1
|
Benarroch E. What Is the Role of Norepinephrine in Cerebellar Modulation and Stress-Induced Episodic Ataxia? Neurology 2023; 100:383-386. [PMID: 36806456 PMCID: PMC9984211 DOI: 10.1212/wnl.0000000000206882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 02/22/2023] Open
|
2
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
3
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
4
|
The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res 2019; 1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
|
5
|
Amplified selectivity in cognitive processing implements the neural gain model of norepinephrine function. Behav Brain Sci 2018; 39:e206. [PMID: 28347392 DOI: 10.1017/s0140525x15001776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work has suggested that an interaction between local selective (e.g., glutamatergic) excitation and global gain modulation (via norepinephrine) amplifies selectivity in information processing. Mather et al. extend this existing theory by suggesting that localized gain modulation may further mediate this effect - an interesting prospect that invites new theoretical and experimental work.
Collapse
|
6
|
Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity in the Human Brain. J Neurosci 2017; 36:7865-76. [PMID: 27466332 DOI: 10.1523/jneurosci.0744-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The brain commonly exhibits spontaneous (i.e., in the absence of a task) fluctuations in neural activity that are correlated across brain regions. It has been established that the spatial structure, or topography, of these intrinsic correlations is in part determined by the fixed anatomical connectivity between regions. However, it remains unclear which factors dynamically sculpt this topography as a function of brain state. Potential candidate factors are subcortical catecholaminergic neuromodulatory systems, such as the locus ceruleus-norepinephrine system, which send diffuse projections to most parts of the forebrain. Here, we systematically characterized the effects of endogenous central neuromodulation on correlated fluctuations during rest in the human brain. Using a double-blind placebo-controlled crossover design, we pharmacologically increased synaptic catecholamine levels by administering atomoxetine, an NE transporter blocker, and examined the effects on the strength and spatial structure of resting-state MRI functional connectivity. First, atomoxetine reduced the strength of inter-regional correlations across three levels of spatial organization, indicating that catecholamines reduce the strength of functional interactions during rest. Second, this modulatory effect on intrinsic correlations exhibited a substantial degree of spatial specificity: the decrease in functional connectivity showed an anterior-posterior gradient in the cortex, depended on the strength of baseline functional connectivity, and was strongest for connections between regions belonging to distinct resting-state networks. Thus, catecholamines reduce intrinsic correlations in a spatially heterogeneous fashion. We conclude that neuromodulation is an important factor shaping the topography of intrinsic functional connectivity. SIGNIFICANCE STATEMENT The human brain shows spontaneous activity that is strongly correlated across brain regions. The factors that dynamically sculpt these inter-regional correlation patterns are poorly understood. Here, we test the hypothesis that they are shaped by the catecholaminergic neuromodulators norepinephrine and dopamine. We pharmacologically increased synaptic catecholamine levels and measured the resulting changes in intrinsic fMRI functional connectivity. At odds with common understanding of catecholamine function, we found (1) overall reduced inter-regional correlations across several levels of spatial organization; and (2) a remarkable spatial specificity of this modulatory effect. Our results identify norepinephrine and dopamine as important factors shaping intrinsic functional connectivity and advance our understanding of catecholamine function in the central nervous system.
Collapse
|
7
|
Sitte HH, Pifl C, Rajput AH, Hörtnagl H, Tong J, Lloyd GK, Kish SJ, Hornykiewicz O. Dopamine and noradrenaline, but not serotonin, in the human claustrum are greatly reduced in patients with Parkinson's disease: possible functional implications. Eur J Neurosci 2016; 45:192-197. [PMID: 27741357 DOI: 10.1111/ejn.13435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Abstract
In the human brain, the claustrum is a small subcortical telencephalic nucleus, situated between the insular cortex and the putamen. A plethora of neuroanatomical studies have shown the existence of dense, widespread, bidirectional and bilateral monosynaptic interconnections between the claustrum and most cortical areas. A rapidly growing body of experimental evidence points to the integrative role of claustrum in complex brain functions, from motor to cognitive. Here, we examined for the first time, the behaviour of the classical monoamine neurotransmitters dopamine, noradrenaline and serotonin in the claustrum of the normal autopsied human brain and of patients who died with idiopathic Parkinson's disease (PD). We found in the normal claustrum substantial amounts of all three monoamine neurotransmitters, substantiating the existence of the respective brain stem afferents to the claustrum. In PD, the levels of dopamine and noradrenaline were greatly reduced by 93 and 81%, respectively. Serotonin levels remained unchanged. We propose that by virtue of their projections to the claustrum, the brain stem dopamine, noradrenaline and serotonin systems interact directly with the cortico-claustro-cortical information processing mechanisms, by-passing their (parallel) routes via the basal ganglia-thalamo-cortical circuits. We suggest that loss of dopamine and noradrenaline in the PD claustrum is critical in the aetiology of both the motor and the non-motor symptoms of PD.
Collapse
Affiliation(s)
- Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13A, A-1090, Vienna, Austria
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ali H Rajput
- Division of Neurology, Saskatchewan Movement Disorders Program, Saskatoon Health Region, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heide Hörtnagl
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Oleh Hornykiewicz
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Guo A, Feng JY, Li J, Ding N, Li YJ, Qiu DL, Piao RL, Chu CP. Effects of norepinephrine on spontaneous firing activity of cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2016; 629:262-266. [PMID: 27369323 DOI: 10.1016/j.neulet.2016.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Norepinephrine (NE), from the locus coeruleus (LC), has been supported to affect GABAergic system and parallel fiber (PF)-Purkinje cell (PC) synaptic transmission via adrenoceptor in cerebellum cortex. However, the effects of NE on the spontaneous spike activity of cerebellar PCs in living mouse have not yet been fully understood. We here examined the effects of NE on the spontaneous activity of PC in urethane-anesthetized mice by electrophysiological and pharmacological methods. Cerebellar surface application of NE (2.5-25μM) reduced the PC simple spike (SS) firing rate in a dose-dependent manner. The half-inhibitory concentration (IC50) was 5.97μM. In contrast, NE significantly increased the spontaneous firing rate of molecular layer interneuron (MLI). Application of GABAA receptor antagonist, gabazine (SR95531, 20μM) not only blocked the NE-induced inhibition of PC SS firing but also revealed NE-induced excitation of cerebellar PC. Blocking AMPA receptors activity enhanced NE-induced inhibition of PC spontaneous activity. Moreover, the effects of NE on PC spontaneous activity were abolished by simultaneously blocking GABAA and AMPA receptors activity. These results indicated that NE bidirectional modulated the spontaneous activity of PCs via enhancing both inhibitory inputs from MLIs and excitatory inputs of parallel fibers, but NE-induced enhance of inhibitory inputs overwhelmed the excitatory inputs under in vivo conditions.
Collapse
Affiliation(s)
- Ao Guo
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Jun-Yang Feng
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Jia Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Nan Ding
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Ying-Jun Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Ri-Long Piao
- College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China.
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
9
|
Muñoz-Castañeda R, Díaz D, Avila-Zarza CA, Alonso JR, Weruaga E. Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses. Psychopharmacology (Berl) 2014; 231:695-706. [PMID: 24081550 DOI: 10.1007/s00213-013-3284-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Nitric oxide (NO) is a messenger synthesized in both the neuronal and glial populations by nitric oxide synthase type 1 (NOS1). Nicotine regulates NO production in a sex-dependent manner, both molecules being involved in motor function. OBJECTIVE The present study evaluates sex differences in motor coordination, general movement, and anxiety-related responses resulting from both constant and continuous nicotine treatment and the genetic depletion of NOS1 activity. METHODS Male and female mice were analyzed with the open-field and the rotarod tests. To understand the role of NO, knockout mice for NOS1 (NOS1-/-) were analyzed. Nicotine was administered continuously at a dose of 24 mg/kg/day via osmotic mini-pumps over 14 days because the behavioral effects elicited are similar to those observed with discontinuous administration. RESULTS Data analyses revealed noteworthy sex differences derived from NOS1 depletion. Control NOS1-/- males exhibited an exacerbated anxiety-related response in relation to control NOS1-/- females and control wild-type (WT) males; these differences disappeared in the nicotine-administered NOS1-/- males. Additionally, nicotine administration differentially affected the horizontal movements of NOS1-/- females with respect to WT animals. NO depletion affected male but not female motor coordination improvement along the test days. However, the drug affected female motor coordination only at the end of the administration period. CONCLUSIONS We show for the first time that NO affects motor and anxiety behaviors in a sex-dependent manner. Moreover, the behavioral effects of constant nicotine administration are dimorphic and dependent on NO production.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
10
|
Electrophysiological perspectives on locus coeruleus: Its role in cognitive versus vegetative functions. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
|
12
|
|
13
|
|
14
|
Communication among neurons includes new permutations of molecular, electrical, and mechanical factors. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x0006338x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Neuronal communication and synaptic modulation: experimental evidence vs. conceptual categories. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00063548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
|
17
|
The trace amines: neurohumors (cytosolic, pre- and/or post-synaptic, secondary, indirect)? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00063354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Abstract
AbstractRecently a number of complex electrophysiological responses to neurotransmitters have been observed that cannot be described as simple excitation or inhibition. These responses are often characterized as modulatory, although there is no consensus on what defines modulation. Morphological studies reveal certain neurotransmitters stored in what might be release sites without synaptic contact. There is no direct evidence for nonsynaptic release from CNS sites, although such release does occur in the periphery and in invertebrates. Nonsynaptic release might provide a basis for diffuse one-cell-to-many communication, but it might also simply be a means of sending the transmitter to a broader area of a single neuron than occurs in typical synapses. Several kinds of macromolecules have been found to be transported in a retrograde direction – and in some cases transsynaptically. There have been suggestions that some neurons may release more than one type of transmitter. Particularly intriguing is the possibility of release of substances that modulate actions of a primary transmitter. Taken together this range of evidence suggests that neurons may use a variety of forms of molecular communication in addition to traditionally described synaptic transmission.Several authors have suggested modes of communication distinct from classical synaptic transmission and have classified released substances using terms such as neurohumor, neurohormone, neuroregulator, and modulator. These suggestions have the heuristic value of drawing together diverse kinds of data, but it remains to be established that the pieces fit together in that fashion – for example, that complex electrophysiological effects are associated with substances released nonsynaptically. In order to reduce confusion, a flexible, generic approach to nomenclature for substances released from neurons and for hypothetical modes of communication is recommended. Some behavioral implications of nonconventional transmission are considered.
Collapse
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
Paredes DA, Cartford MC, Catlow BJ, Samec A, Avilas M, George A, Schlunck A, Small B, Bickford PC. Neurotransmitter release during delay eyeblink classical conditioning: role of norepinephrine in consolidation and effect of age. Neurobiol Learn Mem 2008; 92:267-82. [PMID: 18809505 DOI: 10.1016/j.nlm.2008.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Delay classical eyeblink conditioning (EBC) is an important model of associative, cerebellar-dependent learning. Norepinephrine (NE) plays a significant modulatory role in the acquisition of learning; however, other neurotransmitters are also involved. The goal was to determine whether NE, gamma-aminobutyric acid (GABA) and glutamate (GLU) release are observed in cerebellar cortex during EBC, and whether such release was selectively associated with training. Further studies examined the role of the beta-noradrenergic receptor in consolidation of the learned response by local infusion of propranolol at 5-120 min following training into the cerebellar cortex. In vivo microdialysis coupled to EBC was performed to examine neurotransmitter release. An increase in the extracellular level of NE was observed during EBC and was maximal on day 1 and diminished in amplitude with subsequent days of training. No changes in baseline NE release were observed in pseudoconditioning indicating that NE release is directly related to the associative learning process. The extracellular levels of GABA were also increased selectively during paired training however, the magnitude of GABA release increased over days of training. GLU release was observed to increase during both paired and unpaired training, suggesting that learning does not occur prior to the information arriving in the cerebellum. When propranolol was administered at either 5-, 60-, or 120-min post-training, there was an inhibition of conditioned responses, these data support the hypothesis that NE is important for consolidation of learning. In another set of experiments we demonstrate that the timing of release of NE, GABA and glutamate are significantly delayed in onset and lengthened in duration in the 22-month-old F344 rats. Over days of training the timing of release becomes closer to the timing of training and this is associated with increased learning of conditioned responses in the aged rats.
Collapse
Affiliation(s)
- D A Paredes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iversen SD. Behavioural effects of manipulation of basal ganglia neurotransmitters. CIBA FOUNDATION SYMPOSIUM 2008; 107:183-200. [PMID: 6149897 DOI: 10.1002/9780470720882.ch10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Topographically organized dopaminergic projections from the extrapyramidal structures of the ventral mesencephalon (substantia nigra and ventral tegmental area) to the dorsal (body of caudate-putamen) and ventral (anterior-ventral caudate, nucleus accumbens, tuberculum olfactorium) striatum subserve sensorimotor integration in the rat. Selective depletion of DA impairs the animal's ability to integrate sensory input with motor output; in the dorsal striatum the exteroceptive sensory input and in the ventral or limbic striatum the interoceptive input principally related to motivation and affect. Grafts of fetal DA neurons to the damaged dorsal striatum reverse sensorimotor asymmetry and sensory neglect. A large number of other excitatory and inhibitory neurotransmitters, including recently discovered neuropeptides, contribute to the functional balance afforded by the DA neurons. This chemical heterogeneity of the basal ganglia offers the possibility that novel therapeutic approaches with drugs could be used to control the chemical imbalances in basal ganglia that are associated with a number of neurological and psychiatric conditions.
Collapse
|
25
|
Di Mauro M, Bronzi D, Li Volsi G, Licata F, Lombardo P, Santangelo F. Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience 2008; 153:1320-31. [PMID: 18440712 DOI: 10.1016/j.neuroscience.2008.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 11/24/2022]
Abstract
The effects of noradrenaline (NA) on the inhibitory responses to GABA were studied in vivo in neurons of the vestibular nuclei of the rat using extracellular recordings of single unit electrical activity and a microiontophoretic technique of drug application in loco. NA application influenced GABA-evoked inhibitions in 82% of tested neurons, depressing them in 42% and enhancing them in 40% of cases. The more frequent action of NA on GABA responses was depressive in lateral and superior vestibular nuclei (50% of neurons) and enhancing in the remaining nuclei (56% of neurons). The most intense effect of NA application was the enhancement of GABA responses induced in a population of lateral vestibular nucleus neurons, characterized by a background firing rate significantly higher than that of other units. The alpha(2) noradrenergic receptor agonist clonidine mimicked the enhancing action of NA on GABA responses; this action was blocked by application of the specific alpha(2) antagonist yohimbine. The beta adrenergic agonist isoproterenol induced either depressive or enhancing effects on GABA responses; the former more than the latter were totally or partially blocked by application of the beta antagonist timolol. It is concluded that NA enhances GABA responses by acting on noradrenergic alpha(2) and to a lesser extent beta receptors, whereas depressive action involves beta receptors only. These results confirm the hypothesis that the noradrenergic system participates in the regulation of the vestibulospinal and the vestibulo-ocular reflexes and suggest that conspicuous changes of NA content in brain due to aging or stress could lead to a deterioration in the mechanisms of normal vestibular function.
Collapse
Affiliation(s)
- M Di Mauro
- Department of Physiological Sciences, University of Catania, Viale Andrea Doria 6, Catania, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Moxon KA, Devilbiss DM, Chapin JK, Waterhouse BD. Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study. Brain Res 2007; 1147:105-23. [PMID: 17368434 PMCID: PMC4529675 DOI: 10.1016/j.brainres.2007.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Norepinephrine released within primary sensory circuits from locus coeruleus afferent fibers can produce a spectrum of modulatory actions on spontaneous or sensory-evoked activity of individual neurons. Within the ventral posterior medial thalamus, membrane currents modulated by norepinephrine have been identified. However, the relationship between the cellular effects of norepinephrine and the impact of norepinephrine release on populations of neurons encoding sensory signals is still open to question. To address this lacuna in understanding the net impact of the noradrenergic system on sensory signal processing, a computational model of the rat trigeminal somatosensory thalamus was generated. The effects of independent manipulation of different cellular actions of norepinephrine on simulated afferent input to the computational model were then examined. The results of these simulations aided in the design of in vivo neural ensemble recording experiments where sensory-driven responses of thalamic neurons were measured before and during locus coeruleus activation in waking animals. Together the simulated and experimental results reveal several key insights regarding the regulation of neural network operation by norepinephrine including: 1) cell-specific modulatory actions of norepinephrine, 2) mechanisms of norepinephrine action that can improve the tuning of the network and increase the signal-to-noise ratio of cellular responses in order to enhance network representation of salient stimulus features and 3) identification of the dynamic range of thalamic neuron function through which norepinephrine operates.
Collapse
Affiliation(s)
- Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
SCHAMBRA UB, MACKENSEN GB, STAFFORD-SMITH M, HAINES DE, SCHWINN DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 2006; 135:507-23. [PMID: 16112482 PMCID: PMC2277099 DOI: 10.1016/j.neuroscience.2005.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/06/2005] [Accepted: 06/15/2005] [Indexed: 12/13/2022]
Abstract
Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of alpha1 adrenergic receptor subtype mRNA (alpha 1a, alpha 1b, alpha 1d), and alpha2 adrenergic receptor subtype mRNA (alpha 2a, alpha 2b, alpha 2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific alpha1 adrenergic receptor and alpha2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six alpha adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except alpha 2a adrenergic receptor mRNA. All Purkinje cells label strongly for alpha 2a and alpha 2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express alpha 1a and alpha 2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express alpha 1b and alpha 2c adrenergic receptor subtypes. Basket cells show a strong signal for alpha 1a, moderate signal for alpha 2a and light label for alpha 2b adrenergic receptor mRNA. In stellate cells, besides a strong label of alpha 2a adrenergic receptor mRNA in all and moderate label of alpha 2b message in select stellate cells, the inner stellate cells are also moderately positive for alpha 1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of alpha 2a and alpha 2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic receptor subtypes in cerebellar neurons responding to sensory and autonomic input signals, and review species differences in cerebellar adrenergic receptor expression.
Collapse
Affiliation(s)
- U. B. SCHAMBRA
- Department of Anatomy and Cell Biology, Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN 37614-0582, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| | - G. B. MACKENSEN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - M. STAFFORD-SMITH
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - D. E. HAINES
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - D. A. SCHWINN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| |
Collapse
|
28
|
Hoshino O. Cognitive enhancement mediated through postsynaptic actions of norepinephrine on ongoing cortical activity. Neural Comput 2005; 17:1739-75. [PMID: 15969916 DOI: 10.1162/0899766054026675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We propose two distinct types of norepinephrine (NE)-neuromodulatory systems: an enhanced-excitatory and enhanced-inhibitory (E-E/E-I) system and a depressed-excitatory and enhanced-inhibitory (D-E/E-I) system. In both systems, inhibitory synaptic efficacies are enhanced, but excitatory ones are modified in a contradictory manner: the E-E/E-I system enhances excitatory synaptic efficacies, whereas the D-E/E-I system depresses them. The E-E/E-I and D-E/E-I systems altered the dynamic property of ongoing (background) neuronal activity and greatly influenced the cognitive performance (S/N ratio) of a cortical neural network. The E-E/E-I system effectively enhanced S/N ratio for weaker stimuli with lower doses of NE, whereas the D-E/E-I system enhanced stronger stimuli with higher doses of NE. The neural network effectively responded to weaker stimuli if brief gamma-bursts were involved in ongoing neuronal activity that is controlled under the E-E/E-I neuromodulatory system. If the E-E/E-I and the D-E/E-I systems interact within the neural network, depressed neurons whose activity is depressed by NE application have bimodal property. That is, S/N ratio can be enhanced not only for stronger stimuli as its original property but also for weaker stimuli, for which coincidental neuronal firings among enhanced neurons whose activity is enhanced by NE application are essential. We suggest that the recruitment of the depressed neurons for the detection of weaker (subthreshold) stimuli might be advantageous for the brain to cope with a variety of sensory stimuli.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi-shi, Ibaraki 316-8511, Japan.
| |
Collapse
|
29
|
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:33-84. [PMID: 12668290 DOI: 10.1016/s0165-0173(03)00143-7] [Citation(s) in RCA: 1702] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Through a widespread efferent projection system, the locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. Initial studies provided critical insight into the basic organization and properties of this system. More recent work identifies a complicated array of behavioral and electrophysiological actions that have in common the facilitation of processing of relevant, or salient, information. This involves two basic levels of action. First, the system contributes to the initiation and maintenance of behavioral and forebrain neuronal activity states appropriate for the collection of sensory information (e.g. waking). Second, within the waking state, this system modulates the collection and processing of salient sensory information through a diversity of concentration-dependent actions within cortical and subcortical sensory, attention, and memory circuits. Norepinephrine-dependent modulation of long-term alterations in synaptic strength, gene transcription and other processes suggest a potentially critical role of this neurotransmitter system in experience-dependent alterations in neural function and behavior. The ability of a given stimulus to increase locus coeruleus discharge activity appears independent of affective valence (appetitive vs. aversive). Combined, these observations suggest that the locus coeruleus-noradrenergic system is a critical component of the neural architecture supporting interaction with, and navigation through, a complex world. These observations further suggest that dysregulation of locus coeruleus-noradrenergic neurotransmission may contribute to cognitive and/or arousal dysfunction associated with a variety of psychiatric disorders, including attention-deficit hyperactivity disorder, sleep and arousal disorders, as well as certain affective disorders, including post-traumatic stress disorder. Independent of an etiological role in these disorders, the locus coeruleus-noradrenergic system represents an appropriate target for pharmacological treatment of specific attention, memory and/or arousal dysfunction associated with a variety of behavioral/cognitive disorders.
Collapse
Affiliation(s)
- Craig W Berridge
- Departments of Psychology and Psychiatry, University of Wisconsin, Madison, WI 53706,USA.
| | | |
Collapse
|
30
|
Devilbiss DM, Waterhouse BD. Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse 2000; 37:273-82. [PMID: 10891864 DOI: 10.1002/1098-2396(20000915)37:4<273::aid-syn4>3.0.co;2-#] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Located within the central gray of the caudal pons, the locus coeruleus (LC) is the sole source of norepinephrine (NE) projections to the forebrain. NE is released both tonically and phasically from axonal varicosities in LC efferent target circuits. NE has been shown to produce a diverse set of actions, including suppression of spontaneous and stimulus evoked discharge, augmentation of synaptically evoked excitation, and inhibition and gating of otherwise subthreshold synaptic inputs. Utilizing an extracellular in vitro tissue slice preparation and microiontophoretic techniques, the dose-dependent actions of NE on glutamate-evoked discharges of layer II/III and layer V sensory cortical neurons were investigated. Noradrenergic effects were further examined in terms of cell and adrenoceptor specificity. The results indicate two exclusive modulatory actions of NE: 1) ejection current-dependent suppression of glutamate evoked discharge, and 2) ejection current-dependent facilitation of glutamate-evoked discharge followed by suppression of the maximal facilitated response. These effects were observed in both normal and low Ca(2+) / high Mg(2+) bathing media, suggesting a postsynaptic site for NE's actions. The facilitation of glutamate evoked discharge was selectively mimicked by the alpha-1 agonist, phenylephrine, whereas the dose-dependent suppression was mimicked by the beta-agonist isoproterenol. These results suggest that the suppressant and facilitating actions of NE are mediated by beta and alpha-1 receptors, respectively. In general, these results are consistent with previous demonstrations of NE modulatory actions on central neurons, but indicate that in the cerebral cortex these effects are both cell- and receptor-specific.
Collapse
Affiliation(s)
- D M Devilbiss
- Department of Neurobiology and Anatomy, MCP-Hahnemann University, EPPI, Philadelphia, PA 19129, USA
| | | |
Collapse
|
31
|
Wang Y, Chou J, Jeng CH, Morales M, Wang JY. Chronic methamphetamine exposure decreases high affinity uptake function in norepinephrine afferents in the cerebellar cortex: an electrophysiological and electrochemical study. Neuropharmacology 2000; 39:2112-23. [PMID: 10963754 DOI: 10.1016/s0028-3908(00)00021-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been reported that chronic methamphetamine (MA) treatment decreases monoamine release in different brain regions. However, the clearance of norepinephrine (NE) after chronic MA intake is not clear. In the present study, we administered MA to Sprague-Dawley rats for 1 month. The animals were later anesthetized with urethane for electrophysiological recording. Previous studies have indicated that gamma-aminobutyric acid (GABA)-induced electrophysiological responses are enhanced by norepinephrine (NE) acting via postsynaptic beta-adrenergic receptors. We found that local application of the NE high affinity uptake inhibitor desmethylimipramine (DMI) significantly potentiated GABA-induced electrophysiological depressions in cerebellar Purkinje neurons in control rats. In contrast, DMI did not augment GABA responses in rats chronically treated with MA for 1 month, or in rats withdrawn from MA for 7-14 days after a 1-month MA treatment. To further examine if DMI-induced GABA modulation is altered by post- or pre-synaptic mechanisms in chronic MA-treated rats, we examined the electrophysiological interaction of GABA and isoproterenol (ISO), a postsynaptic beta-adrenergic receptor agonist, in Purkinje neurons. We found that GABA-induced inhibition is potentiated by local application of ISO in both control and chronic MA rats, suggesting that the reduction in DMI/GABA interactions is probably not mediated through post-synaptic noradrenergic mechanisms. Presynaptic NE clearance was further examined using in vivo chronoamperometric methods. Extracellular NE levels in the cerebellar cortex were measured using Nafion-coated carbon fiber sensors. We found that local application of DMI inhibited NE clearance in control rats, but not in chronic MA animals, suggesting that presynaptic NE clearance is reduced after chronic MA treatment. In addition, NE levels in cerebellar tissue were measured using HPLC-ECD. The NE concentration was significantly decreased in chronic MA rats. Taken together, our data suggest that regulation of uptake by DMI at central noradrenergic nerve terminals is abnormal after chronic MA exposure.
Collapse
Affiliation(s)
- Y Wang
- National Institute on Drug Abuse, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
32
|
Waterhouse BD, Mouradian R, Sessler FM, Lin RC. Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. Brain Res 2000; 868:39-47. [PMID: 10841886 DOI: 10.1016/s0006-8993(00)02261-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of norepinephrine (NE) and the alpha-1 agonist phenylephrine (PE) on synaptically evoked responses of electrophysiologically identified pyramidal neurons in layer V of rat somatosensory cortex were studied in brain slices using intracellular recording techniques. When added to the bathing medium NE (10 microM) tended to increase the synaptic responsiveness of regular spiking neurons and decrease the responsiveness of intrinsic burst neurons. NE had mixed effects on layer V cells which were characterized as intermediate types between regular spiking and intrinsic burst neurons. PE exerted a similar spectrum of actions on layer V cortical neurons. For both adrenergic agents the greatest facilitating effect was observed on responses to low intensity synaptic stimulation. These results suggest that NE exerts different modulatory actions on different electrophysiologically-defined classes of layer V sensory cortical neurons.
Collapse
Affiliation(s)
- B D Waterhouse
- Department of Neurobiology and Anatomy, MCP-Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
33
|
Kobayashi M, Imamura K, Sugai T, Onoda N, Yamamoto M, Komai S, Watanabe Y. Selective suppression of horizontal propagation in rat visual cortex by norepinephrine. Eur J Neurosci 2000; 12:264-72. [PMID: 10651881 DOI: 10.1046/j.1460-9568.2000.00917.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The release of norepinephrine in the cerebral cortex from axon terminals of locus coeruleus neurons was suggested to be involved in the control of attention. Accumulating data indicate that the responses of cortical neurons are varied when norepinephrine is applied iontophoretically in the vicinity of the cells being recorded. However, it is not known how the pattern of excitatory propagation is modified when norepinephrine is applied over a wide area in the visual cortex. By applying optical imaging to rat visuocortical slices, we found a new mode of norepinephrine action; a prominent suppression of the horizontal propagation in layers II/III. This action of norepinephrine was confirmed by the simultaneous recording of field potentials from multiple sites by use of a multi-electrode dish. Furthermore, our electrophysiological recordings showed that this norepinephrine action is exerted through suppression of excitatory neural transmission and enhancement of inhibitory transmission to the pyramidal neurons in these layers. Because the release of norepinephrine in the visual cortex is regulated by the level of attention, the neural basis of visual attention may relate partially to the suppression of the integration of visual information by norepinephrine resulting in a state-dependent restructuring of the receptive field.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Neuroscience, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita-shi, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abbott LC, Sotelo C. Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001016)426:2<316::aid-cne11>3.0.co;2-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Yajima Y, Hayashi Y. Ambiguous respiratory neurons are modulated by GABA(A) receptor-mediated inhibition. Neuroscience 1999; 90:249-57. [PMID: 10188951 DOI: 10.1016/s0306-4522(98)00419-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A group of respiratory neurons in the rostral nucleus ambiguus complex is known to generate the inspiratory and expiratory drives which enable spontaneous respiration to be sustained. Since previous studies indicated that mutual synaptic inhibition is required to produce oscillations between inspiratory and expiratory neurons, it may implicate GABAergic synaptic transmission between each group of neurons. In this study we tried to determine whether most ambiguous respiratory neurons are influenced by GABA(A) receptor-mediated inhibition. Eighty-eight respiratory interneurons showing rhythmic activity in synchrony with the spontaneous respiration were recorded in urethane-chloralose anesthetized Wistar rats. Multibarrel iontophoretic application of GABA(A) antagonist bicuculline produced a remarkable facilitation in maximum burst discharge rate, whereas the agonist muscimol reversed this effect completely. Simultaneous application of GABA and bicuculline increased the discharge rate more than in any single application or in the simultaneous application of GABA and muscimol. These results were statistically significant. These findings suggest strongly that GABA(A) receptors in the ambiguous respiratory neurons may have an inhibitory role in the synaptic transmission for maintaining the respiratory oscillation in the nucleus ambiguus.
Collapse
Affiliation(s)
- Y Yajima
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | | |
Collapse
|
36
|
Gould TJ. A review of age-related changes in cerebellar β-adrenergic function and associated motor learning. AGE 1999; 22:19-25. [PMID: 23604387 PMCID: PMC3455410 DOI: 10.1007/s11357-999-0003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present review provides an overview of age-related changes in cerebellar β-adrenergic function, associated motor learning, causal agents and possible treatments. Norepinephrine acts as a neuromodulator of Purkinje cell activity. With aging, however, the ability of norepinephrine to modulate Purkinje cell activity and specifically GABAergic inhibition of Purkinje cell activity is decreased. This age-associated deficit in cerebellar noradrenergic function correlates with deficits in acquisition of a motor learning task. Aged rats are delayed in acquiring a motor learning task that requires rats to adjust footfalls in order to cross a runway. The degree of deficit in cerebellar β-adrenergic activity correlated positively with the degree of impairment in task acquisition. One possible causal agent for the β-adrenergic deficit is free radical damage. Hyperoxia, which may generate free radical damage, induces cerebellar β-adrenergic deficits in young rats but diet restriction and treatment with antioxidants can delay or reverse age-related deficits in cerebellar β-adrenergic function in old rats.
Collapse
Affiliation(s)
- Thomas J. Gould
- Institute for Behavioral Genetics, University of Colorado Campus, Box 447, Boulder, CO 80309 USA
| |
Collapse
|
37
|
Cheun JE, Yeh HH. Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary. Neuroscience 1996; 74:835-44. [PMID: 8884779 DOI: 10.1016/0306-4522(96)00130-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Norepinephrine and the beta-adrenergic receptor agonist, isoproterenol, have been shown to potentiate the amplitude of GABAA receptor-mediated whole-cell current responses in Purkinje cells acutely dissociated from the rat cerebellum. However, the steps leading from the activation of beta-adrenergic receptors to the modulation of GABAA receptor remain to be delineated. This study tested the hypothesis that a sequelae of intracellular intermediaries involving the cyclic AMP second messenger system serves as the subcellular link to promote this heteroreceptor interaction. Exposure to cholera toxin, but not to pertussis toxin, increased the amplitude of GABA-activated current responses in acutely dissociated Purkinje cells. Intracellular dialysis with guanosine 5'-O-(3-thiotriphosphate) also resulted in a time- and dose-dependent augmentation of the response to GABA. while guanosine 5'-O-(2-thiodiphosphate) blocked the norepinephrine-mediated facilitation. A positive modulation of the current response to GABA was observed following intracellular delivery of cyclic AMP or the catalytic subunit of the cyclic AMP-dependent protein kinase. Furthermore, the norepinephrine-induced potentiation of the GABA-activated current response was prevented in the presence of the Rp isomer of cyclic AMP, the regulatory subunit of cyclic AMP-dependent protein kinase and an inhibitor of cyclic AMP-dependent protein kinase. These findings led to the formulation of a working model in which activation of the beta-adrenergic receptor triggers a Gs-protein-mediated transduction cascade in cerebellar Purkinje cells which activates adenylate cyclase, resulting in a rise in intracellular levels of cyclic AMP, increased phosphorylating activity by cyclic AMP-dependent protein kinase and, ultimately, a potentiation of GABAA receptor function.
Collapse
Affiliation(s)
- J E Cheun
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
38
|
Smith SS, Chapin JK. The estrous cycle and the olivo-cerebellar circuit. I. Contrast enhancement of sensorimotor-correlated cerebellar discharge. Exp Brain Res 1996; 111:371-84. [PMID: 8911931 DOI: 10.1007/bf00228726] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuromodulation of Purkinje (Pnj) cell responses by monoamines and estrous hormones is well characterized in the cerebellum at the cellular level, but not at the level of neuronal circuits in the awake behaving animal. In the present study, simultaneous recordings of up to 16 single neurons from within the olivo-cerebellar circuit were obtained through chronically implanted microwire electrode bundles: arrays of Pnj cell like neurons (Pnj cln) in the paravermal cerebellum and neurons within the afferent source of its climbing fiber input, the rostral dorsal accessory olive (rDAO), were recorded simultaneously across 3-20 consecutive estrous cycles during constant or variable speed treadmill locomotion performance tasks. Over 90% of Pnj cln recorded during treadmill locomotion exhibited significant increases (80%) or decreases (10%) in activity correlated with the stance phase of locomotion. In contrast, cells from the rDAO increased activity during speed changes or when the rat failed to maintain the treadmill speed (position slip). On the night of behavioral estrus, which is triggered by elevations in circulating levels of 17 beta-estradiol and progesterone, the magnitude of both increases and decreases in stance-correlated Pnj cln activity increased by 85-115%. These results are consistent with our previous findings that 17 beta-estradiol and progesterone enhance excitatory and inhibitory responses of single Pnj cells to locally applied glutamate and GABA, respectively. This dual enhancement of both excitatory and inhibitory effects, apparently paradoxical at the cellular level, produced a marked heightening of the contrast of the neural population "signal" at the neuronal ensemble level. Furthermore, the stance-correlated discharge of Pnj cln during estrus preceded that during diestrus by approximately 120 ms. Frame-by-frame video analysis also suggested that the swing phase of the step cycle was shortened on estrus compared with diestrus (low hormone state). In addition, rDAO discharge correlated with speed change or position slip was also significantly increased (P < 0.05) on the night of behavioral estrus versus diestrus. Thus, estrus was associated with changes in both the amplitude and the timing of Pnj cln and rDAO discharge correlated with specific behavioral events. These estrous-associated changes in Pnj cell activity were well correlated (r = 0.84) with faster responses to random changes in treadmill speed, a motor performance task. Together, these findings suggest that the increases in the contrast of stance-correlated Phj cln discharge observed following peak circulating levels of sex steroid hormones are associated with improved motor performance on a randomly moving treadmill.
Collapse
Affiliation(s)
- S S Smith
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania, Philadelphia 19102-1192, USA.
| | | |
Collapse
|
39
|
Freund RK, Palmer MR. 8-Bromo-cAMP mimics beta-adrenergic sensitization of GABA responses to ethanol in cerebellar Purkinje neurons in vivo. Alcohol Clin Exp Res 1996; 20:408-12. [PMID: 8730238 DOI: 10.1111/j.1530-0277.1996.tb01661.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies in our laboratory indicated that electrophysiological responses of cerebellar Purkinje neurons to GABA were not routinely potentiated by ethanol (EtOH), and the potentiation was not large when it occurred. In the presence of beta-adrenergic agonists, such as isoproterenol, however, GABA inhibitions became sensitive to potentiation by EtOH in nearly every Purkinje neuron tested. beta-adrenergic receptor activation alone also modulates (potentiates) GABA responses on Purkinje neurons, and this has been reported to be mediated by a cAMP second messenger system. Herein, we report that the membrane-permeable cAMP analog, 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP), but not the membrane-impermeable cAMP, can also modulate GABA responses and that EtOH potentiates this facilitatory action of 8-Br-cAMP. These effects are not likely caused by adenosine receptor mechanisms, because this 8-bromoadenosine mediated modulation and sensitization was observed in the presence of systemic theophylline. These data suggest that the beta-adrenergic modulation and sensitization to EtOH of cerebellar Purkinje neuron GABA responses occur via a cAMP second messenger mechanism.
Collapse
Affiliation(s)
- R K Freund
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
40
|
Pappius HM. Cortical hypometabolism in injured brain: new correlations with the noradrenergic and serotonergic systems and with behavioral deficits. Neurochem Res 1995; 20:1311-21. [PMID: 8786817 DOI: 10.1007/bf00992506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Changes with time after injury in behavioral deficits, as determined by the Morris swim test, and the in vivo specific binding of HEAT, a selective alpha 1-adrenoreceptor ligand, were compared with the time-course of development of cortical hypometabolism in rats with focal freezing lesions. In our trauma model, cortical hypometabolism was detectable in the lesioned hemisphere at 4 hr, became maximal (50% of normal) at 3 days and diminished towards normal on days 5 and 10 post-injury. Progressive impairment of acquisition of the Morris water maze task was demonstrated up to day 3 post-lesion with improvement thereafter. On day 3 the latency to reach criterion was 60% longer in lesioned animals than in corresponding sham-operated ones. An increase in the volume of distribution of HEAT, limited to cortical areas of the lesioned hemisphere, was demonstrable at 4 hr post-lesion and reached its maximum on day 3 (200% of normal) with subsequent return toward normal on days 5 and 10. Several types of drugs were shown previously to modify the cortical hypometabolism associated with cerebral injury. The present data indicate that the same drugs also modify the in vivo binding of HEAT and the behavioral deficits induced by brain lesions. Ibuprofen, a non-steroidal anti-inflammatory drug, p-chlorophenylalanine, an inhibitor of serotonin synthesis, ketanserin, a specific 5HT2-receptor antagonist, and prazosin, an alpha 1-adrenergic receptor blocker all normalized the in vivo binding of HEAT in the cortical areas of the lesioned hemisphere. All groups of animals treated with these drugs also showed subtle, but statistically highly significant improvements in latency to locate the platform in the Morris water maze. Taken together these results show good correlation between behavioral deficits, changes in alpha 1-noradrenergic receptor binding and cortical hypometabolism in injured brain. This supports the hypothesis that post-injury cortical hypometabolism is a reflection of cortical functional depression in which both the serotonergic and noradrenergic neurotransmitter systems play a role, compatible with their inhibitory effects in the cortex and their postulated involvement in cortical information processing.
Collapse
Affiliation(s)
- H M Pappius
- Neurobiology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Wang Y, Jeng CH, Lin JC, Wang JY. Methamphetamine facilitates ethanol-induced depressions in cerebellar Purkinje neurons of prazocin- or DSP4-treated rats. Psychopharmacology (Berl) 1995; 121:433-41. [PMID: 8619006 DOI: 10.1007/bf02246491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methamphetamine (MA) and ethanol (EtOH) are two commonly abused drugs. Previous behavioral studies indicated that MA may synergistically alter EtOH responses. In the present study, we found that local application of MA did not potentiate ethanol-induced depressions of the spontaneous activity of Purkinje neurons in urethane-anesthetized rats. We and others previously found that, in cerebellar Purkinje neurons, EtOH and gamma-amino-butyric acid (GABA)-mediated depressions can be enhanced by norepinephrine (NE) acting via beta-adrenergic receptors while these responses are decreased by activation of alpha-adrenergic receptors. In the present experiment, after blocking alpha-adrenergic receptors with prazocin, MA significantly enhanced EtOH responses in most of neurons studied. It has been reported that MA may directly and indirectly enhance alpha-adrenergic and beta-adrenergic receptor-mediated responses. The present study may suggest that MA can negatively modulate (antagonize) the depressant effects of ethanol via the alpha-adrenergic receptor, which oppose the positive modulatory mechanism (potentiation of EtOH depression) via actions of the beta-adrenergic receptors. We found that lesioning NE neurons with N-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a selective noradrenergic neurotoxin, enhance the MA-facilitated ethanol responses, suggesting that this action of MA may not require NE. Since it has been reported that MA increases serotonin (5-HT) and catecholamine release from their nerve terminals, MA may potentiate EtOH depressions by facilitating the release of NE and 5-HT. Taken together, our data suggested that MA may modulate EtOH responses via catecholaminergic and serotonergic mechanisms in cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- Y Wang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
42
|
Sessler FM, Liu W, Kirifides ML, Mouradian RD, Lin RC, Waterhouse BD. Noradrenergic enhancement of GABA-induced input resistance changes in layer V regular spiking pyramidal neurons of rat somatosensory cortex. Brain Res 1995; 675:171-82. [PMID: 7796126 DOI: 10.1016/0006-8993(95)00060-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous in vivo studies have shown that microiontophoretic application of norepinephrine (NE) and isoproterenol (ISO) can enhance gamma-aminobutyric acid (GABA)-induced depressant responses of rat somatosensory cortical neurons. In the present investigation we have examined the transmembrane electrophysiological events which are associated with interactions between NE and GABA in layer V pyramidal neurons of rat barrel field cortex. Intracellular recordings were made from electrophysiologically identified cells in a superfused cortical tissue slice preparation before, during and after bath or microdrop application of GABA, NE and ISO, alone or in combination. GABA application produced a small depolarization from resting membrane potential associated with a reduction (22%) in input resistance. NE and ISO (10-100 microM) also produced in some cases small membrane depolarizations (1-4 mV) but little concomitant changes in input resistance. Simultaneous application of NE with GABA potentiated amino acid-induced changes in input resistance in 4 cases and antagonized (n = 4) or had no effect (n = 4) on GABA-associated membrane events in 8 other cases. When the alpha-blocker, phentolamine (20 microM), was added to the medium, NE-induced enhancement of the GABA response was observed in 3 of 5 cases (60%), suggesting both, a beta-adrenergic mediation and a possible alpha-receptor masking of this noradrenergic-potentiating action. Consistent with this interpretation was the finding that the beta-agonist, ISO (10-100 microM), produced net increases in GABA-induced input resistance changes in 64% of cases tested (9 of 14). The potentiating effect of NE and ISO was mimicked by the adenyl cyclase activator, forskolin (n = 2), and a membrane permeant analog of cyclic-AMP, 8-bromo-cyclic AMP (n = 3); and could also be demonstrated when the GABAA agonist muscimol (0.5-1 microM) was substituted for GABA. The reversal potential for GABA and GABA + NE remained the same. These findings suggest that previous demonstrations of NE-potentiating effects on GABA inhibition may be mediated by beta-receptor/cyclic-AMP-linked actions on mechanisms which regulate GABAA receptor-induced membrane conductance changes.
Collapse
Affiliation(s)
- F M Sessler
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19102, USA
| | | | | | | | | | | |
Collapse
|
43
|
Liu RH, Fung SJ, Reddy VK, Barnes CD. Localization of glutamatergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat with a proposed role of glutamate on lumbar motoneuron activity. Neuroscience 1995; 64:193-208. [PMID: 7708205 DOI: 10.1016/0306-4522(94)00354-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate is considered to be a major excitatory neurotransmitter in the central nervous system. The presence of glutamate-like immunoreactive neurons in the rodent locus coeruleus has been reported previously. In this study we used both immunohistochemical and electrophysiological techniques to answer two major questions: (1) Is there any glutamate-like immunoreactivity in the catecholaminergic coeruleospinal system of the cat? (2) What is the physiological role, if any, of glutamate in descending locus coeruleus control of spinal motoneurons? Following injections of rhodamine-labeled latex microspheres or Fast Blue into the seventh lumbar segment of the spinal cord of the cat, retrogradely labeled cells were found throughout the rostrocaudal extent of the dorsolateral pontine tegmentum. They were primarily observed in the nucleus locus coeruleus and the Kolliker-Fuse nucleus. Some labeled cells were also present in the nucleus subcoeruleus and, to a lesser extent, in the parabrachial nuclei. Data from immunohistochemical studies indicate that 86% of all dorsolateral pontine tegmentum neurons that project to the spinal cord contain glutamate-like immunoreactivity, and 77% co-contain both glutamate- and tyrosine hydroxylase-like immunoreactivity. Electrical stimulation (four pulses of 500 microseconds duration at 500 Hz; intensity = 50-200 microA) of the locus coeruleus, in decerebrate cats, consistently induced lumbar motoneuron discharges recordable ipsilaterally as ventral root responses. These motoneuronal responses were reversibly antagonized following chemical inactivation of noradrenergic locus coeruleus neurons by local infusion of the alpha 2-adrenergic agonist clonidine, suggesting the locus coeruleus neurons to be the main source of evoked ventral root responses. Additionally, the evoked ventral root responses were reversibly reduced by 34.20 +/- 4.45% (mean +/- S.E.M.) upon intraspinal injections of the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, into the ventral horn of seventh lumbar spinal cord segment (three to four injections, 20 nmol in 0.2 microliter of 0.1 M Tris-buffered saline for each injection). Similar volumes of vehicle injections had no significant effect on the locus coeruleus-evoked ventral root responses. These ventral root responses were also partially blocked (62.30 +/- 11.76%) by intravenous administration of the alpha 1-adrenergic receptor antagonist prazosin (20 micrograms/kg). In the light of several anatomical reports of noradrenergic and glutamatergic terminals in close contact with spinal motoneurons, our present findings suggest that the locus coeruleus-evoked ventral root response probably involves the synaptic release of both norepinephrine and glutamate onto lumbar motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R H Liu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
44
|
Smith SS. Female sex steroid hormones: from receptors to networks to performance--actions on the sensorimotor system. Prog Neurobiol 1994; 44:55-86. [PMID: 7831472 DOI: 10.1016/0301-0082(94)90057-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S S Smith
- Department of Anatomy, Hahnemann University, Philadelphia, Pennsylvania 19102-1192
| |
Collapse
|
45
|
Abstract
The ability of cocaine to induce a compulsive addictive behavior is the most astonishing feature of this drug. Attempting to understand the mechanisms underlying cocaine's addictive properties, two major questions should be considered: a) why and how organism's interaction with cocaine results in the development of new, drug-seeking and drug-taking behavior and b) why and how cocaine maintains this behavior when the drug is available. Since a large body of neuropharmacological evidence suggest that the mesocorticolimbic dopamine (DA) system has exclusive importance for the development and maintenance of cocaine addictive behavior, and cocaine is known to interfere in activity of this brain system, examination of mesocorticolimbic DA activity during cocaine self-administration behavior may provide some clues for understanding the drug's additive properties and regulation of this maladaptive goal-directed behavior. The aim of this paper is to discuss the literature and own experimental data on cocaine's action on the mesocorticolimbic DA system that may be involved in mediating its addictive properties. Based on these data, it is suggested that an inhibiting action of cocaine on reuptake of released DA, although essential, but not sufficient mechanism for the development and maintenance of addictive behavior. It is hypothesized, that coexistence of functionally antagonistic, inhibiting actions of cocaine on the mesolimbic DA release and reuptake of released DA may be responsible for biphasic fluctuations in DA transmission that appear to be a critical component of central oscillatory mechanism which drives and regulates cyclic drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Laboratory of Neuropharmacology, Scientific Center Elbit, Moscow, Russia
| |
Collapse
|
46
|
Radisavljevic Z, Cepeda C, Peacock W, Buchwald NA, Levine MS. Norepinephrine modulates excitatory amino acid-induced responses in developing human and adult rat cerebral cortex. Int J Dev Neurosci 1994; 12:353-61. [PMID: 7526607 DOI: 10.1016/0736-5748(94)90085-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
These experiments were designed to assess the ability of norepinephrine and its beta-receptor agonist, isoproterenol, to modulate responses induced by activation of excitatory amino acid receptors in brain slices obtained from developing human cortex or adult rat cortex. Human cortical slices were obtained from children undergoing surgery for intractable epilepsy (9 months to 10 yr of age). For comparison, slices were also obtained from rats (2-3 months of age). Iontophoretic application of glutamate, N-methyl-D-aspartate or alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) produced excitatory responses consisting of membrane depolarizations accompanied by action potentials. Iontophoretic or bath application of norepinephrine or isoproterenol enhanced responses evoked by glutamate or N-methyl-D-aspartate. Depolarizations occurred with shorter latencies and their amplitudes increased. Action potential frequency was also increased and responses were of longer duration. In contrast, norepinephrine or isoproterenol had no effect on responses induced by AMPA. The enhancement of responses induced by N-methyl-D-aspartate or glutamate was antagonized by the beta-adrenergic receptor antagonist propranolol. Similar findings were obtained from neurons in humans or rats. These results suggest that norepinephrine, possibly via beta-receptors, potentiates responses mediated by glutamate and N-methyl-D-aspartate receptors without affecting those mediated by AMPA receptors. These effects were observed at all ages studied, indicating that the ability of norepinephrine to modulate excitatory neuronal transmission is well developed in human cortex by 9 months of age.
Collapse
Affiliation(s)
- Z Radisavljevic
- Mental Retardation Research Center, University of California at Los Angeles 90024
| | | | | | | | | |
Collapse
|
47
|
Pavlásek J, Mares P, Haburcák M, Masánová C. Decrease of extracellular catecholamine content in the vicinity of cortical penicillin-induced epileptogenic focus: voltammetric study in the rat. Exp Brain Res 1994; 98:97-100. [PMID: 8013594 DOI: 10.1007/bf00229113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Differential pulse voltammetry with carbon-fibre microelectrodes was used in chloralhydrate-anaesthetized rats to test the influence of the penicillin-G-Na (PNC)-induced (topical application, approximately 2000 IU) epileptic activity on the catecholamine content (catechol-oxidative current, CA.OC) in the parietal cortex. In the experimental group (n = 4) after PNC a nonlinear CA.OC lowering was observed; this decrease during the first 10 min was faster than in the control group (n = 4). Significantly different values were observed from the 4th min after application. The best fit for this experimental curve gave the logarithmic function (f(t) = a+b.ln(t), a = 105.8, b = -10.6) with regression coefficient r = 0.98. From the 12th min after PNC application until the end of the experiments (54th min) CA.OC values ranged from 78% to 84% of the control group.
Collapse
Affiliation(s)
- J Pavlásek
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
48
|
Abstract
Studies were designed to elucidate the neurotransmitter(s) and circuitry involved in activation of noradrenergic locus coeruleus (LC) neurons by different physiological challenges in halothane-anesthetized rats, and to understand the functional consequences of LC activation by these stimuli. LC spontaneous discharge rate was increased by a hypotensive challenge and by bladder distention. The effect produced by hypotension, but not by bladder distention, was prevented by antagonists of the stress-related neurohormone, corticotropin-releasing factor (CRF), administered ICV or directly into the LC. In contrast, ICV administration of excitatory amino acid antagonists prevented LC activation by bladder distention, but not by hypotension. These results suggest that LC activation by hypotension and bladder distention requires separate neurotransmitter systems, with CRF mediating activation by hypotension and excitatory amino acids mediating activation by bladder distention. Both physiological challenges activated forebrain electroencephalographic (EEG) activity, as indicated by a shift from low frequency, high amplitude activity to high frequency, low amplitude activity recorded from the frontal cortex. The EEG effects appeared to be temporally correlated with LC activation. Bilateral LC inactivation or microinfusion of CRF antagonists into the LC prevented both LC and EEG activation by hypotension. These results suggest that one consequence of LC activation during stress or physiological challenges may be to increase or maintain arousal.
Collapse
Affiliation(s)
- M E Page
- Department of Mental Health Sciences, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
49
|
Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 1993; 697:173-88. [PMID: 7903030 DOI: 10.1111/j.1749-6632.1993.tb49931.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anatomic and electrophysiologic studies have provided evidence that CRF meets some of the criteria as a neurotransmitter in the noradrenergic nucleus, the locus coeruleus (LC), although some of the criteria have yet to be satisfied. Thus, immunohistochemical findings suggest that CRF innervates the LC, but this must be confirmed at the ultrastructural level. CRF alters discharge activity of LC neurons and these effects are mimicked by some stressors. Moreover, the effects of hemodynamic stress on LC activity are prevented by a CRF antagonist. However, it has not been demonstrated that stimulation of CRF neurons that project to the LC activates the LC or that the effects of such stimulation are prevented by a CRF antagonist. The role of CRF in LC activation by stressors other than hemodynamic stress needs to be determined. It could be predicted that the effects of CRF neurotransmission in the LC during stress would enhance information processing concerning the stressor or stimuli related to the stressor by LC target neurons. One consequence of this appears to be increased arousal. Although this may be adaptive in the response to an acute challenge, it could be predicted that chronic CRF release in the LC would result in persistently elevated LC discharge and norepinephrine release in targets. This could be associated with hyperarousal and loss of selective attention as occurs in certain psychiatric diseases. Manipulation of endogenous CRF systems may be a novel way in which to treat psychiatric diseases characterized by these maladaptive effects.
Collapse
Affiliation(s)
- R J Valentino
- Department of Mental Health Sciences, Hahnemann University, Philadelphia, Pennsylvania 19102-1192
| | | | | |
Collapse
|
50
|
Curtis AL, Conti E, Valentino RJ. Cocaine effects on brain noradrenergic neurons of anesthetized and unanesthetized rats. Neuropharmacology 1993; 32:419-28. [PMID: 8321424 DOI: 10.1016/0028-3908(93)90165-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study characterized and quantified the effects of systemically administered cocaine on spontaneous, sensory-evoked and stress-elicited activity of noradrenergic locus coeruleus (LC) neurons of anesthetized and unanesthetized rats. Cocaine (0.1-3.0 mg/kg, i.v.) decreased LC spontaneous discharge rate and discharge evoked by repeated sciatic nerve stimulation in halothane-anesthetized rats. In unanesthetized rats cocaine (0.3-10.0 mg/kg, i.v.) also decreased LC spontaneous discharge rate and LC discharge evoked by repeated auditory stimulation. However, analysis of variance revealed a statistically significant shift to the right in the cocaine dose-response curves for effects on tonic and evoked LC discharge in unanesthetized compared to anesthetized rats. Thus, cocaine was somewhat less potent in inhibiting tonic and evoked discharge of unanesthetized rats compared to anesthetized rats. In anesthetized rats cocaine (1.0 mg/kg) did not affect LC activation by intracerebroventricularly (i.c.v.) administered corticotropin-releasing factor (3.0 micrograms in 3.0 microliters) or by hemodynamic stress elicited by i.v. nitroprusside infusion. The present findings demonstrate that cocaine has similar effects on LC neurons of anesthetized and unanesthetized rats but that it is less potent in unanesthetized rats. These effects of cocaine at noradrenergic cell bodies acting in concert with its effects at noradrenergic terminals in LC target regions may be important in the overall action of cocaine on arousal and cortical information processing.
Collapse
Affiliation(s)
- A L Curtis
- Department of Mental Health Science, Hahnemann University, Philadelphia, PA 19102-1192
| | | | | |
Collapse
|