1
|
Jackson KD, Argikar UA, Cho S, Crouch RD, Driscoll JP, Heck C, King L, Maw HH, Miller GP, Seneviratne HK, Wang S, Wei C, Zhang D, Khojasteh SC. Bioactivation and Reactivity Research Advances - 2021 year in review. Drug Metab Rev 2022; 54:246-281. [PMID: 35876116 DOI: 10.1080/03602532.2022.2097254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (Khojasteh et al., 2021, 2020, 2019, 2018, 2017; Baillie et al., 2016). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA, 02139, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, 37203, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics. Bristol Myers Squibb, Brisbane, CA, 94005, USA
| | - Carley Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | - Hlaing Holly Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St Slot 516, Little Rock, Arkansas, 72205, USA
| | - Herana Kamal Seneviratne
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, 02142, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| |
Collapse
|
2
|
Bai Q, Zhang X, Xu L, Kakiyama G, Heuman D, Sanyal A, Pandak WM, Yin L, Xie W, Ren S. Oxysterol sulfation by cytosolic sulfotransferase suppresses liver X receptor/sterol regulatory element binding protein-1c signaling pathway and reduces serum and hepatic lipids in mouse models of nonalcoholic fatty liver disease. Metabolism 2012; 61:836-45. [PMID: 22225954 PMCID: PMC3342481 DOI: 10.1016/j.metabol.2011.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/11/2011] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
Abstract
Cytosolic sulfotransferase (SULT2B1b) catalyzes oxysterol sulfation. 5-Cholesten-3β-25-diol-3-sulfate (25HC3S), one product of this reaction, decreases intracellular lipids in vitro by suppressing liver X receptor/sterol regulatory element binding protein (SREBP)-1c signaling, with regulatory properties opposite to those of its precursor 25-hydroxycholesterol. Upregulation of SULT2B1b may be an effective strategy to treat hyperlipidemia and hepatic steatosis. The objective of the study was to explore the effect and mechanism of oxysterol sulfation by SULT2B1b on lipid metabolism in vivo. C57BL/6 and LDLR(-/-) mice were fed with high-cholesterol diet or high-fat diet for 10 weeks and infected with adenovirus encoding SULT2B1b. SULT2B1b expressions in different tissues were determined by immunohistochemistry and Western blot. Sulfated oxysterols in liver were analyzed by high-pressure liquid chromatography. Serum and hepatic lipid levels were determined by kit reagents and hematoxylin and eosin staining. Gene expressions were determined by real-time reverse transcriptase polymerase chain reaction and Western Blot. Following infection, SULT2B1b was successfully overexpressed in the liver, aorta, and lung tissues, but not in the heart or kidney. SULT2B1b overexpression, combined with administration of 25-hydroxycholesterol, significantly increased the formation of 25HC3S in liver tissue and significantly decreased serum and hepatic lipid levels, including triglycerides, total cholesterol, free cholesterol, and free fatty acids, as compared with controls in both C57BL/6 and LDLR(-/-) mice. Gene expression analysis showed that increases in SULT2B1b expression were accompanied by reduction in key regulators and enzymes involved in lipid metabolism, including liver X receptor α, SREBP-1, SREBP-2, acetyl-CoA carboxylase-1, and fatty acid synthase. These findings support the hypothesis that 25HC3S is an important endogenous regulator of lipid biosynthesis.
Collapse
Affiliation(s)
- Qianming Bai
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
- Department of Pathology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China 200032
| | - Xin Zhang
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
- Department of Pathology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China 200032
| | - Leyuan Xu
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
| | - Genta Kakiyama
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
| | - Douglas Heuman
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
| | - Arun Sanyal
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
| | - William M. Pandak
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
| | - Lianhua Yin
- Department of Pathology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China 200032
| | - Wen Xie
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, USA, 15261
| | - Shunlin Ren
- Departments of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, USA, 23249
- Address correspondence to: Dr. Shunlin Ren, McGuire Veterans Affairs Medical Center/Virginia Commonwealth University, Research 151, 1201 Broad Rock Blvd, Richmond, VA, 23249. Tel.: (804) 675-5000×4973; Fax: (804) 675-5359;
| |
Collapse
|
3
|
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108:225-46. [PMID: 19131563 DOI: 10.1093/toxsci/kfn268] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfotransferase-2A1 catalyzes the formation of bile acid-sulfates (BA-sulfates). Sulfation of BAs increases their solubility, decreases their intestinal absorption, and enhances their fecal and urinary excretion. BA-sulfates are also less toxic than their unsulfated counterparts. Therefore, sulfation is an important detoxification pathway of BAs. Major species differences in BA sulfation exist. In humans, only a small proportion of BAs in bile and serum are sulfated, whereas more than 70% of BAs in urine are sulfated, indicating their efficient elimination in urine. The formation of BA-sulfates increases during cholestatic diseases. Therefore, sulfation may play an important role in maintaining BA homeostasis under pathologic conditions. Farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor are potential nuclear receptors that may be involved in the regulation of BA sulfation. This review highlights current knowledge about the enzymes and transporters involved in the formation and elimination of BA-sulfates, the effect of sulfation on the pharmacologic and toxicologic properties of BAs, the role of BA sulfation in cholestatic diseases, and the regulation of BA sulfation.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
4
|
Li X, Pandak WM, Erickson SK, Ma Y, Yin L, Hylemon P, Ren S. Biosynthesis of the regulatory oxysterol, 5-cholesten-3beta,25-diol 3-sulfate, in hepatocytes. J Lipid Res 2007; 48:2587-96. [PMID: 17890683 DOI: 10.1194/jlr.m700301-jlr200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cholesterol homeostasis is maintained through coordinated regulation of cholesterol synthesis, degradation, and secretion. Nuclear receptors for oxygenated cholesterol derivatives (oxysterols) are known to play key roles in the regulation of cholesterol homeostasis. We recently identified a sulfated oxysterol, 5-cholesten-3beta,25-diol 3-sulfate (25HC3S), that is localized to liver nuclei. The present study reports a biosynthetic pathway for 25HC3S in hepatocytes. Assays using mitochondria isolated from rats and sterol 27-hydroxylase (Cyp27A1) gene knockout mice indicated that 25-hydroxycholesterol (25HC) is synthesized by CYP27A1. Incubation of cholesterol or 25HC with mitochondrial and cytosolic fractions in the presence of 3'-phosphoadenosyl 5'-phosphosulfate resulted in the synthesis of 25HC3S. Real-time RT-PCR and Western blot analysis showed the presence of insulin-regulated hydroxycholesterol sulfotransferase 2B1b (SULT2B1b) in hepatocytes. 25HC3S, but not 25HC, decreased SULT2B1b mRNA and protein levels. Specific small interfering RNA decreased SULT2B1b mRNA, protein, and activity levels. These findings demonstrate that mitochondria synthesize 25HC, which is subsequently 3beta-sulfated to form 25HC3S.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Medicine Veterans Affairs McGuire Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Fang HL, Abdolalipour M, Duanmu Z, Smigelski JR, Weckle A, Kocarek TA, Runge-Morris M. Regulation of glucocorticoid-inducible hydroxysteroid sulfotransferase (SULT2A-40/41) gene transcription in primary cultured rat hepatocytes: role of CCAAT/enhancer-binding protein liver-enriched transcription factors. Drug Metab Dispos 2004; 33:147-56. [PMID: 15502011 DOI: 10.1124/dmd.104.000281] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism responsible for glucocorticoid receptor (GR)-mediated induction of rat hepatic hydroxysteroid sulfotransferase (SULT2A-40/41) gene transcription was investigated. We previously reported that the region of the SULT2A-40/41 5'-flanking region delimited by -158 to -77 nucleotides relative to the transcription start site was sufficient to support GR-inducible expression. This region of the SULT2A-40/41 gene does not contain a consensus glucocorticoid receptor-responsive element, but does contain two consensus sites for liver-enriched CCAAT/enhancer-binding protein (C/EBP) transcription factors. In the present study, incubation of primary cultured rat hepatocytes with a GR-activating concentration (10(-7) M) of a potent glucocorticoid, dexamethasone or triamcinolone acetonide (TA), rapidly produced increases in C/EBPalpha and C/EBPbeta nuclear protein contents, as measured by Western blot or in vitro DNA-binding activity analysis, that preceded increases in SULT2A-40/41 mRNA and protein levels. Transient cotransfection of SULT2A-40/41 reporter plasmids with a dominant negative C/EBP expression plasmid completely blocked TA-inducible SULT2A-40/41 reporter gene expression. Linker scanning and site-directed mutagenesis of the proximal SULT2A-40/41 5'-flanking region, complemented by in vitro DNA-binding analyses, indicated that the more distal C/EBP site was important for controlling SULT2A-40/41 promoter activity. These data support a role for GR-inducible C/EBPalpha and C/EBPbeta expression in the transactivation of hepatic SULT2A-40/41 expression.
Collapse
Affiliation(s)
- Hai-Lin Fang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Maiti S, Grant S, Baker SM, Karanth S, Pope CN, Chen G. Stress regulation of sulfotransferases in male rat liver. Biochem Biophys Res Commun 2004; 323:235-41. [PMID: 15351727 DOI: 10.1016/j.bbrc.2004.08.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Sulfotransferase (SULT) catalyzed sulfation is responsible for hormone regulation and xenobiotic detoxification. Induction of SULTs by various hormones has been reported. Stress regulation of SULTs has not been reported, however. Here we report that rat liver SULTs can be regulated by physical stress (forced running, EX) and chemical stress (the organophosphorus pesticide parathion, PS). Both EX and PS increased rat liver phenol-sulfating SULT1A1 and hydroxysteroid-sulfating SULT2A1 activities. The increase in SULT1A1 activity did not correlate with protein (Western blot) or mRNA (RT-PCR) results but correlated well with increased non-protein soluble thiols. This suggests a possible Cys modification mechanism for stress regulation of SULT1A1. In vitro studies on GSH/GSSG effects on SULT1A1 activity support this conclusion. In contrast, SULT2A1 activity following physical or chemical stress treatments correlated well with protein and mRNA levels. This suggests a stress regulation mechanism of SULT2A1 at the gene transcription level, possibly occurring via hormones.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
7
|
Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MWH. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. ACTA ACUST UNITED AC 2004; 14:199-211. [PMID: 15167709 DOI: 10.1097/00008571-200403000-00009] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A nomenclature system for the cytosolic sulfotransferase (SULT) superfamily has been developed. The nomenclature guidelines were applied to 65 SULT cDNAs and 18 SULT genes that were characterized from eukaryotic organisms. SULT cDNA and gene sequences were identified by querying the GenBank databases and from published reports of their identification and characterization. These sequences were evaluated and named on the basis of encoded amino acid sequence identity and, in a few cases, a necessity to maintain historical naming convention. Family members share at least 45% amino acid sequence identity whereas subfamily members are at least 60% identical. cDNAs which encode amino acid sequences of at least 97% identity to each other were assigned identical isoform names. We also attempted to categorize orthologous enzymes between various species, where these have been identified, and the nomenclature includes a species descriptor. We present recommendations for the naming of allelic variants of SULT genes and their derived allozymes arising from single nucleotide polymorphisms and other genetic variation. The superfamily currently comprises 47 mammalian SULT isoforms, one insect isoform and eight plant enzymes, and collectively these sequences represent nine separate SULT families and 14 subfamilies. It is hoped that this nomenclature system will be widely adopted and that, as novel SULTs are identified and characterized, investigators will name their discoveries according to these guidelines.
Collapse
Affiliation(s)
- Rebecca L Blanchard
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
8
|
Coughtrie MWH. Sulfation through the looking glass--recent advances in sulfotransferase research for the curious. THE PHARMACOGENOMICS JOURNAL 2003; 2:297-308. [PMID: 12439736 DOI: 10.1038/sj.tpj.6500117] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 03/28/2002] [Accepted: 04/04/2002] [Indexed: 11/09/2022]
Abstract
Members of the cytosolic sulfotransferase (SULT) superfamily catalyse the sulfation of a multitude of xenobiotics, hormones and neurotransmitters. Humans have at least 10 functional SULT genes, and a number of recent advances reviewed here have furthered our understanding of SULT function. Analysis of expression patterns has shown that sulfotransferases are highly expressed in the fetus, and SULTs may in fact be a major detoxification enzyme system in the developing human. The X-ray crystal structures of three SULTs have been solved and combined with mutagenesis experiments and molecular modelling, they have provided the first clues as to the factors that govern the unique substrate specificities of some of these enzymes. In the future these and other studies will facilitate prediction of the fate of chemicals metabolised by sulfation. Variation in sulfation capacity may be important in determining an individual's response to xenobiotics, and there has been an explosion in information on sulfotransferase polymorphisms and their functional consequences, including the influence of SULT1A1 genotype on susceptibility to colorectal and breast cancer. Finally, the first gene knockout experiments with SULTs have recently been described, with the generation of estrogen sulfotransferase deficient mice in which reproductive capacity is compromised. Our improved understanding of these enzymes will have significant benefits in such diverse areas as drug design and development, cancer susceptibility, reproduction and development.
Collapse
Affiliation(s)
- M W H Coughtrie
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, Scotland, UK.
| |
Collapse
|
9
|
Nishiyama T, Ogura K, Nakano H, Kaku T, Takahashi E, Ohkubo Y, Sekine K, Hiratsuka A, Kadota S, Watabe T. Sulfation of Environmental Estrogens by Cytosolic Human Sulfotransferases. Drug Metab Pharmacokinet 2002; 17:221-8. [PMID: 15618673 DOI: 10.2133/dmpk.17.221] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that in humans taking soy food, the phytoestrogens, daidzein (DZ) and genistein (GS), exist as sulfates and glucuronides in the plasma and are excreted as conjugates in urine. To investigate which human sulfotransferase (SULT) isoforms participate in the sulfation of these phytoestrogens, the four major cytosolic SULTs, SULT1A1, SULT1A3, SULT1E1, and SULT2A1, occurring in the human liver were bacterially expressed as His-tagged proteins and chromatographically purified to homogeneity in the presence of Tween 20 and glycerol as highly efficient agents for stabilizing the recombinant enzymes. All the SULTs showed sulfating activity toward both DZ and GS. However, k(cat)/K(m) values observed indicated that these phytoestrogens were sulfated predominantly by SULT1A1 and SULT1E1 with K(m) values of 0.3 and 0.7 microM for GS and 1.9 and 3.4 microM for DZ, respectively. DZ and GS strongly inhibited the sulfation of the endogenous substrate, beta-estradiol, by SULT1E1 in a non-competitive manner with K(i) values of 14 and 7 microM, respectively, suggesting that these phytoestrogens might affect tissue levels of beta-estradiol in the human. The phenolic endocrine-disrupting chemicals, bisphenol A (BPA), 4-n-nonylphenol (NP), and 4-t-octylphenol (t-OP), were used as substrates to investigate the possible participation of human SULTs in their metabolism for excretion. High k(cat)/K(m) values were observed for the sulfation of BPA by SULT1A1, NP by SULT1A1 and SULT1E1, and t-OP by SULT1E1 and SULT2A1.
Collapse
Affiliation(s)
- Takahito Nishiyama
- Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glatt H, Boeing H, Engelke CE, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W. Human cytosolic sulphotransferases: genetics, characteristics, toxicological aspects. Mutat Res 2001; 482:27-40. [PMID: 11535246 DOI: 10.1016/s0027-5107(01)00207-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytosolic sulphotransferases transfer the sulpho moiety from the cofactor 5'-phosphoadenosine-3'-phosphosulphate (PAPS) to nucleophilic groups of xenobiotics and small endogenous compounds (such as hormones and neurotransmitters). This reaction often leads to products that can be excreted readily. However, other sulpho conjugates are strong electrophiles and may covalently bind with DNA and proteins. All known cytosolic sulphotransferases are members of an enzyme/gene superfamily termed SULT. In humans, 10 SULT genes are known. One of these genes encodes two different enzyme forms due to the use of alternative first exons. Different SULT forms substantially differ in their substrate specificity and tissue distribution. Genetic polymorphisms have been described for three human SULTs. Several allelic variants differ in functional properties, including the activation of promutagens. Only initial results are available from the analysis of SULT allele frequencies in different population groups, e.g. subjects suffering from specific diseases and corresponding controls.
Collapse
Affiliation(s)
- H Glatt
- Department of Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Potsdam-Rehbrücke, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chang HJ, Zhou M, Lin SX. Human dehydroepiandrosterone sulfotransferase: purification and characterization of a recombinant protein. J Steroid Biochem Mol Biol 2001; 77:159-65. [PMID: 11377982 DOI: 10.1016/s0960-0760(01)00048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dehydroepiandrosterone sulfate is the most abundant sulfated steroid transformed in human tissues and serves as a precursor for steroid hormones. Recombinant human dehydroepiandrosterone sulfotransferase (DHEA-ST) expressed in glutathione sulfotransferase fusion form in E. coli was purified using glutathione sepharose 4B affinity adsorption chromatography, a Factor Xa cleavage step, and Q-sepharose fast flow column chromatography. The homogeneous preparation had an activity toward dehydroepiandrosterone (DHEA) of 150+/-40 nmol/min per mg of protein under the assay conditions at an overall yield of 38.4%. The recombinant human DHEA-ST was shown to have a subunit mass of 34 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, while having a molecular mass of 67.2 kDa by Superose-12 gel filtration. Our results indicate that the active recombinant enzyme expressed in E. coli is a homodimer.Biochemical properties for purified DHEA-ST were studied using DHEA as a substrate. The optimum pH ranged from pH 7 to 8, and the optimum temperature 40-45 degrees C. Ninety percent of basal DHEA-ST activity remained even after the enzyme was treated at 45 degrees C for 15 min. The 50% inactivation concentration of NaCl for DHEA-ST activity was determined to be around 500 mM. The K(m) value for DHEA was 1.9+/-0.3 microM and V(max)=190+/-18 nmol/min per mg of protein at 37 degrees C, pH 7.5.
Collapse
Affiliation(s)
- H J Chang
- MRC Group in Oncology and Molecular Endocrinology Laboratory, CHUL Research Center and Laval University, 2705 Laurier Boulevard, Sainte-Foy, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
12
|
Wu W, Kocarek TA, Runge-Morris M. Sex-dependent regulation by dexamethasone of murine hydroxysteroid sulfotransferase gene expression. Toxicol Lett 2001; 119:235-46. [PMID: 11246177 DOI: 10.1016/s0378-4274(01)00263-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To determine whether glucocorticoid-inducible expression of hepatic hydroxysteroid sulfotransferase is conserved in mouse, the effects of dexamethasone (DEX) on hydroxysteroid sulfotransferase (mSULT2A) gene expression were investigated in primary cultured hepatocytes prepared from C57BL/6J mice. In female mouse hepatocytes, DEX (10(-7) and 10(-5) M, respectively) produced 8.2- and 17.8-fold increases, respectively, in the amounts of mSULT2A mRNA relative to control. By contrast, mSULT2A mRNA levels were undetectable in male mouse hepatocytes. Female-predominant mSULT2A mRNA expression was also observed in liver samples from C57BL/6J and three other mouse strains. Treatment of primary cultured female mouse hepatocytes with dihydrotestosterone in the presence of DEX suppressed mSULT2 expression. Transfection of primary cultured male or female mouse hepatocytes with a rat SULT2-40/41 reporter construct revealed that hepatocytes of both sexes have sufficient machinery to achieve DEX-inducible SULT2 transcription. However, treatment with the potent histone deacetylase inhibitor trichostatin A failed to elicit mSULT2A expression in male mouse hepatocytes.
Collapse
Affiliation(s)
- W Wu
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
13
|
Abstract
Cytosolic sulfotransferase catalyzes sulfoconjugation of relatively small lipophilic endobiotics and xenobiotics. At least 44 cytosolic sulfotransferases have been identified from mammals, and based on their amino acid sequences, these forms are shown to constitute five different families. In humans, 10 sulfotransferase genes have been identified and shown to localize on at least five different chromosomes. The enzymatic properties characterized in the recombinant forms indicate the association of their substrate specificity with metabolisms of such nonpeptide hormones as estrogen, corticoid, and thyroxine, although most forms are also active on the sulfation of various xenobiotics. Genetic polymorphisms are observed on such human sulfotransferases as ST1A2, ST1A3, and ST2A3.
Collapse
Affiliation(s)
- K Nagata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
14
|
Affiliation(s)
- R Kato
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | | |
Collapse
|
15
|
Dunn RT, Kolaja KL, Klaassen CD. Effect of partial hepatectomy on the expression of seven rat sulphotransferase mRNAs. Xenobiotica 1999; 29:583-93. [PMID: 10426557 DOI: 10.1080/004982599238407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The effect of partial hepatectomy on the expression of sulphotransferase (SULT) mRNA was studied. SULTs fall into two distinct classes based on substrate preference: phenol SULT1 family (SULT1A1, SULT1B1, SULT1C1 and SULT1E2) and hydroxysteroid SULT2 family (SULT20/21, SULT40/41 and SULT60). 2. Hepatic expression of SULT mRNA was analysed in the sham-hepatectomised rat (sham) and in the partially hepatectomised (PH) rat at various times after PH. Northern-blot analysis with [alpha-32P]dATP-labelled oligonucleotide probes specific for individual SULT mRNAs was used to monitor hepatic SULT mRNA expression. In general, SULT mRNAs underwent a decrease in expression after PH and the magnitude of decrease was dependent on the SULT isoform. 3. The decrease in SULT mRNA expression was resolved and even induced (SULT40/41 in the female rat) by 10-30 days after PH. Of the phenol SULT isoforms, both SULT1C1 and SULT1E2 mRNAs were significantly decreased by 18-24 h after PH in the male rat. The other phenol SULTs (SULT1A1 and SULT1B1) tended to decrease in the male rat after PH, but the decreases were not statistically significant. Expression of SULT20/21 mRNA was decreased in the female rat (80% at 24 h) and fully recovered by 10 days. SULT40/41 mRNA tended to decrease after PH; however, the decrease was not statistically significant. SULT 60 mRNA was decreased from 24 to 96 h after PH. 4. Thus, during the period of rapid liver growth that occurs after partial hepatectomy, SULT mRNA expression is decreased. The phenomenon of decreased SULT mRNA expression is similar to other states of rapid liver growth (e.g. cancer tissue and young animals) in which expression of SULT enzymes is characteristically low.
Collapse
Affiliation(s)
- R T Dunn
- Environmental Health and Occupational Medicine Center, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA
| | | | | |
Collapse
|
16
|
Fujita K, Nagata K, Watanabe E, Shimada M, Yamazoe Y. Bacterial expression and functional characterization of a rat thyroid hormone sulfotransferase, ST1B1. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:467-75. [PMID: 10361887 DOI: 10.1254/jjp.79.467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
At least three forms of phenol sulfotransferase (ST) ST1B1, ST1A1 and ST1C1 are contained in rat livers. To identify the form contributing to the metabolism of 3,3',5-triiodothyronine (T3), functional characterization of these forms was performed by expression in Escherichia coli. ST1B1 and ST1C1 were shown to be active on sulfation towards T3 with high affinity (Km: 44.4 and 25.8 microM, respectively), whereas ST1A1 had low affinity. In Western blotting using antibodies raised against the individual ST, hepatic contents of each ST were quantitatively determined. ST1B1 showed no clear sex-difference, whereas the level of ST1C1 was higher in adult males than adult females. The content of ST1B1 was 1.4, 6.8 and 10 times higher than that of ST1C1 in adult males, adult females and both sexes of immature rats, respectively. The developmental pattern of ST1B1 was similar to that of ST1A1, but differed from that of ST1C1. These results indicate that ST1B1 and ST1C1 are involved in T3 metabolism in rats and ST1B1 is the constitutive form across sexes and ages.
Collapse
Affiliation(s)
- K Fujita
- Division of Drug Metabolism and Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
17
|
Banoglu E, Duffel MW. Importance of peri-interactions on the stereospecificity of rat hydroxysteroid sulfotransferase STa with 1-arylethanols. Chem Res Toxicol 1999; 12:278-85. [PMID: 10077491 DOI: 10.1021/tx980219f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxysteroid (alcohol) sulfotransferases catalyze the sulfation of polycyclic aromatic hydrocarbons (PAHs) that contain benzylic hydroxyl functional groups. This metabolic reaction is often a critical step in the activation of a hydroxyalkyl-substituted PAH to form an electrophilic metabolite that is capable of forming covalent bonds at nucleophilic sites on DNA, RNA, and proteins. Since hydroxyalkyl-substituted PAHs are often metabolically formed by the stereoselective enzymatic hydroxylation of a benzylic position on an alkyl-substituted PAH, we have investigated the possibility that the sulfation of hydroxyalkyl aromatic hydrocarbons is also stereoselective. Homogeneous preparations of rat hepatic hydroxysteroid (alcohol) sulfotransferase STa were utilized to investigate the stereoselectivity of its catalytic function with the enantiomers of model 1-arylethanols. While only minimal stereoselectivity was observed for the catalytic efficiency of STa with the enantiomers of 1-(2-naphthyl)ethanol and 1-acenaphthenol, the enzyme was stereospecific for (R)-(+)-1-(1-naphthyl)ethanol, (R)-(+)-1-(1-pyrenyl)ethanol, and (R)-(+)-1-(9-phenanthryl)ethanol as substrates. Moreover, (S)-(-)-1-(1-naphthyl)ethanol, (S)-(-)-1-(1-pyrenyl)ethanol, and (S)-(-)- 1-(9-phenanthryl)ethanol were competitive inhibitors of STa. Structural and conformational analyses of these 1-arylethanols indicated that steric interactions between the substituents on the benzylic carbon and the hydrogen in the peri-position on the aromatic ring system were important determinants of the stereospecificity of the enzyme with these molecules. The findings presented here have implications for the more accurate prediction of the ability of hydroxyalkyl-substituted PAHs to be activated via metabolic formation of electrophilic sulfuric acid esters.
Collapse
Affiliation(s)
- E Banoglu
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Shiraga T, Iwasaki K, Hata T, Yoshinari K, Nagata K, Yamazoe Y, Ohno Y. Purification and characterization of two amine N-sulfotransferases, AST-RB1 (ST3A1) and AST-RB2 (ST2A8), from liver cytosols of male rabbits. Arch Biochem Biophys 1999; 362:265-74. [PMID: 9989935 DOI: 10.1006/abbi.1998.1032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two sulfotransferases (STs), designated as AST-RB1 (ST3A1) and AST-RB2 (ST2A8), with high a amine N-sulfonating activity, were purified from male rabbit liver cytosols. AST-RB1 and AST-RB2 were purified to homogeneity by the anion-exchange, affinity, and hydroxyapatite chromatography. The N-terminus of both enzymes were blocked. The subunit molecular mass of both enzymes was estimated to be 34 kDa on SDS-PAGE. AST-RB1 efficiently catalyzed N-sulfonation of alicyclic, alkyl, and arylamines such as 4-phenyl-1,2,3, 6-tetrahydropyridine, 1-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-piperazine, desipramine, and aniline, whereas its catalytic activities toward 2-naphthol and dehydroepiandrosterone (DHEA) were very low. On the other hand, AST-RB2 efficiently catalyzed sulfonation of desipramine and DHEA, but had no activity toward 2-naphthol. Amino acid sequences of peptide fragments derived from the purified AST-RB1 showed no significant homology with previously reported STs, but those from the purified AST-RB2 shared a high similarity with those of the ST2 family. Both enzymes were expressed specifically in the liver. The present results strongly suggest that the purified AST-RB1 is a novel enzyme in terms of structure and catalytic properties showing high selectivity for amine substrates, and AST-RB2 is a quite unique from among ST2A enzymes of other species in its substrate specificity.
Collapse
Affiliation(s)
- T Shiraga
- Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, Kashima 2-chome, Yodogawa-ku, Osaka, 532-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Vakiani E, Luz JG, Buck J. Substrate specificity and kinetic mechanism of the insect sulfotransferase, retinol dehydratase. J Biol Chem 1998; 273:35381-7. [PMID: 9857081 DOI: 10.1074/jbc.273.52.35381] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spodoptera frugiperda retinol dehydratase catalyzes the conversion of retinol to the retro-retinoid anhydroretinol. It shares sequence homology with the family of mammalian cytosolic sulfotransferases and provides the first link between sulfotransferases and retinol metabolism. In this study the enzymatic properties of retinol dehydratase were examined using bacterially expressed protein. We show that retinol dehydratase can catalyze the transfer of the sulfonate moiety to small phenolic compounds and exhibits many functional similarities to the mammalian cytosolic sulfotransferases. The bisubstrate reaction that it catalyzes between retinol and the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate seems to involve ternary complex formation and to proceed via a Random Bi Bi mechanism. In addition to the low nanomolar Km value for free retinol, retinol dehydratase is strongly inhibited by retinol metabolites, suggesting a preference for retinoids. Conversely, a number of tested mammalian cytosolic sulfotransferases do not utilize retinol, indicating that retinol is not a general substrate for sulfotransferases.
Collapse
Affiliation(s)
- E Vakiani
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
20
|
Her C, Wood TC, Eichler EE, Mohrenweiser HW, Ramagli LS, Siciliano MJ, Weinshilboum RM. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene. Genomics 1998; 53:284-95. [PMID: 9799594 DOI: 10.1006/geno.1998.5518] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned and characterized cDNAs that encode two human hydroxysteroid sulfotransferase (SULT) enzymes, SULT2B1a and SULT2B1b, as well as the single gene that encodes both of these enzymes. The two cDNAs differed at their 5'-termini and had 1050- and 1095-bp open reading frames that encoded 350 and 365 amino acids, respectively. The amino acid sequences encoded by these cDNAs included "signature sequences" that are conserved in all known cytosolic SULTs. Both cDNAs appeared, on the basis of amino acid sequence analysis, to be members of the hydroxysteroid SULT "family, " SULT2, but they were only 48% identical in amino acid sequence with the single known member of that family in humans, SULT2A1 (also referred to as DHEA ST). Northern blot analysis demonstrated the presence of SULT2B1 mRNA species approximately 1.4 kb in length in human placenta, prostate, and trachea and-faintly-in small intestine and lung. Expression of the two human SULT2B1 cDNAs in COS-1 cells showed that both of the encoded proteins catalyzed sulfation of the prototypic hydroxysteroid SULT substrate, dehydroepiandrosterone, but both failed to catalyze the sulfate conjugation of 4-nitrophenol or 17beta-estradiol, prototypic substrates for the phenol and estrogen SULT subfamilies. Both of these cDNAs were encoded by a single gene, SULT2B1. The locations of most exon-intron splice junctions in SULT2B1 were identical to those of the only other known human hydroxysteroid SULT gene SULT2A1 (previously STD). The divergence in 5'-terminal sequences of the two SULT2B1 cDNAs resulted from alternative transcription initiation prior to different 5' exons, combined with alternative splicing. SULT2B1 mapped to human chromosome band 19q13.3, approximately 500 kb telomeric to the location of SULT2A1.
Collapse
Affiliation(s)
- C Her
- Department of Pharmacology, Mayo Medical School/Mayo Clinic/Mayo Foundation, Rochester, Minnesota, 55905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Matsui M, Tamura H, Nagai F, Homma H, Miyawaki A, Mikoshiba K. On the nature of rat hepatic and mouse olfactory sulfotransferases. Chem Biol Interact 1998; 109:69-80. [PMID: 9566734 DOI: 10.1016/s0009-2797(97)00121-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rat hydroxysteroid sulfotransferase (HS-SULT) cDNAs, ST-40 and ST-20 are 90% identical in amino acid sequences and show different substrate specificities toward dehydroepiandrosterone (DHEA), androsterone (AD) and cortisol (CS). ST-40 enzyme is active toward the three substrates, whereas ST-20 enzyme is preferentially active for CS. First we prepared mutants of well conserved histidine, lysine and asparagine by site-directed mutagenesis. Secondly we constructed 20 chimeric HS-SULTs by reciprocal exchange of five protein domains between ST-20 and ST-40 enzymes. The studies on the expressed mutant and chimeric enzymes indicate the importance of the C-terminal region for the substrate specificity and the involvement of multiple regions for the enzyme activities. Next we determined the genetic loci of ST-40 and ST-20 by fluorescence in situ hybridization. Biotinylated ST-20 and ST-40 probes gave a pair of fluorescent spots on the same region of rat chromosome 1 and the loci of these genes were localized to the same chromosomal region of 1q21.3 --> q22.1. Finally we studied mouse olfactory phenol SULT (P-SULT). It was immunolocalized in the cytoplasm of mouse olfactory sustentacular cells and mouse nasal cytosols show high SULT activities toward phenolic aromatic odorants. We subsequently isolated a mouse P-SULT cDNA from mouse olfactory cDNA library. It encodes 304 amino acid polypeptide and is 94% identical with rat ST1C1 in amino acid sequences.
Collapse
Affiliation(s)
- M Matsui
- Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Glatt H, Bartsch I, Christoph S, Coughtrie MW, Falany CN, Hagen M, Landsiedel R, Pabel U, Phillips DH, Seidel A, Yamazoe Y. Sulfotransferase-mediated activation of mutagens studied using heterologous expression systems. Chem Biol Interact 1998; 109:195-219. [PMID: 9566746 DOI: 10.1016/s0009-2797(97)00133-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sulfation is a common final step in the biotransformation of xenobiotics and is traditionally associated with inactivation. However, the sulfate group is electron-withdrawing and may be cleaved off heterolytically in some molecules leading to electrophilic cations which may form adducts with DNA and other important cellular structures. Since endogenous sulfotransferases do not appear to be expressed in indicator cells of standard mutagenicity tests, rat and human sulfotransferases have been stably expressed in his- Salmonella typhimurium strain TA1538 and Chinese hamster V79 cells. Using these recombinant indicator cells, sulfotransferase-dependent genotoxic activities were detected with N-hydroxy-2-acetylaminofluorene, 2-acetylaminofluorene (in the presence of co-expressed rat cytochrome P450 1A2), hycanthone, 1'-hydroxysafrole, alpha-hydroxytamoxifen and various benzylic alcohols derived from polycyclic aromatic hydrocarbons. In several cases, it was critical that the reactive sulfuric acid conjugates were formed directly within the indicator cells, owing to the inefficient penetration of cell membranes. In other cases, spontaneous benzylic substitution reactions with medium components, such as halogenide ions or amino acids, led to secondary, membrane-penetrating reactive species. Different sulfotransferases, including related forms from rat and human, substantially differed in their substrate specificity towards the investigated promutagens. It is known that some sulfotransferases are expressed with high tissue and cell type specificities. This site-dependent expression together with the limitations in the distribution of reactive sulfuric acid conjugates may explain organotropic effects of compounds activated by this metabolic pathway.
Collapse
Affiliation(s)
- H Glatt
- German Institute of Human Nutrition, Department of Toxicology, Potsdam-Rehbrücke.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Klaassen CD, Liu L, Dunn RT. Regulation of sulfotransferase mRNA expression in male and female rats of various ages. Chem Biol Interact 1998; 109:299-313. [PMID: 9566754 DOI: 10.1016/s0009-2797(97)00141-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes that catalyze the addition of a sulfuryl moiety to both endogenous compounds, including steroids and neurotransmitters, and certain xenobiotics, including N-hydroxy-2-acetylaminoflourine and phenolic compounds, like alpha-naphthol. In contrast to certain Phase I drug-metabolizing enzymes, little is known about the regulation of the sulfotransferases. These series of studies were designed to analyze SULT mRNA expression and hormonal regulation in male and female rats. The hepatic expression of six different SULT isoforms was examined including three phenol SULTs and three hydroxysteroid SULTs. SULT mRNA expression was examined in adult and developing rats, as well as, in hypophysectomized (HX) and growth hormone-supplemented HX animals. SULT1A1 is thought to be important for the sulfation of simple phenols and its mRNA expression is about twice as high in adult male as in female rats. This difference in SULT1A1 mRNA levels is largely due to a greater decrease in mRNA levels after puberty in female than in male rats. Hypophysectomy resulted in a decrease in expression of SULT1A1 mRNA in both male and female rats. Replacement of growth hormone (GH) by either intermittent injection (male pattern) or infusion (female pattern) failed to restore SULT1A1 expression. Sulfotransferase SULT1C1 has been implicated in activation of N-hydroxyacetylaminoflourine. In contrast to SULT1A1, SULT1C1 mRNA expression is about 10-fold higher in adult males than in adult female rats. This male-dominant expression pattern emerges at 40-50 days of age and is due to an increase in SULT1C1 mRNA in males. Hypophysectomy abolished SULT1C1 expression in male rats. Interestingly, replacement of GH by injection (male pattern) restored SULT1C1 mRNA expression in males and enhanced SULT1C1 expression in female rats to levels observed in adult male rats. GH infusion (female pattern) did not affect SULT1C1 mRNA expression in either male or female rats. Estrogen sulfotransferase (SULT1E2) may play a role in estrogen homeostasis. Adult male rats express SULTIE2 mRNA at levels 10-fold higher than those observed in adult females and similar to SULT1C1, this is due to an increase in SULT1E2 mRNA occurring during puberty in the male rat. Hypophysectomy did not appreciably affect SULT1E2 expression in male rats, however in contrast to males, hypophysectomy markedly enhanced SULT1E2 expression in female rats. GH infusion suppressed SULT1E2 levels in HX male rats. The expression of hydroxysteroid sulfotransferases was also examined. The SULT-20/21 isoform was expressed in both male and female rats. Male expression of this isoform peaked at 30 days of age and then declined to approximately 30% of the level observed in adult females. SULT-20/21 mRNA expression increased sharply at 45 days of age in female rats and remained elevated. Expression of SULT-20/21 mRNA was decreased markedly by hypophysectomy in both male and female rats. GH injection did not affect SULT-20/21 mRNA expression in HX males, however this treatment resulted in a 4-fold increase in SULT-20/21 mRNA in HX females. GH infusion restored SULT-20/21 expression in HX-male rats. GH infusion did elevate SULT-20/21 mRNA expression in female-HX rats, but not to the level observed in intact females. Hydroxysteroid SULT isoform SULT-40/41 was expressed in adult female but not adult male rats. SULT-40/41 expression peaked at 15 days of age in both male and female rats and decreased thereafter. The decrease in expression was more pronounced in male rats. SULT-60 mRNA, like SULT-40/41, was expressed only in adult female rats. Male rats express SULT-60 at 30 days of age, but SULT-60 mRNA is undetectable at 60 days. SULT-60 mRNA was expressed in females only after day 30 and female SULT-60 mRNA expression remains high thereafter. SULT-40/41 and SULT-60 mRNA expression was increased by HX in male rats and decreased by HX in female rats. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C D Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA.
| | | | | |
Collapse
|
24
|
Werner S, Kunz S, Beckurts T, Heidecke CD, Wolff T, Schwarz LR. Formation of DNA adducts by cyproterone acetate and some structural analogues in primary cultures of human hepatocytes. Mutat Res 1997; 395:179-87. [PMID: 9465929 DOI: 10.1016/s1383-5718(97)00167-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, we have shown that the therapeutically-used progestin and antiandrogen cyproterone acetate (CPA) causes the formation of high levels of DNA adducts in rat hepatocytes and rat liver [J. Topinka, U. Andrae, L.R. Schwarz, T. Wolff, Cyproterone acetate generates DNA adducts in rat liver and in primary rat hepatocyte cultures, Carcinogenesis 14 (1993) 423-427: J. Topinka, B. Binkova, L.R. Schwarz, T. Wolff, Cyproterone acetate is an integral part of hepatic DNA adducts induced by this steroidal drug, Carcinogenesis 17 (1996) 167-169; S. Werner, J. Topinka, T. Wolff, L.R. Schwarz, Accumulation and persistence of DNA adducts of the synthetic steroid cyproterone acetate in rat liver, Carcinogenesis 16 (1995) 2369-2372; J. Topinka, B. Binkova, H.K. Zhu, U. Andrae, I. Neumann, L.R. Schwarz, S. Werner, T. Wolff, DNA damaging activity of the cyproterone acetate analogues chlormadinone acetate and megestrol acetate in rat liver, Carcinogenesis 16 (1995) 1483-1487]. Its structural analogues, chlormadinone acetate (CMA) and megestrol acetate (MGA) were much less active in this respect [J. Topinka, B. Binkova, H.K. Zhu, U. Andrae, I. Neumann, L.R. Schwarz, S. Werner, T. Wolff, DNA damaging activity of the cyproterone acetate analogues chlormadinone acetate and megestrol acetate in rat liver, Carcinogenesis 16 (1995) 1483-1487]. In the present study we addressed the question whether these compounds and two further analogues, medroxyprogesterone acetate (MPA) and progesterone, induce the formation of DNA adducts in primary cultures of human hepatocytes. Incubation of CPA with human hepatocytes from two male and four female donors induced the formation of significant levels of CPA-DNA adducts detectable by 32P-postlabeling. The by far most prevalent DNA adduct is most likely identical with adduct A formed in CPA-treated rats. DNA binding was found even at 0.03 microM CPA, the lowest concentration used. The maximum effect occurred at about 10 microM in 5 of the 6 cell preparations. At this concentration 480 and 2690 adducts x 10(-9) nucleotides were detected in hepatocytes of the two male donors and 1072, 816, 613 and 659 adducts x 10(-9) nucleotides in the hepatocytes of the four female donors after an exposure of 6 h with CPA. Extending the incubation time to 20 h resulted in a roughly three-fold higher binding. CMA and MGA were assayed in two of the liver cell preparations from the female donors. At a concentration of 20 microM and an incubation time of 6 h, DNA adduct levels for CMA were 21 and 43% and for MGA 31 and 65% of the levels observed with 20 microM CPA. In contrast, DNA binding of MPA amounted to less than 1% of that observed with CPA and DNA binding of the natural occurring progestin progesterone was below the level of detection. The results point to a genotoxic risk associated with the therapeutic use of CPA and possibly of CMA and MGA. Furthermore, the findings suggest that the significant genotoxicity observed with CPA, MGA and CMA is associated with the presence of the double bond in position 6-7 of the steroid, which is absent in MPA and progesterone.
Collapse
Affiliation(s)
- S Werner
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Toxikologie, München, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Tamura H, Morioka Y, Homma H, Matsui M. Construction and expression of chimeric rat liver hydroxysteroid sulfotransferase isozymes. Arch Biochem Biophys 1997; 341:309-14. [PMID: 9169020 DOI: 10.1006/abbi.1997.9979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The St-20 and ST-40 cDNAs encode rat liver hydroxysteroid sulfotransferases (HS-ST) that are 90% identical in amino acid sequence but exhibit different substrate preferences for dehydroepiandrosterone (DHEA), androsterone (AD), and cortisol (CS). ST-40 is active for all three substrates, whereas ST-20 is mainly active for cortisol. To determine the domain responsible for the substrate preferences of the HS-STs, 20 chimeric HS-STs were constructed by reciprocal exchanges of DNA fragments derived from the cDNAs and were expressed in Escherichia coli. Some chimeric enzymes were enzymatically active for all three substrates, and some displayed reduced or lost CS-ST activity, with retention of DHEA- and AD-ST activities. Others lost all HS-ST activity. Analysis revealed that a central region (region III spanning amino acids 102-164 with five amino acid differences between ST-20 and ST-40) is essential for HS-ST activity, whereas regions II (amino acids 65-101) and IV (amino acids 165-219) are unimportant with regard to substrate preference. It was also shown that the parental combination of regions I (amino acids 1-64) and V (amino acids 220-284) is essential for CS-ST activity. Photoaffinity labeling with [35S]3'-phosphoadenosine 5'-phosphosulfate (PAPS) revealed that some inactive chimeras lost affinity for PAPS. These results suggested that an ordered structure formed by regions I, III, and V is required for HS-ST activity, especially for substrate preference and PAPS binding.
Collapse
Affiliation(s)
- H Tamura
- Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
Carcinogenic N-hydroxy-arylamines and -arylamides undergo metabolic activation by several enzymes in mammals to cause the DNA damage. Cytosolic sulfotransferases in rat and human livers, which belong to the ST1 (SULT1) family, have been studied to assess their properties to mediate the metabolic activation. A human orthologue of rat ST1C1 from, which catalyzes sulfation of N-hydroxy-2-acetylaminofluorene, was screened in a EMBL genomic library with ST1C1 cDNA [Nagata, K., S. Ozawa, M. Miyata, M. Shimada, D.-W. Gong, Y. Yamazoe and R. Kato (1993) J. Biol. Chem., 268, 24720-24725]. Sequencing of the hybridized clones indicate that at least 3'-terminal region of human ST1C1 orthologue contains sequence highly homologus to rat ST1C1 at both nucleotide and deduced amino acid levels. The experiments using anti-rat ST1C1 antibody and nucleotide probes for human ST1C1 showed no detectable band in Western blots and an mRNA-detecting method with polymerase chain reaction, respectively, in human liver samples.
Collapse
Affiliation(s)
- K Nagata
- Division of Drug Metabolism and Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
27
|
Tamura H, Miyawaki A, Inoh N, Harada Y, Mikoshiba K, Matsui M. High sulfotransferase activity for phenolic aromatic odorants present in the mouse olfactory organ. Chem Biol Interact 1997; 104:1-9. [PMID: 9158691 DOI: 10.1016/s0009-2797(97)03762-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mouse nasal cytosols show high sulfotransferase (ST) activities toward phenolic aromatic odorants, but have little activities for most alcoholic aromatic odorants. Most ST activities toward the phenolic odorants preferred slightly acidic pH (6.4) and were sensitive to 2,6-dichloro-4-nitrophenol, a specific inhibitor for phenol ST (P-ST) but were not inhibited by triethylamine and tetra-n-butylammonium chloride, which are specific inhibitors for hydroxysteroid ST (HS-ST). These results suggested that P-ST activities are responsible for sulfation of the phenolic odorants. The spectra of the ST activities for these odorants were similar in mouse nasal and liver cytosols, however, nasal cytosols showed much higher ST activity toward cinnamyl alcohol than liver cytosols. This activity preferred higher pH (7.4) compared to the phenolic odorant-ST activities and was inhibited by both types of inhibitors, specific for P-ST and HS-ST. These results appear to indicate the participation of multiple ST isoforms for the sulfation of odorants in mouse nasal cytosols. The existence of P-ST(s) active for the phenolic odorants in olfactory cytosols suggests a role in odorant perception, in particular, in the signal termination process.
Collapse
Affiliation(s)
- H Tamura
- Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Flesher JW, Horn J, Lehner AF. 7-Sulfooxymethylbenz[a]anthracene is an ultimate electrophilic and carcinogenic form of 7-hydroxymethylbenz[a]anthracene. Biochem Biophys Res Commun 1997; 231:712-6. [PMID: 9070878 DOI: 10.1006/bbrc.1997.6172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hypothesis was tested that 7-sulfooxymethylbenz[a]anthracene (7-SBA) is an ultimate electrophilic and carcinogenic form of 7-hydroxymethylbenz[a]anthracene. In conformity with this hypothesis, 7-SBA was more carcinogenic than 7-HBA in inducing sarcomas at the site of repeated subcutaneous injection. These metabolites were individually administered to female Sprague-Dawley rats, beginning at 30 days of age, in 0.2 mumol doses given three times each week for 20 doses. One year after the first injection of 7-SBA, seven of thirteen female Sprague-Dawley rats had developed sarcomas. 7-HBA, on the other hand, had induced sarcomas at the site of injection in only two of tweleve rats. No tumors developed either in the control group given sesame oil:DMSO only or in the untreated control group. It would appear from the results summarized here that the search for an ultimate electrophilic and carcinogenic form of 7-HBA has been successful.
Collapse
Affiliation(s)
- J W Flesher
- Department of Pharmacology, A.B. Chandler Medical Center, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
29
|
Flesher JW, Horn J, Lehner AF. 7-Sulfooxymethyl-12-methylbenz[a]anthracene is an exceptionally reactive electrophilic mutagen and ultimate carcinogen. Biochem Biophys Res Commun 1997; 231:144-8. [PMID: 9070237 DOI: 10.1006/bbrc.1997.6049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypothesis was tested that an ultimate carcinogen of 7-hydroxymethyl-12-methylbenz[a]anthracene (HMBA), a major metabolite of 7,12-dimethylbenz[a]anthracene (DMBA), is a benzylic carbonium ion generated from an exceptionally reactive aralkylating metabolite, such as an electrophilic sulfate ester. In conformity with this hypothesis, sarcomas were rapidly induced in rats following repeated subcutaneous injection of HMBA (67%) or its electrophilic sulfate ester, sodium 7-sulfooxymethyl-12-methylbenz[a]anthracene (SMBA) (100%). It would appear from the results summarized here that the search for a carcinogenic metabolite of DMBA has been successful. In addition, an aralkylating electrophilic mutagen and carcinogen has been prepared from HMBA, which is itself either an ultimate carcinogen or a direct precursor of an ultimate carcinogen, i.e., a benzylic carbonium ion.
Collapse
Affiliation(s)
- J W Flesher
- Department of Pharmacology, Albert B. Chandler Medical Center, University of Kentucky, Lexington 40536, USA.
| | | | | |
Collapse
|
30
|
Homma H, Ogawa K, Hirono K, Morioka Y, Hirota M, Tanahashi I, Matsui M. Site-directed mutagenesis of rat hepatic hydroxysteroid sulfotransferases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:159-66. [PMID: 8814222 DOI: 10.1016/0167-4838(96)00065-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two cDNA clones of rat hepatic hydroxysteroid sulfotransferase (ST) (ST-40 and ST-20) were isolated and expressed in Escherichia coli cells. Several histidine residues in their coding regions are highly conserved in the ST superfamily, and histidine mutants were constructed by site-directed mutagenesis. The substitution of alanine or lysine for the histidine at position 98 in the ST-40 enzyme resulted in a loss of ST activities toward dehydroepiandrosterone (DHEA), androsterone (AD) and cortisol (CS). The mutation of histidine 98 into alanine abolished the specific binding to 3'-phosphoadenosine 5'-phosphate agarose, suggesting that the residue is located at a critical position in the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) binding site. In the ST-20 enzyme, the replacement of histidine 98 with alanine also resulted in the loss of ST activity toward its preferential substrate, CS. In the ST-40 enzyme, the mutation at histidine 256 into alanine markedly reduced CS-ST activity, but DHEA-ST activity was not changed. Furthermore, selective decrease in CS-ST activity was also observed in the alanine mutant at lysine 254 or at asparagine 255 of the ST-40 enzyme. Kinetic analysis on the ST-40 and its mutant at asparagine 255 indicated that the Km value for CS was significantly increased in the mutant without any change in the Km values for 3'-phosphoadenosine 5'-phosphosulfate and DHEA. Inhibition studies demonstrated that DHEA-ST activity was competitively inhibited by AD, but not by CS in the ST-40 enzyme, whereas triethylamine, a noncompetitive inhibitor of hydroxysteroid ST, inhibited DHEA-ST activity in the ST-40 enzyme but did not inhibit CS-ST activity in either ST-40 or ST-20 enzymes. These data provide evidence that DHEA and CS bind to different sites, which probably function in a different manner in the ST-40 enzyme.
Collapse
Affiliation(s)
- H Homma
- Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Rikke BA, Roy AK. Structural relationships among members of the mammalian sulfotransferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:331-8. [PMID: 8688469 DOI: 10.1016/0167-4781(96)00065-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sulfotransferases constitute a superfamily of related enzymes that play critical roles in the regulation of steroid hormone action, neurotransmitter function, detoxification, and carcinogenesis. Understanding the functional relationships among these enzymes has so far been difficult due to their overlapping substrate specificities. To help clarify these relationships, we conducted a thorough and comprehensive molecular phylogenetic analysis of 25 different mammalian sulfotransferase cDNA and gene (St) sequences using maximum parsimony and distance matrix methods. This analysis suggested five distinct gene families: an alcohol/androgen/hydroxysteroid/dehydroepiandrosterone (Std) family, an aryl/minoxidil/phenol (Stp) family, an estrone/estrogen (Ste) family, a thyroid hormone family (St1b1), and a family (St1c1) defined so far only on the basis of its specificity for the carcinogen N-hydroxy-2-acetylaminofluorene. New insights obtained through this study include (1) a bootstrap analysis supporting the reliability of family subgroupings, (2) identification of an insertion that appears to be characteristic of the St1b1 and Stlc1 families, (3) identification of sequences likely to represent paralogs of multigene families, and (4) identification of species likely to contain, or not contain, orthologous multigene families and thus their specialized functions.
Collapse
Affiliation(s)
- B A Rikke
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio 78284-7762, USA
| | | |
Collapse
|
32
|
Bernier F, Soucy P, Luu-The V. Human phenol sulfotransferase gene contains two alternative promoters: Structure and expression of the gene. DNA Cell Biol 1996; 15:367-75. [PMID: 8924211 DOI: 10.1089/dna.1996.15.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phenol sulfotransferases catalyze the transfer of a sulfonate moiety from 3'-phosphoadenosyl 5'-phosphosulfate to a phenolic group of lipophylic substrates to generate soluble sulfate esters. Using a phenol sulfotransferase cDNA as probe to screen a human leukocyte genomic DNA library constructed in lambda EMBL3, we obtained a clone containing a complete gene sequence. Comparison of the gene sequence with that of the corresponding cDNAs, namely phenol-sulfating phenol sulfotransferase (P-PST) or thermostable sulfotransferase (TS-PST), and human aryl sulfotransferase 1 and 2 (HAST1 and HAST2) indicates that the gene possesses eight short exons separated by seven introns included in approximately 5 kb. HAST2 has a different 5' untranslated sequence, and thus is encoded by a different mRNA species. While the nucleotide sequence corresponding to the 5' noncoding region of P-PST (TS-PST and HAST1) is included in the exon I, the 5' untranslated sequence of HAST2 is located in the beginning of exon IIa. The remaining sequence in exon II that is identical to both P-PST and HAST2 was termed exon IIb. Exons III to VIII, which cover the coding region and the 3' untranslated region, are almost identical in all types of PST or AST cDNAs. These results suggest that the phenol sulfotransferase gene possesses two alternate promoters that drive the expression of the two different mRNA species in a tissue-specific manner. Transfection of chloramphenicol acetyl transferase (CAT) reporter gene vectors containing the 5'-flanking sequence upstream from exon I and exon II, respectively, in transformed human embryonal kidney (293) cells indicate that both sequences possess promoter activity with higher activity for promoter 1. RNA blot analysis indicates that human phenol sulfotransferase gene is expressed in kidney, liver, lung, leukocyte, colon, small intestine, and spleen.
Collapse
Affiliation(s)
- F Bernier
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center, Quebec, Canada
| | | | | |
Collapse
|
33
|
Affiliation(s)
- V Luu-The
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Lacomme C, Roby D. Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. PLANT MOLECULAR BIOLOGY 1996; 30:995-1008. [PMID: 8639757 DOI: 10.1007/bf00020810] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A cDNA clone (RaRO47) encoding a sulfotransferase (ST) has been isolated from Arabidopsis cell suspensions. The deduced polypeptide of 302 amino acids is highly related to plant flavonol sulfotransferases (FSTs), characterized for the first time in Flaveria, and also to STs from animal tissue. The expression of the Arabidopsis ST gene(s) corresponding to RaR047 was examined during different developmental stages. It was found that, at the level of steady-state mRNA, expression of gene(s) encoding this ST was rapidly induced in the aerial parts of young seedlings, and during growth of Arabidopsis cell cultures. No expression could be detected in roots. Treatment of Arabidopsis seedlings with hormonal or stress-related compounds, showed that RaR047 mRNA accumulation was more particularly induced in response to salicylic acid and methyl jasmonate. Furthermore, in the leaves of mature plants or in cell suspensions, accumulation of RaR047 mRNA was observed upon infection with bacterial pathogens. This expression was observed preferentially in response to avirulent pathogens causing an hypersensitive reaction, as compared to virulent pathogens, which lead to disease.
Collapse
Affiliation(s)
- C Lacomme
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR CNRS/INRA, Caastanet-Tolosan, France
| | | |
Collapse
|
35
|
Chatterjee B, Song CS, Jung MH, Chen S, Walter CA, Herbert DC, Weaker FJ, Mancini MA, Roy AK. Targeted overexpression of androgen receptor with a liver-specific promoter in transgenic mice. Proc Natl Acad Sci U S A 1996; 93:728-33. [PMID: 8570624 PMCID: PMC40122 DOI: 10.1073/pnas.93.2.728] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rodent liver displays marked age- and sex-dependent changes in androgen sensitivity due to the sexually dimorphic and temporally programmed expression of the androgen receptor (AR) gene. We have altered this normal phenotype by constitutive overexpression of the rat AR transgene in the mouse liver by targeting it via the human phenylalanine hydroxylase (hPAH) gene promoter. These transgenic animals in their heterozygous state produce an approximately 30-fold higher level of the AR in the liver as compared with the nontransgenic control. Androgen inactivation via sulfonation of the hormone by dehydroepiandrosterone sulfotransferase (DST), an androgen-repressible enzyme, also contributes to the age- and sex-dependent regulation of hepatic androgen sensitivity. DST has a broad range of substrate specificity and is responsible for the age- and sex-specific activation of certain polycyclic aromatic hepatocarcinogens as well, by converting them to electrophilic sulfonated derivatives. In the transgenic female, the hepatic expression of DST was approximately 4-fold lower than in normal females, a level comparable to that in normal males. The hPAH-AR mice will serve as a valuable model for studying the sex- and age-invariant expression of liver-specific genes, particularly those involved in the activation of environmental hepatocarcinogens such as the aromatic hydrocarbons.
Collapse
Affiliation(s)
- B Chatterjee
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen G, Banoglu E, Duffel MW. Influence of substrate structure on the catalytic efficiency of hydroxysteroid sulfotransferase STa in the sulfation of alcohols. Chem Res Toxicol 1996; 9:67-74. [PMID: 8924618 DOI: 10.1021/tx950065t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfotransferase a (STa) is an isoform of hydroxysteroid (alcohol) sulfotransferase that catalyzes the formation of sulfuric acid esters from both endogenous and xenobiotic alcohols. Among its various functions in toxicology, STa is the major form of hepatic sulfotransferase in the rat that catalyzes the formation of genotoxic and carcinogenic sulfuric acid esters from hydroxymethyl polycyclic aromatic hydrocarbons. The goal of the present study was to elucidate fundamental quantitative relationships between substrate structure and catalytic activity of STa that would be applicable to these and other xenobiotics. We have modified previous procedures for purification of STa in order to obtain sufficient amounts of homogeneous enzyme for determination of kcat/Km values, a quantitative measure of catalytic efficiency. We determined the catalytic efficiency of STa with benzyl alcohol and eight benzylic alcohols that were substituted with n-alkyl groups (CnH2n + 1, where n = 1-8) in the para position, and the optimum value for kcat/Km in these reactions was obtained with n-pentylbenzyl alcohol. Correlations between logarithms of kcat/Km values and logarithms of partition coefficients revealed that hydrophobicity of the substrate was a major factor contributing to the catalytic efficiency of STa. Primary n-alkanols (CnH(2n+1)OH, where n = 3-16) exhibited an optimum kcat/Km for C9-C11 and a linear decrease in vmax of the reaction for C3-C14; 15- and 16-carbon n-alkanols were not substrates for STa. These results indicated limits to the length of the extended carbon chain in substrates. Such limits may also apply to hydroxysteroids, since cholesterol was inactive as either substrate or inhibitor of STa. Furthermore, the importance of steric effects on the catalytic efficiency of STa was also evident with a series of linear, branched, and cyclic seven-carbon aliphatic alcohols. In conclusion, our results provide fundamental quantitative relationships between substrate structure and catalytic efficiency that yield insight into the specificity of STa for both endogenous and xenobiotic alcohols.
Collapse
Affiliation(s)
- G Chen
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
37
|
Forbes KJ, Hagen M, Glatt H, Hume R, Coughtrie MW. Human fetal adrenal hydroxysteroid sulphotransferase: cDNA cloning, stable expression in V79 cells and functional characterisation of the expressed enzyme. Mol Cell Endocrinol 1995; 112:53-60. [PMID: 7589785 DOI: 10.1016/0303-7207(95)03585-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dehydroepiandrosterone sulphate (DHEAS) is a major adrenal secretory product, particularly in the fetus where it serves as a substrate for oestrogen biosynthesis by the placenta. The enzyme in the adrenal responsible for synthesising DHEAS, hydroxysteroid sulphotransferase (HST), is therefore essential for human development. We have isolated a full-length cDNA clone, encoding human fetal adrenal HST, and constructed a stable cell line expressing it by transfection into V79 Chinese hamster lung fibroblast cells. This cDNA was essentially identical to that isolated from adult human liver, where the role of HST is less well understood. This recombinant cell line allowed determination of the substrate specificity and kinetic properties of this enzyme towards various steroid hormones, and by comparison of these activities with human liver cytosol we have shown that HST is the major sulphotransferase responsible for the sulphation of DHEA, androsterone and pregnenolone in man and that, functionally, the hepatic and adrenal enzymes are very similar. The expressed HST was also active with testosterone, cortisol (although at low levels) and the xenobiotic 17 alpha-ethinyloestradiol, but not with oestrone or 1-naphthol. We have therefore created a valuable resource for the study of this important enzyme.
Collapse
Affiliation(s)
- K J Forbes
- Department of Biochemical Medicine, University of Dundee, Ninewells Hospital and Medical School, Scotland, UK
| | | | | | | | | |
Collapse
|
38
|
Matsui M, Takahashi M, Miwa Y, Motoyoshi Y, Homma H. Structure-activity relationships of alkylamines that inhibit rat liver hydroxysteroid sulfotransferase activities in vitro. Biochem Pharmacol 1995; 49:739-41. [PMID: 7887990 DOI: 10.1016/0006-2952(94)00495-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tetraalkylammonium salts having n-propyl to n-amyl side chains inhibited rat liver sulfotransferase (ST) activities toward dehydroepiandrosterone and cortisol, but not ST activity toward 2-naphthol, whereas trialkylamines having ethyl to n-amyl side chains inhibited ST activity toward dehydroepiandrosterone, but not ST activities toward cortisol and 2-naphthol. A comparison of I50 values, which represent inhibitor concentration resulting in 50% inhibition of dehydroepiandrosterone ST activity, revealed that the values for the tetraalkylammonium salts were 0.015 to 0.017 mM, whereas the values for the trialkylamines were 0.20 to 0.33 mM. Introduction of hydrophilic groups such as hydroxyl, thiol, nitrile and acetamide groups or substitution by methyl and allyl groups in the alkyl side chains markedly diminished the inhibitory effect of triethylamine. These data indicate that ethyl to n-amyl side chains are a prerequisite for the alkylamine-type inhibitor. Tertiary amine drugs such as imipramine, dimenhydrinate, cyclizine, chlorpromazine and promethazine inhibited ST activities toward dehydroepiandrosterone and cortisol similar to the tetraalkylammonium salts, although the drugs were weaker inhibitors of hydroxysteroid ST activities. These results imply that in addition to trialkylamine side chains, the other portion of the drugs may participate in the inhibition of hydroxysteroid ST activities.
Collapse
Affiliation(s)
- M Matsui
- Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Ogura K, Satsukawa M, Okuda H, Hiratsuka A, Watabe T. Major hydroxysteroid sulfotransferase STa in rat liver cytosol may consist of two microheterogeneous subunits. Chem Biol Interact 1994; 92:129-44. [PMID: 8033248 DOI: 10.1016/0009-2797(94)90059-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The possible existence of two microheterogeneous subunits, designated ST-40P and ST-41P, of hydroxysteroid sulfotransferases in female Sprague-Dawley rat liver cytosol was demonstrated by cloning and sequencing of cDNAs, both isolated from two rat liver cDNA libraries. These subunits consisted of an equal number of amino acid residues with only one amino acid substitution. ST-40P and ST-41P expressed as homodimers from the ST-40 and ST-41 cDNAs in Escherichia coli had enzyme activities toward all of the examined 20 hydroxysteroids, 13 bile acids, and the carcinogen 5-hydroxymethylchrysene (5-HCR), with formation of the reactive metabolite 5-HCR sulfate, at rates very similar to those by STa, the major hydroxysteroid sulfotransferase in rat liver cytosol. This strongly suggested that they are essential components of STa. The present study carried out by using the recombinant enzymes provides the first direct evidence for the identity of sulfotransferases catalysing the sulfation of hydroxysteroids and bile acids and proposes that the current nomenclature system used for distinguishing hydroxysteroid sulfotransferases from bile acid sulfotransferases should be improved.
Collapse
Affiliation(s)
- K Ogura
- Department of Hygienic Chemistry, Tokyo College of Pharmacy, Japan
| | | | | | | | | |
Collapse
|
40
|
Yamazoe Y, Nagata K, Ozawa S, Kato R. Structural similarity and diversity of sulfotransferases. Chem Biol Interact 1994; 92:107-17. [PMID: 8033246 DOI: 10.1016/0009-2797(94)90057-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, four new forms of aryl sulfotransferase cDNAs have been isolated and their structures determined. A compilation of primary structures of 16 different sulfotransferases, including enzymes metabolizing endogenous chemicals and xenobiotics, showed a considerable extent of similarity among bacterial, plant and mammalian species, and indicates that these enzymes constitute a supergene family. Aryl sulfotransferase and estrogen sulfotransferase are shown to belong to a single gene family (ST1) which consists of at least four subfamilies, whereas, based on the sequence similarity, hydroxysteroid sulfotransferases constitute a distinct family (ST2). Little or no clear similarity was observed between the primary structures of enzymes N-sulfating aminosugars and those sulfating hydrophobic chemicals such as phenols, alcohols or amines, indicating that both types of enzymes diverged early in their evolutionary history. Two regions in the C-terminal parts are, however, conserved among all enzymes examined, which suggests a possibly essential role of these sites for the binding of a PAPS cofactor or for sulfate transfer.
Collapse
Affiliation(s)
- Y Yamazoe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|