1
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
2
|
Wang Z, Reid AMA, Wilson PW, Dunn IC. Identification of the Core Promoter and Variants Regulating Chicken CCKAR Expression. Genes (Basel) 2022; 13:1083. [PMID: 35741846 PMCID: PMC9222909 DOI: 10.3390/genes13061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Decreased expression of chicken cholecystokinin A receptor (CCKAR) attenuates satiety, which contributes to increased food intake and growth for modern broilers. The study aims to define the core promoter of CCKAR, and to identify variants associated with expression activity. A 21 kb region around the CCKAR was re-sequenced to detect sequence variants. A series of 5'-deleted promoter plasmids were constructed to define the core promoter of CCKAR. The effects of sequence variants located in promoter (PSNP) and conserved (CSNP) regions on promoter activity were analyzed by comparing luciferase activity between haplotypes. A total of 182 variants were found in the 21 kb region. There were no large structural variants around CCKAR. pNL-328/+183, the one with the shortest insertion, showed the highest activity among the six promoter constructs, implying that the key cis elements regulating CCKAR expression are mainly distributed 328 bp upstream. We detected significant activity differences between high- and low-growth associated haplotypes in four of the six promoter constructs. The high-growth haplotypes of constructs pNL-1646/+183, pNL-799/+183 and pNL-528/+183 showed lower activities than the low-growth haplotypes, which is consistent with decreased expression of CCKAR in high-growth chickens. Lower expression of the high-growth allele was also detected for the CSNP5-containing construct. The data suggest that the core promoter of CCKAR is located the 328 bp region upstream from the transcription start site. Lower expression activities shown by the high-growth haplotypes in the reporter assay suggest that CSNP5 and variants located between 328 bp and 1646 bp upstream form a promising molecular basis for decreased expression of CCKAR and increased growth in chickens.
Collapse
Affiliation(s)
- Zhepeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Angus M. A. Reid
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Peter W. Wilson
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| |
Collapse
|
3
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
4
|
Wang Z, Zhou W. Research Note: Fine mapping of sequence variants associated with body weight of Lueyang black-boned chicken in the CCKAR gene. Poult Sci 2021; 100:101448. [PMID: 34601445 PMCID: PMC8496170 DOI: 10.1016/j.psj.2021.101448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/21/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Cholecystokinin A receptor (CCKAR) is a key receptor mediating satiety. Previous studies found that decreased expression of CCKAR attenuated satiety, and thus contributed to the high-growth of broiler chickens. The objective of this study is to map sequence variants associated with the growth of chickens in the CCKAR. The CCKAR and upstream 1.4 kb genomic sequences were resequenced to find out all sequence variants using 35 Lueyang black-boned chickens (LBC). Haplotypes were reconstructed using the PHASE program. Linkage disequilibrium between variants was analyzed using the Haploview software. Associations of 33 tag SNPs that captured 89% of all variants with body weight of LBC (n = 675) at 16 (BW16), 20 (BW20) weeks of age and the onset (BWOEP) of egg production were tested using linear mixed models. A total of 126 SNPs were found and formed 41 haplotypes in 35 resequenced samples. Average length of haplotype blocks is 129 bp, indicating that LBC maintains low linkage disequilibrium at the CCKAR locus. Eleven of 33 tag SNPs were significantly associated with BW16, but not with BW20 and BWOEP. These significantly associated variants were most (8/11) distributed in a 2 kb region (chr4:73206169-73208244) around the Exon3. They together with 33 captured variants potentially disrupted binding sites of 471 transcription factors. Twelve variants can disrupt appetite (FOXO1) or lipid metabolism-related TF (AR and C/EBP) motifs. This study recognized chr4:73206169-73208244 as a key region harboring functional variants affecting the growth of chickens.
Collapse
Affiliation(s)
- Zhepeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenxin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Geiger J, Sexton R, Al-Sahouri Z, Lee MY, Chun E, Harikumar KG, Miller LJ, Beckstein O, Liu W. Evidence that specific interactions play a role in the cholesterol sensitivity of G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183557. [PMID: 33444621 PMCID: PMC8656464 DOI: 10.1016/j.bbamem.2021.183557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol's general effects on the membrane is not well-understood. We performed coarse-grained molecular dynamics (CGMD) simulations coupled with structural bioinformatics approaches on the β2-adrenergic receptor (β2AR) and the cholecystokinin (CCK) receptor subfamily. The β2AR has been shown to be sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous β2AR crystal structures. The two CCK receptors are highly homologous and preserve similar cholesterol recognition motifs but despite their homology, CCK1R shows functional sensitivity to membrane cholesterol while CCK2R does not. Our results offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with β2AR that agree with previously published data; additionally, we observe differential and specific cholesterol binding in the CCK receptor subfamily while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. A thermal denaturation assay (LCP-Tm) shows that mutation of a conserved CRAC sequence on TM7 of the β2AR affects cholesterol stabilization of the receptor in a lipid bilayer. The results of this study provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases.
Collapse
Affiliation(s)
- James Geiger
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Rick Sexton
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America
| | - Zina Al-Sahouri
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Ming-Yue Lee
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Eugene Chun
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Oliver Beckstein
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America.
| | - Wei Liu
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
6
|
Liu Q, Yang D, Zhuang Y, Croll TI, Cai X, Dai A, He X, Duan J, Yin W, Ye C, Zhou F, Wu B, Zhao Q, Xu HE, Wang MW, Jiang Y. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol 2021; 17:1238-1244. [PMID: 34556862 PMCID: PMC8604728 DOI: 10.1038/s41589-021-00841-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Cholecystokinin A receptor (CCKAR) belongs to family A G-protein-coupled receptors and regulates nutrient homeostasis upon stimulation by cholecystokinin (CCK). It is an attractive drug target for gastrointestinal and metabolic diseases. One distinguishing feature of CCKAR is its ability to interact with a sulfated ligand and to couple with divergent G-protein subtypes, including Gs, Gi and Gq. However, the basis for G-protein coupling promiscuity and ligand recognition by CCKAR remains unknown. Here, we present three cryo-electron microscopy structures of sulfated CCK-8-activated CCKAR in complex with Gs, Gi and Gq heterotrimers, respectively. CCKAR presents a similar conformation in the three structures, whereas conformational differences in the 'wavy hook' of the Gα subunits and ICL3 of the receptor serve as determinants in G-protein coupling selectivity. Our findings provide a framework for understanding G-protein coupling promiscuity by CCKAR and uncover the mechanism of receptor recognition by sulfated CCK-8.
Collapse
Affiliation(s)
- Qiufeng Liu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwen Zhuang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tristan I. Croll
- grid.5335.00000000121885934Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Xiaoqing Cai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jia Duan
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Ye
- grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China
| | - Fulai Zhou
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Beili Wu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhao
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H. Eric Xu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Wei Wang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi Jiang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Wang HH, Portincasa P, Liu M, Tso P, Wang DQH. An Update on the Lithogenic Mechanisms of Cholecystokinin a Receptor (CCKAR), an Important Gallstone Gene for Lith13. Genes (Basel) 2020; 11:E1438. [PMID: 33260332 PMCID: PMC7761502 DOI: 10.3390/genes11121438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK's regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical-chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
8
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
9
|
Wang HH, Portincasa P, Wang DQH. Update on the Molecular Mechanisms Underlying the Effect of Cholecystokinin and Cholecystokinin-1 Receptor on the Formation of Cholesterol Gallstones. Curr Med Chem 2019. [PMID: 28625150 DOI: 10.2174/0929867324666170619104801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) is an important neuro-intestinal peptide hormone produced by the enteroendocrine I-cells in the upper part of small intestine. Protein- and fat-enriched food plays an important role in triggering CCK secretion from the intestine. Carbohydrates stimulate only small amounts of CCK release. The CCK-1 receptor (CCK-1R) is largely localized in the gallbladder, sphincter of Oddi, pancreas, small intestine, gastric mucosa, and pyloric sphincter, where it is responsible for CCK to regulate multiple digestive processes including gallbladder contraction, pancreatic secretion, small intestinal transit, and gastric emptying. Accumulated evidence clearly demonstrates that CCK regulates gallbladder and small intestinal motility through CCK-1R signaling cascade and the effect of CCK-1R on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. Disruption of the Cck or the Cck-1r gene in mice significantly increases the formation of cholesterol gallstones by disrupting gallbladder emptying and biliary cholesterol metabolism, as well as promoting intestinal absorption of cholesterol. Abnormalities in gallbladder motility function in response to exogenously administered CCK are found primarily in patients with cholesterol gallstones. Patients with pigment gallstones display an intermediate degree of gallbladder motility defect without gallbladder inflammation and enlarged fasting gallbladder. Dysfunctional gallbladder contractility has been found under several conditions such as pregnancy, obesity, diabetes, celiac disease, and total parenteral nutrition although gallstones are not observed. The gallbladder-specific CCK-1R-selective agonist may lead to an efficacious novel way for preventing gallstone formation by promoting gallbladder emptying, particularly for pregnant women and subjects with dysfunctional gallbladder motility function such as celiac patients, as well as patients with total parenteral nutrition.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
10
|
Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB 1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front Physiol 2019; 10:704. [PMID: 31281260 PMCID: PMC6597959 DOI: 10.3389/fphys.2019.00704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
Gut-brain signaling controls feeding behavior and energy homeostasis; however, the underlying molecular mechanisms and impact of diet-induced obesity (DIO) on these pathways are poorly defined. We tested the hypothesis that elevated endocannabinoid activity at cannabinoid CB1 receptor (CB1Rs) in the gut of mice rendered DIO by chronic access to a high fat and sucrose diet for 60 days inhibits nutrient-induced release of satiation peptides and promotes overeating. Immunoreactivity for CB1Rs was present in enteroendocrine cells in the mouse’s upper small-intestinal epithelium that produce and secrete the satiation peptide, cholecystokinin (CCK), and expression of mRNA for CB1Rs was greater in these cells when compared to non-CCK producing cells. Oral gavage of corn oil increased levels of bioactive CCK (CCK-8) in plasma from mice fed a low fat no-sucrose diet. Pretreatment with the cannabinoid receptor agonist, WIN55,212-2, blocked this response, which was reversed by co-administration with the peripherally-restricted CB1R neutral antagonist, AM6545. Furthermore, monoacylglycerol metabolic enzyme function was dysregulated in the upper small-intestinal epithelium from DIO mice, which was met with increased levels of a variety of monoacylglycerols including the endocannabinoid, 2-arachidonoyl-sn-glycerol. Corn oil failed to affect levels of CCK in DIO mouse plasma; however, pretreatment with AM6545 restored the ability for corn oil to stimulate increases in levels of CCK, which suggests that elevated endocannabinoid signaling at small intestinal CB1Rs in DIO mice inhibits nutrient-induced CCK release. Moreover, the hypophagic effect of AM6545 in DIO mice was reversed by co-administration with the CCKA receptor antagonist, devazepide. Collectively, these results provide evidence that hyperphagia associated with DIO is driven by a mechanism that includes CB1R-mediated inhibition of gut-brain satiation signaling.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | | | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Kim KS, Seeley RJ, Sandoval DA. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci 2018; 19:185-196. [PMID: 29467468 PMCID: PMC9190118 DOI: 10.1038/nrn.2018.8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.
Collapse
Affiliation(s)
- Ki-Suk Kim
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Darleen A. Sandoval
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Desai AJ, Dong M, Langlais BT, Dueck AC, Miller LJ. Cholecystokinin responsiveness varies across the population dependent on metabolic phenotype. Am J Clin Nutr 2017; 106:447-456. [PMID: 28592602 PMCID: PMC5525122 DOI: 10.3945/ajcn.117.156943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Cholecystokinin (CCK) is an important satiety factor, acting at type 1 receptors (CCK1Rs) on vagal afferent neurons; however, CCK agonists have failed clinical trials for obesity. We postulated that CCK1R function might be defective in such patients due to abnormal membrane composition, such as that observed in cholesterol gallstone disease.Objective: Due to the challenges in directly studying CCK1Rs relevant to appetite control, our goal was to develop and apply a method to determine the impact of a patient's own cellular environment on CCK stimulus-activity coupling and to determine whether CCK sensitivity correlated with the metabolic phenotype of a high-risk population.Design: Wild-type CCK1Rs were expressed on leukocytes from 112 Hispanic patients by using adenoviral transduction and 24-h culture, with quantitation of cholesterol composition and intracellular calcium responses to CCK. Results were correlated with clinical, biochemical, and morphometric characteristics.Results: Broad ranges of cellular cholesterol and CCK responsiveness were observed, with elevated cholesterol correlated with reduced CCK sensitivity. This was prominent with increasing degrees of obesity and the presence of diabetes, particularly when poorly controlled. No single standard clinical metric correlated directly with CCK responsiveness. Reduced CCK sensitivity best correlated with elevated serum triglycerides in normal-weight participants and with low HDL concentrations and elevated glycated hemoglobin in obese and diabetic patients.Conclusions: CCK responsiveness varies widely across the population, with reduced signaling in patients with obesity and diabetes. This could explain the failure of CCK agonists in previous clinical trials and supports the rationale to develop corrective modulators to reverse this defective servomechanism for appetite control. This trial was registered at www.clinicaltrials.gov as NCT03121755.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics and
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics and
| | | | | | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics and
| |
Collapse
|
13
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
14
|
Miller LJ, Desai AJ. Metabolic Actions of the Type 1 Cholecystokinin Receptor: Its Potential as a Therapeutic Target. Trends Endocrinol Metab 2016; 27:609-619. [PMID: 27156041 PMCID: PMC4992613 DOI: 10.1016/j.tem.2016.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Cholecystokinin (CCK) regulates appetite and reduces food intake by activating the type 1 CCK receptor (CCK1R). Attempts to develop CCK1R agonists for obesity have yielded active agents that have not reached clinical practice. Here we discuss why, along with new strategies to target CCK1R more effectively. We examine signaling events and the possibility of developing agents that exhibit ligand-directed bias, to dissociate satiety activity from undesirable side effects. Potential allosteric sites of modulation are also discussed, along with desired properties of a positive allosteric modulator (PAM) without intrinsic agonist action as another strategy to treat obesity. These new types of CCK1R-active drugs could be useful as standalone agents or as part of a rational drug combination for management of obesity.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA.
| | - Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| |
Collapse
|
15
|
Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 2016; 7:11905. [PMID: 27301688 PMCID: PMC4912612 DOI: 10.1038/ncomms11905] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
The central nervous system controls food consumption to maintain metabolic homoeostasis. In response to a meal, visceral signals from the gut activate neurons in the nucleus of the solitary tract (NTS) via the vagus nerve. These NTS neurons then excite brain regions known to mediate feeding behaviour, such as the lateral parabrachial nucleus (PBN). We previously described a neural circuit for appetite suppression involving calcitonin gene-related protein (CGRP)-expressing PBN (CGRPPBN) neurons; however, the molecular identity of the inputs to these neurons was not established. Here we identify cholecystokinin (CCK) and noradrenergic, dopamine β-hydroxylase (DBH)-expressing NTS neurons as two separate populations that directly excite CGRPPBN neurons. When these NTS neurons are activated using optogenetic or chemogenetic methods, food intake decreases and with chronic stimulation mice lose body weight. Our optogenetic results reveal that CCK and DBH neurons in the NTS directly engage CGRPPBN neurons to promote anorexia. Neurons in the nucleus of the solitary tract (NTS) are known to receive visceral signals from the gut during feeding. Here, the authors identify two populations of CCK- and DBH-expressing NTS neurons that work to suppress food intake when activated via opto- or chemogenetic stimulation.
Collapse
Affiliation(s)
- Carolyn W Roman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Victor A Derkach
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Kazmi HR, Chandra A, Nigam J, Baghel K, Srivastava M, Maurya SS, Parmar D. Polymorphism and Expression Profile of Cholecystokinin Type A Receptor in Relation to Gallstone Disease Susceptibility. Biochem Genet 2016; 54:665-75. [PMID: 27287528 DOI: 10.1007/s10528-016-9745-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated expression pattern of Cholecystokinin type A receptor (CCKAR) in relation to its commonly studied polymorphism (rs1800857, T/C) in gallstone disease (GSD) patients and controls. A total of 502 subjects (272 GSD and 230 controls) were enrolled, and genotyping was performed by evaluating restriction fragments of PstI digested DNA. For analyzing expression pattern of CCKAR in relation to polymorphism, gallbladder tissue samples from 80 subjects (GSD-55; control-25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-PCR and confirmed using real-time PCR. Protein expression was evaluated by enzyme-linked immunosorbent assay. We observed significantly (p < 0.0001) lower expression of CCKAR mRNA and protein in GSD tissues as compared with control. Significantly higher frequency of A1/A1 genotype (C/T transition) (p = 0.0005) was observed for GSD as compared with control. Expression of CCKAR protein was found to be significantly lower (p < 0.0001) in A1/A1 genotype as compared with other genotypes for GSD patients. Perhaps, this is the first report providing evidence of alteration in CCKAR expression in relation to its polymorphism elucidating the molecular pathway of the disease. Additional investigations with lager sample size are needed to confirm these findings.
Collapse
Affiliation(s)
- Hasan Raza Kazmi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India
| | - Abhijit Chandra
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226003, India.
| | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226003, India
| | - Kavita Baghel
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226003, India
| | - Meenu Srivastava
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226003, India
| | - Shailendra S Maurya
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow, 226003, India
| | - Devendra Parmar
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow, 226003, India
| |
Collapse
|
17
|
Desai AJ, Dong M, Harikumar KG, Miller LJ. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function. Am J Physiol Gastrointest Liver Physiol 2015; 309:G377-86. [PMID: 26138469 PMCID: PMC4556949 DOI: 10.1152/ajpgi.00173.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/31/2023]
Abstract
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation.
Collapse
Affiliation(s)
- Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
18
|
Epidemiology and Risk Factors for Exocrine Pancreatic Cancer in a Northern African Population. J Gastrointest Cancer 2015; 46:126-30. [DOI: 10.1007/s12029-015-9693-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Differential expression of cholecystokinin A receptor in gallbladder cancer in the young and elderly suggests two subsets of the same disease? BIOMED RESEARCH INTERNATIONAL 2014; 2014:625695. [PMID: 25025063 PMCID: PMC4082861 DOI: 10.1155/2014/625695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Abstract
Background. Cholecystokinin type A receptor (CCKAR) is known to be overexpressed in variety of human malignancies but information regarding its expression in gallbladder cancer (GBC) is limited. Attempts were now made to investigate expression pattern of CCKAR mRNA and protein in controls and GBC patients and correlate it with various clinicopathological parameters following surgical resection. Materials and Methods. Gallbladder tissue samples from 64 subjects (GBC: 39; control: 25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-polymerase chain reaction and confirmed using real-time polymerase chain reaction. Protein expression was studied by enzyme-linked immunosorbent assay. Results. Significantly higher expression of CCKAR mRNA (P < 0.0001) and protein (P < 0.0001) was observed in GBC tissues. Overexpression was also observed for stage III and in moderately and poorly differentiated tumors. When the clinicopathological parameters were compared, we found age dependent decrease in CCKAR expression. Relatively higher expression of CCKAR was observed in younger patients (age < 45 years) having more aggressive disease when compared with elderly ones (age ≥ 45 years). Conclusions. Age related differential expression of CCKAR in GBC may suggest two possible variants of the disease in this endemic belt.
Collapse
|
20
|
Abstract
Gallstone disease (GSD) is one of the most common biliary tract disorders worldwide. The prevalence, however, varies from 5.9-21.9% in Western society to 3.1-10.7% in Asia. Most gallstones (75%) are silent. Approximately half of symptomatic gallstone carriers experience a second episode of biliary pain within 1 year. These individuals are at increased risk of developing acute cholecystitis, acute cholangitis, and biliary pancreatitis. As can be expected, these complications burden health care systems because of their invasive nature and surgical cost. Factors that contribute to gallstone formation include supersaturation of cholesterol in bile, gallbladder hypomotility, destabilization of bile by kinetic protein factors, and abnormal mucins. Epidemiologic studies have implicated multiple environmental factors and some common genetic elements in gallstone formation. Genetic factors that influence gallstone formation have been elaborated from linkage studies of twins, families, and ethnicities. Accumulating evidence suggests that genetic factors play a role in GSD.
Collapse
Affiliation(s)
- Shih-Chang Chuang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
21
|
Steinert RE, Feinle-Bisset C, Geary N, Beglinger C. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Secretion of gastrointestinal hormones and eating control1. J Anim Sci 2013; 91:1963-73. [DOI: 10.2527/jas.2012-6022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- R. E. Steinert
- University of Adelaide Discipline of Medicine and Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Adelaide, SA 5005, Australia
| | - C. Feinle-Bisset
- University of Adelaide Discipline of Medicine and Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Adelaide, SA 5005, Australia
| | - N. Geary
- Zielackerstrasse 10, 8603 Schwerzenbach, Switzerland
| | - C. Beglinger
- Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, 4030, Switzerland
| |
Collapse
|
22
|
Blevins JE, Moralejo DH, Wolden-Hanson TH, Thatcher BS, Ho JM, Kaiyala KJ, Matsumoto K. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1231-40. [PMID: 23115121 DOI: 10.1152/ajpregu.00393.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Gallstone disease in children is evolving, and for the previous 3 decades, the frequency for surgery has increased greatly. This is in part because of improved diagnostic modalities, but also changing pathology, an increased awareness of emerging comorbidities, such as childhood obesity, and other associated risk factors. This article outlines the pathophysiology, genetics, and predisposing factors for developing gallstones and includes a review of the literature on the current and more novel medical and surgical techniques to treat this interesting disease.
Collapse
Affiliation(s)
- Jan Svensson
- Department of Paediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital & Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
24
|
Di Ciaula A, Wang DQH, Portincasa P. Gallbladder and gastric motility in obese newborns, pre-adolescents and adults. J Gastroenterol Hepatol 2012; 27:1298-305. [PMID: 22497555 DOI: 10.1111/j.1440-1746.2012.07149.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Impaired gallbladder and gastric motility have been associated with obesity in adults. The timing of appearance of this dysfunction, however, is unclear. METHODS Lean and obese subjects from three different age groups were studied noninvasively: 50 newborns (1-12 months old, six obese), 18 pre-adolescents (7-8 years old, seven obese), and 99 adults (22-80 years old, 32 obese) classified according to standard normal tables and body mass index. Changes of fasting/postprandial gallbladder and gastric motility were assessed simultaneously by functional ultrasonography in response to milk (newborns and pre-adolescents) and to a liquid test meal (adults). RESULTS In newborns, fasting and postprandial gallbladder volumes and gastric emptying were similar between obese and lean subjects. In pre-adolescents, obese subjects had a larger fasting gallbladder volume, with slower postprandial gastric emptying than lean subjects. In obese adults, the most evident dysfunction emerged, with larger fasting and postprandial residual gallbladder volume, and slower postprandial gastric emptying than lean subjects. CONCLUSIONS Obese subjects display abnormal gallbladder and gastric motility patterns, which first appear in pre-adolescents and deteriorate in adults. Such abnormalities are absent in obese newborns. Functional ultrasonography can detect altered cholecysto-gastric motility at the earliest stage. Our findings suggest an age-related decline of motility, probably secondary to excessive fat and insulin-resistance.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie, Bisceglie (BAT), Italy
| | | | | |
Collapse
|
25
|
Desai AJ, Miller LJ. Sensitivity of cholecystokinin receptors to membrane cholesterol content. Front Endocrinol (Lausanne) 2012; 3:123. [PMID: 23087674 PMCID: PMC3475150 DOI: 10.3389/fendo.2012.00123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022] Open
Abstract
Cholesterol represents a structurally and functionally important component of the eukaryotic cell membrane, where it increases lipid order, affects permeability, and influences the lateral mobility and conformation of membrane proteins. Several G protein-coupled receptors have been shown to be affected by the cholesterol content of the membrane, with functional impact on their ligand binding and signal transduction characteristics. The effects of cholesterol can be mediated directly by specific molecular interactions with the receptor and/or indirectly by altering the physical properties of the membrane. This review focuses on the importance and differential effects of membrane cholesterol on the activity of cholecystokinin (CCK) receptors. The type 1 CCK receptor is quite sensitive to its cholesterol environment, while the type 2 CCK receptor is not. The possible structural basis for this differential impact is explored and the implications of pathological states, such as metabolic syndrome, in which membrane cholesterol may be increased and CCK1R function may be abnormal are discussed. This is believed to have substantial potential importance for the development of drugs targeting the CCK receptor.
Collapse
Affiliation(s)
| | - Laurence J. Miller
- *Correspondence: Laurence J. Miller, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA. e-mail:
| |
Collapse
|
26
|
Owyang C, Heldsinger A. Vagal control of satiety and hormonal regulation of appetite. J Neurogastroenterol Motil 2011; 17:338-48. [PMID: 22148102 PMCID: PMC3228973 DOI: 10.5056/jnm.2011.17.4.338] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/27/2022] Open
Abstract
The paradigm for the control of feeding behavior has changed significantly. In this review, we present evidence that the separation of function in which cholecystokinin (CCK) controls short-term food intake and leptin regulate long-term eating behavior and body weight become less clear. In addition to the hypothalamus, the vagus nerve is critically involved in the control of feeding by transmitting signals arising from the upper gut to the nucleus of the solitary tract. Among the peripheral mediators, CCK is the key peptide involved in generating the satiety signal via the vagus. Leptin receptors have also been identified in the vagus nerve. Studies in the rodents clearly indicate that leptin and CCK interact synergistically to induce short-term inhibition of food intake and long-term reduction of body weight. The synergistic interaction between vagal CCK-A receptor and leptin is mediated by the phosphorylation of signal transducer and activator of transcription3 (STAT3), which in turn, activates closure of K(+) channels, leading to membrane depolarization and neuronal firing. This involves the interaction between CCK/SRC/phosphoinositide 3-kinase cascades and leptin/Janus kinase-2/phosphoinositide 3-kinase/STAT3 signaling pathways. It is conceivable that malfunctioning of these signaling molecules may result in eating disorders.
Collapse
Affiliation(s)
- Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
27
|
Potter RM, Harikumar KG, Wu SV, Miller LJ. Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 2011; 53:137-48. [PMID: 22021636 DOI: 10.1194/jlr.m020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that membrane cholesterol can associate with G protein-coupled receptors (GPCRs) and affect their function. Previously, we reported that manipulation of membrane cholesterol affects ligand binding and signal transduction of the type 1 cholecystokinin receptor (CCK1R), a Class A GPCR. We now demonstrate that the closely related type 2 cholecystokinin receptor (CCK2R) does not share this cholesterol sensitivity. The sequences of both receptors reveal almost identical cholesterol interaction motifs in analogous locations in transmembrane segments two, three, four, and five. The disparity in cholesterol sensitivity between these receptors, despite their close structural relationship, provides a unique opportunity to define the possible structural basis of cholesterol sensitivity of CCK1R. To evaluate the relative contributions of different regions of CCK1R to cholesterol sensitivity, we performed ligand binding studies and biological activity assays of wild-type and CCK2R/CCK1R chimeric receptor-bearing Chinese hamster ovary cells after manipulation of membrane cholesterol. We also extended these studies to site-directed mutations within the cholesterol interaction motifs. The results contribute to a better understanding of the structural requirements for cholesterol sensitivity in CCK1R and provides insight into the function of other cholesterol-sensitive Class A GPCRs.
Collapse
Affiliation(s)
- Ross M Potter
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
28
|
Rai R, Tewari M, Kumar M, Singh TB, Shukla HS. Expression profile of cholecystokinin type-A receptor in gallbladder cancer and gallstone disease. Hepatobiliary Pancreat Dis Int 2011; 10:408-14. [PMID: 21813391 DOI: 10.1016/s1499-3872(11)60069-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Regulatory peptide receptors have attracted the interest of oncologists as a new promising approach for cancer pathology, imaging and therapy. Although cholecystokinin (CCK) is a potent modulator of gallbladder contractility and plays a potential role in pancreatic carcinogenesis through CCK type-A receptor (CCKAR), its role in gallbladder cancer (GBC) is still unknown and immunohistochemical detection of CCKAR in the gallbladder has not yet been reported. This novel case-control study aimed to investigate the expression profile of CCKAR in GBC and gallstone disease (GSD). METHODS This study included 162 samples of gallbladder: 94 from GBC and 68 from GSD. Expression of CCKAR was analyzed by immunohistochemistry and immunoblotting. The results were statistically correlated with disease history including age, sex, presence of gallstone, stage and differentiation. RESULTS CCKAR was positive in 30/68 (44.1%) of GSD and 72/94 (76.6%) of GBC samples. Fifty-one of the 72 (70.8%) CCKAR-positive GBC samples showed over-expression. Interestingly, consistent results also appeared in the immunoblotting study. CONCLUSIONS CCKAR expression was significantly increased in GBC compared to GSD. Moreover, CCKAR expression was associated with the degree of tumor differentiation, i.e., less expression in poorly-differentiated tumors. Thus, it has future prognostic and therapeutic implications in the management of GBC.
Collapse
Affiliation(s)
- Rajani Rai
- Department of Surgical Oncology, the Institute of Medical Sciences, Banaras Hindu University, Varanasi (UP), India
| | | | | | | | | |
Collapse
|
29
|
Marschall HU, Katsika D, Rudling M, Einarsson C. The genetic background of gallstone formation: an update. Biochem Biophys Res Commun 2010; 396:58-62. [PMID: 20494111 DOI: 10.1016/j.bbrc.2010.02.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/21/2010] [Indexed: 12/22/2022]
Abstract
Gallstone disease is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems that is expected to increase in ageing populations at risk. This review summarizes recent data on the genetic background of cholesterol gallstones and the role of biliary lipid composition. Three previously unknown non-synonymous mutations in the ABCB4 gene encoding the hepatobiliary phospholipid-flippase MDR3 are presented.
Collapse
Affiliation(s)
- Hanns-Ulrich Marschall
- Department of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital at Huddinge, S-14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
30
|
Wang HH, Portincasa P, Afdhal NH, Wang DQH. Lith genes and genetic analysis of cholesterol gallstone formation. Gastroenterol Clin North Am 2010; 39:185-207, vii-viii. [PMID: 20478482 DOI: 10.1016/j.gtc.2010.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Epidemiologic investigations, clinical observations, and family and twin studies in humans, as well as gallstone prevalence investigations in inbred mouse models, support the concept that cholesterol cholelithiasis could result from a complex interaction of environmental factors and the effects of multiple undetermined genes. Quantitative trait locus (QTL) analysis is a powerful genetic method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes, and the subsequent positional cloning of such genes responsible for QTLs, followed by the use of manufactured mouse strains with "knockout" or "knockin" of the genes, could lead to the discovery of lithogenic actions of gallstone (LITH) genes. The combined use of genomic strategies and phenotypic studies in inbred strains of mice has successfully resulted in the identification of many candidate LITH genes. Because there is exceptionally close homology between mouse and human genomes, the orthologous human LITH genes can be identified from the mouse study. The discovery of LITH genes and more fundamental knowledge concerning the genetic determinants and molecular mechanisms underlying the formation of cholesterol gallstones in humans will pave the way for critical diagnostic and prelithogenic preventive measures for this exceptionally prevalent digestive disease.
Collapse
Affiliation(s)
- Helen H Wang
- Liver Center and Gastroenterology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
32
|
Common Variants of ABCB4 and ABCB11 and Plasma Lipid Levels: A Study in Sib Pairs with Gallstones, and Controls. Lipids 2009; 44:521-6. [PMID: 19408031 DOI: 10.1007/s11745-009-3300-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/01/2009] [Indexed: 01/25/2023]
|
33
|
Abstract
The number of gallstone patients is increasing in ageing populations with a high prevalence of metabolic syndrome and obesity. Recently variants of hepatic ATP binding cassette transporters have been identified as genetic susceptibility factors for gallstone disease, pointing to novel means for risk assessment and prevention. Although laparoscopic cholecystectomy is the mainstay of therapy for symptomatic gallbladder stones, the clinical management of gallstone disease is changing rapidly, with an increase in day case surgery and the advent of transluminal endoscopic surgery. Here, we summarize the molecular and genetic mechanisms of gallstone formation as well as the current evidence-based algorithms for diagnosis and therapy of gallbladder and bile duct stones.
Collapse
Affiliation(s)
- Frank Lammert
- Department Internal Medicine II, Saarland University Hospital, Saarland University, Kirrberger Str., 66421 Hamburg/Saar, Germany.
| | | |
Collapse
|
34
|
Srivastava A, Pandey SN, Dixit M, Choudhuri G, Mittal B. Cholecystokinin receptor A gene polymorphism in gallstone disease and gallbladder cancer. J Gastroenterol Hepatol 2008; 23:970-5. [PMID: 17944886 DOI: 10.1111/j.1440-1746.2007.05170.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Gallbladder carcinoma (GBC) usually arises in the background of gallstone disease which may be causatively related to decreased gallbladder contractility. Cholecystokinin receptor A (CCK-AR) mediates signals resulting in gallbladder contraction. Deteriorating gallbladder contraction promotes gallstone formation. A common genetic polymorphism of CCK-AR may be causatively associated with the risk of gallstone and GBC. This study aimed to understand the association of CCK-AR Pst I polymorphism in gallstone disease with gallbladder cancer. METHOD This study included 165 gallstone patients, 139 GBC patients, and 190 healthy subjects. Genotyping was done using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The frequency of the A1A1 genotype of CCK-AR was significantly higher in gallstone patients than healthy individuals (P = 0.008 odds ratio [OR] = 2.25, and 95% confidence interval [CI]:1.2-4.1). However, there was a significant difference in the frequency of A1A1 genotype when gallstone patients were compared to GBC patients (P = 0.041, OR = 0.49, and 95% CI: 0.3-0.9). On stratification of GBC patients according to presence or absence of gallstones, GBC patients without stones were compared to controls and GBC patients with stones were compared to stone patients; however, no significant differences in frequencies were observed. CONCLUSION The results suggest that the A1A1 genotype of CCK-AR is an independent genetic risk factor for gallstone disease and does not modulate the susceptibility of gallbladder cancer.
Collapse
Affiliation(s)
- Anvesha Srivastava
- Departments of Genetics, Sanjay Gandi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
35
|
Zagoory-Sharon O, Schroeder M, Levine A, Moran TH, Weller A. Adaptation to lactation in OLETF rats lacking CCK-1 receptors: body weight, fat tissues, leptin and oxytocin. Int J Obes (Lond) 2008; 32:1211-21. [PMID: 18461073 DOI: 10.1038/ijo.2008.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To understand the adaptation to lactation of obese rats, by studying the interplay among the gut hormone cholecystokinin (CCK), the adiposity hormone leptin and the affiliation hormone oxytocin in modulating body mass and fat storage. DESIGN Strain differences were examined between Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking expression of functional CCK-1 receptors and Long Evans Tokushima Otsuka (LETO) controls, tested as nulliparous dams, at the 7 and 15th lactation day, at weaning (lactation day 22) or 8 weeks postweaning. MEASUREMENTS We measured body mass, fat pads (brown, retroperitoneal and inguinal) and inguinal adipocytes. Plasma levels of leptin and oxytocin were determined. RESULTS Fat depots of LETO female rats were larger during lactation compared to the levels found in postweaning and nulliparous female rats. LETO female rats gained weight and accumulated fat during pregnancy and lactation, returning to their normal fat levels postweaning. In contrast, OLETF female rats presented lower body weight and fat depots during the lactation period than nulliparous dams, and regained the weight and fat postweaning. Plasma leptin and oxytocin were highly correlated and followed the same pattern. OLETF leptin levels were highly correlated with fat depot and inguinal cell surface. No significant correlation was found for LETO parameters. CONCLUSIONS Pregnancy and lactation are energy-consuming events, which naturally induce female rats to increase food intake and accumulate fat. When challenged by the demands of rapidly growing preobese OLETF pups, OLETF dams' fat stores are reduced to lean, LETO levels. During lactation, sensitivity of the oxytocinergic neurons descending from the paraventricular nuclei to the nucleus of the solitary tract to CCK is reduced. We theorized that this pathway is not available to OLETF female rats that lack functional CCK-1 receptors to mediate the signal. The current study contributes to the understanding of the female body's adaptation to lactation.
Collapse
Affiliation(s)
- O Zagoory-Sharon
- Department of Psychology, The Leslie and Susan Gonda Goldschmied Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| | | | | | | | | |
Collapse
|
36
|
Genetics of biliary tract diseases: new insights into gallstone disease and biliary tract cancers. Curr Opin Gastroenterol 2008; 24:363-71. [PMID: 18408466 DOI: 10.1097/mog.0b013e3282f79b32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Chronic biliary diseases are due to complex interactions between environmental and genetic factors. Here we summarize the current knowledge of genetic factors that contribute to common biliary diseases, focusing on gallstones and carcinogenesis, and review the recent association studies. RECENT FINDINGS Since most studies were based on small sample sizes, replication of the findings is mandatory. Recently a large twin study confirmed a genetic predisposition to gallstones and a genome-wide association scan identified the hepatocanalicular cholesterol transporter ABCG8 as the common susceptibility factor for gallstone disease. Genetic studies in patients with cholangiocarcinoma indicate that genes controlling the metabolism and transport of xenobiotics or modulating chronic inflammation may determine individual susceptibility. SUMMARY Genetic studies have identified the first susceptibility factors for gallstones and biliary tract cancers, but most results have yet to be replicated. In the future, genome-wide studies in different populations are likely to identify the entire set of genes contributing to chronic biliary diseases. Since the disease phenotypes result from the manifestation of susceptibility factors under the influence of environmental triggers, the discovery of these genes will open avenues to control environmental challenges and lead to novel strategies for risk assessment ('gene signatures') and prevention.
Collapse
|
37
|
Little TJ, Horowitz M, Feinle-Bisset C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity. Am J Clin Nutr 2007; 86:531-41. [PMID: 17823414 DOI: 10.1093/ajcn/86.3.531] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The presence of fat in the small intestine slows gastric emptying, stimulates the release of many gastrointestinal hormones, and suppresses appetite and energy intake as a result of the digestion of fats into free fatty acids; the effects of free fatty acids are, in turn, dependent on their chain length. Given these effects of fat, it is paradoxical that high dietary fat intakes have been linked to increased energy intake and body weight and are considered to play a significant role in the pathogenesis of obesity. However, increasing evidence indicates that a chronic increase in dietary fat is associated with an attenuation of the feedback signals arising from the small intestine induced by fat, with a consequent relative acceleration of gastric emptying, modulation of gastrointestinal hormone secretion, and attenuation of the suppression of energy intake. This review addresses the gastrointestinal factors involved in the regulation of appetite and energy intake, with a particular focus on 1) the gastrointestinal mechanisms triggered by small intestinal fat that modulate energy intake, 2) the potential role of a high dietary fat intake in the development of obesity, and 3) implications for the prevention and management of obesity.
Collapse
Affiliation(s)
- Tanya J Little
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
38
|
Lyons MA, Wittenburg H. Cholesterol gallstone susceptibility loci: a mouse map, candidate gene evaluation, and guide to human LITH genes. Gastroenterology 2006; 131:1943-70. [PMID: 17087948 DOI: 10.1053/j.gastro.2006.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/15/2006] [Indexed: 12/11/2022]
Affiliation(s)
- Malcolm A Lyons
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Perth, Australia.
| | | |
Collapse
|
39
|
Grünhage F, Lammert F. Gallstone disease. Pathogenesis of gallstones: A genetic perspective. Best Pract Res Clin Gastroenterol 2006; 20:997-1015. [PMID: 17127184 DOI: 10.1016/j.bpg.2006.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholelithiasis is one of the most prevalent gastroenterological diseases, imposing a huge economic burden on health-care systems. Gallbladder stones form when the concentration of cholesterol or bilirubin exceeds the solubility in the bile salt and phospholipid-rich bile. The physiology of biliary lipid secretion by a number of specialized transport proteins has recently been elucidated, and underlying genetic defects in these proteins have been identified as susceptibility factors for gallstone disease. Recent studies of identical twins and family strongly support the idea of a genetic component to gallstone disease. Epidemiological studies in high-risk populations indicate that gallstone formation is caused by multiple environmental influences and common genetic factors and their interactions. Monogenic subtypes of cholelithiasis, such as biliary lipid transporter deficiencies, appear to be rare. The characterization of lithogenic genes in knockout and transgenic mice, and the identification of many gallstone susceptibility loci in inbred mice, provide the basis for studies of the corresponding genes in patients with gallstones. The transfer of findings from mouse genetics to the bedside might lead to new strategies for individual risk assessment and reveal molecular targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Frank Grünhage
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | |
Collapse
|
40
|
Lammert F, Sauerbruch T. Mechanisms of disease: the genetic epidemiology of gallbladder stones. ACTA ACUST UNITED AC 2005; 2:423-33. [PMID: 16265433 DOI: 10.1038/ncpgasthep0257] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/01/2005] [Indexed: 02/06/2023]
Abstract
Cholelithiasis is one of the most prevalent and most expensive gastroenterologic diseases. It belongs to the group of complex metabolic disorders that affect humans, and its critical pathogenic mechanisms are not well defined. As a result, primary or secondary prevention strategies are sparse, and the only effective treatment is cholecystectomy. Here we provide an update on the molecular pathogenesis of gallbladder stones, evidence supporting the hypothesis that genetic factors are key elements predisposing to gallstones, and progress in human genetic studies of cholesterol stones. Data from recent identical twin, family and linkage studies provide conclusive evidence for a strong genetic component to gallstone disease. Furthermore, epidemiologic studies in at-risk populations indicate that gallstone formation is caused by multiple environmental influences and common genetic factors and their interactions. By contrast, monogenic subtypes of cholelithiasis, such as ATP-binding-cassette transporter deficiencies, appear to be rare. The summary of human association studies illustrates that distinct common gene variants might contribute to gallstone formation in different ethnic groups. The characterization of lithogenic genes in knockout and transgenic mice and the identification of many gallstone-susceptibility loci in inbred mice provide the basis for studies of the corresponding genes in patients with gallstones. The transfer of findings from mouse genetics to the bedside might lead to new strategies for individual risk assessment and reveal novel molecular targets for prevention and medical therapies.
Collapse
Affiliation(s)
- Frank Lammert
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
41
|
Abstract
Summary Cholecystokinin (CCK), a peptide that is distributed widely throughout the gastrointestinal tract and the central nervous system, has a number of physiological effects including the stimulation of gallbladder contraction and pancreatic and gastric acid secretion, slowing of gastric emptying and suppression of energy intake. This review focuses on current knowledge relating to (i) the effects of CCK on energy intake; (ii) the role for CCK in the pathophysiology of obesity; and (iii) the therapeutic potential for strategies which modulate the action or secretion of CCK in the management of obesity. While CCK plays a role in the acute regulation of appetite and energy intake, there is little evidence to suggest that specific CCK receptor agonists, or modulation of the actions of endogenous CCK by dietary manipulation, have sustainable inhibitory effects on energy intake. Hence, it appears unlikely that manipulating the pathways by which CCK modulates energy intake will prove to be an effective strategy in the long term management of obesity.
Collapse
Affiliation(s)
- T J Little
- University of Adelaide Department of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
42
|
Julien S, Lainé J, Morisset J. The rat pancreatic islets: a reliable tool to study islet responses to cholecystokinin receptor occupation. ACTA ACUST UNITED AC 2005; 121:73-81. [PMID: 15256276 DOI: 10.1016/j.regpep.2004.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 04/14/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
This study was undertaken to show that rat purified islets can be used as a reliable tool to study some aspects of human islet's physiology related to CCKR occupation. Therefore, isolated foetal, adult human and rat islets were compared for (1) CCKR subtypes mRNA and protein expression and somatostatin (SS) mRNA and (2) co-localization of these receptors with insulin, glucagon and SS. Finally, rat islets were tested for their responsiveness to stimulation. Purified human and rat islets were used for CCKR subtypes and SS mRNA estimation by RT-PCR and protein by Western blots. Receptors and hormones co-localizations were evaluated by confocal microscopy. Hormones secretion served to determine rat islets responsiveness. Islets of both species express CCKA and CCKBR mRNA and proteins and SS mRNA. The CCKAR co-localizes with insulin and glucagon and the CCKBR with SS. Insulin release was increased 5-fold in response to 16 mM glucose and SS secretion reached 1.3- and 1.7-fold increments above basal in response to forskolin and IBMX. In conclusions, human and rat islets have comparable CCKR subtypes localized on the same cells; they also express SS mRNA. The rat islets are functional as they secrete but their response to hormonal stimulation remains to be clarified. These rat islets can thus serve as tools to study islets physiology.
Collapse
Affiliation(s)
- Sophie Julien
- Service de gastroentérologie, Dép. de médecine, Faculté de Médecine, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada J1H 5N4
| | | | | |
Collapse
|
43
|
Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ. Differential Effects of Modification of Membrane Cholesterol and Sphingolipids on the Conformation, Function, and Trafficking of the G Protein-coupled Cholecystokinin Receptor. J Biol Chem 2005; 280:2176-85. [PMID: 15537636 DOI: 10.1074/jbc.m410385200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lipid microenvironment of receptors can influence their conformation, function, and regulation. Cholecystokinin (CCK)-stimulated signaling is abnormal in some forms of hyperlipidemia, suggesting the possibility of unique sensitivity to its lipid environment. Here we examined the influence of cholesterol and sphingolipids on CCK receptors in model Chinese hamster ovary cell systems having lipid levels modified. Cholesterol was modulated chemically or metabolically, and sphingolipids were modulated using a temperature-sensitive cell line (SPB-1). Receptor conformation was probed with a fluorescent full agonist ligand, Alexa 488-conjugated Gly-[Nle(28,31)]CCK-(26-33), shown previously to decrease in anisotropy and lifetime when occupying a receptor in the active conformation (Harikumar, K. G., Pinon, D. L., Wessels, W. S., Prendergast, F. G., and Miller, L. J. (2002) J. Biol. Chem. 277, 18552-18560). Anisotropy and lifetime of this probe were increased and prolonged with cholesterol enrichment, and decreased and shortened with depletion of cholesterol or sphingolipids. The increase in these parameters with cholesterol enrichment may reflect change in CCK receptor conformation toward its inactive, uncoupled state. Indeed, cholesterol enrichment resulted in nonproductive agonist ligand binding, with affinity of binding higher than normal and calcium signaling in response to this reduced. In cholesterol- and sphingolipid-depleted states, the receptor moved into conformations that were less than optimal. With cholesterol depletion, both ligand binding and signaling were decreased, yet internalization and trafficking were unperturbed. With sphingolipid depletion, ligand binding and signaling were normal, but internalization and trafficking were markedly inhibited. Of note, normal transferrin receptor trafficking through the same clathrin-dependent pathway was maintained under these conditions. Thus, lipid microenvironment of the CCK receptor is particularly important, with different lipids having distinct effects.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Mayo Clinic Scottsdale, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wang DQH, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest 2004; 114:521-8. [PMID: 15314689 PMCID: PMC503765 DOI: 10.1172/jci16801] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 06/29/2004] [Indexed: 01/09/2023] Open
Abstract
Cholecystokinin (CCK) modulates contractility of the gallbladder, the sphincter of Oddi, and the stomach. These effects are mediated through activation of gastrointestinal smooth muscle as well as enteric neuron CCK-1 receptors (CCK-1Rs). To investigate the potential physiological and pathophysiological functions linked to CCK-1R-mediated signaling, we compared male WT and CCK-1R-deficient mice (129/SvEv). After 12 weeks on either a standard mouse chow or a lithogenic diet (containing 1% cholesterol, 0.5% cholic acid, and 15% dairy fat), small-intestinal transit time, intestinal cholesterol absorption, biliary cholesterol secretion, and cholesterol gallstone prevalence were compared in knockout versus WT animals. Analysis of mice on either the chow or the lithogenic diet revealed that CCK-1R(-/-) animals had larger gallbladder volumes (predisposing to bile stasis), significant retardation of small-intestinal transit times (resulting in increased cholesterol absorption), and increased biliary cholesterol secretion rates. The elevation in bile cholesterol, coupled with a tendency toward gallbladder stasis (due to the absence of CCK-induced contraction), facilitates nucleation, growth, and agglomeration of cholesterol monohydrate crystals; this sequence of events in turn results in a significantly higher prevalence of cholesterol gallstones in the CCK-1R-null mice.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Bi S, Scott KA, Kopin AS, Moran TH. Differential roles for cholecystokinin a receptors in energy balance in rats and mice. Endocrinology 2004; 145:3873-80. [PMID: 15123537 DOI: 10.1210/en.2004-0284] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although cholecystokinin A (CCK-A) receptors (CCK-AR) mediate the feeding inhibitory actions of CCK in both rats and mice, the absence of CCK-AR results in species-specific phenotypes. The lack of CCK-AR in Otsuka Long-Evans Tokushima fatty (OLETF) rats results in hyperphagia and obesity. We have suggested that demonstrated increases in meal size and elevated levels of dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) gene expression may contribute to this phenotype. In contrast to OLETF rats, CCK-AR(-/-) mice have normal total daily food intake and do not develop obesity. To assess the basis underlying the different phenotypes in rats and mice lacking CCK-AR, we characterized meal patterns in CCK-AR(-/-) mice and determined whether CCK-AR(-/-) mice exhibited an alteration in DMH NPY gene expression. We demonstrate that although CCK-AR(-/-) mice show a similar dysregulation in meal size as OLETF rats, they do not have an elevation in DMH NPY mRNA expression levels. In fact, intact mice have no CCK-AR in the DMH. Furthermore, in intact rats, NPY and CCK-AR are colocalized in DMH neurons, and parenchymal injection of CCK into the DMH reduces food intake and down-regulates DMH NPY mRNA expression. These results suggest that although CCK-AR plays a role in the mediation of CCK actions in the control of meal size in both rats and mice, CCK-AR seems to contribute to modulating DMH NPY levels only in rats. The deficit in CCK's action in the control of DMH NPY gene expression may play a major role in the obese phenotype in OLETF rats.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
46
|
Wang DQH, Afdhal NH. Genetic analysis of cholesterol gallstone formation: searching for Lith (gallstone) genes. Curr Gastroenterol Rep 2004; 6:140-50. [PMID: 15191694 DOI: 10.1007/s11894-004-0042-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genetics of cholesterol cholelithiasis is complex because a number of interacting genes regulate biliary cholesterol homeostasis. Quantitative trait locus (QTL) analysis is a powerful method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes. The subsequent positional cloning of such genes responsible for QTLs may lead to the discovery of pathophysiologic functions of Lith (gallstone) genes. In this review, we present a map of candidate genes for Lith genes that may determine gallstone susceptibility in mice. The physical-chemical, pathophysiologic, and genetic studies of Lith genes in bile, liver, gallbladder, and intestine will be crucial for elucidating the genetic mechanisms of cholesterol gallstone disease in mice and in humans. Because exceptionally close homology exists between mouse and human genomes, the orthologous human LITH genes can often be recognized after mouse genes are identified.
Collapse
Affiliation(s)
- David Q-H Wang
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, DA 601, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Wang HH, Afdhal NH, Gendler SJ, Wang DQH. Targeted disruption of the murine mucin gene 1 decreases susceptibility to cholesterol gallstone formation. J Lipid Res 2004; 45:438-47. [PMID: 14703511 DOI: 10.1194/jlr.m300468-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, and Harvard Digestive Diseases Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Akio Inui
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
49
|
Sato N, Miyasaka K, Suzuki S, Kanai S, Ohta M, Kawanami T, Yoshida Y, Takiguchi S, Noda T, Takata Y, Funakoshi A. Lack of cholecystokinin-A receptor enhanced gallstone formation: a study in CCK-A receptor gene knockout mice. Dig Dis Sci 2003. [PMID: 14627338 DOI: 10.1023/a: 1026110002713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The etiology of gallstones is multifactorial, with interactions between genes and the environment. We generated cholecystokinin (CCK) -A receptor (R)-deficient (-/-) mice and found that CCK did not produce gallbladder contraction in CCK-AR(-/-) mice. The purpose of this study was to identify the role of CCK-AR on gallstone formation. Age-matched CCK-AR gene (+/+) and (-/-) progenies were used. Sludge and gallstone formation, as well as plasma cholesterol levels, were measured at 12 and 24 months of age. Sludge and gallstone formation were significantly higher in CCK-AR(-/-) mice than in CCK-AR(+/+) mice at 12 and 24 months of age, although these were not different between 12 and 24 months of age. The plasma cholesterol levels, daily food intake, and body weight were not significantly different between CCK-AR(+/+) and (-/-) mice. Sludge and gallstone formation were not observed at 6 months of age. In conclusion, deteriorated gallbladder contraction due to a lack of CCK-AR favored gallstone formation after the middle age of life.
Collapse
Affiliation(s)
- Norikazu Sato
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo-173-0015, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Leonard MR, Churchill GA, Carey MC, Paigen B. New quantitative trait loci that contribute to cholesterol gallstone formation detected in an intercross of CAST/Ei and 129S1/SvImJ inbred mice. Physiol Genomics 2003; 14:225-39. [PMID: 12837957 DOI: 10.1152/physiolgenomics.00073.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cholesterol gallstone formation is a response to interactions between multiple genes and environmental stimuli. To determine the subset of cholesterol gallstone susceptibility (Lith) genes possessed by strains CAST/Ei (susceptible) and 129S1/SvImJ (resistant), we conducted quantitative trait locus (QTL) analyses of an intercross between these strains. Parental strains and F(1) mice of both genders were evaluated for gallstone formation after consumption of a lithogenic diet for 8 wk. Gallstone susceptibility of strain CAST was predominantly due to cholesterol hypersecretion. Male intercross offspring were genotyped and phenotyped for cholesterol gallstone formation after consumption of the lithogenic diet for 10 wk. Linkage analysis was performed using PSEUDOMARKER software. One significant, new QTL was detected and named Lith13 [chromosome (Chr) 5, 30 cM]. Statistical analyses and QTL fine mapping suggest this QTL may comprise two closely linked loci. We confirmed the presence of Lith6 (Chr 6). Suggestive QTL were detected on Chrs 1, 2, 5, 14, and 16. The QTL on Chrs 2 and 16 confirmed previously identified, suggestive QTL. Therefore, they were named Lith12 (101 cM) and Lith14 (42 cM), respectively. We identified candidate genes based on known function and location and performed mRNA expression analyses using both parental strains and intercross progeny for preliminary evaluation of their contributions to gallstone formation. Cebpb (Lith12), Pparg (Lith6), and Slc21a1 (Lith6) displayed expression differences. Our work continues to demonstrate the genetic complexity and to elucidate the pathophysiology of cholesterol gallstone formation. It should facilitate the development of new approaches for treating this common human disorder.
Collapse
|