1
|
Gastrin and the Moderate Hypergastrinemias. Int J Mol Sci 2021; 22:ijms22136977. [PMID: 34209478 PMCID: PMC8269006 DOI: 10.3390/ijms22136977] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The antral hormone gastrin potently regulates gastric acid secretion and fundic mucosal growth. Consequently, appropriate gastrin secretion and plasma concentrations are important for the early phases of digestion. This review describes as the first premise the normal biogenesis of gastrin in the antral mucosa, but also mentions the extraantral expression. Subsequently, the molecular nature and concentration levels of gastrin in serum or plasma are overviewed. Third, assays for accurate measurements of plasma or serum concentrations are commented. Finally, the problem of moderate hypergastrinemia due to Helicobacter pylori infections and/or treatment with proton-pump inhibitors (PPI) is discussed. The review concludes that accurate measurement of the true concentrations of bioactive gastrins in plasma is important. Moreover, it suggests that moderate hypergastrinemias are also essential health issues that require serious attention.
Collapse
|
2
|
Molecular Characterization of Constipation Disease as Novel Phenotypes in CRISPR-Cas9-Generated Leptin Knockout Mice with Obesity. Int J Mol Sci 2020; 21:ijms21249464. [PMID: 33322729 PMCID: PMC7763920 DOI: 10.3390/ijms21249464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: We characterized a novel animal model with obesity-induced constipation because constipation is rarely known in genetically engineered mice (GEM); (2) Methods: The changes in the constipation parameters and mechanisms were analyzed in CRISPR-Cas9-mediated leptin (Lep) knockout (KO) mice from eight to 24 weeks; (3) Results: Significant constipation phenotypes were observed in the Lep KO mice since 16 weeks old. These mice showed a significant decrease in the gastrointestinal motility, mucosal layer thickness and ability for mucin secretion as well as the abnormal ultrastructure of Lieberkühn crypts in the transverse colon. The density or function of the enteric neurons, intestinal Cajal cells (ICC), smooth muscle cells, and the concentration of gastrointestinal (GI) hormones for the GI motility were remarkably changed in Lep KO mice. The downstream signaling pathway of muscarinic acetylcholine receptors (mAChRs) were activated in Lep KO mice, while the expression of adipogenesis-regulating genes were alternatively reduced in the transverse colon of the same mice; (4) Conclusions: These results provide the first strong evidence that Lep KO mice can represent constipation successfully through dysregulation of the GI motility mediated by myenteric neurons, ICC, and smooth muscle cells in the transverse colon during an abnormal function of the lipid metabolism.
Collapse
|
3
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Fakhry J, Wang J, Martins P, Fothergill LJ, Hunne B, Prieur P, Shulkes A, Rehfeld JF, Callaghan B, Furness JB. Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine. Cell Tissue Res 2017; 369:245-253. [PMID: 28413860 DOI: 10.1007/s00441-017-2612-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/20/2017] [Indexed: 01/20/2023]
Abstract
There is general consensus that enteroendocrine cells, EEC, containing the enteric hormone cholecystokinin (CCK) are confined to the small intestine and predominate in the duodenum and jejunum. Contrary to this, EEC that express the gene for CCK have been isolated from the large intestine of the mouse and there is evidence for EEC that contain CCK-like immunoreactivity in the mouse colon. However, the human and rat colons do not contain CCK cells. In the current study, we use immunohistochemistry to investigate CCK peptide presence in endocrine cells, PCR to identify cck transcripts and chromatography to identify CCK peptide forms in the mouse small and large intestine. The colocalisation of CCK and 5-HT, hormones that have been hypothesised to derive from cells of different lineages, was also investigated. CCK immunoreactivity was found in EEC throughout the mouse small and large intestine but positive cells were rare in the rectum. Immunoreactive EEC were as common in the caecum and proximal colon as they were in the duodenum and jejunum. CCK gene transcripts were found in the mucosa throughout the intestine but mRNA for gastrin, a hormone that can bind some anti-CCK antibodies, was only found in the stomach and duodenum. Characterisation of CCK peptides of the colon by extraction, chromatographic separation and radioimmunoassay revealed bioactive amidated and sulphated forms, including CCK-8 and CCK-33. Moreover, CCK-containing EEC in the large intestine bound antibodies that target the biologically active sulfated form. Colocalisation of CCK and 5-HT occurred in a proportion of EEC throughout the small intestine and in the caecum but these hormones were not colocalised in the colon, where there was CCK and PYY colocalisation. It is concluded that authentic, biologically active, CCK occurs in EEC of the mouse large intestine.
Collapse
Affiliation(s)
- Josiane Fakhry
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joyce Wang
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Patricia Martins
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Billie Hunne
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pierre Prieur
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Arthur Shulkes
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brid Callaghan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Rehfeld JF. Cholecystokinin expression in tumors: biogenetic and diagnostic implications. Future Oncol 2016; 12:2135-47. [PMID: 27306028 DOI: 10.2217/fon-2015-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholecystokinin (CCK) is a classic gut hormone. CCK is also a complex system of peptides expressed in several molecular forms in enteroendocrine I cells, in cerebral and peripheral neurons, in cardiac myocytes and spermatozoa. CCK gene expression has now been found at protein or peptide level in different neuroendocrine tumors; cerebral gliomas and astrocytomas and specific pediatric tumors. Tumor hypersecretion of CCK was recently reported in a patient with a metastatic islet cell tumor and hypercholecystokininemia resulting in a novel tumor syndrome, the cholecystokininoma syndrome. This review presents an overview of the cell-specific biogenesis of CCK peptides, and a description of the CCK expression in tumors and of the cholecystokininoma syndrome. Finally, assays for the diagnosis of CCK-producing tumors are reviewed.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated posttranslational maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed outside the gut, some only in extraintestinal endocrine cells and cerebral or peripheral neurons but others also in other cell types. The extraintestinal cells may release different bioactive fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, neurons, cancer cells and, for instance, spermatozoa secrete gut peptides in different ways, so the same peptide may act as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions, but also constitute regulatory systems operating in the whole organism. This overview of gut hormone biology is supplemented with an annotation on some Scandinavian contributions to gastrointestinal hormone research.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
7
|
Gastrointestinal Hormones and Their Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:157-75. [DOI: 10.1007/978-1-4939-0897-4_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
9
|
Abstract
The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The following pages present four examples of such cell-specific processing and the implications of the phenomenon for the use of peptide hormones as markers of diseases. Notably, sick cells - not least the neoplastic cells - often process prohormones in a manner different from that of the normal endocrine cells.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
10
|
Abstract
Gastrin and cholecystokinin (CCK) are homologous hormones with important functions in the brain and the gut. Gastrin is the main regulator of gastric acid secretion and gastric mucosal growth, whereas cholecystokinin regulates gall bladder emptying, pancreatic enzyme secretion and besides acts as a major neurotransmitter in the central and peripheral nervous systems. The tissue-specific expression of the hormones is regulated at the transcriptional level, but the posttranslational phase is also decisive and is highly complex in order to ensure accurate maturation of the prohormones in a cell specific manner. Despite the structural similarities of gastrin and CCK, there are decisive differences in the posttranslational processing and secretion schemes, suggesting that specific features in the processing may have evolved to serve specific purposes. For instance, CCK peptides circulate in low picomolar concentrations, whereas the cellular expression of gastrin is expressed at higher levels, and accordingly gastrin circulates in 10-20-fold higher concentrations. Both common cancers and the less frequent neuroendocrine tumors express the gastrin gene and prohormone. But the posttranslational processing progastrin is often greatly disturbed in neoplastic cells.The posttranslational phase of the biogenesis of gastrin and the various progastrin products in gastrin gene-expressing tissues is now reviewed here. In addition, the individual contributions of the processing enzymes are discussed, as are structural features of progastrin that are involved in the precursor activation process. Thus, the review describes how the processing depends on the cell-specific expression of the processing enzymes and kinetics in the secretory pathway.
Collapse
Affiliation(s)
- Jens R Bundgaard
- Department of Clinical Biochemistry, KB 3014, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
11
|
Rehfeld JF. The art of measuring gastrin in plasma: a dwindling diagnostic discipline? Scandinavian Journal of Clinical and Laboratory Investigation 2009; 68:353-61. [PMID: 19172694 DOI: 10.1080/00365510701771831] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gastrointestinal hormone gastrin is measured in plasma in physiological, pathophysiological and diagnostic investigations. In the diagnosis of hypergastrinaemic diseases such as gastrinomas and gastric achlorhydria, measurement of gastrin concentrations in circulation is crucial. Gastrin circulates, however, not as a single peptide but as a mixture of peptides of different lengths and amino acid derivatizations. Moreover, in hypergastrinaemia the peptide pattern changes. Consequently, diagnostic gastrin measurements require immunoassays that recognize the pathological plasma patterns, which are characterized by a predominance of the large peptides (gastrin-34 and gastrin-71) and less, if any, of the shorter main form of gastrin in normal tissue, gastrin-17. Alternatively, and in specific cases, "processing-independent assays" (PIA) for progastrin may be considered, since hypersecreting gastrin cells also release substantial amounts of biosynthetic precursors and processing intermediates. Recently, gastrin kits that do not take the pathological plasma patterns into account have been marketed and may miss the diagnosis. Therefore, proper diagnosis of gastrinomas and other hypergastrinaemic diseases requires insight into cellular gastrin synthesis and peripheral metabolism, and also into the design of useful immunoassays. This review discusses the art of measuring gastrin in plasma with adequate diagnostic specificity.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
12
|
Grabowska AM, Watson SA. Role of gastrin peptides in carcinogenesis. Cancer Lett 2007; 257:1-15. [PMID: 17698287 DOI: 10.1016/j.canlet.2007.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/25/2007] [Accepted: 06/28/2007] [Indexed: 01/22/2023]
Abstract
Gastrin gene expression is upregulated in a number of pre-malignant conditions and established cancer through a variety of mechanisms. Depending on the tissue where it is expressed and the level of expression, differential processing of the polypeptide product leads to the production of different biologically active peptides. In turn, acting through the classical CCK-2R receptor, CCK-2R isoforms and alternative receptors, these peptides trigger signalling pathways which influence the expression of downstream genes that affect cell survival, angiogenesis and invasion. Here we review this network of events, highlighting the importance of cellular context for interpreting the role of gastrin peptides and a possible role for gastrin in supporting the early stage of carcinogenesis.
Collapse
Affiliation(s)
- Anna M Grabowska
- Division of Pre-Clinical Oncology, D Floor, West Block, Queen's Medical Centre, University Hospital, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
13
|
Friis-Hansen L. Lessons from the gastrin knockout mice. ACTA ACUST UNITED AC 2007; 139:5-22. [DOI: 10.1016/j.regpep.2006.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 12/22/2022]
|
14
|
Rehfeld JF. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med (Berl) 2006; 84:544-50. [PMID: 16680481 DOI: 10.1007/s00109-006-0055-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/03/2006] [Indexed: 11/29/2022]
Abstract
The homologous brain-gut propeptides, procholecystokinin (proCCK) and progastrin, both undergo extensive posttranslational maturation in specific neuroendocrine cells. The process comprises multiple endoproteolytic cleavages at mono- and dibasic sites, in addition to exoproteolytic trimmings and amino acid derivatizations. Knockout of prohormone convertases (PCs) in mice and studies in cell lines indicate that PC1, PC2 and, to a minor extent, PC5, are responsible for most of the endoproteolytic cleavages of both prohormones. Progastrin in antral G-cells is cleaved by PC1 at two di-Arg sites, R36R37 and R73R74, whereas, PC2 only cleaves at the single di-Lys site, K53K54. Pituitary corticotrophs and intestinal TG-cells, both of which express gastrin, do not cleave K53K54 due to lack of PC2. In proCCK five monobasic (R25, R44, R50, K61 and R75) as well as a single dibasic site (R85R86) can all be cleaved by both PC1 and PC2. But the cleavage differs in a cell-specific manner in that PC1 is responsible for the entire endoproteolytic cleavage in intestinal endocrine I-cells, except for perhaps the K61 site. In contrast PC2 is responsible for most endoproteolysis of proCCK in the cerebral CCK-neurons, which do not express PC1 in significant amounts. Moreover, PC5 appears to contribute to a minor extent to the neuronal proCCK and to the antral progastrin processing. This review emphasizes that prohormone convertases play a decisive but substrate and cell-specific role in the biosynthetic maturation of gastrin and CCK.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Aly A, Shulkes A, Baldwin GS. Gastrins, cholecystokinins and gastrointestinal cancer. Biochim Biophys Acta Rev Cancer 2004; 1704:1-10. [PMID: 15238241 DOI: 10.1016/j.bbcan.2004.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 01/15/2004] [Accepted: 01/21/2004] [Indexed: 12/11/2022]
Abstract
The gastrointestinal peptide hormones gastrin and cholecystokinin (CCK) are well known for their ability to stimulate gastric acid secretion and pancreatic enzyme secretion, respectively. The suggestion that gastrin and CCK might also promote the development of cancers of the gastrointestinal tract has been controversial, but an increasing body of evidence now supports the view that the amidated and non-amidated forms of gastrin act as growth factors via different receptors in different regions of the gut. For example, animal experiments indicate that amidated gastrins are involved in cellular differentiation and repair in the gastric mucosa, and synergize with Helicobacter pylori infection in the development of gastric carcinoma. In contrast, non-amidated gastrins stimulate colonic mucosal growth, accelerate the early steps in colorectal carcinoma formation, and are elevated in the tumour and circulation of patients with colorectal cancer. Although human pancreatic carcinomas express CCK-1 and CCK-2 receptors, the role of gastrins and CCK in pancreatic carcinogenesis is yet to be established. Further investigation of the possible role of the CCK-2 receptor in gastric and pancreatic neoplasia, and of the hypothesis that gastrin precursors act as autocrine growth factors in colorectal carcinoma, is warranted. However, therapies aimed at the gastrins must be targeted to the relevant gastrin/gastrin receptor combination.
Collapse
Affiliation(s)
- Ahmad Aly
- Department of Surgery, University of Melbourne, Austin Campus, A and RMC, Studley Road, Heidelberg, Melbourne, Victoria 3084, Australia
| | | | | |
Collapse
|
16
|
Hollande F, Lee DJ, Choquet A, Roche S, Baldwin GS. Adherens junctions and tight junctions are regulated via different pathways by progastrin in epithelial cells. J Cell Sci 2003; 116:1187-97. [PMID: 12615962 DOI: 10.1242/jcs.00321] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adhesion between neighbouring epithelial cells is a crucial and tightly controlled process. In the gastrointestinal tract, the integrity of cell-cell contacts is essential for the regulation of electrolyte absorption and for the prevention of tumour metastasis. We recently showed that migration of the gastric epithelial cell line IMGE-5 is stimulated by the nonamidated form of the hormone gastrin(17). Here, we examine the effect on cell-cell adhesion of the prohormone progastrin, the concentration of which is increased in the plasma of patients with colorectal carcinoma. Progastrin induced the dissociation of both tight junction (TJ) and adherens junction (AJ) complexes in IMGE-5 cells. In progastrin-secreting DLD-1 human colorectal carcinoma cells, expression of an antisense gastrin construct restored membrane localisation of zonula occludens-1 (ZO-1), occludin, beta-catenin and E-cadherin. This restoration was reversed by treatment with exogenous progastrin. Endogenous or exogenous progastrin also increased the paracellular flux of mannitol, and induced cell migration of several gastrointestinal cell lines. In addition, progastrin enhanced Src tyrosine kinase activity and induced a spatial delocalisation of protein kinase C alpha. Using dominant-negative mutants and pharmacological inhibitors, we showed that the stimulation of Src kinase activity was essential for the regulation of TJs. By contrast, the dissociation of AJs involved phosphatidylinositol 3-kinase, partly through the formation of a complex with protein kinase C alpha. We conclude that separate pathways mediate the disruption of AJs and TJs by progastrin. Either pathway may contribute to the co-carcinogenic role of this prohormone in colorectal carcinoma.
Collapse
Affiliation(s)
- Frédéric Hollande
- Laboratoire de Signalisation Cellulaire Normale et Tumorale, EA MNRT 2995, Faculté de Pharmacie, 15 Avenue C. Flahault, 34093 Montpellier, France.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Gastrin is a peptide hormone that regulates both acid secretion and growth of the gastric oxyntic mucosa. Recent studies suggest that gastrin, in both its amidated, and less processed forms (glycine-extended gastrin and progastrin) may also exert biological activity in other organs in the gastrointestinal tract. This article will review the studies performed to date addressing the physiological role of gastrin outside of the gastric mucosa, with particular emphasis on the information gleaned from gastrin-deficient mice. Most of these studies address the potential role for the less processed forms of gastrin in regulating the proliferation of the colonic mucosa and colon cancers. There is also some data to support a potential role for gastrin in the regulation of the pancreas and the kidney, although the effects of gastrin deficiency on the function of these organs in mice have not yet been rigorously studied.
Collapse
Affiliation(s)
- Theodore J Koh
- University of Massachusetts Memorial Medical Center, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Aly A, Shulkes A, Baldwin GS. Short term infusion of glycine-extended gastrin(17) stimulates both proliferation and formation of aberrant crypt foci in rat colonic mucosa. Int J Cancer 2001; 94:307-13. [PMID: 11745407 DOI: 10.1002/ijc.1483] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence is accumulating that gastrin precursors may act as growth factors for the colonic mucosa in vivo and for colorectal carcinoma cell lines in vitro. The effect of short term administration of synthetic gastrins on the colonic mucosa in vivo, however, has not been reported. The aim of our study was to determine whether continuous systemic infusion of glycine-extended gastrin(17) stimulated proliferation and accelerated carcinogenesis in the colorectal mucosa. A significant increase in colonic mucosal proliferation as assessed by metaphase index was seen in the caecum (23%, p < 0.02) and distal colon (27%, p < 0.001), but not the rectum, after treatment of intact rats with glycine-extended gastrin(17) for 1 week using implanted miniosmotic pumps. Defunctioning of the rectum reduced both the proliferative index and crypt height of the rectal mucosa of untreated rats. Treatment of rectally defunctioned animals with glycine-extended gastrin(17) for either 1 or 4 weeks resulted in a significant increase in both the proliferative index (40% and 93%, respectively) and crypt height (11% and 19%, respectively) of the rectal mucosa. The total number of aberrant crypt foci in intact rats treated with the procarcinogen azoxymethane plus glycine-extended gastrin(17) was increased by 48% compared to the value in controls treated with azoxymethane only (p = 0.01). We conclude that short term administration of glycine-extended gastrin(17) to mature rats not only has a proliferative effect upon colonic mucosa, but also increases the number of aberrant crypt foci formed in the colorectal mucosa after treatment with azoxymethane. Glycine-extended gastrin(17) could thus potentially act as a promoter of carcinogenesis.
Collapse
Affiliation(s)
- A Aly
- University of Melbourne Department of Surgery, Austin Campus, A&RMC, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
19
|
Abstract
Cholecystokinin (CCK) is a neuropeptide expressed in the small intestine and in the central and peripheral nervous system. CCK gene expression is both spatially and temporally regulated. In neurons CCK production is increased by growth factors, cyclic adenosine 3', 5'-monophosphate (cAMP), dopamine, estrogen, and injury situations, while intestinal CCK expression is mainly regulated by food intake. The function of the proximal CCK promoter has been examined by transfection of human CCK-CAT reporter constructs in cultured cells, DNase I footprinting and gel shift assays. These studies have led to the identification of regulatory elements and transcription factors important for basal and stimulated gene expression and depicted the signaling pathways involved in growth factor and cAMP induced CCK transcription. The review outlines the current knowledge of the regulation of CCK transcription and describes the role of putative transcription factors in tissue-specific CCK gene expression.
Collapse
Affiliation(s)
- T V Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
20
|
Rubin DC, Zhang H, Qian P, Lorenz RG, Hutton K, Peters MG. Altered enteroendocrine cell expression in T cell receptor alpha chain knock-out mice. Microsc Res Tech 2000; 51:112-20. [PMID: 11054861 DOI: 10.1002/1097-0029(20001015)51:2<112::aid-jemt2>3.0.co;2-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mice lacking T cell receptor alpha chain (TCRalpha(-/-)) develop inflammation of the colon. We have examined the effect of this inflammation on the colonic epithelium by studying markers of epithelial cuff, enteroendocrine, and immune cell differentiation. Using immunohistochemical techniques, colons were compared in normal C57/BL6 and murine TCR alpha(-/-) mice aged 2 and 3 weeks and 3-11 months. TCR alpha(-/-) mice aged 3-11 months had histologic evidence of inflammation with increased expression of CD45, CD4+, CD8+, and B220+ cells and a decrease in expression of IgA+ cells. There was a decrease in the number of cholecystokinin, serotonin, and neurotensin enteroendocrine expressing cells in the colon of TCR alpha(-/-) mice. These changes were not present in 2-3-week-old suckling/weaning mice. In contrast, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1, and gastrin expression did not change and small intestinal enteroendocrine cells remained unaltered. The change in colonic enteroendocrine cell expression appears to be a specific response, since only a subset of these cells was altered, and the epithelium was intact by histologic analysis. The absence of functional T cells in TCR alpha(-/-) colon has a marked effect on differentiation of a specific subpopulation of enteroendocrine cells, prior to loss of integrity of the epithelium.
Collapse
Affiliation(s)
- D C Rubin
- Department of Medicine, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Considerable progress has been made over the last decade in the understanding of mechanisms responsible for the ontogenetic changes of mammalian intestine. This review presents the current knowledge about the development of intestinal transport function in the context of intestinal mucosa ontogeny. The review predominantly focuses on signals that trigger and/or modulate the developmental changes of intestinal transport. After an overview of the proliferation and differentiation of intestinal mucosa, data about the bidirectional traffic (absorption and secretion) across the developing intestinal epithelium are presented. The largest part of the review is devoted to the description of developmental patterns concerning the absorption of nutrients, ions, water, vitamins, trace elements, and milk-borne biologically active substances. Furthermore, the review examines the development of intestinal secretion that has a variety of functions including maintenance of the fluidity of the intestinal content, lubrication of mucosal surface, and mucosal protection. The age-dependent shifts of absorption and secretion are the subject of integrated regulatory mechanisms, and hence, the input of hormonal, nervous, immune, and dietary signals is reviewed. Finally, the utilization of energy for transport processes in the developing intestine is highlighted, and the interactions between various sources of energy are discussed. The review ends with suggestions concerning possible directions of future research.
Collapse
Affiliation(s)
- J Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
22
|
Abstract
The peptide hormone gastrin, released from antral G cells, is known to stimulate the synthesis and release of histamine from ECL cells in the oxyntic mucosa via CCK-2 receptors. The mobilized histamine induces acid secretion by binding to the H(2) receptors located on parietal cells. Recent studies suggest that gastrin, in both its fully amidated and less processed forms (progastrin and glycine-extended gastrin), is also a growth factor for the gastrointestinal tract. In this article, we review the recent evidence (including those from the transgenic and knockout mice) for the trophic targets of both the amidated and less processed forms of gastrin in the gastrointestinal tract, pancreas and liver. It has been established that the major trophic effect of amidated gastrin is for the oxyntic mucosa of stomach, where it causes increased proliferation of gastric stem cells and ECL cells, resulting in increased parietal and ECL cell mass. There is insufficient evidence to support that amidated gastrin is a trophic factor for the rest of gastrointestinal tract, exocrine pancreas and liver. On the other hand, the major trophic target of the less processed gastrin (e.g. glycine-extended gastrin) appears to be the colonic mucosa. There is no evidence to suggest that it is trophic for the stomach. It remains to be examined whether the rest of gastrointestinal tract, pancreas and liver are the trophic targets by glycine-extended gastrin and progastrin.
Collapse
Affiliation(s)
- T J Koh
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
23
|
Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC. Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 2000; 106:533-9. [PMID: 10953028 PMCID: PMC380254 DOI: 10.1172/jci9476] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene occur in most colorectal cancers and lead to activation of beta-catenin. Whereas several downstream targets of beta-catenin have been identified (c-myc, cyclin D1, PPARdelta), the precise functional significance of many of these targets has not been examined directly using genetic approaches. Previous studies have shown that the gene encoding the hormone gastrin is activated during colon cancer progression and the less-processed forms of gastrin are important colonic trophic factors. We show here that the gastrin gene is a downstream target of the beta-catenin/TCF-4 signaling pathway and that cotransfection of a constitutively active beta-catenin expression construct causes a threefold increase in gastrin promoter activity. APC(min-/+) mice overexpressing one of the alternatively processed forms of gastrin, glycine-extended gastrin, show a significant increase in polyp number. Gastrin-deficient APC(min-/+) mice, conversely, showed a marked decrease in polyp number and a significantly decreased polyp proliferation rate. Activation of gastrin by beta-catenin may therefore represent an early event in colorectal tumorigenesis and may contribute significantly toward neoplastic progression. The identification of gastrin as a functionally relevant downstream target of the beta-catenin signaling pathway provides a new target for therapeutic modalities in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- T J Koh
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
24
|
Jønson L, Bundgaard JR, Johnsen AH, Rourke IJ. Identification and expression of gastrin and cholecystokinin mRNAs from the turtle, Pseudemys scripta: evidence of tissue-specific tyrosyl sulfation(1). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1435:84-93. [PMID: 10561540 DOI: 10.1016/s0167-4838(99)00197-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrin and cholecystokinin (CCK) are related peptide hormones expressed in the brain and gut of vertebrates. In this study, complementary DNAs have been characterised from the red-eared slider turtle, Pseudemys scripta. The encoded preproCCK contains mono and dibasic endoproteolytic processing sites for formation of the previously identified CCK-70, CCK-40 and CCK-8 products, whereas preprogastrin contains two dibasic processing sites for the generation of gastrin-52. Alignment of the predicted preprohormone structures with those of other species, showed that preproCCK has been well conserved among all vertebrates, whereas progastrin is less conserved. Both gastrin and CCK mRNA display expression patterns similar to their mammalian counterparts, with CCK being expressed in the brain, duodenum and small intestine, and gastrin in the antrum. Heterologous expression of turtle preprogastrin in a mammalian endocrine cell line led to production of carboxyamidated gastrin-52 as observed in turtle antrum. However, in contrast to the non-sulfated endogenous peptide, the heterologously expressed gastrin was completely Tyr sulfated. Consequently, it appears that either gastrin producing cells in the turtle gut do not express tyrosylprotein sulfotransferases or the enzyme(s) present in turtle antrum is unable to sulfate turtle gastrin.
Collapse
Affiliation(s)
- L Jønson
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Hinkle KL, Samuelson LC. Lessons from genetically engineered animal models. III. Lessons learned from gastrin gene deletion in mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G500-5. [PMID: 10484373 DOI: 10.1152/ajpgi.1999.277.3.g500] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Gastrin is the principal hormonal inducer of gastric acid secretion. Chronic hypergastrinemia, leading to hypersecretion of gastric acid and increased proliferation of parietal and enterochromaffin-like (ECL) cells, has been well described. In contrast, the physiological consequences of chronic gastrin deficiency had been poorly understood until the recent genetic engineering of mouse mutants containing a gastrin gene deletion by homologous recombination in embryonic stem cells. This themes article describes the consequences of constitutive gastrin deficiency on the development and physiology of the stomach. A lack of gastrin disrupts basal gastric acid secretion and renders the acid secretory system unresponsive to acute histaminergic, cholinergic, and gastrinergic stimulation. The defect in acid secretion is greater than would have been predicted from previous studies in which gastrin action was acutely blocked. Cellular changes include thinning of the gastric mucosa in the gastrin-deficient mice, with a reduction in parietal cells and reduced expression of markers of parietal and ECL cell-differentiated functions. The results suggest that gastrin is required for the functional maturation of the acid-secretory system.
Collapse
Affiliation(s)
- K L Hinkle
- Department of Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Koh TJ, Dockray GJ, Varro A, Cahill RJ, Dangler CA, Fox JG, Wang TC. Overexpression of glycine-extended gastrin in transgenic mice results in increased colonic proliferation. J Clin Invest 1999; 103:1119-26. [PMID: 10207163 PMCID: PMC408271 DOI: 10.1172/jci4910] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gastrin is a peptide hormone involved in the growth of both normal and malignant gastrointestinal tissue. Recent studies suggest that the glycine-extended biosynthetic intermediates mediate many of these trophic effects, but the in vivo relevance of glycine-extended gastrin (G-Gly) has not been tested. We have generated mice (MTI/G-GLY) that overexpress progastrin truncated at glycine-72 to evaluate the trophic effects of G-Gly in an in vivo model. MTI/G-GLY mice have elevated serum and colonic mucosal levels of G-Gly compared with wild-type mice. MTI/G-GLY mice had a 43% increase in colonic mucosal thickness and a 41% increase in the percentage of goblet cells per crypt. MTI/G-GLY mice exhibited increased colonic proliferation compared with wild-type controls, with an expansion of the proliferative zone into the upper third of the colonic crypts. Continuous infusion of G-Gly into gastrin-deficient mice for two weeks also resulted in elevated G-Gly levels, a 10% increase in colonic mucosal thickness, and an 81% increase in colonic proliferation when compared with gastrin-deficient mice that received saline alone. To our knowledge, these studies demonstrate for the first time that G-Gly's contribute to colonic mucosal proliferation in vivo.
Collapse
Affiliation(s)
- T J Koh
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Tillotson LG. RIN ZF, a novel zinc finger gene, encodes proteins that bind to the CACC element of the gastrin promoter. J Biol Chem 1999; 274:8123-8. [PMID: 10075714 DOI: 10.1074/jbc.274.12.8123] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of gastrin, a gut hormone and growth factor, has tissue-specific transcriptional regulation and can be induced in some tumors. Previous studies have shown that a CACC cis-regulatory element is important for transcriptional activation in pancreatic insulinoma cells. To identify CACC-binding proteins, a lambda phage cDNA library derived from a rat insulinoma cell line, RIN 38A, was screened by a Southwestern method. A novel member of the Cys2-His2 zinc finger gene family was cloned and designated RIN ZF, having a cDNA sequence of 3.8 kilobases. One full-length and a shorter splice variant were sequenced and had predicted protein masses of 91.6 and 88.7 kDa. Expression of both splice forms were ubiquitous in fetal and adult rat tissues. Recombinant RIN ZF protein exhibited sequence-specific binding to the gastrin CACC element in a gel mobility shift assay. In transient transfections, both splice variants appeared to have only weak activating effects on gastrin-luciferase reporter gene transcription. Furthermore, RIN ZF coexpression with Sp1 appeared to block the strongly activating effects of Sp1 mediated through the CACC element. These findings suggest that a novel set of zinc finger proteins may help regulate gastrin gene expression by interfering with Sp1 transactivation.
Collapse
Affiliation(s)
- L G Tillotson
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
29
|
Abstract
The classic concept of gastrointestinal endocrinology is that of a few peptides released to the circulation from endocrine cells, which are interspersed among other mucosal cells in the upper gastrointestinal tract. Today more than 30 peptide hormone genes are known to be expressed throughout the digestive tract, which makes the gut the largest endocrine organ in the body. Moreover, development in cell and molecular biology now makes it feasible to describe a new biology for gastrointestinal hormones based on five characteristics. 1) The structural homology groups the hormones into families, each of which is assumed to originate from a common ancestral gene. 2) The individual hormone gene is often expressed in multiple bioactive peptides due to tandem genes encoding different hormonal peptides, alternative splicing of the primary transcript, or differentiated processing of the primary translation product. By these mechanisms, more than 100 different hormonally active peptides are produced in the gastrointestinal tract. 3) In addition, gut hormone genes are widely expressed, also outside the gut. Some are expressed only in neuroendocrine cells, whereas others are expressed in a multitude of different cells, including cancer cells. 4) The different cell types often express different products of the same gene, "cell-specific expression." 5) Finally, gastrointestinal hormone-producing cells release the peptides in different ways, so the same peptide may act as an acute blood-borne hormone, as a local growth factor, as a neurotransmitter, and as a fertility factor. The new biology suggests that gastrointestinal hormones should be conceived as intercellular messengers of general physiological impact rather than as local regulators of the upper digestive tract.
Collapse
Affiliation(s)
- J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Rourke IJ, Rehfeld JF, Møller M, Johnsen AH. Characterization of the cholecystokinin and gastrin genes from the bullfrog, Rana catesbeiana: evolutionary conservation of primary and secondary sites of gene expression. Endocrinology 1997; 138:1719-27. [PMID: 9075736 DOI: 10.1210/endo.138.4.5084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gastrin and cholecystokinin (CCK) genes, and the complementary DNAs they encode, have been isolated and sequenced from the bullfrog, Rana catesbeiana. The CCK gene promoter region possess the same four well characterized transcriptional control elements as the human CCK gene, namely an E-box, AP-1 binding site, Sp1 site, and TATA box. In contrast, no obvious regulatory motifs are conserved in the gastrin gene. Alignment of the bullfrog preprohormone sequences with other members of the CCK/gastrin peptide family showed that preproCCK has been conserved to a greater degree during evolution than preprogastrin. In mammalian species, gastrin gene expression is typically associated with the antrum, and CCK with the small intestine and brain. However numerous secondary sites of CCK/gastrin gene expression have also been found. RT-PCR showed a high degree of conservation of both primary and secondary sites of CCK/gastrin production between mammals and the bullfrog, with gastrin messenger RNA being detected in the antrum, duodenum, colon, pancreas, brain, and testes, whereas CCK mRNA was observed in the brain, lung, testes, and throughout the length of the small intestine. In situ hybridization using radiolabeled gene specific antisense oligonucleotides uncovered CCK and gastrin messenger RNA in distinct areas of the bullfrog central nervous system and pituitary gland. Notably, the gastrin gene was expressed in the pituitary gland and hypothalamus of the bullfrog, as previously seen in mammals. This highly preserved tissue expression pattern suggests that gastrin plays specific roles in the hypothalamus and pituitary gland that are distinct from those of CCK. Our findings show that in spite of the structural resemblance, bullfrog CCK and gastrin constitute independent neuroendocrine peptide systems.
Collapse
Affiliation(s)
- I J Rourke
- Department of Clinical Biochemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Berghöfer P, Peterson RG, Schneider K, Fehmann HC, Göke B. Incretin hormone expression in the gut of diabetic mice and rats. Metabolism 1997; 46:261-7. [PMID: 9054467 DOI: 10.1016/s0026-0495(97)90251-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To elucidate the question of whether production of the insulinotropic gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) is altered by a diabetic metabolic state, their intestinal expression pattern was evaluated. Two rodent models for diabetes mellitus were used, non-obese diabetic (NOD) mice as a model for insulin-dependent diabetes and Zucker diabetic fatty (ZDF) rats for non-insulin-dependent diabetes mellitus (NIDDM). Expression of both incretin hormones followed typical patterns, which were similar in both animals and unaltered by the diabetic state. The GIP gene was greatly expressed in the duodenum, jejunum, and ileum, with a continuous decrease from the upper to lower intestines. This pattern was observed in both NOD mice and ZDF rats regardless of the diabetic state. This expression data was corroborated by radioimmunoassay (RIA) analysis of the gene product GIP. Expression of the proglucagon gene encoding GLP-1 had an opposite appearance. The highest expression was seen in the large bowel and the ileum. RIA analysis of the gene product GLP-1 mirrored these data. Although the distribution pattern was similar in both animal models, in contrast to diabetic NOD mice, a regulated expression was found in diabetic ZDF rats. Compared with lean nondiabetic controls, fatty hyperglycemic animals showed an increased expression of the proglucagon gene in the colon and a concomitant reduction in the small intestine. This was mirrored by the GLP-1 content of the colon and ileum. Overall, basal GLP-1 plasma levels were increased in ZDF rats (17.0 +/- 2.8 pmol) compared with lean Zucker rats (12.4 +/- 1.8 pmol). In conclusion, incretin hormone expression (GIP and GLP-1) follows specific patterns throughout the gut and is unaltered by the diabetic state. In ZDF rats, regulation of proglucagon expression occurs mainly in the large intestine.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Colon/chemistry
- Colon/immunology
- Colon/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Gastric Inhibitory Polypeptide/biosynthesis
- Gastric Inhibitory Polypeptide/genetics
- Gene Expression/genetics
- Glucagon/genetics
- Glucagon/immunology
- Glucagon-Like Peptide 1
- Glucagon-Like Peptides
- Intestinal Mucosa/metabolism
- Intestine, Small/chemistry
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestines/chemistry
- Mice
- Mice, Inbred NOD
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Proglucagon
- Protein Precursors/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Zucker
- Rectum/chemistry
- Rectum/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- P Berghöfer
- Clinical Research Unit for Gastrointestinal Endocrinology, Philipps University, Marburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Friis-Hansen L, Rourke IJ, Bundgaard JR, Rehfeld JF, Samuelson LC. Molecular structure and genetic mapping of the mouse gastrin gene. FEBS Lett 1996; 386:128-32. [PMID: 8647266 DOI: 10.1016/0014-5793(96)00430-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mouse gastrin gene has three exons totalling 460 bp and a deduced preprogastrin of 101 amino acids. The sequence of murine gastrin-34 is 94% identical to rat gastrin-34 and 76% identical to human gastrin-34. At Arg79, mouse progastrin has a unique cleavage site that might allow species-specific synthesis of gastrin-13. Northern analysis and RT-PCR demonstrated that gastrin gene transcripts are abundant in mouse stomach and duodenum and present at low levels in brain, ovary and pancreas, similar to the pattern described for other mammals. The gastrin gene was mapped to the distal region of mouse chromosome 11.
Collapse
Affiliation(s)
- L Friis-Hansen
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | |
Collapse
|
33
|
Ciccotosto GD, Shulkes A. Ontogeny of gastrin and cholecystokinin in the colon and duodenum of sheep. REGULATORY PEPTIDES 1996; 62:97-105. [PMID: 8795071 DOI: 10.1016/0167-0115(96)00003-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The different roles of gastrin and cholecystokinin in the fetus compared to the adult may be reflected in different distribution patterns. Re-expression of these fetal patterns is often seen in tumours of the adult. Using region-specific antisera and chromatography, we have determined the ontogeny of amidated gastrin (G-amide), glycine extended gastrin (G-gly), and cholecystokinin (CCK) in various segments of the colon and compared it to the developmental profile in the duodenum. Fetal sheep aged 80-90, 115-125 and 135-144 days (term is 145 days), 7-14 day lamb, and adult sheep were examined. In the colon, higher concentrations of G-amide (2.8 +/- 0.2 pmol/g) and CCK (11.7 +/- 1.6 pmol/g) were measured in the fetus while G-gly (0.7 +/- 0.1 pmol/g) was higher in the adult compared to other age groups. The calculated G-gly/G-amide ratio was 0.4 in the fetus and 1.4 in the adult while the CCK/G-amide ratios were 5 in the fetus and 13 in the adult. The duodenum of the lamb rather than the fetus contained the highest concentrations of G-amide, G-gly and CCK (40.3 +/- 9.7, 2.0 +/- 0.4, 109.0 +/- 14.3 pmol/g, respectively) and at concentrations exceeding that in the colon. The results demonstrate two major developmentally regulated features. Firstly as the colon matures, there is a gradual switch between the expression of the gastrin and CCK genes and secondly, the processing to G-amide is attenuated. These findings suggest that non-amidated gastrin should be examined for a potential role as a growth factor in colorectal carcinogenesis.
Collapse
Affiliation(s)
- G D Ciccotosto
- Department of Surgery, University of Melbourne, Austin and Repatriation Medical Centre, Victoria, Australia
| | | |
Collapse
|
34
|
Upchurch BH, Fung BP, Rindi G, Ronco A, Leiter AB. Peptide YY expression is an early event in colonic endocrine cell differentiation: evidence from normal and transgenic mice. Development 1996; 122:1157-63. [PMID: 8620842 DOI: 10.1242/dev.122.4.1157] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hormone peptide YY is produced by endocrine cells in the pancreas, ileum and colon. We have previously shown that peptide YY is coexpressed in all four islet cell types in the murine pancreas when they first appear, suggesting a common peptide YY-producing progenitor. In the colon, peptide YY has been frequently identified in glucagon-expressing L-type endocrine cells. Characterization of colonic endocrine tumors in transgenic mice expressing simian virus 40 large T antigen under the control of the peptide YY gene 5′ flanking region revealed tumor cells producing not only peptide YY and glucagon, but also neurotensin, cholecystokinin, substance P, serotonin, secretin, and gastrin. This suggested that multiple enteroendocrine lineages were related to peptide YY-producing cells. Subsequent examination of the ontogeny of colonic endocrine differentiation in nontransgenic mice revealed that peptide YY was the first hormone to appear during development, at embryonic day 15.5. Between embryonic days 16.5 and 18.5, cells expressing glucagon, cholecystokinin, substance P, serotonin, secretin, neurotensin, gastrin and somatostatin first appeared and peptide YY was coexpressed in each cell type at this time. Peptide YY coexpression continued in a significant fraction of most enteroendocrine cell types throughout fetal and postnatal development and into adulthood, with the exception of serotonin-producing cells. This latter population of cells expanded dramatically after birth with rare coexpression of peptide YY. These studies indicate that expression of peptide YY is an early event in colonic endocrine differentiation and support the existence of a common progenitor for all endocrine cells in the colon.
Collapse
Affiliation(s)
- B H Upchurch
- Division of Gastroenterology, Tupper Research Institute, New England Medical Center-Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
35
|
Nielsen FC, Pedersen K, Hansen TV, Rourke IJ, Rehfeld JF. Transcriptional regulation of the human cholecystokinin gene: composite action of upstream stimulatory factor, Sp1, and members of the CREB/ATF-AP-1 family of transcription factors. DNA Cell Biol 1996; 15:53-63. [PMID: 8561897 DOI: 10.1089/dna.1996.15.53] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have examined cis-elements and trans-acting factors that regulate transcription of the human cholecystokinin (CCK) gene. Transient expression of CCK promoter deletion constructs in human SK-N-MC neuroblastoma cells depicted positive cis-elements between the positions -100 to -92, -84 to -74, and -58 to -37, 5' to the transcription initiation site. Correspondingly, DNase I protection analysis showed that transacting factors bound to elements within these regions. The sequences encompass a putative basic helix-loop-helix leucine zipper (bHLH-ZIP) element, an Sp1 element, and a combined cAMP- and TPA-responsive element (CRE/TRE) at positions -97 to -92, -39 to -34, and -80 to -73, respectively. Mobility and supershift assays demonstrated that upstream stimulatory factor (USF) and Sp1 bind to the former elements and competition experiments confirmed that CREB/ATF and AP-1 bind to the CRE/TRE element. Mutation of the bHLH-ZIP and CRE/TRE elements decreased the activity of the promoter by 65% and 42%, respectively. The activity of the promoter was increased six- and two-fold after stimulation with forskolin and TPA, respectively. Stimulation was eliminated after mutation of the CRE/TRE element. Co-transfection experiments with pRSV-c-jun, pSV-fos, and pRC-RSV-CREB constructs showed that jun, CREB, and AP-1 stimulate transcription. We conclude that USF, Sp1, and members of the CREB/ATF and AP-1 family of transcription factors are the major determinants of CCK gene transcription.
Collapse
Affiliation(s)
- F C Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
36
|
Mania-Farnell BL, Botros IW, Davis TP. Modulation of CCK mRNA in cell lines in response to isoproterenol and retinoic acid. Neuropeptides 1995; 29:221-7. [PMID: 8584140 DOI: 10.1016/0143-4179(95)90064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regulation of cholecystokinin (CCK) expression was studied in the human neuroepithelioma cell line SK-N-MCIXC and the rat medullary thyroid carcinoma cell line WE 4/2. The cells were treated with the beta-adrenergic agonist isoproterenol and retinoic acid, a natural derivative of vitamin A, which plays a role in cell growth and proliferation. Levels of CCK mRNA were determined after 6, 12 and 24 h drug treatments, with Northern blot analysis using human CCK riboprobes. In WE 4/2 cells no differences were observed in CCK mRNA levels, between control and isoproterenol treated cells, after 6, 12 or 24 h treatments. In SK-N-MCIXC cells isoproterenol increased CCK mRNA levels at all time points examined, the beta-adrenergic antagonist propranolol blocked this effect. SK-N-MCIXC cells were also treated with actinomycin D or cycloheximide in combination with isoproterenol. Actinomycin D decreased CCK mRNA levels. Cycloheximide increased CCK mRNA levels when compared to isoproterenol acting alone. Retinoic acid did not affect CCK mRNA levels in WE 4/2 cells. In SK-N-MCIXC cells, retinoic acid consistently decreased CCK mRNA level. CCK mRNA levels in SK-N-MCIXC cells treated with retinoic acid combined with either isoproterenol or phorbol-12-myristate-13 acetate, were not significantly different from cells treated with retinoic acid alone.
Collapse
Affiliation(s)
- B L Mania-Farnell
- Department of Biological Sciences, Purdue University Calumet, Hammond, IN 46323, USA
| | | | | |
Collapse
|
37
|
Bundgaard JR, Hansen TO, Friis-Hansen L, Rourke IJ, van Solinge WW, Nielsen FC, Rehfeld JF. A distal Sp1-element is necessary for maximal activity of the human gastrin gene promoter. FEBS Lett 1995; 369:225-8. [PMID: 7649261 DOI: 10.1016/0014-5793(95)00754-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies of transgenic mice have shown that transcriptional control of the gastrin gene exhibits significant species differences. Transfection of the human gastrin promoter in murine cells have depicted proximal Sp1, E-box and CACC elements as the major determinants of transcription. We have examined cis-regulatory elements of the human promoter on a human gastrin expressing cell line and find that a distal -135 to -142 Sp1 element is necessary for maximal activity. Alignment of the mouse and human promoters shows that the proximal human Sp1 and CACC elements are not conserved, whereas the E-box element is retained. The distal Sp1 element is present in mouse but exhibits a C to T transition in the core that is likely to reduce binding affinity of Sp1. We conclude that gastrin gene transcription is regulated by distinct elements in man and rodents.
Collapse
Affiliation(s)
- J R Bundgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Benouali-Pellissier S, Roger T, Roche M. A possible interaction between serotonin and cholecystokinin-8 in the ileo-colonic motor responses to feeding in rats. Scand J Gastroenterol 1994; 29:138-43. [PMID: 8171281 DOI: 10.3109/00365529409090452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of cholecystokinin (CCK)-A, CCK-B, and 5-hydroxytryptamine-2 (5-HT2) receptor antagonists on the postprandial myoelectric activity of the ileum and the proximal and distal colon in rats were studied. After L364,718, a CCK-A receptor antagonist, or ritanserin, 5-HT2 receptor antagonist, the duration of the ileal postprandial motor pattern was reduced by 60%. In contrast, L365,260, a CCK-B receptor antagonist, had no effect. In the distal colon, the postprandial response was inhibited by CCK-A, CCK-B, and 5-HT2 receptor antagonists, whereas they were inactive in the proximal colon. CCK-8 administered at the end of the meal suppressed the inhibitory effect of ritanserin on the ileum and the distal colon. These results suggest that, in rats, CCK-8 is involved in the control of the ileal motor response to feeding through CCK-A receptors and in that of the distal colon through both CCK-A and CCK-B receptors. Serotonin seems to play a role in CCK-8 control through 5-HT2 receptors.
Collapse
Affiliation(s)
- S Benouali-Pellissier
- Applied Physiology and Pharmacology Laboratory (and INSERM U45), University of Savoie, Chambéry, France
| | | | | |
Collapse
|
40
|
Affiliation(s)
- J F Rehfeld
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Denmark
| | | |
Collapse
|
41
|
Van Solinge WW, Nielsen FC, Friis-Hansen L, Falkmer UG, Rehfeld JF. Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology 1993; 104:1099-107. [PMID: 8462798 DOI: 10.1016/0016-5085(93)90279-l] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND To evaluate the hypothesis that gastrin is a local growth factor in colonic carcinomas, the expression of gastrin messenger RNA (mRNA) and peptides were examined in five human colon carcinoma cell lines, 12 solid colon carcinomas, and normal colonic tissue. METHODS Northern analysis, reverse-transcription PCR, and a library of sequence-specific radioimmunoassays were the principal methods. RESULTS Cell lines, tumors, and normal tissue all expressed a gastrin mRNA of 0.7 kilobases, and all cell lines contained incompletely processed progastrin (range, 17-54 fmol/10(6) cells). Two cell lines secreted progastrin into the media (LoVo, 25 +/- 3 pmol/L; HCT116; 12 +/- 2 pmol/L). Normal colonic tissue and all the solid tumors also contained progastrin, the concentration being higher in tumors (range, 0.4-2 pmol/g) than in normal tissue (range, 0.1-0.2 pmol/g). Only one tumor contained carboxyamidated gastrins. CONCLUSIONS Normal and neoplastic colonic mucosa both express the gastrin gene, but the posttranslational phase of expression is attenuated. The incomplete processing and low level of expression suggest that autocrine gastrin secretion has only minor significance for normal adult and most neoplastic colonic tissue.
Collapse
Affiliation(s)
- W W Van Solinge
- University Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|