1
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
2
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
3
|
Fair JV, Voronova A, Bosiljcic N, Rajgara R, Blais A, Skerjanc IS. BRG1 interacts with GLI2 and binds Mef2c gene in a hedgehog signalling dependent manner during in vitro cardiomyogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:27. [PMID: 27484899 PMCID: PMC4970297 DOI: 10.1186/s12861-016-0127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Background The Hedgehog (HH) signalling pathway regulates cardiomyogenesis in vivo and in differentiating P19 embryonal carcinoma (EC) cells, a mouse embryonic stem (mES) cell model. To further assess the transcriptional role of HH signalling during cardiomyogenesis in stem cells, we studied the effects of overexpressing GLI2, a primary transducer of the HH signalling pathway, in mES cells. Results Stable GLI2 overexpression resulted in an enhancement of cardiac progenitor-enriched genes, Mef2c, Nkx2-5, and Tbx5 during mES cell differentiation. In contrast, pharmacological blockade of the HH pathway in mES cells resulted in lower expression of these genes. Mass spectrometric analysis identified the chromatin remodelling factor BRG1 as a protein which co-immunoprecipitates with GLI2 in differentiating mES cells. We then determined that BRG1 is recruited to a GLI2-specific Mef2c gene element in a HH signalling-dependent manner during cardiomyogenesis in P19 EC cells, a mES cell model. Conclusions Thus, we propose a mechanism where HH/GLI2 regulates the expression of Mef2c by recruiting BRG1 to the Mef2c gene, most probably via chromatin remodelling, to ultimately regulate in vitro cardiomyogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0127-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joel Vincent Fair
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Neven Bosiljcic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Rashida Rajgara
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada. .,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada.
| | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada.
| |
Collapse
|
4
|
Zaglia T, Pianca N, Borile G, Da Broi F, Richter C, Campione M, Lehnart SE, Luther S, Corrado D, Miquerol L, Mongillo M. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc Natl Acad Sci U S A 2015; 112:E4495-504. [PMID: 26204914 PMCID: PMC4538656 DOI: 10.1073/pnas.1509380112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extrasystoles lead to several consequences, ranging from uneventful palpitations to lethal ventricular arrhythmias, in the presence of pathologies, such as myocardial ischemia. The role of working versus conducting cardiomyocytes, as well as the tissue requirements (minimal cell number) for the generation of extrasystoles, and the properties leading ectopies to become arrhythmia triggers (topology), in the normal and diseased heart, have not been determined directly in vivo. Here, we used optogenetics in transgenic mice expressing ChannelRhodopsin-2 selectively in either cardiomyocytes or the conduction system to achieve cell type-specific, noninvasive control of heart activity with high spatial and temporal resolution. By combining measurement of optogenetic tissue activation in vivo and epicardial voltage mapping in Langendorff-perfused hearts, we demonstrated that focal ectopies require, in the normal mouse heart, the simultaneous depolarization of at least 1,300-1,800 working cardiomyocytes or 90-160 Purkinje fibers. The optogenetic assay identified specific areas in the heart that were highly susceptible to forming extrasystolic foci, and such properties were correlated to the local organization of the Purkinje fiber network, which was imaged in three dimensions using optical projection tomography. Interestingly, during the acute phase of myocardial ischemia, focal ectopies arising from this location, and including both Purkinje fibers and the surrounding working cardiomyocytes, have the highest propensity to trigger sustained arrhythmias. In conclusion, we used cell-specific optogenetics to determine with high spatial resolution and cell type specificity the requirements for the generation of extrasystoles and the factors causing ectopies to be arrhythmia triggers during myocardial ischemia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Cardiac Complexes, Premature/complications
- Cardiac Complexes, Premature/pathology
- Cardiac Complexes, Premature/physiopathology
- Channelrhodopsins
- Connexins/metabolism
- Coronary Vessels/pathology
- Coronary Vessels/physiopathology
- Electrophysiological Phenomena
- Humans
- Integrases/metabolism
- Ligation
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Ischemia/complications
- Myocardial Ischemia/pathology
- Myocardial Ischemia/physiopathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Optogenetics/methods
- Organ Specificity
- Purkinje Fibers/metabolism
- Purkinje Fibers/pathology
- Purkinje Fibers/physiopathology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Nicola Pianca
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Giulia Borile
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | | | - Claudia Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Gottingen, Germany
| | - Marina Campione
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center, 37077 Gottingen, Germany; German Centre for Cardiovascular Research, partner site Göttingen, 37077 Gottingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Gottingen, Germany; Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center, 37077 Gottingen, Germany; German Centre for Cardiovascular Research, partner site Göttingen, 37077 Gottingen, Germany; Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Domenico Corrado
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, 35128 Padova, Italy
| | - Lucile Miquerol
- Aix Marseille University, CNRS Institut de Biologie du Développement de Marseille UMR 7288, 13288 Marseille, France
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy;
| |
Collapse
|
5
|
Abstract
My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins.
Collapse
Affiliation(s)
- Peter Lengyel
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
6
|
Hesse M, Fleischmann BK, Kotlikoff MI. Concise Review: The Role of C-kit Expressing Cells in Heart Repair at the Neonatal and Adult Stage. Stem Cells 2014; 32:1701-12. [DOI: 10.1002/stem.1696] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael Hesse
- Institute of Physiology 1, Life and Brain Center; University of Bonn; Bonn Germany
| | - Bernd K. Fleischmann
- Institute of Physiology 1, Life and Brain Center; University of Bonn; Bonn Germany
| | - Michael I. Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine; Cornell University; Ithaca New York USA
| |
Collapse
|
7
|
Malan D, Fleischmann BK. Functional expression and modulation of the L-type Ca2+ current in embryonic heart cells. Pediatr Cardiol 2012; 33:907-15. [PMID: 22639002 DOI: 10.1007/s00246-012-0360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
Abstract
Voltage-dependent L-type Ca2+ channels (VDCCs) are critically involved in excitation contraction coupling and regulation of the force of contraction. An important mechanism contributing to the adaptation of heart function is modulation of the L-type Ca2+ current (I(Ca-L)) by hormones of the autonomous nervous system. The signaling pathways underlying this regulation in the adult heart are well understood. However, VDCC expression and its regulation in the embryonic heart are less understood. This report therefore provides a short overview of the current knowledge on this topic using embryonic stem cells and the mouse as model systems.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | |
Collapse
|
8
|
Cyclooxygenase-2-derived prostacyclin protective role on endotoxin-induced mouse cardiomyocyte mortality. Cardiovasc Toxicol 2012; 11:347-56. [PMID: 21769544 DOI: 10.1007/s12012-011-9127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiovascular dysfunction characterizes septic shock, inducing multiple organ failure and a high mortality rate. In the heart, it has been shown an up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions with subsequent overproduction of nitric oxide (NO) and eicosanoids. This study is focused on the links between these products of inflammation and cell loss of mouse cardiomyocytes during treatment by the Salmonella typhimurium lipopolysaccharide (LPS) in presence or in absence of NOS or COX inhibitors. LPS induced RelA/NF-κB p65 activation, iNOS and COX-2 up-regulations, resulting in NO and prostacyclin releases. These effects were reversed by the NO-synthase inhibitor and increased by the specific COX-2 inhibitor. Immunostainings with FITC-conjugated anti-Annexin-V and propidium iodide and caspase 3/7 activity assay showed that cardiomyocyte necrosis was inhibited by L-NA during LPS treatment challenge, while apoptosis was induced in presence of both LPS and NS-398. No effect on LPS cellular injury was observed using the specific cyclooxygenase-1 (COX-1) inhibitor, SC-560. These findings strongly support the hypothesis of a link between iNOS-dependent NO overproduction and LPS-induced cell loss with a selective protective role allotted to COX-2 and deriving prostacyclins.
Collapse
|
9
|
Pratten M, Ahir BK, Smith-Hurst H, Memon S, Mutch P, Cumberland P. Primary cell and micromass culture in assessing developmental toxicity. Methods Mol Biol 2012; 889:115-146. [PMID: 22669663 DOI: 10.1007/978-1-61779-867-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Under the European Commission's New Chemical Policy both currently used and new chemicals should be tested for their toxicities in several areas, one of which was reproductive/developmental toxicity. Thousands of chemicals will need testing which will require a large number of laboratory animals. In vitro systems (as pre-screens or as validated alternatives) appear to be useful tools to reduce the number of whole animals used or refine procedures and hence decrease the cost for the chemical industry. Validated in vitro systems exist for developmental toxicity/embryotoxicity testing. Indeed, three assays have recently been validated: the whole embryo culture (WEC), the rat limb bud micromass (MM), and the embryonic stem cell test (EST). In this article, the use of primary embryonic cell culture, and in particular micromass culture, including a relatively novel chick heart micromass (MM) culture system has been described and compared to the validated D3 mouse embryonic stem cell (ESC) test.
Collapse
Affiliation(s)
- M Pratten
- School of Biomedical Science, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Electrophoretic mobility of cardiac myosin heavy chain isoforms revisited: application of MALDI TOF/TOF analysis. J Biomed Biotechnol 2011; 2011:634253. [PMID: 22187528 PMCID: PMC3237020 DOI: 10.1155/2011/634253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/09/2011] [Indexed: 01/15/2023] Open
Abstract
The expression of two cardiac myosin heavy chain (MyHC) isoforms in response to the thyroid status was studied in left ventricles (LVs) of Lewis rats. Major MyHC isoform in euthyroid and hyperthyroid LVs had a higher mobility on SDS-PAGE, whereas hypothyroid LVs predominantly contained a MyHC isoform with a lower mobility corresponding to that of the control soleus muscle. By comparing the MyHC profiles obtained under altered thyroid states together with the control soleus, we concluded that MyHCα was represented by the lower band with higher mobility and MyHCβ by the upper band. The identity of these two bands in SDS-PAGE gels was confirmed by western blot and mass spectrometry. Thus, in contrast to the literature data, we found that the MyHCα possessed a higher mobility rate than the MyHCβ isoform. Our data highlighted the importance of the careful identification of the MyHCα and MyHCβ isoforms analyzed by the SDS-PAGE.
Collapse
|
11
|
Rumsey JW, Das M, Bhalkikar A, Stancescu M, Hickman JJ. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers. Biomaterials 2010; 31:8218-27. [PMID: 20708792 DOI: 10.1016/j.biomaterials.2010.07.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/04/2010] [Indexed: 11/19/2022]
Abstract
The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback.
Collapse
Affiliation(s)
- John W Rumsey
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Pluripotent embryonic stem (ES) cells are characterized by their almost unlimited potential to self-renew and to differentiate into virtually any cell type of the organism. Here we describe basic protocols for the in vitro differentiation of mouse ES cells into cells of the cardiac, neuronal, pancreatic, and hepatic lineage. The protocols include (1) the formation of embryoid bodies (EBs) followed by (2) the spontaneous differentiation of EBs into progenitor cells of the ecto-, endo-, and mesodermal germ layer and (3) the directed differentiation of early progenitors into the respective lineages. Differentiation induction via growth and extracellular matrix factors leads to titin-expressing spontaneously beating cardiac cells, tyrosine hydroxylase-expressing dopaminergic neurons, insulin and c-peptide co-expressing pancreatic islet-like clusters, and albumin-positive hepatic cells, respectively. The differentiated cells show tissue-specific proteins and electrophysiological properties (action potentials and ion channels) in cardiac and neuronal cells, glucose-dependent insulin release in pancreatic cells, or glycogen storage and albumin synthesis in hepatic cells. The protocols presented here provide basic systems to study differentiation processes in vitro and to establish strategies for the use of stem cells in regenerative therapies.
Collapse
|
13
|
Muscle differentiation in blackspot seabream (Pagellus bogaraveo, Brunnich): Histochemical and immunohistochemical study of the fibre types. Tissue Cell 2008; 40:447-58. [DOI: 10.1016/j.tice.2008.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 05/05/2008] [Accepted: 05/22/2008] [Indexed: 01/31/2023]
|
14
|
Luan Y, Lengyel P, Liu CJ. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev 2008; 19:357-69. [PMID: 19027346 DOI: 10.1016/j.cytogfr.2008.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, 10003, United States
| | | | | |
Collapse
|
15
|
Panaro MA, Cianciulli A, Gagliardi N, Mitolo CI, Acquafredda A, Cavallo P, Mitolo V. CD14 major role during lipopolysaccharide-induced inflammation in chick embryo cardiomyocytes. ACTA ACUST UNITED AC 2008; 53:35-45. [DOI: 10.1111/j.1574-695x.2008.00397.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Lengyel P. From RNase L to the Multitalented p200 Family Proteins: An Exploration of the Modes of Interferon Action. J Interferon Cytokine Res 2008; 28:273-81. [DOI: 10.1089/jir.2008.3993.hp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Peter Lengyel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
17
|
Rumsey JW, Das M, Kang JF, Wagner R, Molnar P, Hickman JJ. Tissue engineering intrafusal fibers: dose- and time-dependent differentiation of nuclear bag fibers in a defined in vitro system using neuregulin 1-beta-1. Biomaterials 2008; 29:994-1004. [PMID: 18076984 DOI: 10.1016/j.biomaterials.2007.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
While much is known about muscle spindle structure, innervation and function, relatively few factors have been identified that regulate intrafusal fiber differentiation and spindle development. Identification of these factors will be a crucial step in tissue engineering functional muscle systems. In this study, we investigated the role of the growth factor, neuregulin 1-beta-1 (Nrg 1-beta-1) EGF, for its ability to influence myotube fate specification in a defined culture system utilizing the non-biological substrate N-1[3-(trimethoxysilyl)propyl]-diethylenetriamine (DETA). Based on morphological and immunocytochemical criteria, Nrg 1-beta-1 treatment of developing myotubes increases the ratio of nuclear bag fibers to total myotubes from 0.019 to 0.100, approximately a five-fold increase. The myotube cultures were evaluated for expression of the intrafusal fiber-specific alpha cardiac-like myosin heavy chain and for the expression of the non-specific slow myosin heavy chain. Additionally, the expression of ErbB2 receptors on all myotubes was observed, while phosphorylated ErbB2 receptors were only observed in Nrg 1-beta-1-treated intrafusal fibers. After Nrg 1-beta-1 treatment, we were able to observe the expression of the intrafusal fiber-specific transcription factor Egr3 only in fibers exhibiting the nuclear bag phenotype. Finally, nuclear bag fibers were characterized electrophysiologically for the first time in vitro. This data shows conclusively, in a serum-free system, that Nrg 1-beta-1 is necessary to drive specification of forming myotubes to the nuclear bag phenotype.
Collapse
Affiliation(s)
- John W Rumsey
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Truckenmüller R, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Wobus AM, Weibezahn KF. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. LAB ON A CHIP 2007; 7:777-85. [PMID: 17538721 DOI: 10.1039/b618488j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We describe a multi-purpose platform for the three-dimensional cultivation of tissues. The device is composed of polymer chips featuring a microstructured area of 1-2 cm(2). The chip is constructed either as a grid of micro-containers measuring 120-300 x 300 x 300 microm (h x l x w), or as an array of round recesses (300 microm diameter, 300 microm deep). The micro-containers may be separately equipped with addressable 3D-micro-electrodes, which allow for electrical stimulation of excitable cells and on-site measurements of electrochemically accessible parameters. The system is applicable for the cultivation of high cell densities of up to 8 x 10(6) cells and, because of the rectangular grid layout, allows the automated microscopical analysis of cultivated cells. More than 1000 micro-containers enable the parallel analysis of different parameters under superfusion/perfusion conditions. Using different polymer chips in combination with various types of bioreactors we demonstrated the principal suitability of the chip-based bioreactor for tissue culture applications. Primary and established cell lines have been successfully cultivated and analysed for functional properties. When cells were cultured in non-perfused chips, over time a considerable degree of apoptosis could be observed indicating the need for an active perfusion. The system presented here has also been applied for the differentiation analysis of pluripotent embryonic stem cells and may be suitable for the analysis of the stem cell niche.
Collapse
Affiliation(s)
- Eric Gottwald
- Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoon BS, Yoo SJ, Lee JE, You S, Lee HT, Yoon HS. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation 2007; 74:149-59. [PMID: 16683985 DOI: 10.1111/j.1432-0436.2006.00063.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Byung Sun Yoon
- Department of Animal Science, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 2006; 119:4305-14. [PMID: 17038545 DOI: 10.1242/jcs.03185] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyoctyes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced the entry of mesodermal cells into the cardiac muscle lineage, shown by the upregulation of transcripts Nkx2-5, MEF2C, GATA4 and cardiac α-actin. Furthermore, the overexpression of HDAC4 inhibited cardiomyogenesis, shown by the downregulation of cardiac muscle gene expression. Class II HDAC activity is inhibited through phosphorylation by Ca2+/calmodulin-dependent kinase (CaMK). Expression of an activated CaMKIV in P19 cells upregulated the expression of Nkx2-5, GATA4 and MEF2C, enhanced cardiac muscle development, and activated a MEF2-responsive promoter. Moreover, inhibition of CaMK signaling downregulated GATA4 expression. Finally, P19 cells constitutively expressing a dominant-negative form of MEF2C, capable of binding class II HDACs, underwent cardiomyogenesis more efficiently than control cells, implying the relief of an inhibitor. Our results suggest that HDAC activity regulates the specification of mesoderm cells into cardiomyoblasts by inhibiting the expression of GATA4 and Nkx2-5 in a stem cell model system.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Angello JC, Kaestner S, Welikson RE, Buskin JN, Hauschka SD. BMP induction of cardiogenesis in P19 cells requires prior cell-cell interaction(s). Dev Dyn 2006; 235:2122-33. [PMID: 16773658 PMCID: PMC2572146 DOI: 10.1002/dvdy.20863] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.
Collapse
Affiliation(s)
- John C Angello
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
22
|
Ding B, Liu CJ, Huang Y, Hickey RP, Yu J, Kong W, Lengyel P. p204 Is Required for the Differentiation of P19 Murine Embryonal Carcinoma Cells to Beating Cardiac Myocytes. J Biol Chem 2006; 281:14882-92. [PMID: 16556595 DOI: 10.1074/jbc.m511747200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among 10 adult mouse tissues tested, the p204 protein levels were highest in heart and skeletal muscle. We described previously that the MyoD-inducible p204 protein is required for the differentiation of cultured murine C2C12 skeletal muscle myoblasts to myotubes. Here we report that p204 was also required for the differentiation of cultured P19 murine embryonal carcinoma stem cells to beating cardiac myocytes. As shown by others, this process can be triggered by dimethyl sulfoxide (DMSO). We established that DMSO induced the formation of 204RNA and p204. Ectopic p204 could partially substitute for DMSO in inducing differentiation, whereas ectopic 204 antisense RNA inhibited the differentiation. Experiments with reporter constructs, including regulatory regions from the Ifi204 gene (encoding p204) in P19 cells and in cultured newborn rat cardiac myocytes, as well as chromatin coimmunoprecipitations with transcription factors, revealed that p204 expression was synergistically transactivated by the cardiac Gata4, Nkx2.5, and Tbx5 transcription factors. Furthermore, ectopic p204 triggered the expression of Gata4 and Nkx2.5 in P19 cells. p204 contains a nuclear export signal and was partially translocated to the cytoplasm during the differentiation. p204 from which the nuclear export signal was deleted was not translocated, and it did not induce differentiation. The various mechanisms by which p204 promoted the differentiation are reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14893-14906).
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Bettiol E, Clement S, Krause KH, Jaconi ME. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 2006; 157:1-30. [PMID: 17236648 DOI: 10.1007/112_0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For years, research has focused on how to treat heart failure by sustaining the overloaded remaining cardiomyocytes. Recently, the concept of cell replacement therapy as a treatment of heart diseases has opened a new area of investigation. In vitro-generated cardiomyocytes could be injected into the heart to rescue the function of a damaged myocardium. Embryonic and/or adult stem cells could provide cardiac cells for this purpose. Knowledge of fundamental cardiac differentiation mechanisms unraveled by studies on animal models has been improved using in vitro models of cardiogenesis such as mouse embryonal carcinoma cells, mouse embryonic stem cells and, recently, human embryonic stem cells. On the other hand, studies suggesting the existence of cardiac stem cells and the potential of adult stem cells from bone marrow or skeletal muscle to differentiate toward unexpected phenotypes raise hope and questions about their potential use for cardiac cell therapy. In this review, we compare the specificities of embryonic vs adult stem cell populations regarding their cardiac differentiation potential, and we give an overview of what in vitro models have taught us about cardiogenesis.
Collapse
Affiliation(s)
- E Bettiol
- University of Geneva, Department of Pathology and Immunology, Faculty of Medicine, Switzerland
| | | | | | | |
Collapse
|
24
|
Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J, Fleischmann BK. Identification and characterization of embryonic stem cell‐derived pacemaker and atrial cardiomyocytes. FASEB J 2005; 19:577-9. [PMID: 15659535 DOI: 10.1096/fj.03-1451fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify and functionally characterize cardiac subtypes during early stages of development. For this purpose, transgenic embryonic stem cells were generated using the alpha-myosin heavy chain promoter driving the expression of the enhanced green fluorescent protein (EGFP). EGFP-positive clusters of cells were first observed as early as 7 days of development, thus, even before the initiation of the contractile activity. Flow cytometry and single-cell fluorescence measurements evidenced large diversities of EGFP intensity. Patch-clamp experiments showed EGFP expression exclusively in pacemaker and atrial but not ventricular cells. The highest fluorescence intensities were detected in pacemaker-like cardiomyocytes. In accordance, multielectrode-array recordings of whole embryoid bodies confirmed that the pacemaker center coincided with strongly EGFP-positive areas. The cardiac subtypes displayed already at this early stage differential characteristics of electrical activity and ion channel expression. Thus, quantitation of the alpha-myosin heavy chain driven reporter gene expression allows identification and functional characterization of early cardiac subtypes.
Collapse
|
25
|
Anisimov SV, Tarasov KV, Riordon D, Wobus AM, Boheler KR. SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mech Dev 2002; 117:25-74. [PMID: 12204248 DOI: 10.1016/s0925-4773(02)00177-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptome profiling facilitates the identification of developmentally regulated genes. To quantify the functionally active genome of P19 embryonic carcinoma (EC) cells induced to form cardiomyocytes, we employed serial analysis of gene expression (SAGE) to sequence and compare a total of 171,735 SAGE tags from three libraries (undifferentiated P19 EC cells, differentiation days 3 + 0.5 and 3 + 3.0). After in vitro differentiation, only 3.1% of the gene products demonstrated significant (P < 0.05) changes in expression. The most highly significant changes (P < 0.01) involved altered expression of 410 genes encoding predominantly transcription factors, differentiation factors and growth regulators. Quantitative polymerase chain reaction analysis and in situ hybridization revealed five growth regulators (Dlk1, Igfbp5, Hmga2, Podxl and Ptn) and two unknown ESTs with expression profiles similar to known cardiac transcription factors, implicating these growth regulators in cardiac differentiation. These SAGE libraries thus serve as a reference resource for understanding the role of differentiation-dependent genes in embryonic stem cell models induced to form cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
26
|
English AW, Schwartz G. Development of sex differences in the rabbit masseter muscle is not restricted to a critical period. J Appl Physiol (1985) 2002; 92:1214-22. [PMID: 11842061 DOI: 10.1152/japplphysiol.00953.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proportions of muscle fibers of different phenotype in the adult rabbit masseter differ greatly in different sexes. These sex differences are not apparent in young adults, but arise under the influence of testosterone in the males. We examined whether this switch occurred during a critical period of postnatal development. Testosterone was administered to young adults 1, 2, or 4 mo after castration, and also to adult females. Samples of masseter muscle were taken at four monthly intervals after the onset of treatment and examined for the expression of different myosin heavy chain (MyHC) isoforms by using a panel of monoclonal antibodies. Despite the length of androgen deprivation, treatment with testosterone produced a marked MyHC isoform switch from alpha-slow/beta to IIa. This male proportion of fibers of different phenotypes persisted well beyond the return of serum testosterone levels to pretreatment levels. Thus brief exposure to testosterone produces a permanent change in the proportions of masseter muscle fibers of different phenotypes, and the capacity for this change is not restricted to a critical period.
Collapse
Affiliation(s)
- Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
27
|
Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002; 34:241-9. [PMID: 11851363 DOI: 10.1006/jmcc.2001.1507] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle cell-derived grafts in the heart may benefit myocardial performance after infarction. Several studies have suggested that skeletal muscle stem cells (satellite cells) from adult muscle undergo transdifferentiation into cardiomyocytes after grafting into the heart, but expression of cardiac markers in graft cells has not been rigorously confirmed. To determine the fate of satellite cell-derived grafts in the heart, adult rat satellite cells were tagged in vitro with bromodeoxyuridine (BrdU) and grafted into normal hearts of syngeneic rats. At 4 and 12 weeks the graft cells formed multinucleated, cross-striated myofibers that expressed fast skeletal myosin heavy chain (MHC), thus indicating a mature skeletal muscle phenotype. Double staining for the BrdU tag and cardiac-specific markers was employed to identify transdifferentiation. Aside from four questionable cells, none of the 11 grafts examined expressed alpha-MHC, cardiac troponin I, or atrial natriuretic peptide. At 4 weeks, grafts expressed beta -MHC, a hallmark of slow twitch myofibers. By 12 weeks, however, the myofibers had atrophied and downregulated beta-MHC. Grafts never expressed the intercalated disk proteins N-cadherin or connexin43, hence electromechanical coupling did not occur. In conclusion, satellite cells differentiate into mature skeletal muscle and do not express cardiac-specific genes after grafting into the heart. Thus, transdifferentiation into cardiomyocytes did not occur.
Collapse
Affiliation(s)
- Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington 98195-7335, USA.
| | | | | |
Collapse
|
28
|
Jamali M, Karamboulas C, Rogerson PJ, Skerjanc IS. BMP signaling regulates Nkx2-5 activity during cardiomyogenesis. FEBS Lett 2001; 509:126-30. [PMID: 11734219 DOI: 10.1016/s0014-5793(01)03151-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nkx2-5 regulates the transcription of muscle-specific genes during cardiomyogenesis. Nkx2-5 expression can induce cardiomyogenesis in aggregated P19 cells but not in monolayer cultures. In order to investigate the mechanism by which cellular aggregation regulates Nkx2-5 function, we examined the role of bone morphogenetic protein 4 (BMP4). We showed that the expression of the BMP inhibitor, noggin, was sufficient to inhibit the induction of cardiomyogenesis by Nkx2-5 during cellular aggregation. Furthermore, soluble BMP4 could activate Nkx2-5 function in monolayer cultures, resulting in the formation of cardiomyocytes. Therefore, BMP signaling is necessary and sufficient for the regulation of Nkx2-5 activity during cardiomyogenesis in P19 cells.
Collapse
Affiliation(s)
- M Jamali
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
29
|
Jamali M, Rogerson PJ, Wilton S, Skerjanc IS. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001; 276:42252-8. [PMID: 11526122 DOI: 10.1074/jbc.m107814200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor tinman is essential for heart vessel formation in Drosophila. In contrast, mice lacking the murine homologue Nkx2-5 are defective in cardiac looping but not in cardiac myocyte development. The lack of an essential role for Nkx2-5 in cardiomyogenesis in mammalian systems is most likely the result of genetic redundancy with family members. In this study, we used a dominant negative mutant of Nkx2-5, created by fusing the repressor domain of engrailed 2 to the Nkx2-5 homeodomain, termed Nkx/EnR. Expression of Nkx/EnR inhibited Me(2)SO-induced cardiomyogenesis in P19 cells but not skeletal myogenesis. Nkx/EnR inhibited expression of cardiomyoblast markers, such as GATA-4 and MEF2C, but not of mesoderm markers, such as Brachyury T and Wnt5b, or of skeletal lineage markers, such as MyoD and Mox1. To identify the minimal region of Nkx2-5 that can trigger cardiomyogenesis, we analyzed the activity of various Nkx2-5 deletion mutants. The C-terminal domain was not necessary for the ability of Nkx2-5 to induce cardiomyogenesis and loss of this domain did not enhance myogenesis. Therefore, Nkx2-5 function is essential for commitment of mesoderm into the cardiac muscle lineage, and the N-terminal region, together with the homeodomain, is sufficient for cardiomyogenesis in P19 cells.
Collapse
Affiliation(s)
- M Jamali
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
30
|
Jamali M, Karamboulas C, Wilton S, Skerjanc IS. Factors in serum regulate Nkx2.5 and MEF2C function. In Vitro Cell Dev Biol Anim 2001; 37:635-7. [PMID: 11776966 DOI: 10.1290/1071-2690(2001)037<0635:fisrna>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Ridgeway AG, Skerjanc IS. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J Biol Chem 2001; 276:19033-9. [PMID: 11262400 DOI: 10.1074/jbc.m011491200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pax3 is a paired box transcription factor expressed during somitogenesis that has been implicated in initiating the expression of the myogenic regulatory factors during myogenesis. We find that Pax3 is necessary and sufficient to induce myogenesis in pluripotent stem cells. Pax3 induced the expression of the transcription factor Six1, its cofactor Eya2, and the transcription factor Mox1 prior to inducing the expression of MyoD and myogenin. Overexpression of a dominant negative Pax3, engineered by fusing the active transcriptional repression domain of mouse EN-2 in place of the Pax3 transcriptional activation domain, completely abolished skeletal myogenesis without inhibiting cardiogenesis. Expression of the dominant negative Pax3 resulted in a loss of expression of Six1, Eya2, and endogenous Pax3 as well as a down-regulation in the expression of Mox1. No effect was found on the expression of Gli2. These results indicate that Pax3 activity is essential for skeletal muscle development, the expression of Six1 and Eya2, and is involved in regulating its own expression. In summary, the combined approach of expressing both a wild type and dominant negative transcription factor in stem cells has identified a cascade of transcriptional events controlled by Pax3 that are necessary and sufficient for skeletal myogenesis.
Collapse
MESH Headings
- Blotting, Northern
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Down-Regulation
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Homeodomain Proteins/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins
- Models, Biological
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscles/cytology
- Muscles/metabolism
- MyoD Protein/biosynthesis
- Myogenin/biosynthesis
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidases
- Nuclear Proteins
- PAX3 Transcription Factor
- Paired Box Transcription Factors
- Plasmids/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases
- Recombinant Fusion Proteins/metabolism
- Stem Cells/metabolism
- Trans-Activators/biosynthesis
- Transcription Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
32
|
Ridgeway AG, Petropoulos H, Wilton S, Skerjanc IS. Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 2000; 275:32398-405. [PMID: 10915791 DOI: 10.1074/jbc.m004349200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic regulatory factors (MRFs), MyoD and myogenin, can induce myogenesis in a variety of cell lines but not efficiently in monolayer cultures of P19 embryonal carcinoma stem cells. Aggregation of cells expressing MRFs, termed P19[MRF] cells, results in an approximately 30-fold enhancement of myogenesis. Here we examine molecular events occurring during P19 cell aggregation to identify potential mechanisms regulating MRF activity. Although myogenin protein was continually present in the nuclei of >90% of P19[myogenin] cells, only a fraction of these cells differentiated. Consequently, it appears that post-translational regulation controls myogenin activity in a cell lineage-specific manner. A correlation was obtained between the expression of factors involved in somite patterning, including Wnt3a, Wnt5b, BMP-2/4, and Pax3, and the induction of myogenesis. Co-culturing P19[Wnt3a] cells with P19[MRF] cells in monolayer resulted in a 5- to 8-fold increase in myogenesis. Neither BMP-4 nor Pax3 was efficient in enhancing MRF activity in unaggregated P19 cultures. Furthermore, BMP-4 abrogated the enhanced myogenesis induced by Wnt signaling. Consequently, signaling events resulting from Wnt3a expression but not BMP-4 signaling or Pax3 expression, regulate MRF function. Therefore, the P19 cell culture system can be used to study the link between somite patterning events and myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
33
|
Eason JM, Schwartz G, Shirley KA, English AW. Investigation of sexual dimorphism in the rabbit masseter muscle showing different effects of androgen deprivation in adult and young adult animals. Arch Oral Biol 2000; 45:683-90. [PMID: 10869480 DOI: 10.1016/s0003-9969(00)00030-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To evaluate the role played by androgens in the development and maintenance of sex differences in the proportion of muscle fibres of different phenotypes, the effects of castration in adult (>6 months old) and in young adult (2-3 months old) male rabbits was examined. Immunohistochemical methods were used to evaluate the proportion of muscle fibres containing different myosin heavy-chain isoforms in 10 different neuromuscular compartments of the masseter. In young adult animals of both sexes, the proportion of fibres of different phenotypes in different compartments was not significantly different from that of normal adult females. In animals castrated as young adults, the development of adult male phenotype proportions was completely blocked in most compartments. In animals castrated as adults, proportions were not significantly different from those of the intact males. For most masseter compartments, androgens produced permanent changes in muscle fibre phenotype during a critical period of postnatal development. However, in the posterior deep compartment, androgen deprivation in young adults had no effect on phenotype proportions, but castration of adults resulted in a striking increase in the proportion of fibres containing the IIa myosin heavy-chain isoform.
Collapse
Affiliation(s)
- J M Eason
- Department of Physical Therapy, Louisiana State University Medical Center, 1900 Granvier Street, New Orleans, LA 70112-2262, USA
| | | | | | | |
Collapse
|
34
|
Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000; 101:E182-7. [PMID: 10801766 DOI: 10.1161/01.cir.101.18.e182] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the development of improved therapies and the significant advances in the understanding of the basis of disease pathogenesis, millions of Americans continue to live with life-threatening cardiovascular diseases. Recent breakthroughs suggest exciting directions that are likely to produce more effective therapies for the treatment of cardiovascular disease. One such area, cell transplantation (grafting of healthy cells into the diseased heart), holds enormous potential as an approach to cardiovascular pathophysiology. Once thought to be a scientific long shot, cell transplantation is becoming recognized as a viable strategy to strengthen weak hearts and limit infarct growth. The technology could also be used for the long-term delivery of beneficial recombinant proteins to the heart, which is a strategy to complement molecular biology advances and provide an alternative strategy for gene therapy. On August 24, 1998, the National Heart, Lung, and Blood Institute convened a workshop to discuss the current status of this fast-moving line of research and to explore its promise for treating cardiovascular disease. The participants included basic and clinical researchers, with representatives from academic and commercial research settings. The workshop was designed to establish the state-of-the-art and to equate current research with practical clinical application. The group recommended short- and long-term goals to assist in realizing, in the most expedient manner, the potential utility of cell transplantation for the treatment of cardiovascular disease. A summary of the meeting discussions and recommendations for future areas of research is presented.
Collapse
Affiliation(s)
- L Reinlib
- Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-7940, USA.
| | | |
Collapse
|
35
|
Davidson SM, Morange M. Hsp25 and the p38 MAPK pathway are involved in differentiation of cardiomyocytes. Dev Biol 2000; 218:146-60. [PMID: 10656759 DOI: 10.1006/dbio.1999.9596] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The small heat-shock protein HSP25 is expressed in the heart early during development, and although multiple roles for HSP25 have been proposed, its specific role during development and differentiation is not known. P19 is an embryonal carcinoma cell line which can be induced to differentiate in vitro into either cardiomyocytes or neurons. We have used P19 to examine the role of HSP25 in differentiation. We found that HSP25 expression is strongly increased in P19 cardiomyocytes. Antisense HSP25 expression reduced the extent of cardiomyocyte differentiation and resulted in reduced expression of cardiac actin and the intermediate filament desmin and reduced level of cardiac mRNAs. Thus, HSP25 is necessary for differentiation of P19 into cardiomyocytes. In contrast, P19 neurons did not express HSP25 and antisense HSP25 expression had no effect on neuronal differentiation. The phosphorylation of HSP25 by the p38/SAPK2 pathway is known to be important for certain of its functions. Inhibition of this pathway by the specific inhibitor SB203580 prevented cardiomyocyte differentiation of P19 cells. In contrast, PD90589, which inhibits the ERK1/2 pathway, had no effect. Surprisingly, cardiogenesis was only sensitive to SB203580 during the first 2 days of differentiation, before HSP25 expression increases. In contrast to the effect of antisense HSP25, SB203580 reduced the level of expression of the mesodermal marker Brachyury-T during differentiation. Therefore, we propose that the p38 pathway acts on an essential target during early cardiogenesis. Once this initial step is complete, HSP25 is necessary for the functional differentiation of P19 cardiomyocytes, but its phosphorylation by p38/SAPK2 is not required.
Collapse
Affiliation(s)
- S M Davidson
- Département de Biologie, Unité de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, Paris Cedex 05, 75230, France.
| | | |
Collapse
|
36
|
Ridgeway AG, Wilton S, Skerjanc IS. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J Biol Chem 2000; 275:41-6. [PMID: 10617583 DOI: 10.1074/jbc.275.1.41] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two families of transcription factors, myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2), function synergistically to regulate myogenesis. In addition to activating structural muscle-specific genes, MRFs and MEF2 activate each other's expression. The MRF, myogenin, can activate MEF2 DNA binding activity when transfected into fibroblasts and, in turn, the myogenin promoter contains essential MEF2 DNA binding elements. To determine which MEF2 is involved in this regulation, P19 cells stably expressing MyoD and myogenin were compared for their ability to activate the expression of MEF2 family members. There was very little cross-activation of MyoD expression by myogenin and vice versa. Myogenin expression, and not MyoD, was found to up-regulate MEF2C expression. MEF2A, -B, and -D expression levels were not up-regulated by overexpression of either MyoD or myogenin. To examine whether MEF2C can differentially regulate MyoD or myogenin expression, P19 cell lines overexpressing MEF2C were analyzed. MEF2C induced myogenesis in P19 cells and up-regulated the expression of myogenin with 25-fold greater efficiency than that of MyoD. Therefore, myogenin and MEF2C participate in a regulatory loop in differentiating stem cells. This positive regulation does not extend to MyoD or the other MEF2 family members. Consequently, MEF2C appears to play a specific role in early events of myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
37
|
Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 1999; 100:193-202. [PMID: 10402450 DOI: 10.1161/01.cir.100.2.193] [Citation(s) in RCA: 378] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiomyocyte grafting augments myocyte numbers in the heart. We investigated (1) how developmental stage influences graft survival; (2) whether acutely necrotic or healing cardiac lesions support grafts; and (3) the differentiation and integration of cardiomyocyte grafts in injured hearts. METHODS AND RESULTS Cardiomyocytes from fetal, neonatal, or adult inbred rats were grafted into normal myocardium, acutely cryoinjured myocardium, or granulation tissue (6 days after injury). Adult cardiomyocytes did not survive under any conditions. In contrast, fetal and neonatal cardiomyocytes formed viable grafts under all conditions. Time-course studies with neonatal cardiomyocytes showed that the grafts recapitulated many aspects of normal development. The adherens junction protein N-cadherin was distributed circumferentially at day 1 but began to organize into intercalated disk-like structures by day 6. The gap junction protein connexin43 followed a similar but delayed pattern relative to N-cadherin. From 2 to 8 weeks, there was progressive hypertrophy and the formation of mature intercalated disks. In some hearts, graft cells formed adherens and gap junctions with host cardiomyocytes, suggesting electromechanical coupling. More commonly, however, grafts were separated from the host myocardium by scar tissue. Gap and adherens junctions formed between neonatal and adult cardiomyocytes in coculture, as evidenced by dye transfer and localization of cadherin and connexin43 at intercellular junctions. CONCLUSIONS Grafted fetal and neonatal cardiomyocytes form new, mature myocardium with the capacity to couple with injured host myocardium. Optimal repair, however, may require reducing the isolation of the graft by the intervening scar tissue.
Collapse
Affiliation(s)
- H Reinecke
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
38
|
Wilton S, Skerjanc I. Factors in serum regulate muscle development in P19 cells. In Vitro Cell Dev Biol Anim 1999; 35:175-7. [PMID: 10478795 DOI: 10.1007/s11626-999-0023-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Peng Y, Du K, Ramirez S, Diamond RH, Taub R. Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. J Biol Chem 1999; 274:4513-20. [PMID: 9988683 DOI: 10.1074/jbc.274.8.4513] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular signals that initiate cell growth are incompletely understood. Insight could be provided by understanding the signals regulating the transcriptional induction of immediate-early genes which occurs within minutes of the growth stimulus. The expression of the PRL-1 gene, which encodes a unique nuclear protein-tyrosine phosphatase, is rapidly induced in regenerating liver and mitogen-treated cells. Transcription of the PRL-1 gene increased in the rat liver remnant within a few minutes after partial hepatectomy and largely explained the increase in steady-state PRL-1 mRNA in the first few hours posthepatectomy. Egr-1 (early growth response factor) specifically bound a region of the proximal PRL-1 promoter P1 (-99). Egr-1 binding activity was more rapidly induced in regenerating liver than mitogen-treated H35 and NIH 3T3 cells, remained elevated through 4 h posthepatectomy, and appeared to be dependent not only on new Egr-1 protein synthesis but on post-translational regulation of Egr-1. Egr-1 efficiently transactivated a PRL-1 promoter reporter construct containing an intact not mutant Egr-1 site, and the Egr-1 site largely accounted for PRL-1 gene up-regulation in response to mitogen stimulation. These data predict that Egr-1 activation is an early event in liver regeneration and mitogen-activated cells that provides a regulatory stimulus for a subset of immediate-early genes.
Collapse
Affiliation(s)
- Y Peng
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
40
|
Peuker H, Conjard A, Putman CT, Pette D. Transient expression of myosin heavy chain MHCI alpha in rabbit muscle during fast-to-slow transition. J Muscle Res Cell Motil 1999; 20:147-54. [PMID: 10412086 DOI: 10.1023/a:1005482132240] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The expression of an alpha-cardiac-like myosin heavy chain, MHCI alpha, was investigated at both the mRNA and protein levels in rabbit tibialis anterior muscle undergoing fast-to-slow transition by continuous chronic low-frequency stimulation (CLFS). According to sequence analyses of the PCR product, the MHCI alpha isoform was found to be identical to the alpha-cardiac MHC expressed in rabbit atrium. In muscles at different degrees of transformation, the upregulation of MHCI alpha mRNA preceded that of the MHCI beta mRNA. At more advanced stages of the transformation, MHCI alpha mRNA decayed while MHCI beta mRNA persisted at high levels. The expression of MHCI alpha, therefore, was transitory. Studies at the protein level were based on immunoblotting using a monoclonal antibody (F88 12F8,1), characterized to be specific to MHCI alpha in rabbit muscle. These studies revealed a similar relationship between initial increase and successive decline of the MHCI alpha protein as seen at the mRNA level. Immunohistochemistry of 30-day stimulated muscle revealed that up to 65% of the fibres expressed the MHCI alpha isoform in combination with other adult MHC isoforms. The most frequent patterns of coexistence were MHCIIa + MHCI alpha + MHCI beta (28%), MHCI alpha + MHCI beta (18%), and MHCIIa + MHCI alpha (11%). According to these combinations, the upregulation of MHCI alpha may be assigned as an intermediate step in the transformation of existing fibres during the MHCIIa-->MHCI beta transition. A small fraction of fibres contained, in addition to the MHCI alpha + MHCI beta and MHCIIa + MHCI alpha combinations, developmental myosin, suggesting that MHCI alpha was also expressed in regenerating fibres originating from satellite cell-derived myotubes.
Collapse
Affiliation(s)
- H Peuker
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | | | |
Collapse
|
41
|
Putman CT, Conjard A, Peuker H, Pette D. Alpha-cardiac-like myosin heavy chain MHCI alpha is not upregulated in transforming rat muscle. J Muscle Res Cell Motil 1999; 20:155-62. [PMID: 10412087 DOI: 10.1023/a:1005430115402] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The expression of MHCI alpha, an alpha-cardiac-like myosin heavy chain isoform, was studied in extensor digitorum longus (EDL) and tibialis anterior (TA) rat muscles undergoing fast-to-slow transition by chronic low-frequency stimulation (CLFS), a condition inducing a transient upregulation of MHCI alpha in rabbit muscle. In order to enhance the transformation process, CLFS was applied to hypothyroid rats. mRNA analyses were performed by RT-PCR, and studies at the protein level by immunoblotting and immunohistochemistry, using the F88 antibody (F88 12F8,1) demonstrated in the accompanying paper to be specific for MHCI alpha. In total RNA preparations from slow- and fast-twitch muscles, MHCI alpha mRNA was present at minute levels, at least three orders of magnitude lower than in cardiac atrium. As verified immunohistochemically, MHCI alpha is present only in intrafusal fibres of rat muscle. Moreover, MHCI alpha is not expressed in extrafusal fibres and, contrary to the rabbit, was not upregulated at both the mRNA and protein levels by CLFS. These results support our notion of species-specific responses to CLFS. Another antibody reported to be specific to MHCI alpha, BA-G5, was also investigated by immunoblot and immunohistochemical analyses. Its specificity could not be validated for skeletal muscles of the rat. BG-A5 was shown to cross-react with MHCIIb and MHCI beta. These results question an upregulation of MHCI alpha in transforming rat muscles as reported in studies based on the use of this antibody.
Collapse
Affiliation(s)
- C T Putman
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | | | |
Collapse
|
42
|
Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S. Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 1998; 273:34904-10. [PMID: 9857019 DOI: 10.1074/jbc.273.52.34904] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Nkx2-5 homeodomain protein plays a key role in cardiomyogenesis. Ectopic expression in frog and zebrafish embryos results in an enlarged myocardium; however, expression of Nkx2-5 in fibroblasts was not able to trigger the development of beating cardiac muscle. In order to examine the ability of Nkx2-5 to modulate endogenous cardiac specific gene expression in cells undergoing early stages of differentiation, P19 cell lines overexpressing Nkx2-5 were differentiated in the absence of Me2SO. Nkx2-5 expression induced cardiomyogenesis in these cultures aggregated without Me2SO. During differentiation into cardiac muscle, Nkx2-5 expression resulted in the activation of myocyte enhancer factor 2C (MEF2C), but not MEF2A, -B, or -D. In order to compare the abilities of Nkx2-5 and MEF2C to induce cellular differentiation, P19 cells overexpressing MEF2C were aggregated in the absence of Me2SO. Similar to Nkx2-5, MEF2C expression initiated cardiomyogenesis, resulting in the up-regulation of Brachyury T, bone morphogenetic protein-4, Nkx2-5, GATA-4, cardiac alpha-actin, and myosin heavy chain expression. These findings indicate the presence of a positive regulatory network between Nkx2-5 and MEF2C and show that both factors can direct early stages of cell differentiation into a cardiomyogenic pathway.
Collapse
Affiliation(s)
- I S Skerjanc
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | | | |
Collapse
|
43
|
Lipskaia L, Grépin C, Defer N, Hanoune J. Adenylyl cyclase activity and gene expression during mesodermal differentiation of the P19 embryonal carcinoma cells. J Cell Physiol 1998; 176:50-6. [PMID: 9618144 DOI: 10.1002/(sici)1097-4652(199807)176:1<50::aid-jcp6>3.0.co;2-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DMSO-primed P19 pluripotent cells, which recapitulate the first stages of mammalian cardiogenesis and endodermal formation, were used as an in vitro model to analyze the variations in activity and expression of the different adenylyl cyclase (AC) isoforms during the early events of embryonic cell differentiation. Here, we show that the total AC activity, which increases up to 10-fold after differentiation of P19 cells, is mainly associated with increases in AC2, AC5, and AC6 mRNA levels. Particularly, the marked increase in AC5 mRNA correlates with the appearance of beating cardiomyocytes and with the transcription of the atrial myosin light chain (MLC1A) gene which encodes a protein specifically involved in the cardiac muscle cell contractile phenotype. Together, the results strongly suggest that 1) a rise in cyclic AMP (cAMP) may be associated with cardiomyocyte and endodermal cell differentiation during mammalian embryogenesis; and 2) AC5 gene expression starts very early during normal mouse cardiogenesis and correlates with the differentiation of cardiomyocytes.
Collapse
Affiliation(s)
- L Lipskaia
- Institut National de la Santé et de la Recherche Médicale U-99, Hôpital Henri Mondor, Créteil, France
| | | | | | | |
Collapse
|
44
|
English AW, Eason J, Pol M, Schwartz G, Shirley A. Different phenotypes among slow/beta myosin heavy chain-containing fibres of rabbit masseter muscle: a novel type of diversity in adult muscle. J Muscle Res Cell Motil 1998; 19:525-35. [PMID: 9682139 DOI: 10.1023/a:1005360526559] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Difference in the phenotype of different mammalian muscle fibres are usually attributed to differences in the expression of the product of different myosin heavy chain (MyHC) genes, which are known as isoforms. We studied differences in phenotype among fibres containing a single MyHC isoform (slow/beta) of the masseter muscle of adult rabbits. Four different monoclonal antibodies to slow/beta MyHC were used to stain serial sections from muscles in males and females. All antibodies recognize a single band on immunoblots and stain the same set of fibres in rabbit postcranial muscles. However, differential staining was observed in the masseter muscles. Antibody BA-D5 reacts with the most fibres, antibody A4.951 reacts with a subset of these fibres, and antibody A4.840 reacts with a subset of these fibres, and antibody A4.840 reacts with a subset of A4.951-positive fibres. Antibody S58 reacts only with an even smaller subset of fibres. Even though differential staining using four antibodies might allow for the expression of as many as 15 different staining patterns, or patterns, or phenotypes, only four were observed on > 99% of over 30 000 fibres studied. In females, nearly 40% of the fibres stain exclusively with antibody BA-D5, while in males, fewer than 8% of the fibres express this phenotype. The proportions of fibres of the other phenotypes do not differ so strikingly with gender. We conclude that an epitope diversity exists among muscle fibres in the adult rabbit masseter and that it is not necessarily a consequence of differences in gene expression. We feel that it is a regulated process and that, at least for some phenotypes, this regulation may be hormonally influenced.
Collapse
Affiliation(s)
- A W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Whether afferents exert their morphogenetic influence on spindles through release of trophic factors at intrafusal fiber junctions or via participation in proprioceptive pathways which modulate the motor activity to muscles was investigated by comparing myosin heavy chain (MHC) expression in intrafusal fibers after ablation of afferents (deafferentation, or DA) to the extensor digitorum longus (EDL) of adult rats or after ablation of the corresponding central processes of afferents to the spinal cord (central-process ablation, or CPA). DA and CPA elicited an exaggerated pedal plantarflexion, and hypertrophy of the EDL concomitant with atrophy of the soleus in the affected hindlimb. Frequencies and patterns of expression of seven MHCs expressed by intrafusal fibers in CPA muscles were indistinguishable from normal rats. However, frequencies and patterns of expression of several MHCs were abnormal following DA. Thus factors transported anterogradely from afferents to intrafusal fibers may regulate MHC expression in intrafusal fibers.
Collapse
Affiliation(s)
- J M Walro
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA
| | | | | |
Collapse
|
46
|
Jeannotte R, Paquin J, Petit-Turcotte C, Day R. Convertase PC2 and the neuroendocrine polypeptide 7B2 are co-induced and processed during neuronal differentiation of P19 embryonal carcinoma cells. DNA Cell Biol 1997; 16:1175-87. [PMID: 9364928 DOI: 10.1089/dna.1997.16.1175] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Convertases of the subtilisin/kexin family are responsible for the biological activation of a variety of pro-proteins, pro-hormones, and pro-trophic factors, and thus can modulate various aspects of embryonic development. We investigated the expression of each convertase by Northern hybridization during cell differentiation in vitro, using the mouse embryonal carcinoma cell line P19 as a model. The neuroendocrine convertase PC2 and 7B2, its specific binding protein, are co-induced during neuronal differentiation of P19 cells with retinoic acid, whereas the other convertases are not or follow different patterns of temporal expression. The mature forms of PC2 and 7B2 proteins are detected together by immunoblotting following induction of mRNA expression, indicating that these proteins are processed early during brain development. These results demonstrate that PC2 and 7B2 gene expression and protein processing are in a close temporal association during neuronal differentiation and point to the value of the P19 cell model to study the significance and the regulation of this relationship in mammalian brain development.
Collapse
Affiliation(s)
- R Jeannotte
- Département de chimie et de biochimie, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Rat intrafusal fibers consist of multiple isoforms of myosin heavy chains (MHCs) whose expression involves complex interactions among motor neurons, sensory neurons, and muscle cells during spindle development. Little is known about the roles of sensory and motor innervation in regulating and maintaining expression of MHC isoforms in adult rat muscle spindles. METHODS MHC expression was investigated in deafferented or deefferented adult rat muscle spindles by reacting transverse sections of spindles with a panel of monoclonal antibodies specific for different MHC isoforms. RESULTS Deefferentation or deafferentation did not alter the number of intrafusal fibers expressing most MHC isoforms. However, the numbers of fibers expressing two MHC isoforms were altered in deefferented muscle spindles. Nuclear bag1 fibers ceased to express alpha-cardiac MHC and upregulated embryonic MHC after ablation of motor innervation. Likewise, bag2 and chain fibers downregulated avian neonatal/fast MHC following deafferentation, but chain fibers upregulated type 2A MHC and became more extrafusal-like in their pattern of MHC expression. CONCLUSIONS These data indicate that (1) perturbations in spindle sensory and motor nerve supplies produce less severe alterations in MHC expression in mature intrafusal fibers than do similar lesions in developing intrafusal fibers and (2) MHC expression in intrafusal fibers reflects a combination of inductive and suppressive effects of motor and sensory neurons.
Collapse
Affiliation(s)
- J Wang
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, USA
| | | | | |
Collapse
|
48
|
Ng WA, Doetschman T, Robbins J, Lessard JL. Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells. Pediatr Res 1997; 41:285-92. [PMID: 9029652 DOI: 10.1203/00006450-199702000-00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from mouse blastocysts. ES cells can differentiate into complex embryoid bodies (EBs) which exhibit many of the characteristics of 4-10-d embryos, including areas which rhythmically contract. The expression of the four muscle isoactins was examined in EBs by using transcript-specific probes for each of the muscle actin mRNAs and selectively reactive MAbs to muscle actins. Northern blot analyses from undifferentiated ES cells and EBs after 5, 10, 15, and 20 d in suspension culture demonstrated that no muscle actin transcripts could be detected in the undifferentiated cells, whereas during differentiation, the vascular and enteric smooth muscle isoactin mRNAs were easily detected. To further define the pattern of expression polymerase chain reaction analyses were carried out on RNA isolated from individual EBs. The data indicated that all four muscle-specific actin genes are transcribed. We also demonstrated the presence of muscle actins in at least two distinct cell populations within the EBs using selectively reactive MAbs. Fibroblast-like cells exhibit significant levels of the two smooth muscle actins (vascular and enteric) localized to stress fibers. In addition, one or both of the striated muscle actins (cardiac and skeletal) are expressed in cardiomyocyte-like cells. As is the case in embryonic heart, alpha-smooth muscle actin and the striated muscle actin(s) are incorporated into well organized sarcomeres in these cardiomyocyte-like cells. Thus, differentiating EBs provide an in vitro system to study both striated and smooth muscle cell gene expression.
Collapse
Affiliation(s)
- W A Ng
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Ohio 45229, USA
| | | | | | | |
Collapse
|
49
|
Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996; 98:2512-23. [PMID: 8958214 PMCID: PMC507709 DOI: 10.1172/jci119070] [Citation(s) in RCA: 451] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarcts heal by scarring because myocardium cannot regenerate. To determine if skeletal myoblasts could establish new contractile tissue, hearts of adult inbred rats were injured by freeze-thaw, and 3-4.5 x 10(6) neonatal skeletal muscle cells were transplanted immediately thereafter. At 1 d the graft cells were proliferating and did not express myosin heavy chain (MHC). By 3 d, multinucleated myotubes were present which expressed both embryonic and fast fiber MHCs. At 2 wk, electron microscopy demonstrated possible satellite stem cells. By 7 wk the grafts began expressing beta-MHC, a hallmark of the slow fiber phenotype; coexpression of embryonic, fast, and beta-MHC continued through 3 mo. Transplanting myoblasts 1 wk after injury yielded comparable results, except that grafts expressed beta-MHC sooner (by 2 wk). Grafts never expressed cardiac-specific MHC-alpha. Wounds containing 2-wk-old myoblast grafts contracted when stimulated ex vivo, and high frequency stimulation induced tetanus. Furthermore, the grafts could perform a cardiac-like duty cycle, alternating tetanus and relaxation, for at least 6 min. Thus, skeletal myoblasts can establish new muscle tissue when grafted into injured hearts, and this muscle can contract when stimulated electrically. Because the grafts convert to fatigue-resistant, slow twitch fibers, this new muscle may be suited to a cardiac work load.
Collapse
Affiliation(s)
- C E Murry
- Department of Pathology, University of Washington School of Medicine, Seattle 98195, USA.
| | | | | | | |
Collapse
|
50
|
Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 1996; 98:2209-17. [PMID: 8941636 PMCID: PMC507669 DOI: 10.1172/jci119030] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarcts heal by scar formation because there are no stem cells in myocardium, and because adult myocytes cannot divide and repopulate the wound. We sought to redirect the heart to form skeletal muscle instead of scar by transferring the myogenic determination gene, MyoD, into cardiac granulation (wound repair) tissue. A replication-defective adenovirus was constructed containing MyoD under transcriptional control of the Rous sarcoma virus long terminal repeat. The virus converted cultured cardiac fibroblasts to skeletal muscle, indicated by expression of myogenin and skeletal myosin heavy chains (MHCs). To determine if MyoD could induce muscle differentiation in vivo, we injected 2 x 10(9) or 10(10) pfu of either the MyoD or a control beta-galactosidase adenovirus into healing rat hearts, injured 1 wk previously by freeze-thaw. After receiving the lower viral dose, cardiac granulation tissue expressed MyoD mRNA and protein, but did not express myogenin or skeletal MHC. When the higher dose of virus was administered, double immunostaining showed that cells in reparative tissue expressed both myogenin and embryonic skeletal MHC. No muscle differentiation occurred after beta-galactosidase transfection. Thus, MyoD gene transfer can induce skeletal muscle differentiation in healing heart lesions. Modifications of this strategy might eventually provide new contractile tissue to repair myocardial infarcts.
Collapse
Affiliation(s)
- C E Murry
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | | | |
Collapse
|