1
|
Li P, Xu X, Zhang C, Chang Q, Wang J, Wang W, Ren H. Glycosylation on extracellular vesicles and its detection strategy: Paving the way for clinical use. Int J Biol Macromol 2025; 295:139714. [PMID: 39798737 DOI: 10.1016/j.ijbiomac.2025.139714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids. However, multiple obstacles exist, including the inconsistency in glycosylation patterns between an entire batch of EVs and a specific EV protein, and difficulty in distinguishing glycosylation types after tedious separation and purification procedures. This review outlines recent advances in EV glycan detection, either at the glycomic level for a collection of intact EVs or at the molecular level for a specific protein on EVs. Particular emphasis has been placed on the abundance of EVs in body fluids and their unique characteristics for drug delivery of EVs, indicating an opportunity for diagnostic and therapeutic purposes via EV glycans.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Cong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Liu D, Xue Y, Ding D, Zhu B, Shen J, Jin Z, Sun S. Distinct O-Acetylation Patterns of Serum Glycoproteins among Humans, Mice, and Rats. J Proteome Res 2024; 23:5511-5519. [PMID: 39533701 DOI: 10.1021/acs.jproteome.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
O-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their O-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact N-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any O-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further O-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in O-acetylated forms. Among all O-acetylated N-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall O-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse O-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of O-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.
Collapse
Affiliation(s)
- Didi Liu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Yue Xue
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Dan Ding
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Bojing Zhu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiechen Shen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
3
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
4
|
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7040171. [PMID: 31683930 PMCID: PMC6963189 DOI: 10.3390/vaccines7040171] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are a family of nine carbon keto-aldononulosonic acids presented at the terminal ends of glycans on cellular membranes. α-Linked sialoglycoconjugates often undergo post-glycosylation modifications, among which O-acetylation of N-acetyl neuraminic acid (Neu5Ac) is the most common in mammalian cells. Isoforms of sialic acid are critical determinants of virus pathogenesis. To date, the focus of viral receptor-mediated attachment has been on Neu5Ac. O-Acetylated Neu5Acs have been largely ignored as receptor determinants of virus pathogenesis, although it is ubiquitous across species. Significantly, the array of structures resulting from site-specific O-acetylation by sialic acid O-acetyltransferases (SOATs) provides a means to examine specificity of viral binding to host cells. Specifically, C4 O-acetylated Neu5Ac can influence virus pathogenicity. However, the biological implications of only O-acetylated Neu5Ac at C7-9 have been explored extensively. This review will highlight the biological significance, extraction methods, and synthetic modifications of C4 O-acetylated Neu5Ac that may provide value in therapeutic developments and targets to prevent virus related diseases.
Collapse
|
5
|
Chowdhury S, Chandra S, Mandal C. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia. Glycoconj J 2014; 31:523-35. [PMID: 25283637 DOI: 10.1007/s10719-014-9550-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy.
Collapse
Affiliation(s)
- Suchandra Chowdhury
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | | | | |
Collapse
|
6
|
Abstract
5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.
Collapse
|
7
|
Samanta S, Ghoshal A, Bhattacharya K, Saha B, Walden P, Mandal C. Sialoglycosylation of RBC in visceral leishmaniasis leads to enhanced oxidative stress, calpain-induced fragmentation of spectrin and hemolysis. PLoS One 2012; 7:e42361. [PMID: 22860118 DOI: 10.1371/journal.pone.0042361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by the intracellular parasite Leishmania donovani accounts for an estimated 12 million cases of human infection. It is almost always associated with anemia, which severely complicates the disease course. However, the pathological processes leading to anemia in VL have thus far not been adequately characterized to date. In studying the glycosylation patterns of peripheral blood cells we found that the red blood cells (RBC) of VL patients (RBC(VL)) express eight 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) that are not detected in the RBC of healthy individuals (RBC(N)). At the same time, the patients had high titers of anti-9-O-AcSGP IgG antibodies in their sera. These two conditions appear to be linked and related to the anemic state of the patients, as exposure of RBC(VL) but not RBC(N) to anti-9-O-AcSGPs antibodies purified from patient sera triggered a series of responses. These included calcium influx via the P/Q-type but not L-type channels, activation of calpain I, proteolysis of spectrin, enhanced oxidative stress, lipid peroxidation, externalization of phosphatidyl serine with enhanced erythrophagocytosis, enhanced membrane fragility and, finally, hemolysis. Taken together, this study suggests that the enhanced hemolysis is linked to an impairment of membrane integrity in RBC(VL) which is mediated by ligand-specific interaction of surface 9-O-AcSGPs. This affords a potential explanation for the structural and functional features of RBC(VL) which are involved in the hemolysis related to the anemia which develops in VL patients.
Collapse
Affiliation(s)
- Sajal Samanta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Samanta S, Dutta D, Ghoshal A, Mukhopadhyay S, Saha B, Sundar S, Jarmalavicius S, Forgber M, Mandal C, Walden P, Mandal C. Glycosylation of erythrocyte spectrin and its modification in visceral leishmaniasis. PLoS One 2011; 6:e28169. [PMID: 22164239 PMCID: PMC3229537 DOI: 10.1371/journal.pone.0028169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022] Open
Abstract
Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBC(VL)). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and β-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrin(VL)) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and β-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrin(N)) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrin(N). Although the presence of both N- and O-glycosylations was found both in spectrin(N) and spectrin(VL), enhanced sialylation was predominantly induced in spectrin(VL). Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and β-spectrin(VL) confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrin(VL) showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrin(N) suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBC(VL). The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrin(VL) as evidenced by the presence of an additional 60 kDa fragment, absent in spectrin(N) which possibly affects the biology of RBC(VL) linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients.
Collapse
Affiliation(s)
- Sajal Samanta
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Devawati Dutta
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Angana Ghoshal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumi Mukhopadhyay
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saulius Jarmalavicius
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Michael Forgber
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Peter Walden
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Chitra Mandal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
10
|
Wu AM, Liu JH, Singh T, Yang Z. Recognition roles of mammalian structural units and polyvalency in lectin--glycan interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:99-116. [PMID: 21618106 DOI: 10.1007/978-1-4419-7877-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-san, Tao-yuan 333, Taiwan.
| | | | | | | |
Collapse
|
11
|
Salawu MO, Oloyede OB, Oladiji AT, Muhammad NO, Yakubu MT. Effect of Escherichia coli endotoxin on Archachatina marginata hemolymph coagulation system. PHARMACEUTICAL BIOLOGY 2011; 49:1029-1033. [PMID: 21428735 DOI: 10.3109/13880209.2011.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Archachatina marginata Swainson (Achatinidae) is found in Nigeria, West Africa. Its hemolymph is applied as a disinfectant to blades and fresh cuts of circumcision in Yorubaland. The hemolymph is also used in traditional medicine practice. Investigation into its anti-endotoxin response is being studied for the first time. OBJECTIVE This study determined whether endotoxin causes measurable and concentration-dependent protein coagulation in the separate hemolymph fractions and in hemocyte lysate (HL)/plasma mixtures. MATERIALS AND METHODS Endotoxin was prepared by inoculating 5% w/v dextrose with locally isolated Escherichia coli cells and incubated for 48 h before sterilization. Pyrogenicity was determined by rabbit test method and use the of LAL kit. Hemolymph fractions were exposed to endotoxin while controls were exposed to endotoxin-free water (0.025 EU/ml). HL/plasma (1:1 v/v) was exposed to varied endotoxin concentrations. RESULTS Data indicated significantly higher protein coagulates induced by endotoxin in all the hemolymph fractions (P < 0.05). Maximum protein coagulation in mixture of HL/plasma 1:1 was recorded. Exposure of HL/plasma at optimal ratio to varied endotoxin caused linear protein coagulation up to 1.0 EU/ml, beyond which it dropped significantly and unresponsive to further increase in endotoxin doses. DISCUSSION AND CONCLUSION There was endotoxin-induced protein coagulation, which is endotoxin concentration-dependent. The optimal coagulation observed for 1:1 HL/plasma mixture suggests stronger interaction between the hemocytes and the plasma in response to endotoxin. There are LPS-binding proteins in the plasma and hemocytes of A. marginata. This finding may be employed in detection and quantification of endotoxin in future.
Collapse
Affiliation(s)
- Musa O Salawu
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Lectins have been proven to be invaluable reagents for the histochemical detection of glycans in cells and tissues by light and electron microscopy. This technical review deals with the conditions of tissue fixation and embedding for lectin labeling, as well as various markers and related labeling techniques. Furthermore, protocols for lectin labeling of sections from paraffin and resin-embedded tissues are detailed together with various controls to demonstrate the specificity of the labeling by lectins.
Collapse
|
13
|
Mandal C, Mandal C, Chandra S, Schauer R, Mandal C. Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia. Glycobiology 2011; 22:70-83. [DOI: 10.1093/glycob/cwr106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Wu AM, Lisowska E, Duk M, Yang Z. Lectins as tools in glycoconjugate research. Glycoconj J 2010; 26:899-913. [PMID: 18368479 DOI: 10.1007/s10719-008-9119-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/26/2022]
Abstract
Lectins are ubiquitous proteins of nonimmune origin, present in plants, microorganisms, animals and humans which specifically bind defined monosugars or oligosaccharide structures. Great progress has been made in recent years in understanding crucial roles played by lectins in many biological processes. Elucidation of carbohydrate specificity of human and animal lectins is of great importance for better understanding of these processes. Long before the role of carbohydrate-protein interactions had been explored, many lectins, mostly of plant origin, were identified, characterized and applied as useful tools in studying glycoconjugates. This review focuses on the specificity-based lectin classification and the methods of measuring lectin-carbohydrate interactions, which are used for determination of lectin specificity or for identification and characterization of glycoconjugates with lectins of known specificity. The most frequently used quantitative methods are shortly reviewed and the methods elaborated and used in our laboratories, based on biotinylated lectins, are described. These include the microtiter plate enzyme-linked lectinosorbent assay, lectinoblotting and lectin-glycosphingolipid interaction on thin-layer plates. Some chemical modifications of lectin ligands on the microtiter plates and blots (desialylation, Smith degradation, beta-elimination), which extend the applicability of these methods, are also described.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung University, Kwei-san, Taoyuan 333, Taiwan.
| | | | | | | |
Collapse
|
15
|
Ghoshal A, Gerwig GJ, Kamerling JP, Mandal C. Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses. Glycobiology 2010; 20:553-66. [DOI: 10.1093/glycob/cwp207] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
16
|
Mandal C, Tringali C, Mondal S, Anastasia L, Chandra S, Venerando B, Mandal C. Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells. Int J Cancer 2010; 126:337-49. [PMID: 19588508 DOI: 10.1002/ijc.24733] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (-30 to 40%) and enzymatic activity toward ganglioside GD1a (-25.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (+66%) and to a parallel decrease of lactosylceramide (-55%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/Bax ratio, the accumulation of Neu3 transfected cells in the sub G0-G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. Therefore, the reduced expression of Neu3 in ALL could help lymphoblasts to survive, maintaining the cellular content of ceramide below a critical level. Interestingly, we found that Neu3 activity varied in relation to disease progression, increasing in clinical remission after chemotherapy, and decreasing again in patients that relapsed. In addition, a negative correlation was observed between Neu3 expression and the percentage of the ALL marker 9-OAcGD3 positive cells. Consequently, Neu3 could represent a new potent biomarker in childhood ALL, to assess the efficacy of therapeutic protocols and to rapidly identify an eventual relapse.
Collapse
|
17
|
Chowdhury S, Mandal C. O-acetylated sialic acids: multifaceted role in childhood acute lymphoblastic leukaemia. Biotechnol J 2009; 4:361-74. [PMID: 19296441 DOI: 10.1002/biot.200800253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL), a malignant transformation of the lymphoblasts, is highly responsive to chemotherapy. However, due to certain inadequacy in detection of minimal residual disease (MRD), relapse is a common phenomenon. To address this question, the present review deals with the induction of an unique O-acetyl derivative of sialic acid on a few disease-associated glycoproteins and glycolipids at the onset of childhood ALL, a finding of our group in the last decade. This information has been successfully utilized for diagnosis and prognosis of the disease. Existing literature is included for comparison. Additionally, cell surface overexpression of 9-O-acetylated sialoglycoproteins and antibodies against them present in patients' sera aid the survival of the malignant lymphoblasts and suggest a multifaceted role played by these molecules. Taken together, monitoring these molecules helps not only in unravelling the biology of this paediatric malignancy but also in personalizing the treatment strategies for the betterment of the patient population.
Collapse
Affiliation(s)
- Suchandra Chowdhury
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
18
|
Ghoshal A, Mukhopadhyay S, Saha B, Mandal C. 9-O-acetylated sialoglycoproteins are important immunomodulators in Indian visceral leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:889-98. [PMID: 19403782 PMCID: PMC2691061 DOI: 10.1128/cvi.00453-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/15/2009] [Accepted: 04/22/2009] [Indexed: 11/20/2022]
Abstract
Overexpression of disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) on peripheral blood mononuclear cells (PBMC) of visceral leishmaniasis (VL) patients (PBMC(VL)) compared to their levels of expression in healthy individuals has been demonstrated using a lectin, achatinin-H, with specificity toward 9-O-acetylated sialic acid derivatives alpha2-6 linkage with subterminal N-acetylgalactosamine (9-O-AcSAalpha2-6GalNAc). The decreased presence of disease-associated 9-O-AcSGPs on different immune cells of parasitologically cured individuals after successful treatment relative to the levels in patients with active VL prior to treatment was demonstrated. However, their contributory role as immunomodulatory determinants on PBMC(VL) remained unexplored. Accordingly, 9-O-AcSGPs on PBMC(VL) were sensitized with achatinin-H, leading to their enhanced proliferation compared to that observed with different known mitogens or parasite antigen. This lymphoproliferative response was characterized by evaluation of the TH1/TH2 response by intracellular staining and enzyme-linked immunosorbent assay for secreted cytokines, and the results were corroborated by their genetic expression. Sensitized PBMC(VL) evidenced a mixed TH1/TH2 cellular response with a predominance of the TH1 response, indicating the ability of 9-O-AcSGPs to modulate the host cell toward a favorable response. Interestingly, the humoral and cellular responses showed a good correlation. Further, high levels of anti-9-O-AcSGP antibodies with an order of distribution of immunoglobulin M (IgM) > IgG1 = IgG3 > IgG4 > IgG2 > IgE could be explained by a mixed TH1/TH2 response. A good correlation of enhanced 9-O-AcSGPs with both the cell-mediated (r = 0.98) and humoral (r = 0.99) response was observed. In summary, it may be concluded that sensitization of 9-O-AcSGPs on PBMC(VL) may provide a basis for the modulation of the host's immune response by their controlled expression, leading to a beneficial immune response and influencing the disease pathology.
Collapse
Affiliation(s)
- Angana Ghoshal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
19
|
Mukherjee K, Chava AK, Bandyopadhyay S, Mallick A, Chandra S, Mandal C. Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role. Biol Chem 2009; 390:325-35. [DOI: 10.1515/bc.2009.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractEnhanced levels of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2GPs) as disease-associated molecules was reported to act as signaling molecules for promoting survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Here, we searched for potential physiological ligands for Neu5,9Ac2GPs that could be involved in modulating the survival of lymphoblasts. Accordingly, we examined the presence of binding proteins for Neu5,9Ac2GPs on cell lines and primary cells of patients with B- and T-ALL, at presentation of the disease. Peripheral blood mononuclear cells from normal healthy donors and cells from myeloid leukemia patients were used for comparison. Neu5,9Ac2GPs-binding proteins (BPs) were specifically detected on the surface of both T- and B-ALL-lymphoblasts and ALL-cell lines along with the consistent presence of Neu5,9Ac2GPs. The Neu5,9Ac2GPs and BPs also co-localized on the cell surface and interacted specificallyin vitro. Apoptosis of lymphoblasts, induced by serum starvation, was reversed in the presence of purified Neu5,9Ac2GPs due to possible engagement of BPs, and the anti-apoptotic role of this interaction was established. This is the first report of the presence of potential physiological ligands for disease-associated molecules like Neu5,9Ac2GPs, the interaction of which is able to trigger an anti-apoptotic signal conferring a survival advantage to leukemic cells in childhood ALL.
Collapse
|
20
|
Ghoshal A, Mukhopadhyay S, Demine R, Forgber M, Jarmalavicius S, Saha B, Sundar S, Walden P, Mandal C, Mandal C. Detection and characterization of a sialoglycosylated bacterial ABC-type phosphate transporter protein from patients with visceral leishmaniasis. Glycoconj J 2009; 26:675-89. [PMID: 19184417 DOI: 10.1007/s10719-008-9223-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 09/23/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
Abstract
We report the discovery and characterization of a glycosylated bacterial ABC-type phosphate transporter isolated from the peripheral blood mononuclear cell (PBMC) fraction of patients with visceral leishmaniasis (VL). Three disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) of 19, 56 and 65 kDa, respectively, had been identified and their purity, apparent mass and pI established by SDS-PAGE and isoelectric focusing. Western blot analyses showed that the 9-O-acetylated sialic acid is linked via alpha2-->6 linkage to a subterminal N-acetylgalactosamine. For the 56 kDa protein, N- as well as O-glycosylations were demonstrated by specific glycosidase treatment and found to account for more than 9 kDa of the protein mass. The presence of sialic acids was further confirmed through thin layer chromatography, fluorimetric HPLC and electrospray ionization-mass spectrometry. The protein was identified by mass spectrometry and de novo sequencing of five tryptic fragments as a periplasmic ABC-type phosphate transporter of Pseudomonas aeruginosa. The amino acid sequences of the assigned peptides had 83-100% identity with the NCBI entry for a Pseudomonas transporter protein. Based on the recently reported X-ray structure of a human phosphate-binding protein, we predicted a 3D structural model for the 56 kDa protein using homology and threading methods. The most probable N- and O-glycosylation sites were identified by combinations of sequence motif-searching bioinformatics tools, solvent accessibility calculations, structural environment analyses and mass spectrometric data. This is the first reported glycosylation as well as sialylation of the periplasmic component of an ABC-type phosphate transporter protein and of one of few identified bacterial glycoproteins.
Collapse
Affiliation(s)
- Angana Ghoshal
- Department of Infectious Disease and Immunology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
9- O-acetylated sialic acids enhance entry of virulent Leishmania donovani promastigotes into macrophages. Parasitology 2008; 136:159-73. [PMID: 19079847 DOI: 10.1017/s0031182008005180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARY Distribution of 9-O-acetylated sialic acids (9-O-AcSA) on Leishmania donovani has been previously reported. Considering their role in recognition, the differential distribution of sialic acids especially 9-O-acetylated sialic acids in avirulent (UR6) versus virulent (AG83 and GE1) promastigotes of Leishmania donovani and its role in entry into macrophages was explored. Fluorimetric-HPLC, fluorimetric determination and ELISA revealed 14-, 8- and 5-fold lower sialic acids in UR6 as compared to AG83. Interestingly, on UR6, flow cytometry indicated lower (alpha2-->6)-linked sialoglycoproteins along with minimal 9-O-acetylated sialoglycoproteins by Scatchard analysis. Further, UR6 demonstrated a 9- and 14.5-fold lower infectivity and phagocytic index than AG83. Additionally, de-O-acetylation and de-sialylation of AG83 demonstrated a 3- and 1.5-fold reduced phagocytic index. The role of 9-O-AcSA in entry was further confirmed by pre-blocking the macrophage surface with a cocktail of sugars followed by microscopic quantification. The phagocytic index of AG83 exclusively through 9-O-AcSA was significantly high. Interestingly, AG83 produced higher metacyclic promastigotes containing increased 9-O-AcSA as compared to avirulent UR6 supporting its virulent nature. Taken together; our results conclusively demonstrate the increased presence of 9-O-acetylated sialic acid on promastigotes of virulent Leishmania donovani as compared to avirulent UR6 and their subsequent role in entry within macrophages.
Collapse
|
22
|
Mandal C, Srinivasan GV, Chowdhury S, Chandra S, Mandal C, Schauer R, Mandal C. High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj J 2008; 26:57-73. [PMID: 18677580 DOI: 10.1007/s10719-008-9163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/27/2022]
Abstract
Previous studies had established an over-expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Here, we report the discovery and characterization of sialate-O-acetyltransferase enzyme in ALL-cell lines and lymphoblasts from bone marrow of children diagnosed with B- and T-ALL. We observed a positive correlation between the enhanced sialate-O-acetyltransferase activity and the enhanced expression of Neu5,9Ac(2)-GPs in these lymphoblasts. Sialate-O-acetyltransferase activity in cell lysates or microsomal fractions of lymphoblasts of patients was always higher than that in healthy donors reaching up to 22-fold in microsomes. Additionally, the V (max) of this enzymatic reaction with AcCoA was over threefold higher in microsomal fractions of lymphoblasts. The enzyme bound to the microsomal fractions showed high activity with CMP-N-acetylneuraminic acid, ganglioside GD3 and endogenous sialic acid as substrates. N-acetyl-7-O-acetylneuraminic acid was the main reaction product, as detected by radio-thin-layer chromatography and fluorimetrically coupled radio-high-performance liquid chromatography. CMP and coenzyme A inhibited the microsomal enzyme. Sialate-O-acetyltransferase activity increased at the diagnosis of leukaemia, decreased with clinical remission and sharply increased again in relapsed patients as determined by radiometric-assay. A newly-developed non-radioactive ELISA can quickly detect sialate-O-acetyltransferase, and thus, may become a suitable tool for ALL-monitoring in larger scale. This is the first report on sialate-O-acetyltransferase in ALL being one of the few descriptions of an enzyme of this type in human.
Collapse
Affiliation(s)
- Chandan Mandal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Chowdhury S, Bandyopadhyay S, Mandal C, Chandra S, Mandal C. Flow-cytometric monitoring of disease-associated expression of 9-O-acetylated sialoglycoproteins in combination with known CD antigens, as an index for MRD in children with acute lymphoblastic leukaemia: a two-year longitudinal follow-up study. BMC Cancer 2008; 8:40. [PMID: 18241334 PMCID: PMC2268943 DOI: 10.1186/1471-2407-8-40] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 02/01/2008] [Indexed: 02/06/2023] Open
Abstract
Background Over expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs, abbreviated as OAcSGP) has been demonstrated as a disease-associated antigen on the lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Achatinin-H, a lectin, has selective affinity towards terminal 9-O-acetylated sialic acids-α2-6-Nacetylated galactosamine. Exploring this affinity, enhanced expression of OAcSGP was observed, at the onset of disease, followed by its decrease with chemotherapy and reappearance with relapse. In spite of treatment, patients retain the diseased cells referred to as minimal residual disease (MRD) responsible for relapse. Our aim was to select a suitable template by using the differential expression of OAcSGP along with other known CD antigens to monitor MRD in peripheral blood (PB) and bone marrow (BM) of Indian patients with B- or T-ALL during treatment and correlate it with the disease status. Methods A two-year longitudinal follow-up study was done with 109 patients from the onset of the disease till the end of chemotherapy, treated under MCP841protocol. Paired samples of PB (n = 1667) and BM (n = 999) were monitored by flow cytometry. Three templates selected for this investigation were OAcSGP+CD10+CD19+ or OAcSGP+CD34+CD19+ for B-ALL and OAcSGP+CD7+CD3+ for T-ALL. Results Using each template the level of MRD detection reached 0.01% for a patient in clinical remission (CR). 81.65% of the patients were in CR during these two years while the remaining relapsed. Failure in early clearance of lymphoblasts, as indicated by higher MRD, implied an elevated risk of relapse. Soaring MRD during the chemotherapeutic regimen predicted clinical relapse, at least a month before medical manifestation. Irrespective of B- or T-lineage ALL, the MRD in PB and BM correlated well. Conclusion A range of MRD values can be predicted for the patients in CR, irrespective of their lineage, being 0.03 ± 0.01% (PB) and 0.05 ± 0.015% (BM). These patients may not be stated as normal with respect to the presence of MRD. Hence, MRD study beyond two-years follow-up is necessary to investigate further reduction in MRD, thereby ensuring their disease-free survival. Therefore, we suggest use of these templates for MRD detection, during and post-chemotherapy for proper patient management strategies, thereby helping in personalizing the treatment.
Collapse
Affiliation(s)
- Suchandra Chowdhury
- Immunobiology Division, Indian Institute of Chemical Biology, 4, Raja S, C, Mullick Road, Kolkata 700032, Kothari Medical Centre 8/3, Alipore Road, Kolkata 700027, India.
| | | | | | | | | |
Collapse
|
24
|
Ghosh S, Bandyopadhyay S, Mukherjee K, Mallick A, Pal S, Mandal C, Bhattacharya DK, Mandal C. O-acetylation of sialic acids is required for the survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Glycoconj J 2007; 24:17-24. [PMID: 17146715 DOI: 10.1007/s10719-006-9007-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exploiting the selective affinity of Achatinin-H towards 9-O-acetylneuraminic acid(alpha2-6)GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on hematopoietic cells of children suffering from acute lymphoblastic leukemia (ALL), indicative of defective sialylation associated with this disease. The carbohydrate epitope of Neu5,9Ac(2)-GPs(ALL) was confirmed by using several synthetic sialic acid analogues. They are functionally active signaling molecules as demonstrated by their role in mediating lymphoproliferative responses and consequential increased production of IFN-gamma due to specific stimulation of Neu5,9Ac(2)-GPs on PBMC(ALL) with Achatinin-H. Cells devoid of 9-O-acetylations (9-O-AcSA(-)) revealed decreased nitric oxide production as compared to 9-O-AcSA(+) cells on exposure to IFN-gamma. Under this condition, a decrease in viability of 9-O-AcSA(-) cells as compared to 9-O-AcSA(+) cells was also observed which was reflected from increased caspase 3 activity and apoptosis suggesting the protective role of this glycotope. These Neu5,9Ac(2)-GPs are also capable of inducing disease-specific anti-Neu5,9Ac(2)-GPs antibodies in ALL children. Additionally, we have observed that disease-specific anti-Neu5,9Ac(2)-GPs have altered glycosylation profile, and they are incapable of exerting a few Fc-glycosylation-sensitive effector functions. These observations hint toward a disbalanced homeostasis, thereby enabling the cancer cells to escape host defense. Taken together, it may be hypothesized that Neu5,9Ac(2)-GPs and their antibodies play a prominent role in promoting the survival of lymphoblasts in ALL.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bhowal J, Guha AK, Chatterjee BP. Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr Res 2005; 340:1973-82. [PMID: 16009354 DOI: 10.1016/j.carres.2005.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/27/2022]
Abstract
A lectin was isolated and purified from the culture filtrate of the plant pathogenic fungus Macrophomina phaseolina by a combination of ammonium sulfate precipitation, affinity chromatography on fetuin-Sepharose 4B and ion-exchange chromatography on DEAE-A 50. The lectin designated MPL was homogeneous by PAGE and HPLC and a monomeric protein with a molecular weight of approximately 34 kDa as demonstrated by SDS-PAGE. It is a glycoprotein and agglutinated human erythrocytes regardless of the human blood type. Neuraminidase treatment of erythrocytes reduced the agglutination activity of the lectin. It is thermally stable and exhibits maximum activity between pH 6 and 7.2. Its carbohydrate binding specificity was investigated both by hapten inhibition of hemagglutination and by enzyme-conjugated lectin inhibition assay. Although, M. phaseolina lectin bound sialic acid, it exhibited binding affinity towards neuraminyl oligosaccharides of N-linked glycoproteins, alpha-Neu5Ac-(2-->3)-beta-Gal-(1-->4)-GlcNAc being maximum.
Collapse
Affiliation(s)
- Jayati Bhowal
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | | | |
Collapse
|
26
|
Ghosh S, Bandyopadhyay S, Mallick A, Pal S, Vlasak R, Bhattacharya DK, Mandal C. Interferon gamma promotes survival of lymphoblasts overexpressing 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia (ALL). J Cell Biochem 2005; 95:206-16. [PMID: 15770663 DOI: 10.1002/jcb.20382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An enhanced linkage-specific 9-O-acetylated sialic acid (9-O-AcSA) on peripheral blood mononuclear cells (PBMC) of children with acute lymphoblastic leukaemia, ALL (PBMC(ALL), 9-O-AcSA+ cells) was demonstrated by using a lectin, Achatinin-H, whose lectinogenic epitope was 9-O-AcSAalpha2-6GalNAc. Our aim was to evaluate the in vitro contributory role of this glycotope (9-O-AcSAalpha2-6GalNAc) towards the survival of these 9-O-AcSA+ cells in ALL patients. For direct comparison, 9-O-AcSA- cells were generated by removing O-acetyl group of 9-O-AcSA present on PBMC(ALL) using O-acetyl esterase. An elevated level of serum interferon gamma (IFN-gamma) in affected children led us to think that PBMC(ALL) are continuously exposed specifically to this cytokine. Accordingly, 9-O-AcSA+ and 9-O-AcSA- cells were exposed in vitro to IFN-gamma. A twofold increased NO release along with inducible NO synthase (iNOS) mRNA expression by the 9-O-AcSA+ cells was observed as compared to the 9-O-AcSA- cells. The decreased viability of IFN-gamma exposed 9-O-AcSA- cells as compared to 9-O-AcSA+ cells were reflected from a 5.0-fold increased caspase-3-like activity and a 10.0-fold increased apoptosis in the 9-O-AcSA- cells when production of NO was lowered by adding competitive inhibitor of iNOS in reaction mixture. Therefore, it may be envisaged that a link exists between induction of this glycotope and their role in regulating viability of PBMC(ALL). Taken together, it is reasonable to hypothesise that O-acetylation of sialic acids on PBMC(ALL) may be an additional mechanism that promotes the survival of lymphoblasts by avoiding apoptosis via IFN-gamma-induced NO production.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700 032, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Bandyopadhyay S, Chatterjee M, Sundar S, Mandal C. Identification of 9-O-acetylated sialoglycans on peripheral blood mononuclear cells in Indian Visceral Leishmaniasis. Glycoconj J 2005; 20:531-6. [PMID: 15454691 DOI: 10.1023/b:glyc.0000043289.86611.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the existence of O -acetylated sialic acids is well known, it is only in recent years that steady refinement of analytical techniques have enabled detailed mapping of their structural diversity [1]. Fluorimetric analysis of peripheral blood mononuclear cells (PBMC) of patients with Visceral Leishmaniasis (VL) showed six fold increase in the percentage of surface 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) as compared to normal human donors. Using Achatinin-H, a 9-O-acetyl sialic acid- binding lectin, an enhanced presence of 9-O-AcSGs in an alpha2 --> 6 linkage was demonstrated by flow cytometry; abolition of its binding by pretreatment with a recombinant 9-O-acetylesterase corroborated the presence of this glycotope. Western blotting of PBMC from VL patients indicated the presence of five O-acetylated sialoglycans corresponding to 144, 65, 56, 36 and 19 kDa as compared to 144 and 36 kDa in normal individuals. Taken together our data indicates that during active disease, there is an overexpression of 9AcSGs on the surface of PBMC of VL patients, thus opening up new research avenues wherein the expression of this biomarker could be exploited to monitor the clinical status of VL patients.
Collapse
Affiliation(s)
- Sumi Bandyopadhyay
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | |
Collapse
|
28
|
Ghosh S, Bandyopadhyay S, Pal S, Das B, Bhattacharya DK, Mandal C. Increased interferon gamma production by peripheral blood mononuclear cells in response to stimulation of overexpressed disease-specific 9-O-acetylated sialoglycoconjugates in children suffering from acute lymphoblastic leukaemia. Br J Haematol 2005; 128:35-41. [PMID: 15606547 DOI: 10.1111/j.1365-2141.2004.05256.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Disease-specific over-expression of 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) on peripheral blood mononuclear cells (PBMC) of children with acute lymphoblastic leukaemia (ALL, PBMC(ALL)) has been demonstrated using a lectin, Achatinin-H, with specificity towards 9-O-AcSAalpha2-6GalNAc. This study investigated the contributory role of 9-O-AcSGs induced on PBMC(ALL). Stimulation of PBMC(ALL) with Achatinin-H through 9-O-AcSGs led to a lymphoproliferative response with a significantly increased interferon-gamma (IFN-gamma) production when compared with unstimulated cells as demonstrated by enzyme-linked immunosorbent assay and mRNA expression. Under identical conditions, PBMC(ALL) ablated of O-acetylations did not respond to such stimulation. In summary, it may be concluded that stimulation of over-expressed 9-O-AcSGs regulate signalling for proliferation, leading to the release of IFN-gamma. Controlled expression of these molecules may be exploited as potential targets for therapy, promising beneficial effects to children with ALL.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, India
| | | | | | | | | | | |
Collapse
|
29
|
Bandyopadhyay S, Mukherjee K, Chatterjee M, Bhattacharya DK, Mandal C. Detection of immune-complexed 9-O-acetylated sialoglycoconjugates in the sera of patients with pediatric acute lymphoblastic leukemia. J Immunol Methods 2004; 297:13-26. [PMID: 15777927 DOI: 10.1016/j.jim.2004.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/06/2004] [Accepted: 11/04/2004] [Indexed: 11/22/2022]
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is highly responsive to chemotherapy, reliable techniques are needed to determine treatment outcome. Over expression of 9-O-acetylated sialoglycoconjugates (9-OAcSGs) on lymphoblasts and concomitant anti-9-OAcSGs was found to have a diagnostic and prognostic potential. However, the presence of circulatory immune-complexed antigens remains unknown. The present study was aimed to evaluate whether immune-complexed 9-OAcSGs can be harnessed for better disease management. Immune-complexed antigens were evaluated in ALL sera (n=262) by a Dot-blot using a 9-OAcSAalpha2-6GalNAc-specific lectin, Achatinin-H. Using three serum samples, the inter- and intra-assay imprecision was evaluated as 11-13% and 7-11%, respectively. The recovery of spiked 9-OAcSGs was 84.2-95.4%. The central 95% reference interval for immune-complexed 9-OAcSGs in normal human sera (NHS, n=144) was 2.9-3.4 mug/ml irrespective of sex and age. At disease presentation, the immune-complexed 9-OAcSGs were fivefold higher than NHS, decreased with remission induction and importantly, reappeared with clinical relapse. Sera from patients with other hematological disorders (n=86) showed negligible levels. The Dot-blot demonstrated the potential application of immune-complexed antigen as a disease-specific marker and its efficacy as a sensitive and specific method that could serve as an economical yet effective index for monitoring disease status.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata-700 032, India
| | | | | | | | | |
Collapse
|
30
|
Bandyopadhyay S, Chatterjee M, Pal S, Waller RF, Sundar S, McConville MJ, Mandal C. Purification, characterization of O-acetylated sialoglycoconjugates-specific IgM, and development of an enzyme-linked immunosorbent assay for diagnosis and follow-up of indian visceral leishmaniasis patients. Diagn Microbiol Infect Dis 2004; 50:15-24. [PMID: 15380274 DOI: 10.1016/j.diagmicrobio.2004.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The surface expression of 9-O-acetylated sialic acid (9-OAcSA) is elevated on hematopoietic cells and erythrocytes of visceral leishmaniasis (VL) patients. In this study, we show that VL patients contain elevated levels of IgM antibodies directed against 9-O-acetylated sialoglycoconjugates (9-OAcSG). These antibodies were affinity purified with bovine submaxillary protein as the affinity matrix containing the terminal epitope, 9-OAcSAalpha2-6GalNAc. They also bound to 9-OAcSGs on hematopoietic cells of patients with VL and to epitopes in the cytosol of Leishmania donovani promastigotes. A novel enzyme-linked immunosorbent assay was employed that showed 4-fold higher anti-OAcSG titers in VL patients (n=38), mean +/- S.E.M. being 0.83 +/- 0.09 vs. 0.21 +/- 0.04 detected in normal donors (n=20) and patients with cross-reactive diseases such as malaria (n=4) or tuberculosis (n=4). Assay specificity and sensitivity was 100% and 92%, respectively, whereas positive and negative predictive values were 100% and 90%, respectively. Significantly, anti-OAcSG titers declined 30 days after completion of anti-leishmanial treatment, indicating that monitoring of anti-9-OAcSGs may be a valuable alternative toward increasing the efficiency of diagnosis and follow-up of VL.
Collapse
Affiliation(s)
- Sumi Bandyopadhyay
- Immunobiology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Ghosh S, Bandyopadhyay S, Bhattacharya DK, Mandal C. Altered erythrocyte membrane characteristics during anemia in childhood acute lymphoblastic leukemia. Ann Hematol 2004; 84:76-84. [PMID: 15338196 DOI: 10.1007/s00277-004-0933-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Anemia is a prominent feature in children with acute lymphoblastic leukemia (ALL). To investigate the erythrocyte features during anemia in these patients, we studied the altered characters of these cells and oxidative stress imposed in their serum. This investigation reveals that erythrocytes from ALL patients show (1) increased membrane fluidity detected by fluorescence anisotropy studies, increased osmotic fragility detected by hemolysis of erythrocytes in different saline concentrations, and increased hydrophobicity as measured by binding with 8-anilino-1-naphthalenesulfonic acid, (2) enhanced (approximately threefold) glycosylation and sialylation, monitored by digoxigenin enzyme assay, and (3) expression of disease-specific 210, 105, 83, 54, and 28 kDa 9-O-acetyl sialoglycoconjugates (9-O-AcSGs) demonstrated by Western blot analysis and fluorescence-activated cell sorter (FACS) analysis studies using Achatinin-H with specificity towards 9-O-AcSAalpha2-6GalNAc as the analytical probe. (4) In addition, induced oxidative stress was observed in the sera of these children as indicated by increased nitric oxide (approximately fourfold) and thiobarbituric acid (TBA) reactive species (twofold) as detected by Griess reaction and TBA assay, respectively. For all the experiments, erythrocytes from normal individuals served as controls. Thus, the altered membrane characteristics together with their exposure to induced oxidative stress in serum are found to be a few features restricted to diseased erythrocytes. Taken together, our results are suggestive of their interplay in the contribution to the observed anemia in these patients, which may be exploited for better management of the disease.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | | | | | | |
Collapse
|
32
|
Pal S, Ghosh S, Bandyopadhyay S, Mandal C, Bandhyopadhyay S, Kumar Bhattacharya D, Mandal C. Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukemia. Int J Cancer 2004; 111:270-7. [PMID: 15197782 DOI: 10.1002/ijc.20246] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Earlier studies have demonstrated overexpression of 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) on lymphoblasts, concomitant with high titers of anti-9-O-AcSG antibodies in childhood acute lymphoblastic leukemia (ALL). Our aim was to evaluate the correlation between expression of different 9-O-AcSGs during chemotherapeutic treatment. Accordingly, expression of 9-O-AcSGs on lymphoblasts of ALL patients (n = 70) were longitudinally monitored for 6 years (1997-2002), using Achatinin-H, a 9-O-acetylated sialic acid (9-O-AcSA) binding lectin with preferential affinity for 9-O-AcSGs with terminal 9-O-AcSA alpha 2-->6GalNAc. Western blot analysis of patients (n = 30) showed that 3 ALL-specific 9-O-AcSGs (90, 120 and 135 kDa) were induced at presentation; all these bands disappeared after treatment in patients (n = 22) who had disease-free survival. The 90 kDa band persisted in 8 patients who subsequently relapsed with reexpression of the 120 kDa band. FACS analysis revealed that at presentation (n = 70) 90.1 +/- 5.0% cells expressed 9-O-AcSGs, which decreased progressively with chemotherapy, remained <5% during clinical remission and reappeared in relapse (80 +/- 10%, n = 18). Early clearance of 9-O-AcSG(+) cells, during 4-8 weeks of treatment showed a good correlation with low risk of relapse. Sensitivity of detection of 9-O-AcSG(+) cells was 0.1%. Numbers of both high- and low-affinity binding sites were maximum at presentation, decreased with treatment and increased again in clinical relapse. We propose that close monitoring of 90 and 120 kDa 9-O-AcSGs may serve as a reliable index for long-term management of childhood ALL and merits therapeutic consideration.
Collapse
Affiliation(s)
- Santanu Pal
- Immunobiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Chava AK, Chatterjee M, Gerwig GJ, Kamerling JP, Mandal C. Identification of sialic acids on Leishmania donovani amastigotes. Biol Chem 2004; 385:59-66. [PMID: 14977047 DOI: 10.1515/bc.2004.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe presence of Neu5Ac on promastigotes of Leishmania donovani, the causative organism of Indian visceral leishmaniasis, has been reported recently. Here we report the occurrence of Neu5Ac as a major component on amastigotes, as well as Neu5Gc, Neu5,9Ac2 and Neu9Ac5Gc as indicated by fluorimetric high performance liquid chromatography and gas liquid chromatography/electron impact mass spectrometry. Furthermore, binding studies with Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), and various Siglecs, showed the presence of both (alpha2-6) and (alpha2-3)linked sialic acids; their binding was reduced after sialidase pretreatment. Western blotting of amastigote membrane glycoproteins with SNA demonstrated the presence of two sialoglycoconjugates of Mr values of 164 000 and 150 000. Similarly, binding of MAA demonstrated the presence of five distinct sialoglycans corresponding to molecular masses of 188, 162, 136, 137 and 124 kDa. Achatinin-H, a lectin that preferentially identifies 9-Oacetylated sialic acid (alpha2-6)linked to GalNAc, demonstrated the occurrence of two 9-Oacetylated sialoglycans with Mr 158 000 and 150 000, and was corroborated by flow cytometry; this binding was abolished by recombinant 9-Oacetylesterase pretreatment. Our results indicate that Neu5Ac w(alpha2-6) and (alpha2-3)linked, as well as Neu5Gc and their 9-Oacetyl derivatives, constitute components of the amastigote cell surface of L. donovani.
Collapse
Affiliation(s)
- Anil K Chava
- Immunobiology Division, Indian Institute of Chemical Biology, 4, S.C. Mullick Road, Jadavpur, 700 032 Kolkata, India
| | | | | | | | | |
Collapse
|
34
|
Bulai T, Bratosin D, Pons A, Montreuil J, Zanetta JP. Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett 2003; 534:185-9. [PMID: 12527384 DOI: 10.1016/s0014-5793(02)03838-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The composition of the human erythrocyte membrane (RBC) glycoprotein- and glycolipid-bound sialic acids of A, B, AB and O type donors was studied using a new method (Zanetta et al., Glycobiology 11 (2001) 663-676). In addition to Neu5Ac as the major compound, Kdn, Neu5,9Ac(2), Neu5,7Ac(2), Neu (de-N-acetylated-Neu5Ac), Neu5Ac8Me, Neu5Ac9Lt, Neu4,5Ac(2), Neu5,8Ac(2)9Lt and Neu5Ac8S were characterised. Among these different compounds, Neu5Ac8Me, Neu5Ac9Lt, Neu4,5Ac(2), Neu5,8Ac(2)9Lt and Neu5Ac8S have never been described and quantitatively determined before in human tissues or cells. Neu5Gc and its O-alkylated or O-acylated derivatives were not detected.
Collapse
Affiliation(s)
- Tatiana Bulai
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, CNRS Unité Mixte de Recherche No. 8576, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Cedex, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
35
|
Chava AK, Chatterjee M, Sundar S, Mandal C. Development of an assay for quantification of linkage-specific O-acetylated sialoglycans on erythrocytes; its application in Indian visceral leishmaniasis. J Immunol Methods 2002; 270:1-10. [PMID: 12379333 DOI: 10.1016/s0022-1759(02)00216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a noninvasive approach for the quantification of linkage-specific 9-O-acetylated sialoglycans on mammalian erythrocytes using a lectin, Achatinin-H, whose lectinogenic epitope has previously been defined as 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) alpha 2-->6 linked to subterminal GalNAc. Titration and checkerboard analysis were performed to optimize the assay using rabbit, rat and human erythrocytes that contain differing amounts of this glycotope. Assay specificity was established by decreased binding of erythrocytes to immobilised Achatinin-H when pre-incubated with excess lectin. The intra-assay coefficient of variation (CV) for rat and human erythrocytes was 8.6-9.2% and 11.1-13.0%, respectively. The inter-assay CV for rat and human erythrocytes was 9.9-10.1% and 15.2-16.6%, respectively. In previous studies, we have identified an enhanced presence of cell surface 9-O-AcSGs on the erythrocytes of patients with visceral leishmaniasis (VL) [Am. J. Trop. Med. Hyg. 58 (1998) 551]. Our assay when evaluated on erythrocytes from VL patients (n=30) showed a fourfold increase in lectin binding as compared to endemic controls. The mean +/- S.E.M. of the A(405) nm value was 1.14 +/- 0.04 vs. 0.23 +/- 0.03, respectively (p<0.0001). Following effective chemotherapy, a significant reduction of this glycotope on the erythrocytes of VL patients indicates that this assay has both a diagnostic and prognostic potential. Taken together, we conclude that this antigen-based assay is a specific and reproducible method for monitoring the disease status of VL patients and could be used in retrospective and prospective trials.
Collapse
Affiliation(s)
- Anil Kumar Chava
- Immunobiology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700 032, India
| | | | | | | |
Collapse
|
36
|
Mandal C. Reply to the Brief Commentary published in Biochem. Biophys. Res. Commun. (2001) 284,1. Biochem Biophys Res Commun 2001; 288:1069-70. [PMID: 11700019 DOI: 10.1006/bbrc.2001.5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Mandal
- Immunobiology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Calcutta 700032, India.
| |
Collapse
|
37
|
Pal S, Chatterjee M, Bhattacharya DK, Bandhyopadhyay S, Mandal C, Mandal C. O-acetyl sialic acid specific IgM in childhood acute lymphoblastic leukaemia. Glycoconj J 2001; 18:529-37. [PMID: 12151714 DOI: 10.1023/a:1019692329568] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Initial studies have revealed an enhanced surface expression of O-acetylated sialoglycoconjugates (O-AcSGs) on lymphoblasts concomitant with high titres of IgG in childhood Acute Lymphoblastic Leukaemia (ALL) (Mandal C, Chatterjee M, Sinha D, Br J Haematol 110, 801-12, 2000). In our efforts to identify disease specific markers for ALL, we have affinity-purified IgM directed against O-AcSGs that reacts with three disease specific O-AcSGs present on membrane proteins derived from peripheral blood mononuclear cells (PBMC) of ALL patients. Antibody specificity towards O-AcSGs was confirmed by selective binding to erythrocytes bearing surface O-AcSGs, decreased binding with de-O-acetylated BSM and following pretreatment with O-acetyl esterase. Competitive inhibition ELISA demonstrated a higher avidity of IgM for O-AcSG than IgG. Flow cytometry demonstrated the diagnostic potential of purified O-AcSA IgM as binding was specific with ALL patients and minimal with other haematological disorders and normal individuals. It therefore may be adopted as a non-invasive approach for detection of childhood ALL. Taken together, the data indicates that carbohydrate epitopes having terminal O-AcSA alpha2 --> 6 GalNAc determinants induce disease specific IgG and IgM, potentially useful molecular markers for childhood ALL.
Collapse
Affiliation(s)
- S Pal
- Immunobiology Division, Indian Institute of Chemical Biology, Calcutta 700032, India
| | | | | | | | | | | |
Collapse
|
38
|
Wu AM, Song SC, Tsai MS, Herp A. A Guide to the Carbohydrate Specificities of Applied Lectins-2. THE MOLECULAR IMMUNOLOGY OF COMPLEX CARBOHYDRATES —2 2001; 491:551-85. [PMID: 14533822 DOI: 10.1007/978-1-4615-1267-7_37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- A M Wu
- Glyco-Immunochemistry Research Laboratory, Chang-Gung Medical College, Chang-Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.
| | | | | | | |
Collapse
|
39
|
Schauer R, Schmid H, Pommerencke J, Iwersen M, Kohla G. Metabolism and role of O-acetylated sialic acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:325-42. [PMID: 14533806 DOI: 10.1007/978-1-4615-1267-7_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Schauer
- Biochemisches Institut, Christian-Albrechts-Universität Olshausenstrasse 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
40
|
Sharma V, Chatterjee M, Sen G, Kumar CA, Mandal C. Role of linkage specific 9-O-acetylated sialoglycoconjugates in activation of the alternate complement pathway in mammalian erythrocytes. Glycoconj J 2000; 17:887-93. [PMID: 11511813 DOI: 10.1023/a:1010925414222] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Substitution of the -OH group at C-9 of sialic acid by an O-acetyl ester has been suggested to modify various biological phenomena that are regulated by sialic acids. Amongst them, enhancement of erythrocyte lysis by 9-O-acetylated sialic acid determinants through modulation of the alternate pathway of complement has been extensively studied on murine erythrocytes [1]. A variable expression of linkage specific 9-O-acetylated sialoglycoconjugates as defined by the lectinogenic epitope of Achatinin-H namely 9-O-acetylated sialic acid alpha2-->6Gal NAc was identified on rabbit, guinea pig, hamster, rat, mouse and human erythrocytes. This differential expression of linkage specific 9-O-acetylated sialoglycoconjugates strongly correlated with the susceptibility of mammalian erythrocytes to lysis by the alternate pathway of complement. Additionally, low levels of antibodies directed against O-acetylated sialic acids in these mammalian species suggested that these constitutively present determinants have low immunogenicity. Taken together, our results indicate that complement mediated hemolysis depends not simply upon the extent of surface 9-O-acetylated sialic acids present but more importantly upon the specific linkage.
Collapse
Affiliation(s)
- V Sharma
- Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta-700 032, India
| | | | | | | | | |
Collapse
|
41
|
Mandal C, Chatterjee M, Sinha D. Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110:801-12. [PMID: 11054061 DOI: 10.1046/j.1365-2141.2000.02105.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Mandal
- Indian Institute of Chemical Biology, Immunobiology Division, 4, Raja S. C. Mullick Road, Calcutta 700032, India.
| | | | | |
Collapse
|
42
|
Pal S, Chatterjee M, Bhattacharya DK, Bandhyopadhyay S, Mandal C. Identification and purification of cytolytic antibodies directed against O-acetylated sialic acid in childhood acute lymphoblastic leukemia. Glycobiology 2000; 10:539-49. [PMID: 10814695 DOI: 10.1093/glycob/10.6.539] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sialic acids typically present as terminal sugars of oligo-saccharides are reported to be modified by O-acetylation at the C-9 position on lymphoblasts of childhood acute lymphoblastic leukemia (ALL) patients (Sinha et al., 1999a, Leukaemia, 13, 119-125). We now report high titers of IgG antibodies directed against O-acetylated derivatives of sialic acids (O-AcSA) in serum of ALL patients. These antibodies were purified using bovine submaxillary mucin (BSM) and the IgG distribution was confined to IgG(1)and IgG(2)subclasses; their binding was totally abolished with de-O-acetylation confirming their specificity towards O-AcSA determinants. Flow cytometry demonstrated binding of these antibody fractions to peripheral blood mononuclear cells (PBMC) of both T- and B-ALL patients having increased cell surface 9-O-AcSA determinants. Western blotting of membranes derived from PBMC of ALL patients confirmed binding of the antibody to O-acetylated sialoglycoconjugates corresponding to 144, 135, 120, 90, and 36 kDa whereas binding to PBMC from normal individuals corresponded to 144 and 36 kDa. Specificity of the antibody fraction towards 9-O-AcSA was substantiated by hemagglutination and hemagglutination-inhibition assays. The antibody purified from ALL serum selectively mediates complement dependent cytolysis of lymphoblasts expressing O-AcSAs and thereby possibly confers passive protection. The enhanced anti O-AcSA antibody levels allowed for development of a serodiagnostic assay (BSM-ELISA) specific for ALL. Minimal crossreactivity was observed with other hematological disorders like acute myeloid leukemia (n = 16), chronic myeloid leukemia (n = 6), chronic lymphocytic leukemia (n = 7) and non-Hodgkin's lymphoma (n = 3) as well as normal healthy individuals (n = 28). The BSM-ELISA therefore provides a simple, noninvasive alternative diagnostic approach for ALL and merits clinical consideration.
Collapse
Affiliation(s)
- S Pal
- Immunobiology, Indian Institute of Chemical Biology, Calcutta, India
| | | | | | | | | |
Collapse
|
43
|
Mandal C, Sinha S, Mandal C. Lectin like properties and differential sugar binding characteristics of C-reactive proteins purified from sera of normal and pollutant induced Labeo rohita. Glycoconj J 1999; 16:741-50. [PMID: 11003559 DOI: 10.1023/a:1007167611778] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Different forms of C-reactive proteins (CRPs) have been purified to electrophoretic homogeneity from the sera of Labeo rohita confined in freshwater (CRP(N)) and water polluted with nonlethal doses of cadmium (CRP(Cd)) or mercury (CRP(Hg)). CRP(N), CRP(Cd), and CRP(Hg) show remarkable differences in their electrophoretic mobility but exhibit strong immunological cross reactivity. All these CRPs exhibit variable agglutination properties with erythrocytes from diverse sources in presence of Ca+2, which could be inhibited by a variety of sugars showing specificity for galactose. Inhibition results show that the potency of galactose as an inhibitor increases about 4 fold in the process of transformation of CRP(N) to CRP(Cd) and CRP(Hg). In case of CRP(N), Gal beta(1 --> 1) Gal and oNO2 phenyl beta-Gal show highest inhibitory potency while oNO2-phenyl beta-Gal is the most potent inhibitor for CRP(Cd) and CRP(Hg) but the potency of Gal beta(1 --> 1) Gal reduced drastically. 6-phosphate D-Gal and stachyose are 20 times weaker inhibitors than D-Gal for induced CRP mediated agglutination, in contrast, these sugars are only 6 times weaker for CRP(N). Dissociation constants of the binding of CRP(N) with phosphoryl choline (PC) and galactose are about 9 mM and PC binding causes a change in the alpha and beta conformations of these CRPs.
Collapse
|
44
|
Sinha D, Bhattacharya DK, Mandal C. A colorimetric assay to evaluate the chemotherapeutic response of children with acute lymphoblastic leukemia (ALL) employing achatininH: a 9-O-acetyl sialic acid binding lectin. Leuk Res 1999; 23:803-9. [PMID: 10475619 DOI: 10.1016/s0145-2126(99)00093-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Employing a 9-O-acetyl sialic acid binding lectin, Achatinin(H) (ATNH), we have reported a non-invasive, blood based lymphoproliferation assay which measures the maximal lymphoproliferative dose (MLD) of ATN(H) to assess the status of 9-O-acetylated sialoglycoconjugates (9-OAcSGs) in patients with Acute lymphoblastic leukemia (ALL) (Mandal C, Sinha D, Sharma V, Bhattacharya DK. O-acetyl sialic acid binding lectin, as a probe for detection of subtle changes on the cell surface induced during acute lymphoblastic leukemia [ALL] and its clinical application. Ind J Biochem Biophys 1997;34:82; Sinha D, Mandal C, Bhattacharya DK. Development of a simple blood based lymphoproliferation assay to assess the clinical status of patients with acute lymphoblastic leukemia. Leuk Res 1999;13:309-312; Sinha D, Mandal C, Bhattacharya DK. A novel method for prognostic evaluation of childhood acute lymphoblastic leukemia. Leukemia 1999;13[in press]). Although the expression of 9-OAcSGs clearly serves as an index of treatment outcome, the assay has limitations in that it requires radioisotopes, i.e. [3H]-TdR. Therefore a colorimetric assay was developed as an alternative approach. The pre-treatment MLD, as measured by the colorimetric assay, was 0.15 +/- 0.02 microg which progressively increased during consolidation therapy (1.40 +/- 0.39 microg), maintenance therapy (4.20 +/- 1.60 microg) and in followed-up cases (5.20 +/- 0.43 microg) but sharply declined following relapse (0.25 +/- 0.02 microg). The colorimetric assay also showed a good correlation with radiometric assay (r = + 0.93) and their mean coefficient of inter-assay precision were also comparable (15.53% versus 14.86%). We therefore propose that the colorimetric assay is a safe, non-radiometric, user-friendly alternative for assessing individual chemotherapeutic responses in childhood ALL.
Collapse
Affiliation(s)
- D Sinha
- Department of Immunobiology, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
45
|
Chatterjee M, Baneth G, Jaffe CL, Sharma V, Mandal C. Diagnostic and prognostic potential of antibodies against O-acetylated sialic acids in canine visceral leishmaniasis. Vet Immunol Immunopathol 1999; 70:55-65. [PMID: 10507287 DOI: 10.1016/s0165-2427(99)00064-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Employing bovine submaxillary mucin (BSM) as the coating agent, an enzyme-linked immunosorbent assay (BSM-ELISA) was developed to detect antibodies directed against O-acetylated sialic acids (O-AcSA) in canine visceral leishmaniasis (CVL). Serum samples were collected from 50 dogs previously screened by a parasite-ELISA to detect anti-leishmanial antibodies and designated as seropositive (n = 30) and seronegative (n = 20). The BSM-ELISA detected anti-O-AcSA antibodies in 29 out of 30 seropositive dogs and was negative in 15 out of 20 seronegative dogs; the sensitivity and specificity of the assay being 96.6% and 75%, respectively. Seven dogs from an endemic area in central Israel were longitudinally monitored for 15 months clinically, serologically and cultured for parasite. The levels of antibodies directed against O-AcSA increased with the appearance of clinical symptoms and/or seropositivity, disappeared when the disease was self-limiting as also with chemotherapeutic response and reappeared with relapse. The BSM-ELISA, therefore, represents a valuable tool for assessment of disease progression.
Collapse
Affiliation(s)
- M Chatterjee
- Department of Immunobiology, Indian Institute of Chemical Biology, Jadavpur, Calcutta
| | | | | | | | | |
Collapse
|
46
|
Sinha D, Mandal C, Bhattacharya DK. Development of a simple, blood based lymphoproliferation assay to assess the clinical status of patients with acute lymphoblastic leukemia. Leuk Res 1999; 23:433-9. [PMID: 10374857 DOI: 10.1016/s0145-2126(98)00184-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is highly responsive to chemotherapy, reliable techniques are needed to determine treatment outcome and predict relapse. Employing a 9-O-acetyl sialic acid binding lectin, ATN(H), we have identified two 9-O-acetylated sialogycoconjugates (9-OAcSGs) as novel biomarkers expressed selectively on leukemic blasts of ALL patients. Presently, we report a non-invasive, blood based lymphoproliferation assay, which employs the maximal lymphoproliferative dose of ATN(H) (MLD) to assess the status of 9-OAcSGs with progressive therapy. A low MLD (0.18 +/- 0.01 microg) in untreated patients reflects increased expression of 9-OAcSGs which decline following therapy (MLD = 2.10 +/- 0.60 microg), persist during maintenance therapy (MLD = 4.50 +/- 1.60 microg)/follow-up (MLD = 5.50 +/- 0.85 microg) and are re-induced with relapse (MLD = 0.25 +/- 0.01 microg). Since the assay detects lymphoblasts with a sensitivity of 10(-4), shows no cross-reactivity with other hematological disorders (n = 48) and has been tested in 212 patients, it meets clinical consideration.
Collapse
Affiliation(s)
- D Sinha
- Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
47
|
Chatterjee M, Sharma V, Mandal C, Sundar S, Sen S. Identification of antibodies directed against O-acetylated sialic acids in visceral leishmaniasis: its diagnostic and prognostic role. Glycoconj J 1998; 15:1141-7. [PMID: 10372969 DOI: 10.1023/a:1006963806318] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A significantly increased O-acetylated sialic acid (O-AcSA) binding fraction was purified from serum of visceral leishmaniasis (VL) patients by affinity chromatography on immobilized bovine submaxillary mucin (BSM) and found to be immunoglobulin in origin. The serodiagnostic and prognostic potential of BSM as a capture antigen was established by ELISA with no cross reactivity with coendemic diseases like malaria, tuberculosis, leprosy, chagas disease and cutaneous leishmaniasis; however, a strong cross reactivity was present with trypanosomiasis patients. In 56 clinically diagnosed VL patients, the BSM-ELISA was compared with diagnosis by microscopy using Giemsa stained tissue smears and direct ELISA using crude parasite antigen (parasite-ELISA); 49/56(87.5%) and 5/56(9.0%) were positive and negative respectively by all 3 methods. The BSM-ELISA failed to diagnose 2/56(3.5%) patients which were biopsy and parasite-ELISA positive. The prognostic potential of the BSM-ELISA in 18 longitudinally monitored VL patients before and after conventional antimonial treatment showed a significant decrease in anti O-AcSA titres in drug responsive patients whereas anti O-AcSA levels persisted in drug unresponsive patients. The IgG subclass distribution of antibodies directed against O-AcSA showed increased IgG2 levels in VL patients as compared to healthy controls. The BSM-based ELISA holds great promise as a serodiagnostic and prognostic assay for VL.
Collapse
|
48
|
Paul I, Mandal C, Mandal C. Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Catla catla. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1998; 22:519-532. [PMID: 9877434 DOI: 10.1016/s0145-305x(98)00031-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
C-reactive proteins (CRP) have been affinity purified to electrophoretic homogeneity from the sera of major carp, Catla catla before and after exposure to environmental pollutants. Exposure to these pollutants elevate the levels of circulating CRPs to 2.8-3.5 times the normal values. Kinetic studies of metal intoxication indicate that a unique molecular variant of CRP is present in the serum at the peak level of acute phase induction, and this variant coexists with normal CRPs. Carbohydrate analysis and lectin binding reveals that these CRPs are glycoproteins differing significantly in total carbohydrate contents. Their electrophoretic mobilities in native gel are different but become identical on desialylation and deglycosylation implying that the molecular variants vary in the glycan parts. All these forms of CRP contain two nonidentical subunits of Mr 22 and 29 kDa. Examination of their immunological crossreactivity demonstrate their similarity in overall molecular topology but their differences in the quantitative extent of binding are reflected.
Collapse
Affiliation(s)
- I Paul
- Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
49
|
Fragkiadakis GA, Stratakis EK. The lectin from the crustacean Liocarcinus depurator recognizes O-acetylsialic acids. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:545-52. [PMID: 9297799 DOI: 10.1016/s0305-0491(97)00189-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A lectin that recognized sialic acids and aggultinated mouse erythrocytes was purified from hemolymph of the crab Liocarcinus depurator. It consisted of 38-kDa subunits and had a pI about 6.0. The specificity of the lectin was assayed by hemagglutination inhibition. N-acetylneuraminic acid (Neu5Ac) was a good inhibitor and its N-acetyl group at C-5 was critical for lectin-ligand interaction. Substitution of the C-9 hydroxyl on Neu5Ac with an O-acetyl group (9-O-Ac-Neu5Ac) increased the inhibitory potency of this molecule. Furthermore, O-acetyl substitution of all the hydroxyl groups yielded even better inhibitors (2,4,7,8,9-O-Ac-Neu5Ac and its 1-O-methyl ester). Removal of the hydroxyl or O-acetyl group connected to C-2 reduced the potency of these inhibitors. The lectin agglutinated and stimulated human but not mouse lymphocytes. It was also inhibited by Escherichia coli (O111:B4) lipopolysaccharide and agglutinated specific gram-negative bacteria. In vitro labeling with [35S]methionine indicated that the lectin was synthesized in hepatopangreas of L. depurator. Immunofluorescence showed that among hemocytes it localized mainly in the large-granule population.
Collapse
Affiliation(s)
- G A Fragkiadakis
- Institute of Molecular Biology-Biotechnology, University of Crete, Greece
| | | |
Collapse
|
50
|
Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids ☆. NEW COMPREHENSIVE BIOCHEMISTRY 1997; 29. [PMCID: PMC7147860 DOI: 10.1016/s0167-7306(08)60624-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechls-Universität zu Kiel, Germany
| | - Johannis P. Kamerling
- Bijuoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| |
Collapse
|