we investigated Fas-mediated cytotoxicity of peripheral blood CD4+ T cells of patients with human T-lymphotropic virus type-I (HTLV-I)-associated myelopathy (HAM) against T98G, a glioblastoma cell line which expresses Fas. Cytotoxic activity of CD4+ T cells against T98G was significantly higher in HAM patients than in controls. Moreover, when CD4+ T cells of HAM patients were preincubated with a monoclonal antibody to human Fas ligand (FasL), cytotoxic activity against T98G was significantly suppressed. These results suggest that damage to nervous tissues by the Fas/FasL system is involved in the pathogenesis of HAM.
Collapse
Affiliation(s)
- Y Nishiura
- First Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vogt M, Bauer MK, Ferrari D, Schulze-Osthoff K. Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett 1998; 429:67-72. [PMID: 9657385 DOI: 10.1016/s0014-5793(98)00562-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis plays an important role in neurodegeneration, although the mechanisms and mediators in the brain are largely unknown. Because microglial cells have been suggested to contribute to apoptosis in neurological disorders, we investigated the expression of the death ligand CD95L in this cell type. We found that, compared to classical mediators of microglial activation, the most potent inducer of CD95L was oxidative stress. Exposure of microglial cells to H2O2 or paraquat rapidly triggered CD95L mRNA and protein expression, associated with the activation of transcription factor NF-kappaB. Enhanced expression of CD95L was further found following exposure of cells to hypoxia and subsequent reoxygenation. Our results indicate a potential role of CD95L in oxidative stress-mediated cell death, ischemia/reperfusion and other diseases with a disturbed redox balance.
Collapse
Affiliation(s)
- M Vogt
- Department of Internal Medicine I, Medical Clinics, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | |
Collapse
|
45
|
Becher B, D'Souza SD, Troutt AB, Antel JP. Fas expression on human fetal astrocytes without susceptibility to fas-mediated cytotoxicity. Neuroscience 1998; 84:627-34. [PMID: 9539231 DOI: 10.1016/s0306-4522(97)00455-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fas (APO-1/CD95) is a cell surface receptor, initially identified in lymphoid cells, but more recently detected in the central nervous system under pathologic conditions. Ligation of the fas receptor by fas ligand or by agonist antibodies induces apoptotic cell death in most fas-expressing cells. In the current study, using dissociated cultures of human fetal central nervous system-derived cells, we detected fas expression on astrocytes but not on neurons. Such expression differs from our previous results using cultures of human adult central nervous system-derived cells, which demonstrated fas expression on oligodendrocytes but not on astrocytes; the oligodendrocytes were susceptible to cell death via this pathway. Using multiple assays of cell death, including nuclear propidium iodide and TUNEL staining to detect nuclear-directed injury, cytofluorometric propidium iodide inclusion, and lactate dehydrogenase release to detect membrane-directed injury, we found that fas ligation, however, did not induce cell death in the cultured fetal astrocytes. Cytokines that augmented (gamma-interferon) or inhibited (interleukin-4) fetal astrocyte proliferation did not alter fas expression or resistance to fas ligation. Cells obtained immediately ex vivo from human fetal but not from adult central nervous system tissue expressed fas; such expression was restricted to astrocytes as assessed by dual-stain immunohistochemistry. The fetal central nervous system cells did not express fas ligand. Our findings indicate that fas expression on central nervous system cells may reflect their state of maturity; expression may not, however, always be coupled to susceptibility to cell death via this pathway.
Collapse
Affiliation(s)
- B Becher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
46
|
Miles AN, Knuckey NW. Apoptotic neuronal death following cerebral ischaemia. J Clin Neurosci 1998; 5:125-45. [DOI: 10.1016/s0967-5868(98)90027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Accepted: 09/03/1997] [Indexed: 12/23/2022]
|
47
|
Ertel W, Keel M, Stocker R, Imhof HG, Leist M, Steckholzer U, Tanaka M, Trentz O, Nagata S. Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injury. J Neuroimmunol 1997; 80:93-6. [PMID: 9413263 DOI: 10.1016/s0165-5728(97)00139-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When the cell surface molecule Fas is triggered by its agonist Fas ligand the result is apoptosis of these cells and tissue destruction. To elucidate the pathophysiological relevance of Fas ligand in patients with cerebral oedema caused by trauma, we examined its concentrations in cerebrospinal fluid in 18 patients using specific ELISA. Serum and cerebrospinal fluid from healthy people and injured patients without head trauma did not contain detectable Fas ligand. In contrast, cerebrospinal fluid from patients with severe brain injury contained high concentrations of Fas ligand without detectable concentrations in serum. Soluble Fas ligand concentrations in cerebrospinal fluid correlated significantly with severity of brain injury. The Fas-Fas ligand-system may have a pivotal role in causing oedema and local tissue destruction in the brain after severe head injury.
Collapse
Affiliation(s)
- W Ertel
- Division of Trauma Surgery, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 1997; 17:491-9. [PMID: 9183286 DOI: 10.1097/00004647-199705000-00002] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To assess the role of tumor necrosis factor-alpha (TNF-alpha) in modulating the process of cerebral ischemic injury, we identified TNF-alpha-producing cells and studied the time course of TNF-alpha expression. Immunoreactivity for TNF-alpha appeared in white matter of the mouse hippocampus as early as 1.5 h following a 30-min global ischemic insult. Double staining for TNF-alpha and glial fibrillary acidic protein (GFAP) suggested that the TNF-alpha-positive cells are most likely microglia, not astrocytes. TNF-alpha immunostaining decreased at 6 and 24 h but increased again at 3 days, when pyramidal neurons showed degeneration. Adjacent-section staining for microglia and double staining with GFAP suggested that TNF-alpha-positive cells in the pyramidal cell layer were microglia and those in the white matter were astrocytes. By 5 days TNF-alpha immunostaining disappeared from these glial cells, while a number of microglia were accumulated in the degenerated hippocampal pyramidal layer. Pyramidal neurons never expressed TNF-alpha immunoreactivity. Western blotting confirmed biphasic TNF-alpha expression. Our findings suggest that early production of TNF-alpha by microglia may activate a cytokine network in post-ischemic brain resulting in TNF-alpha synthesis by astrocytes.
Collapse
Affiliation(s)
- H Uno
- Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | |
Collapse
|
49
|
Kinoshita M, Tomimoto H, Kinoshita A, Kumar S, Noda M. Up-regulation of the Nedd2 gene encoding an ICE/Ced-3-like cysteine protease in the gerbil brain after transient global ischemia. J Cereb Blood Flow Metab 1997; 17:507-14. [PMID: 9183288 DOI: 10.1097/00004647-199705000-00004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We assessed the expression of several genes encoding pro-apoptotic cysteine proteases similar to interleukin-1 beta converting enzyme (ICE) and nematode Ced-3 in association with delayed neuronal death (DND) after transient forebrain ischemia in Mongolian gerbil. The levels of the two species of Nedd2 mRNA concomitantly increased about two-fold in the whole forebrain at 3-6 h after 10-min ischemia and declined to the basal level by 24 h. In situ hybridization revealed that the Nedd2 gene was up-regulated in some neuronal populations in CA1 and CA3 regions of the hippocampus. In contrast, expression of ICE, CPP32/Yama/Apopain, and TX/ICErelll did not change within 48 h. These observations raise the possibility that up-regulation of Nedd2 in the vulnerable neurons may contribute to the proteolytic processes preceding the manifestation of apoptosis and/or necrosis after ischemic insult.
Collapse
Affiliation(s)
- M Kinoshita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
50
|
Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T. The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 1996; 220:195-8. [PMID: 8994226 DOI: 10.1016/s0304-3940(96)13257-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fas is an apoptosis-signaling receptor molecule on the surface of a number of cell types. The soluble form of Fas (sFas) was measured for the first time in brain (caudate nucleus, putamen and cerebral cortex), ventricular cerebrospinal fluid (VCSF), and lumbar CSF (LCSF) from control and parkinsonian patients by a highly sensitive two-site sandwich enzyme-linked immunosorbent assay (ELISA). The concentrations of sFas in nigro-striatal dopaminergic regions were significantly higher in parkinsonian patients than those in controls, whereas this product in cerebral cortex showed no significant difference between parkinsonian and control subjects. Neither VCSF nor LCSF contained the sFas molecule in the detectable amounts (< 16 pg/ml). These results suggest that the presence of sFas possibly leads to cell death/neurodegeneration in parkinsonian brain.
Collapse
Affiliation(s)
- M Mogi
- Department of Oral Biochemistry, Matsumoto Dental College, Shiojiri, Japan
| | | | | | | | | | | | | |
Collapse
|