1
|
Tostivint H, Girardot F, Parmentier C, Pézeron G. [The caudal neurosecretory system, the other "neurohypophysial" system in fish]. Biol Aujourdhui 2023; 216:89-103. [PMID: 36744974 DOI: 10.1051/jbio/2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 02/07/2023]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.
Collapse
Affiliation(s)
- Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, IBPS, Neurosciences Paris Seine, Neuroplasticité des comportements de reproduction, 75005 Paris, France
| | - Guillaume Pézeron
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| |
Collapse
|
2
|
Jiang P, Pan X, Zhang W, Dai Z, Lu W. Neuromodulatory effects of GnRH on the caudal neurosecretory Dahlgren cells in female olive flounder. Gen Comp Endocrinol 2021; 307:113754. [PMID: 33711313 DOI: 10.1016/j.ygcen.2021.113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is considered a key player in reproduction. The caudal neurosecretory system (CNSS) is a unique neurosecretory structure of fish that may be involved in osmoregulation, nutrition, reproduction, and stress-related responses. However, a direct effect of GnRH on Dahlgren cells remains underexplored. Here, we examined the electrophysiological response of Dahlgren cell population of the CNSS to GnRH analog LHRH-A2 and the transcription of related key genes of CNSS. We found that GnRH increased overall firing frequency and may be changed the firing pattern from silent to burst or phasic firing in a subpopulation of Dahlgren cells. The effect of GnRH on a subpopulation of Dahlgren cells firing activity was blocked by the GnRH receptor (GnRH-R) antagonist cetrorelix. A positive correlation was observed between the UII and GnRH-R mRNA levels in CNSS or gonadosomatic index (GSI) during the breeding season. These findings are the first demonstration of the ability of GnRH acts as a modulator within the CNSS and add to our understanding of the physiological role of the CNSS in reproduction and seasonal adaptation.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Xinbei Pan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhiqi Dai
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
3
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
4
|
Calan M, Arkan T, Kume T, Bayraktar F. The relationship between urotensin II and insulin resistance in women with gestational diabetes mellitus. Hormones (Athens) 2019; 18:91-97. [PMID: 30471011 DOI: 10.1007/s42000-018-0084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
AIM Urotensin II (UII), a pluripotent vasoactive peptide, plays a crucial role in development of insulin resistance. Gestational diabetes mellitus (GDM) is a metabolic disorder associated with insulin resistance. The aims of the current study were to compare UII levels in women with or without GDM and to investigate the relationship between UII and insulin resistance in women with GDM. METHODS A total of 84 women were recruited in this case-control study (42 women with GDM and 42 age- and body mass index (BMI)-matched pregnant women without GDM as controls). GDM was diagnosed by a 2-h 75-g oral glucose tolerance test over a period of 24-28 gestational weeks. Circulating UII levels were assessed via the ELISA method. The metabolic parameters of the recruited women were also determined. RESULTS The circulating levels of UII in women with GDM were higher than in controls (11.56 ± 4.13 vs. 7.62 ± 3.45 ng/ml, P < 0.001). UII showed a positive correlation with insulin resistance marker (HOMA-IR), fasting blood glucose, and BMI. Moreover, according to the results of multiple linear regression analyses, UII was independently related to HOMA-IR. Additionally, the binary logistic analysis revealed that the women with the highest tertile of UII levels showed increased risk for GDM by comparison with those women with the lowest tertile of UII levels. CONCLUSION Elevated UII levels are associated with insulin resistance in women with GDM.
Collapse
Affiliation(s)
- Mehmet Calan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey.
| | - Tugba Arkan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| | - Tuncay Kume
- Department of Biochemistry and Clinical Biochemistry, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| | - Fırat Bayraktar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| |
Collapse
|
5
|
Chen X, Yin L, Jia WH, Wang NQ, Xu CY, Hou BY, Li N, Zhang L, Qiang GF, Yang XY, Du GH. Chronic Urotensin-II Administration Improves Whole-Body Glucose Tolerance in High-Fat Diet-Fed Mice. Front Endocrinol (Lausanne) 2019; 10:453. [PMID: 31379736 PMCID: PMC6660256 DOI: 10.3389/fendo.2019.00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Urotensin-II (U-II) is an endogenous peptide agonist of a G protein-coupled receptor-urotensin receptor. There are many conflicting findings about the effects of U-II on blood glucose. This study aims to explore the effects of U-II on glucose metabolism in high-fat diet-fed mice. Male C57BL/6J mice were fed a 45% high-fat diet or chow diet and were administered U-II intraperitoneally for in vivo study. Skeletal muscle C2C12 cells were used to determine the effects of U-II on glucose and fatty acid metabolism as well as mitochondrial respiratory function. In this study, we found that chronic U-II administration (more than 7 days) ameliorated glucose tolerance in high-fat diet-fed mice. In addition, chronic U-II administration reduced the weight gain and the adipose tissue weight, including visceral, subcutaneous, and brown adipose tissue, without a significant change in blood lipid levels. These were accompanied by the increased mRNA expression of the mitochondrial thermogenesis gene Ucp3 in skeletal muscle. Furthermore, in vitro treatment with U-II directly enhanced glucose and free fatty acid consumption in C2C12 cells with increased aerobic respiration. Taken together, chronic U-II stimulation leads to improvement on glucose tolerance in high-fat diet-fed mice and this effect maybe closely related to the reduction in adipose tissue weights and enhancement on energy substrate utilization in skeletal muscle.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Wei-hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Nuo-qi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Chun-yang Xu
- College of Pharmacy, Harbin University of Commerce, Haerbin, China
| | - Bi-yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Gui-fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Xiu-ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
- *Correspondence: Xiu-ying Yang
| | - Guan-hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
- Guan-hua Du
| |
Collapse
|
6
|
Liu D, Guo B, Han D, Deng K, Gu Z, Yang M, Xu W, Zhang W, Mai K. Comparatively study on the insulin-regulated glucose homeostasis through brain-gut peptides in Japanese flounder Paralichthys olivaceus after intraperitoneal and oral administration of glucose. Gen Comp Endocrinol 2018; 266:9-20. [PMID: 29454596 DOI: 10.1016/j.ygcen.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 01/22/2023]
Abstract
The present study comparatively analyzed the blood glucose and insulin concentration, the temporal and spatial expression of brain-gut peptides and the key enzymes of glycolysis and gluconeogenesis in Japanese flounder by intraperitoneal injection (IP) and oral administration (OR) of glucose. Samples were collected at 0, 1, 3, 5, 7, 9, 12, 24 and 48 h after IP and OR glucose, respectively. Results showed that the hyperglycemia lasted for about 10 h and 21 h in OR and IP group, respectively. The serum insulin concentration significantly decreased at 3 h (1.58 ± 0.21 mIU/L) after IP glucose. However, it significantly increased at 3 h (3.37 ± 0.341 mIU/L) after OR glucose. The gene expressions of prosomatostatin, neuropeptide Y, cholecystokinin precursor and orexin precursor in the brain showed different profiles between the OR and IP group. The OR not IP administration of glucose had significant effects on the gene expressions of preprovasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and gastrin in intestine. In conclusion, brain-gut peptides were confirmed in the present study. And the serum insulin and the brain-gut peptides have different responses between the IP and OR administration of glucose. The OR could stimulate the brain-gut peptide expressions, which have effects on the insulin secretion and then regulate the blood glucose levels. However, in IP group, there is little chance to stimulate brain-gut peptide expression to influence the insulin secretion, which leads to a longer hyperglycemia.
Collapse
Affiliation(s)
- Dong Liu
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Benyue Guo
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Dongdong Han
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Kangyu Deng
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Zhixiang Gu
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
8
|
Kalamarz-Kubiak H, Ashkenazi IM, Kleszczyńska A, Rosenfeld H. Urotensin II inhibits arginine vasotocin and stimulates isotocin release from nerve endings in the pituitary of gilthead sea bream (Sparus aurata). ACTA ACUST UNITED AC 2014; 321:467-71. [PMID: 24888583 DOI: 10.1002/jez.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/09/2022]
Abstract
The aim of this in vitro study was to determine whether arginine vasotocin (AVT) and isotocin (IT) release from nerve endings is affected by urotensin II (UII) in gilthead sea bream pituitary. Primary cultures of pituitary cells were exposed to 10(-12), 10(-10), and 10(-8) M UII for 6, 24, and 48 hr. AVT and IT contents were determined in the culture media by high performance liquid chromatography (HPLC). UII at all doses decreased AVT release after 6, 24, and 48 hr of incubation. IT release was increased by UII only after 24 hr of incubation. This study, for the first time, indicates that UII affects AVT and IT release from nerve endings in the pituitary of Sparus aurata. It is presumed that UII together with AVT and IT may control response to different salinities in fishes.
Collapse
Affiliation(s)
- Hanna Kalamarz-Kubiak
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | | | | | | |
Collapse
|
9
|
Tostivint H, Ocampo Daza D, Bergqvist CA, Quan FB, Bougerol M, Lihrmann I, Larhammar D. Molecular evolution of GPCRs: Somatostatin/urotensin II receptors. J Mol Endocrinol 2014; 52:T61-86. [PMID: 24740737 DOI: 10.1530/jme-13-0274] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SS) and urotensin II (UII) are members of two families of structurally related neuropeptides present in all vertebrates. They exert a large array of biological activities that are mediated by two families of G-protein-coupled receptors called SSTR and UTS2R respectively. It is proposed that the two families of peptides as well as those of their receptors probably derive from a single ancestral ligand-receptor pair. This pair had already been duplicated before the emergence of vertebrates to generate one SS peptide with two receptors and one UII peptide with one receptor. Thereafter, each family expanded in the three whole-genome duplications (1R, 2R, and 3R) that occurred during the evolution of vertebrates, whereupon some local duplications and gene losses occurred. Following the 2R event, the vertebrate ancestor is deduced to have possessed three SS (SS1, SS2, and SS5) and six SSTR (SSTR1-6) genes, on the one hand, and four UII (UII, URP, URP1, and URP2) and five UTS2R (UTS2R1-5) genes, on the other hand. In the teleost lineage, all these have been preserved with the exception of SSTR4. Moreover, several additional genes have been gained through the 3R event, such as SS4 and a second copy of the UII, SSTR2, SSTR3, and SSTR5 genes, and through local duplications, such as SS3. In mammals, all the genes of the SSTR family have been preserved, with the exception of SSTR6. In contrast, for the other families, extensive gene losses occurred, as only the SS1, SS2, UII, and URP genes and one UTS2R gene are still present.
Collapse
Affiliation(s)
- Hervé Tostivint
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Daniel Ocampo Daza
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Christina A Bergqvist
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Feng B Quan
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Marion Bougerol
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Isabelle Lihrmann
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Dan Larhammar
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Lu W, Zhang Y, Xiong J, Balment R. Daily rhythms of urotensin I and II gene expression and hormone secretion in the caudal neurosecretory system of the euryhaline flounder (Platichthys flesus). Gen Comp Endocrinol 2013; 188:189-95. [PMID: 23557644 DOI: 10.1016/j.ygcen.2013.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/10/2023]
Abstract
The caudal neurosecretory system (CNSS) is a unique neuroendocrine structure for environmental adaptation in fish, and is the major site of expression and secretion of urotensin I (UI) and II (UII). This study examined daily changes in mRNA expression and the secretion profile of UI and UII in the CNSS. Daily rhythms were observed in mRNA level of CNSS UI, urophysis UI, plasma UII, glucose, potassium and sodium. No statistically significant (Cosinor, P>0.05) diel rhythmicity in mRNA level of CNSS UII, urophysis UII, cortisol, lactate, osmolality and chloride were detected. The calculated acrophase of sodium, cortisol, plasma UII, urophysis UII, urophysis UI and mRNA level of CNSS UI rhythms were recorded at 13:04 h, 13:39 h, 14:45 h, 15:27 h, 14:41 h and 14:39 h, respectively and a positive relationship was evident among them. The acrophase of glucose and potassium rhythms were recorded at 18:57 h and 22:35 h, respectively. The glucose levels increased progressively at the onset of the UII surge at 15:00 h and reached peak values at dusk. The results support the hypothesis that the CNSS may play a role in the control of co-ordinated daily changes in energy mobilization, nutritional behavior and osmoregulatory systems in euryhaline flounder. Our findings described for the first time the existence of daily rhythms of CNSS hormone expression and secretion in Platichthys flesus. These results reveal the importance of taking into account the time of day when assessing stress responses and evaluating UI and UII as physiological indicators of stress in this species.
Collapse
Affiliation(s)
- Weiqun Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | | | | | | |
Collapse
|
11
|
You Z, Genest J, Barrette PO, Hafiane A, Behm DJ, D'Orleans-Juste P, Schwertani AG. Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler Thromb Vasc Biol 2012; 32:1809-16. [PMID: 22723440 DOI: 10.1161/atvbaha.112.252973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Urotensin II (UII) is a potent vasoactive peptide that binds to the urotensin receptor-coupled receptor-14 (known as UT) and exerts a wide range of actions in humans and experimental animals. We tested the hypothesis that UII gene deletion or UT blockade ameliorate experimental atherosclerosis. METHODS AND RESULTS We observed a significant reduction in weight gain, visceral fat, blood pressure, circulating plasma lipids, and proatherogenic cytokines and improvement of glucose tolerance in UII knockout mice compared with wild type (P<0.05). Deletion of UII after an apolipoprotein E knockout resulted in a significant reduction in serum cytokines, adipokines, and aortic atherosclerosis compared with apolipoprotein E knockout mice. Similarly, treatment of apolipoprotein E knockout mice fed on high-fat diet with the UT antagonist SB657510A reduced weight gain, visceral fat, and hyperlipidemia and improved glucose tolerance (P<0.05) and attenuated the initiation and progression of atherosclerosis. The UT antagonist also decreased aortic extracellular signal-regulated kinase 1/2 phosphorylation and oxidant formation and serum level of cytokines (P<0.05). CONCLUSIONS These findings demonstrate for the first time the role of UII gene deletion in atherosclerosis and suggest that the use of pharmaceutical agents aimed at blocking the UII pathway may provide a novel approach in the treatment of atherosclerosis and its associated precursors such as obesity, hyperlipidemia, diabetes mellitus, and hypertension.
Collapse
Affiliation(s)
- Zhipeng You
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Enes P, Peres H, Pousão-Ferreira P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A. Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration of glucose. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:645-652. [PMID: 21830035 DOI: 10.1007/s10695-011-9546-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
A glucose tolerance test was performed in white sea bream Diplodus sargus, juveniles to evaluate the effect of a glucose load on plasma glucose, insulin, triacylglyceride levels, and on liver glycogen storage in order to study the capability of glucose utilization by this species. After being fasted for 48 h, fish were intraperitoneally injected with either 1 g of glucose per kg body weight or a saline solution. Plasma glucose rose from a basal level of 4 to a peak of 18-19 mmol l(-1), 2-4 h after glucose injection and fish exhibited hyperglycemia for 9 h. An insulin peak (from 0.5 to 0.8 ng ml(-1)) was observed 2-6 h after glucose injection, and basal value was attained within 9 h. Liver glycogen peaked 6-12 h after the glucose load and thereafter decreased to the basal value which was attained 24 h after injection. Plasma triacylglycerides in glucose-injected fish were only significantly higher than the basal value 12 h after injection. Glucose-injected fish generally showed lower plasma triacylglyceride levels than control fish. Our results indicate that under these experimental conditions, glucose acts as an insulin secretagogue in white sea bream juveniles. Moreover, insulin may have contributed to restoring basal plasma glucose levels by enhancing glucose uptake in the liver. Further studies are needed to corroborate the lipolytic action of glucose. Clearance of glucose from the blood stream was fast, comparatively to other species, indicating that white sea bream has a good capability of glucose utilization.
Collapse
Affiliation(s)
- P Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yasuda T, Masaki T, Gotoh K, Chiba S, Kakuma T, Yoshimatsu H. Intracerebroventricular administration of urotensin II regulates food intake and sympathetic nerve activity in brown adipose tissue. Peptides 2012; 35:131-5. [PMID: 22426154 DOI: 10.1016/j.peptides.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 11/24/2022]
Abstract
To clarify the functional roles of urotensin II in regulating energy balance, we investigated the effects of a central infusion of urotensin II on food intake, uncoupling protein (UCP) 1 mRNA expression, temperature, and sympathetic nervous system activity in brown adipose tissue (BAT), a site that regulates energy expenditure in rodents. A bolus central infusion of urotensin II at a dose of 1 nmol/rat into the third cerebral ventricle decreased food intake (p<0.05). Additionally, urotensin II induced c-Fos-like-immunoreactivity (c-FLI) in the paraventricular nucleus (PVN) as compared with that in the control (phosphate buffered saline [PBS]-treated) group. Furthermore, urotensin II increased BAT UCP 1 mRNA expression (p<0.05). Finally, central infusion of urotensin II significantly increased BAT sympathetic nerve activity, which was accompanied by a significant elevation in BAT temperature (p<0.05) in rats. Taken together, central infusion of urotensin II regulates food intake and BAT sympathetic nerve activity in rats.
Collapse
Affiliation(s)
- Tohru Yasuda
- Department of Internal Medicine I, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Glucose metabolism in fish: a review. J Comp Physiol B 2012; 182:1015-45. [PMID: 22476584 DOI: 10.1007/s00360-012-0658-7] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 02/07/2023]
Abstract
Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.
Collapse
|
15
|
Barrette PO, Schwertani AG. A closer look at the role of urotensin II in the metabolic syndrome. Front Endocrinol (Lausanne) 2012; 3:165. [PMID: 23293629 PMCID: PMC3531708 DOI: 10.3389/fendo.2012.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022] Open
Abstract
Urotensin II (UII) is a vasoactive peptide that was first discovered in the teleost fish, and later in mammals and humans. UII binds to the G protein coupled receptor GPR14 (now known as UT). UII mediates important physiological and pathological actions by interacting with its receptor. The metabolic syndrome (MetS) is described as cluster of factors such as obesity, dyslipidemia, hypertension, and insulin resistance (IR), further leading to development of type 2 diabetes mellitus and cardiovascular diseases. UII levels are upregulated in patients with the MetS. Evidence directly implicating UII in every risk factor of the MetS has been accumulated. The mechanism that links the different aspects of the MetS relies primarily on IR and inflammation. By directly modulating both of these factors, UII is thought to play a central role in the pathogenesis of the MetS. Moreover, UII also plays an important role in hypertension and hyperlipidemia thereby contributing to cardiovascular complications associated with the MetS.
Collapse
Affiliation(s)
| | - Adel Giaid Schwertani
- *Correspondence: Adel Giaid Schwertani, Division of Cardiology, Department of Medicine, McGill University Health Center, 1650 Cedar Avenue, Room C9-166, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
16
|
Polakof S, Míguez JM, Soengas JL. Cholecystokinin impact on rainbow trout glucose homeostasis: Possible involvement of central glucosensors. ACTA ACUST UNITED AC 2011; 172:23-9. [DOI: 10.1016/j.regpep.2011.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/15/2011] [Accepted: 08/12/2011] [Indexed: 12/15/2022]
|
17
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
18
|
Kiss RS, You Z, Genest J, Behm DJ, Giaid A. Urotensin II differentially regulates macrophage and hepatic cholesterol homeostasis. Peptides 2011; 32:956-63. [PMID: 21376094 DOI: 10.1016/j.peptides.2011.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a vasoactive peptide with pleiotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation.
Collapse
Affiliation(s)
- Robert S Kiss
- Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Sáez ME, Smani T, Ramírez-Lorca R, Díaz I, Serrano-Ríos M, Ruiz A, Ordoñez A. Association analysis of urotensin II gene (UTS2) and flanking regions with biochemical parameters related to insulin resistance. PLoS One 2011; 6:e19327. [PMID: 21559414 PMCID: PMC3084835 DOI: 10.1371/journal.pone.0019327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/28/2011] [Indexed: 12/22/2022] Open
Abstract
Background Urotensin II (UII) is a potent vasoconstrictor peptide, which signals through a G-protein coupled receptor (GPCR) known as GPR14 or urotensin receptor (UTR). UII exerts a broad spectrum of actions in several systems such as vascular cell, heart muscle or pancreas, where it inhibits insulin release. Objective Given the reported role of UII in insulin secretion, we have performed a genetic association analysis of the UTS2 gene and flanking regions with biochemical parameters related to insulin resistance (fasting glucose, glucose 2 hours after a glucose overload, fasting insulin and insulin resistance estimated as HOMA). Results and Conclusions We have identified several polymorphisms associated with the analysed clinical traits, not only at the UTS2 gene, but also in thePER3 gene, located upstream from UTS2. Our results are compatible with a role for UII in glucose homeostasis and diabetes although we cannot rule out the possibility that PER3 gene may underlie the reported associations.
Collapse
Affiliation(s)
- María E Sáez
- Department of Structural Genomics, Neocodex, Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gruson D, Rousseau MF, Ketelslegers JM, Hermans MP. Raised plasma urotensin II in type 2 diabetes patients is associated with the metabolic syndrome phenotype. J Clin Hypertens (Greenwich) 2010; 12:653-60. [PMID: 20695946 DOI: 10.1111/j.1751-7176.2010.00336.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Urotensin II (UII) exerts multiple effects on the cardiovascular system, acts as a diabetogenic agent, and may also contribute to the development of the metabolic syndrome (MetS). The aim of this study was to determine circulating UII in patients with type 2 diabetes mellitus (T2DM) and its relationship with MetS. A total of 360 consecutive patients with T2DM were included. MetS presence/absence (MetS [+]/[-]) was defined according to American Heart Association/National Heart, Lung and Blood Institute criteria. Plasma concentrations of UII were determined by radioimmunoassay. UII levels were significantly higher in MetS (+) than in MetS (-) T2DM patients (0.97 pg/mL [0.93-1.01], n=294 vs 0.82 pg/mL [0.75-0.88] pg/mL, n=66, respectively; P<.001). Multiple logistic regression analysis showed that UII was significantly associated with MetS (+) (odds ratio, 6.41 [95% confidence interval, 1.21-16.04]; P=.02). UII plasma concentrations are significantly higher in T2DM patients presenting with MetS. Therefore, circulating UII may participate in the worsening course of some T2DM patients and may provide novel therapeutic perspectives.
Collapse
Affiliation(s)
- Damien Gruson
- Endocrinology & Nutrition Unit, Université Catholique de Louvain, Tour Claude Bernard, 54 Avenue Hippocrate, Brussels, Belgium.
| | | | | | | |
Collapse
|
21
|
Ross B, McKendy K, Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1156-72. [DOI: 10.1152/ajpregu.00706.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is an 11 amino acid cyclic peptide originally isolated from the goby fish. The amino acid sequence of UII is exceptionally conserved across most vertebrate taxa, sharing structural similarity to somatostatin. UII binds to a class of G protein-coupled receptor known as GPR14 or the urotensin receptor (UT). UII and its receptor, UT, are widely expressed throughout the cardiovascular, pulmonary, central nervous, renal, and metabolic systems. UII is generally agreed to be the most potent endogenous vasoconstrictor discovered to date. Its physiological mechanisms are similar in some ways to other potent mediators, such as endothelin-1. For example, both compounds elicit a strong vascular smooth muscle-dependent vasoconstriction via Ca2+ release. UII also exerts a wide range of actions in other systems, such as proliferation of vascular smooth muscle cells, fibroblasts, and cancer cells. It also 1) enhances foam cell formation, chemotaxis of inflammatory cells, and inotropic and hypertrophic effects on heart muscle; 2) inhibits insulin release, modulates glomerular filtration, and release of catecholamines; and 3) may help regulate food intake and the sleep cycle. Elevated plasma levels of UII and increased levels of UII and UT expression have been demonstrated in numerous diseased conditions, including hypertension, atherosclerosis, heart failure, pulmonary hypertension, diabetes, renal failure, and the metabolic syndrome. Indeed, some of these reports suggest that UII is a marker of disease activity. As such, the UT receptor is emerging as a promising target for therapeutic intervention. Here, a concise review is given on the vast physiologic and pathologic roles of UII.
Collapse
Affiliation(s)
- Bryan Ross
- McGill University Health Center, Montreal, Quebec, Canada
| | | | - Adel Giaid
- McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Papadopoulos P, Bousette N, Al-Ramli W, You Z, Behm DJ, Ohlstein EH, Harrison SM, Douglas SA, Giaid A. Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: Effect of UT antagonism in ApoE knockout mice fed with Western diet. Atherosclerosis 2009; 204:395-404. [DOI: 10.1016/j.atherosclerosis.2008.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 12/31/2022]
|
23
|
Pakala R. Role of urotensin II in atherosclerotic cardiovascular diseases. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:166-78. [DOI: 10.1016/j.carrev.2008.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 02/05/2008] [Indexed: 02/07/2023]
|
24
|
Klein SE, Sheridan MA. Somatostatin signaling and the regulation of growth and metabolism in fish. Mol Cell Endocrinol 2008; 286:148-54. [PMID: 17919810 DOI: 10.1016/j.mce.2007.08.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 08/06/2007] [Accepted: 08/25/2007] [Indexed: 11/17/2022]
Abstract
The study of the somatostatins (SS) signaling system in fish has provided important information about the structure, function, and evolution of SSs and their receptors. The SS signaling system elicits widespread biological actions via multiple hormone variants, numerous receptor subtypes, and a variety of signal transduction pathways. SSs alter growth via both direct and indirect actions, including inhibiting growth hormone release at the pituitary, decreasing hepatic GH sensitivity, and lowering plasma IGF-I levels. Metabolism also is significantly influenced by SSs. SSs stimulate the breakdown of energy stores and influences digestion, food intake, nutrient absorption, and food conversion both directly and through the modulation of other hormonal systems. The study of fish, which display a diversity of habitat types and life history forms, reveals that the SS signaling system helps regulate energy partitioning and integrate metabolism with growth and other biological processes.
Collapse
Affiliation(s)
- Sarah E Klein
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|
25
|
Loirand G, Rolli-Derkinderen M, Pacaud P. Urotensin II and atherosclerosis. Peptides 2008; 29:778-82. [PMID: 17933432 DOI: 10.1016/j.peptides.2007.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/22/2007] [Accepted: 08/27/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II, through its interaction with its UT receptor, is a potent vasoactive peptide in humans and in several animal models. Recent studies have demonstrated elevated plasma U-II levels in patients with atherosclerosis and coronary artery disease. U-II is expressed in endothelial cells, smooth muscle cells and infiltrating macrophages of atherosclerotic human coronary arteries. UT receptor expression is up-regulated by inflammatory stimuli. Activation of UT receptor by U-II stimulates endothelial and smooth muscle cell proliferation and monocytes chemotaxis. Therefore, in addition to its primary vasoactive effect, these observations suggest a role of U-II and UT receptor in the initiation and/or progression of atherosclerosis.
Collapse
|
26
|
Ong KL, Wong LYF, Cheung BMY. The role of urotensin II in the metabolic syndrome. Peptides 2008; 29:859-67. [PMID: 17610998 DOI: 10.1016/j.peptides.2007.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/27/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II is a potent vasoconstrictive peptide that mediates both endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. Its plasma level correlates positively with body weight and is raised in diabetes, renal failure, hypertension, and other cardiovascular diseases including congestive heart failure and carotid atherosclerosis. It can inhibit glucose-induced insulin secretion, and genetic variants in urotensin II gene are associated with insulin resistance and type 2 diabetes. Urotensin II also affects lipid metabolism in fish and food intake in mice. Recent studies have also demonstrated a role of urotensin II in inflammation and endothelial dysfunction. These findings suggest a close relationship between urotensin II and at least some components of the metabolic syndrome, including hypertension, insulin resistance, hyperglycemia, and inflammation.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Department of Medicine & Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | | | | |
Collapse
|
27
|
Lu W, Worthington J, Riccardi D, Balment RJ, McCrohan CR. Seasonal changes in peptide, receptor and ion channel mRNA expression in the caudal neurosecretory system of the European flounder (Platichthys flesus). Gen Comp Endocrinol 2007; 153:262-72. [PMID: 17562341 DOI: 10.1016/j.ygcen.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/24/2022]
Abstract
The caudal neurosecretory system (CNSS) of the euryhaline flounder Platichthys flesus has suggested roles in osmoregulatory, reproductive and nutritional adaptation, as fish migrate between seawater (winter) and brackish/freshwater (summer) environments. This study examined seasonal changes in mRNA expression profile of functionally important genes in the CNSS. cDNAs encoding neuropeptides, receptors and ion channels were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) and screening of a flounder CNSS cDNA library. The expression profile of cloned genes was determined by real-time RT-PCR at 2-month intervals throughout the year in CNSS from seawater-adapted fish. Plasma cortisol (measured by radioimmunoassay) showed a peak in April, the time of spawning. Expression levels of mRNA for peptides urotensins I and II (UI, UII) and corticotropin releasing factor (CRF) all showed a seasonal cycle, with lowest expression in April and highest in August-October. The expression of CRF2(UI), UT(UII) and CRF1 receptors was not correlated with corresponding peptide expression. Receptors for potential neuromodulators of CNSS activity also displayed a seasonal mRNA expression profile. Glucocorticoid, 5-hydroxytryptamine, kappa-opioid and glutamate receptor expression peaked around April, suggesting that modulation of electrical activity of the neurosecretory Dahlgren cells is of particular importance at this time. Expression of mRNA for L-type Ca(2+) and Ca-activated K(+) channels was lower during the summer months. These channels underlie electrical bursting activity in Dahlgren cells. Ion channel mRNA expression was also lower in CNSS from flounder fully adapted to freshwater as opposed to seawater, consistent with previously reported observations of reduced bursting activity in Dahlgren cells from freshwater-adapted CNSS. These findings support the hypothesis that the CNSS is functionally reprogrammed to cope with changes in physiological challenge as fish migrate between sea and estuaries in winter and spring.
Collapse
Affiliation(s)
- Weiqun Lu
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
28
|
Rousseau K, Dufour S. Comparative aspects of GH and metabolic regulation in lower vertebrates. Neuroendocrinology 2007; 86:165-74. [PMID: 17377370 DOI: 10.1159/000101029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/19/2022]
Abstract
In all vertebrates, the regulations of growth and energy balance are complex phenomena which involve elaborate interactions between the brain and peripheral signals. Most vertebrates adopt and maintain a life style after birth, but lower vertebrates may have complex life histories involving metamorphoses, migrations and long periods of fasting. In order to achieve the complex developmental programs associated with these changes, coordinated regulation of all aspects of energy metabolism is required. Somatotropic axis (somatostatin (SRIH) growth hormone (GH) and insulin-like growth factor 1 (IGF1), is known to be involved in the regulation of growth and energy balance. Interestingly, recent studies showed that additional factors such as pituitary adenylate cyclase-activated polypeptide (PACAP), corticotropin-releasing hormone (CRH), ghrelin and leptin could also have major roles in the control of growth and metabolism in lower vertebrates (fish, amphibians and reptiles). This mini-review will survey the function of GH and metabolic regulation in lower vertebrates.
Collapse
Affiliation(s)
- Karine Rousseau
- MNHN, Département des Milieux et Peuplements Aquatiques, USM 0401, UMR 5178 CNRS, Paris, France.
| | | |
Collapse
|
29
|
Watanabe T, Kanome T, Miyazaki A, Katagiri T. Human urotensin II as a link between hypertension and coronary artery disease. Hypertens Res 2006; 29:375-87. [PMID: 16940699 DOI: 10.1291/hypres.29.375] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypertension is a well-known risk factor for atherosclerosis, but the molecular mechanisms that link elevated blood pressure to the progression of atherosclerosis remain unclear. Human urotensin II (U-II), the most potent endogenous vasoconstrictor peptide identified to date, and its receptor (UT receptor) are involved in the etiology of essential hypertension. In patients with essential hypertension, U-II infused into the forearm brachial artery has been shown to induce vasoconstriction. Recent studies have demonstrated elevated plasma U-II concentrations in patients with essential hypertension, diabetes mellitus, atherosclerosis, and coronary artery disease. U-II is expressed in endothelial cells, macrophages, macrophage-derived foam cells, and myointimal and medial vascular smooth muscle cells (VSMCs) of atherosclerotic human coronary arteries. UT receptors are present in VSMCs of human coronary arteries, the thoracic aorta and cardiac myocytes. Lymphocytes are the most active producers of U-II, whereas monocytes and macrophages are the major cell types expressing UT receptors, with relatively little receptor expression in foam cells, lymphocytes, and platelets. U-II accelerates foam cell formation by up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human endothelial cells, U-II promotes cell proliferation and up-regulates type 1 collagen expression. U-II also activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and plasminogen activator inhibitor-1 in human VSMCs, and stimulates VSMC proliferation with synergistic effects observed when combined with oxidized low-density lipoprotein, lysophosphatidylcholine, reactive oxygen species or serotonin. These findings suggest that U-II plays key roles in accelerating the development of atherosclerosis, thereby leading to coronary artery disease.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
Watanabe T, Takahashi K, Kanome T, Hongo S, Miyazaki A, Koba S, Katagiri T, Pakara R, Benedict CR. Human Urotensin-II Potentiates the Mitogenic Effect of Mildly Oxidized Low-Density Lipoprotein on Vascular Smooth Muscle Cells: Comparison with Other Vasoactive Agents and Hydrogen Peroxide. Hypertens Res 2006; 29:821-31. [PMID: 17283870 DOI: 10.1291/hypres.29.821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human urotensin-II (U-II) is the most potent vasoactive peptide identified to date, and may be involved in hypertension and atherosclerosis. We investigated the effects of the interactions between U-II or other vasoactive agents and mildly oxidized low-density lipoprotein (mox-LDL) or hydrogen peroxide (H2O2) on the induction of vascular smooth muscle cell (VSMC) proliferation. Growth-arrested rabbit VSMCs were incubated with vasoactive agents (U-II, endothelin-1, angiotensin-II, serotonin, or thromboxane-A2) in the presence or absence of mox-LDL or H2O2. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. On interaction with mox-LDL or H2O2, U-II induced the greatest increase in [3H]thymidine incorporation among these vasoactive agents. A low concentration of U-II (10 nmol/l) enhanced the potential mitogenic effect of low concentrations of mox-LDL (120 to 337%) and H2O2 (177 to 226%). U-II at 50 nmol/l showed the maximal mitogenic effect (161%), which was abolished by G protein inactivator (GDP-beta-S), c-Src tyrosine kinase inhibitor (radicicol), protein kinase C (PKC) inhibitor (Ro31-8220), extracellular signal-regulated kinase (ERK) kinase inhibitor (PD98059), or Rho kinase inhibitor (Y27632). Mox-LDL at 5 microg/ml showed the maximal mitogenic effect (211%), which was inhibited by free radical scavenger (catalase), intracellular and extracellular antioxidants (N-acetylcysteine and probucol), nicotinamide adenine dinucleotide phosphate oxidase inhibitor (diphenylene iodonium), or c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results suggested that U-II acts in synergy with mox-LDL in inducing VSMC DNA synthesis at the highest rate among these vasoactive agents. Activation of the G protein/c-Src/PKC/ERK and Rho kinase pathways by U-II together with the redox-sensitive JNK pathway by mox-LDL may explain the synergistic interaction between these agents.
Collapse
MESH Headings
- Aldehydes/pharmacology
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Cells, Cultured
- DNA/biosynthesis
- Drug Synergism
- Endothelin-1/pharmacology
- Humans
- Hydrogen Peroxide/pharmacology
- Lipoproteins, LDL/antagonists & inhibitors
- Lipoproteins, LDL/pharmacology
- Lysophosphatidylcholines/metabolism
- Lysophosphatidylcholines/pharmacology
- Male
- Mitogens/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxidants/pharmacology
- Rabbits
- Serotonin/pharmacology
- Serotonin Agents/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thromboxane A2/pharmacology
- Urotensins/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hassan GS, Douglas SA, Ohlstein EH, Giaid A. Expression of urotensin-II in human coronary atherosclerosis. Peptides 2005; 26:2464-72. [PMID: 16026900 DOI: 10.1016/j.peptides.2005.05.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/30/2005] [Accepted: 05/30/2005] [Indexed: 11/28/2022]
Abstract
The vasoactive peptide urotensin-II (U-II) is best known for its ability to regulate peripheral vascular and cardiac contractile function in vivo, and recent in vitro studies have suggested a role for the peptide in the control of vascular remodeling by inducing smooth muscle proliferation and fibroblast-mediated collagen deposition. Therefore, U-II may play a role in the etiology of atherosclerosis. In the present study we sought to determine the expression of U-II in coronary arteries from patients with coronary atherosclerosis and from normal control subjects, using immunohistochemistry and in situ hybridization. In normal coronary arteries, there was little expression of U-II in all types of cells. In contrast, in patients with coronary atherosclerosis, endothelial expression of U-II was significantly increased in all diseased segments (P<0.05). Greater expression of U-II was noted in endothelial cells of lesions with subendothelial inflammation or fibrofatty lesion compared with that of endothelial cells underlined by dense fibrosis or minimal intimal thickening. Myointimal cells and foam cells also expressed U-II. In most diseased segments, medial smooth muscle cells exhibited moderate expression of U-II. These findings demonstrate upregulation of U-II in endothelial, myointimal and medial smooth muscle cells of atherosclerotic human coronary arteries, and suggest a possible role for U-II in the pathogenesis of coronary atherosclerosis.
Collapse
Affiliation(s)
- Ghada S Hassan
- Montreal General Hospital, McGill University Health Center, Montreal, Que., Canada
| | | | | | | |
Collapse
|
32
|
Watanabe T, Suguro T, Kanome T, Sakamoto YI, Kodate S, Hagiwara T, Hongo S, Hirano T, Adachi M, Miyazaki A. Human urotensin II accelerates foam cell formation in human monocyte-derived macrophages. Hypertension 2005; 46:738-44. [PMID: 16172428 DOI: 10.1161/01.hyp.0000184226.99196.b5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human urotensin II (U-II), the most potent vasoconstrictor peptide identified to date, and its receptor (UT) are involved in hypertension and atherosclerosis. Acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) converts intracellular free cholesterol into cholesterol ester (CE) for storage in lipid droplets and plays an important role in the formation of macrophage-derived foam cells in atherosclerotic lesions. We examined the effects of U-II on ACAT-1 expression and CE accumulation in human monocyte-derived macrophages. U-II increased ACAT activity in a concentration-dependent manner after 7 days in monocyte primary culture. Immunoblotting analysis showed that U-II at 25 nmol/L increased ACAT-1 protein expression level by 2.5-fold, which was completely abolished by anti-U-II antibody, selective UT receptor antagonists (urantide and 4-aminoquinoline), a G-protein inactivator (GDP-beta-S), a c-Src protein tyrosine kinase inhibitor (PP2), a protein kinase C (PKC) inhibitor (rottlerin), a mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059), or a Rho kinase (ROCK) inhibitor (Y27632). Northern blotting analysis indicated that among the 4 ACAT-1 mRNA transcripts (2.8-, 3.6-, 4.3-, and 7.0-kb), the 2.8- and 3.6-kb transcript levels were selectively upregulated by approximately 1.7-fold by U-II (25 nmol/L). Further, U-II (25 nmol/L) significantly increased acetylated LDL (acetyl-LDL)-induced CE accumulation in monocyte-derived macrophages but not scavenger receptor class A (SR-A) function as assessed by endocytic uptake of [(125)I]acetyl-LDL. Our results suggest that U-II may play a novel role in the formation of macrophage-derived foam cells by upregulating ACAT-1 expression via the UT receptor/G-protein/c-Src/PKC/MEK and ROCK pathways but not by SR-A, thus contributing to the relatively rapid development of atherosclerosis in hypertension.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bousette N, Patel L, Douglas SA, Ohlstein EH, Giaid A. Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis 2004; 176:117-23. [PMID: 15306183 DOI: 10.1016/j.atherosclerosis.2004.03.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 03/01/2004] [Accepted: 03/29/2004] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II), a novel vasoactive peptide, possesses a wide range of cardiovascular effects. U-II binds a seven transmembrane spanning G-protein coupled receptor termed GPR14. In the present study, we have characterized U-II expression in both carotid and aortic atherosclerotic plaques. Using immunohistochemistry we demonstrated U-II immunoreactivity in endothelial, smooth muscle and inflammatory cells of both carotid and aortic plaques, with a clear propensity for intimal staining. Using quantitative real-time RT-PCR we observed both increased U-II and GPR14 mRNA expression in tissue extracts from abdominal aortic aneurysms. We also extended our PCR analysis to include leukocyte expression of U-II and GPR14. We found that lymphocytes were by far the largest producers of U-II mRNA. In contrast monocytes and macrophages were the largest producers of GPR14 mRNA, with relatively little expression in foam cells, lymphocytes, and platelets. Our findings qualitatively and quantitatively demonstrate increased expression of U-II in atherosclerosis with a large degree of inflammatory cell involvement. These findings suggest a possible role for U-II in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Nicolas Bousette
- Montreal General Hospital, Suite L3-109, 1650 Cedar Avenue, Montreal, Que., Canada H3G 1A4
| | | | | | | | | |
Collapse
|
34
|
Suzuki S, Wenyi Z, Hirai M, Hinokio Y, Suzuki C, Yamada T, Yoshizumi S, Suzuki M, Tanizawa Y, Matsutani A, Oka Y. Genetic variations at urotensin II and urotensin II receptor genes and risk of type 2 diabetes mellitus in Japanese. Peptides 2004; 25:1803-8. [PMID: 15476949 DOI: 10.1016/j.peptides.2004.03.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
Urotensin II is among the most potent vasoactive hormones known and the urotensin II (UTS2) gene is localized to 1p36-p32, one of the regions reported to show possible linkage with type 2 diabetes in Japanese. When we surveyed genetic polymorphisms in the UTS2 and urotensin II receptor (GPR14) gene, we identified two SNPs with amino acid substitutions (designated T21M and S89N and an SNP in the promotor region (-605G>A) of the UTS2 gene, and two SNPs in the non-coding region of the GPR14 gene. We then studied these three SNPs in the UTS2 gene and two SNPs in the GPR14 gene in 152 Japanese subjects with type 2 diabetes mellitus and two control Japanese populations. The allele frequency of 89N was significantly higher in type 2 diabetic patients than in both elderly normal subjects (P = 0.0018) and subjects with normal glucose tolerance (P = 0.0011), whereas the allele frequency of T21M and -605G>A in the UTS2 gene and those of two SNPs in the GPR14 gene were essentially identical in these three groups. Furthermore, in the subjects with normal glucose tolerance, 89N was associated with significantly higher insulin levels on oral glucose tolerance test, suggesting reduced insulin sensitivity in subjects with 89N. These results strongly suggest that subjects with S89N in the UTS2 gene are more insulin-resistant and thus more susceptible to type 2 diabetes mellitus development.
Collapse
Affiliation(s)
- Susumu Suzuki
- Division of Molecular Metabolism and Diabetes, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sheridan MA, Kittilson JD. The role of somatostatins in the regulation of metabolism in fish. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:323-30. [PMID: 15325331 DOI: 10.1016/j.cbpc.2004.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/20/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Somatostatins (SS) are a structurally and functionally diverse family of peptide hormones. Somatostatins possess a wide variety of biological functions, including numerous secretotropic, developmental, and metabolic effects. Studies on fish have revealed considerable insight into the role of SS on the regulation of intermediary metabolism. Somatostatins promote both lipid and carbohydrate breakdown in fish and lamprey. Such actions are mediated by secretotropic effects of SS. For example, SS inhibit insulin (INS); insulin deficiency favors lipolysis and glycogenolysis over lipogenesis and glycogenesis. Somatostatins also directly stimulate the breakdown of stored triacylglycerols (TG) and glycogen in storage tissues. In addition, SS interact with the growth and reproductive axes of fish, findings that suggest SS serve to modulate energy partitioning among various growth, development and reproductive processes.
Collapse
Affiliation(s)
- Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Science, Fargo, ND 58105, USA.
| | | |
Collapse
|
36
|
Xiao D, Lin HR. Cysteamine-a somatostatin-inhibiting agent-induced growth hormone secretion and growth acceleration in juvenile grass carp (Ctenopharyngodon idellus). Gen Comp Endocrinol 2003; 134:285-95. [PMID: 14636635 DOI: 10.1016/s0016-6480(03)00268-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of cysteamine hydrochloride (CSH)-a somatostatin-inhibiting agent on growth hormone (GH) secretion from pituitary fragments (PF) or hypothalamus plus pituitary fragments (HPF) under static incubation conditions, serum GH, 3,5,3(')-triiodothyronine (T(3)) and thyroxine (T(4)) levels, and growth in juvenile grass carp (Ctenopharyngodon idellus) were investigated. CSH (0.1, 1, and 10 mM) had no influences on GH release from PF after 1 and 6h incubation, but was effective in stimulating GH release from HPF in a dose-dependent manner after 1 and 6h incubation. Moreover, prolonged treatment of HPF with CSH decreased the magnitude of enhancement of GH levels in culture medium. CSH and neuropeptides [e.g., human GH-releasing hormone (hGHRH, 100 nM), luteinizing hormone-releasing hormone analog (LHRH-A, [D-Trp(6),Pro(9)]LHRH, 100 nM)], or salmon gonadotropin-releasing hormone analogue (sGnRH-A, [D-Ala(6),Pro(9)]LHRH, 100 nM), alone and in combination during static incubation stimulated GH release from HPF after 1h incubation; in addition, there was an additive, not a synergistic effect of CSH and neuropeptides on stimulation of GH release. Administration of CSH (2.5mg/g diet) in combination with LHRH-A (5 microg/g diet) in diet twice daily for 8 weeks resulted in higher serum GH, T(3), and T(4) levels, ratio of RNA/DNA in muscle, food conversion efficiency, and growth rate than CSH or LHRH-A alone. At trial termination, significant decreases in condition factors and body lipid levels were observed in fish fed with CSH and/or LHRH-A. No significant differences were recorded for viscero-somatic index, hepato-somatic index, and percent body moisture and protein in muscle. These findings, taken as a whole, strongly suggest that the action of CSH stimulating GH release in vitro appears to be mediated through hypothalamic pathways and dietary delivery of CSH directly or indirectly stimulates endogenous GH, T(3), and T(4) secretion, and subsequently leads to a increase in growth rate in grass carp.
Collapse
Affiliation(s)
- Dong Xiao
- Institute of Aquatic Economic Animals and Key Laboratory of Guangdong Province for Aquatic Economic Animals, Zhongshan University, 510275 Guangzhou, PR China.
| | | |
Collapse
|
37
|
Yada T, Moriyama S, Suzuki Y, Azuma T, Takahashi A, Hirose S, Naito N. Relationships between obesity and metabolic hormones in the "cobalt" variant of rainbow trout. Gen Comp Endocrinol 2002; 128:36-43. [PMID: 12270786 DOI: 10.1016/s0016-6480(02)00047-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The "cobalt" variant of rainbow trout (Oncorhynchus mykiss) lacks most of the pars intermedia of the pituitary, and shows significant obesity with an enlarged liver and a fat accumulation in the abdominal cavity. Plasma levels of growth hormone, prolactin, and somatolactin were significantly lower in the cobalt variant than those in the normal trout. In contrast, plasma insulin level was four times higher than that in the normal. Plasma levels of total protein, free cholesterol, and triacylglycerol were higher in the cobalt, while those of glucose and fatty acids were not different from the normal levels. In the white muscle, red muscle, liver, and mesenteric fat, the cobalt showed higher contents of triacylglycerol than the normal fish. There was no significant difference in tissue contents of phosphatidylcholine between the two groups of the trout, except for that in the mesenteric fat, exhibiting significantly lower content than in the normal fish. Activity of triacylglycerol lipase in the liver in vivo was lower in the cobalt than that in the normal trout, while there was no significant difference between the two in the cultured liver slices. Desacetyl-alpha-MSH stimulated lipolysis of triacylglycerol similarly in the cultured liver slices from the normal trout and from the cobalt variant. Results from this study suggest that the lack of pars intermedia and the increased plasma level of insulin are involved in a depression of lipid mobilization and obesity in this variant of rainbow trout.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Branch, National Research Institute of Aquaculture, 2482-3 Chugushi, Nikko, Tochigi 321-1661, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Elshourbagy NA, Douglas SA, Shabon U, Harrison S, Duddy G, Sechler JL, Ao Z, Maleeff BE, Naselsky D, Disa J, Aiyar NV. Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey. Br J Pharmacol 2002; 136:9-22. [PMID: 11976263 PMCID: PMC1762106 DOI: 10.1038/sj.bjp.0704671] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Urotensin-II (U-II) and its receptor (UT) represent novel therapeutic targets for management of a variety of cardiovascular diseases. To test such hypothesis, it will be necessary to develop experimental animal models for the manipulation of U-II/UT receptor system. The goal of this study was to clone mouse and primate preproU-II and UT for pharmacological profiling. Monkey and mouse preproU-II genes were identified to encode 123 and 125 amino acids. Monkey and mouse UT receptors were 389, and 386 amino acids, respectively. Genomic organization of mouse genes showed that the preproU-II has four exons, while the UT receptor has one exon. Although initially viewed by many exclusively as cardiovascular targets, the present study demonstrates expression of mouse and monkey U-II/UT receptor mRNA in extra-vascular tissue including lung, pancreas, skeletal muscle, kidney and liver. Ligand binding studies showed that [125I]h U-II bound to a single sites to the cloned receptors in a saturable/high affinity manner (Kd 654+/-154 and 214+/-65 pM and Bmax of 1011+/-125 and 497+/-68 fmol mg-1 for mouse and monkey UT receptors, respectively). Competition binding analysis demonstrated equipotent, high affinity binding of numerous mammalian, amphibian and piscine U-II isopeptides to these receptors (Ki=0.8 - 3 nM). Fluorescein isothiocyanate (FITC) labelled U-II, bound specifically to HEK-293 cells expressing mouse or monkey UT receptor, confirming cell surface expression of recombinant UT receptor. Exposure of these cells to human U-II resulted in an increase in intracellular [Ca2+] concentrations (EC50 3.2+/-0.8 and 1.1+/-0.3 nM for mouse and monkey UT receptors, respectively) and inositol phosphate (Ip) formation (EC50 7.2+/-1.8 and 0.9+/-0.2 nM for mouse and monkey UT receptors, respectively) consistent with the primary signalling pathway for UT receptor involving phospholipase C activation.
Collapse
Affiliation(s)
- Nabil A Elshourbagy
- Department of Expression Genomics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Winter MJ, Ashworth A, Bond H, Brierley MJ, McCrohan CR, Balment RJ. The caudal neurosecretory system: control and function of a novel neuroendocrine system in fish. Biochem Cell Biol 2000. [PMID: 10949074 DOI: 10.1139/o00-059] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal neurosecretory system (CNSS) of fish was first defined over 70 years ago yet despite much investigation, a clear physiological role has yet to be elucidated. Although the CNSS structure is as yet thought to be confined to piscine species, the secreted peptides, urotensins I and II (UI and UII), have been detected in a number of vertebrate species, most recently illustrated by the isolation of UII in humans. The apparent importance of these peptides, suggested by their relative phylogenetic conservation, is further supported by the complex control mechanisms associated with their secretion. The CNSS in teleosts is known to receive extensive and diverse innervation from the higher central nervous system, with evidence for the presence of cholinergic, noradrenergic, serotonergic, and peptidergic descending inputs. Recent observations also suggest the presence of glucocorticoid receptors in the flounder CNSS, supporting previous evidence for a possible role as a pituitary-independent mechanism controlling cortisol secretion. The most convincing evidence as to a physiological role for the CNSS in fish has stemmed from the direct and indirect influence of the urotensins on osmoregulatory function. Recent advances allowing the measurement of circulating levels of UII in the flounder have supported this. In addition, there is evidence to suggest some seasonal variation in peptide levels supporting the notion that the CNSS may have an integrative role in the control of coordinated changes in the reproductive, osmoregulatory and nutritional systems of migratory euryhaline species.
Collapse
Affiliation(s)
- M J Winter
- School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
40
|
Winter MJ, Hubbard PC, McCrohan CR, Balment RJ. A homologous radioimmunoassay for the measurement of urotensin II in the euryhaline flounder, Platichthys flesus. Gen Comp Endocrinol 1999; 114:249-56. [PMID: 10208773 DOI: 10.1006/gcen.1998.7245] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sensitive and specific homologous radioimmunoassay (RIA) has been developed to measure tissue and circulating levels of the fish caudal neurosecretory system neuropeptide, urotensin II (UII), in the euryhaline flounder Platichthys flesus. A polyclonal antiserum was raised against flounder UII in rabbit; UII-125I was produced by the iodogen method and purified by HPLC. Antiserum specificity to flounder UII was demonstrated through lack of cross-reactivity with several small peptides and parallelism with standard curves for serial dilutions of UII in plasma and urophysial extracts. Biological activity of the peptide measured by UII RIA was confirmed by bioassay. Plasma intra- and interassay coefficients of variation were 9 and 18% (n = 5 and n = 3), respectively, nonspecific binding constituted 4.6% (+/-1.42%, n = 8) of total counts, and the limit of RIA detectability was estimated as 1.5 x 10(-16) M UII/assay tube. Plasma samples were subject to a reversed-phase liquid chromatography purification protocol which had an extraction efficiency of 63% (+/-10%, n = 6) and showed consistent recovery of UII over a range of plasma volumes and peptide concentrations. Plasma UII concentrations in seawater (SW)-adapted flounder (3.80 +/- 0.77 x 10(-11) M, n = 7) were significantly higher than those in freshwater (FW)-adapted fish (1.10 +/- 0.15 x 10(-11) M, n = 7). This variation coincided with differences in plasma osmolality and Na+ levels. No differences were found, however, between urophysial UII concentrations in SW-adapted (3.71 +/- 1.78 x 10(-10) M UII/gland, n = 7) and FW-adapted (2.53 +/- 1.33 x 10(-10) M UII/gland, n = 7) flounder.
Collapse
Affiliation(s)
- M J Winter
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
41
|
Carneiro NM, Eilertson CD, Sheridan MA. Lipid-stimulated somatostatin secretion in rainbow trout,Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 1996; 15:447-452. [PMID: 24194305 DOI: 10.1007/bf01875588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/1996] [Indexed: 06/02/2023]
Abstract
Previous work has shown that somatostatins (SS) affect teleost lipid metabolism indirectly by inhibition of insulin (INS) and directly by stimulation of hepatic lipolysis. In the present study, rainbow trout (Oncorhynchus mykiss) were used to characterize further the lipid-SS relationship by evaluating how lipid, contributes to SS secretion bothin vivo andin vitro. In vivo hyperlipidemia was induced for up to 3 h by short-term (2 min) infusion of a triacylglycerol (TG)-rich lipid emulsion (20% Intralipid(®)). Plasma total lipid concentration increased 118 and 155% over control levels 1 h and 3 h, respectively, after infusion; much of this increase was due to elevated plasma fatty acids (FA), which increased 39 and 520%, respectively, over the same time-frame. The hyperlipidemic pattern was attended by a significant increase in the plasma concentration of SS. The specific effects of fatty acids were evaluated on isolated Brockmann bodies. Palmitic acid and oleic acid stimulated SS release 378 and 82%, respectively, over baseline levels. These results indicate that lipids, and in particular fatty acids, modulate SS secretion in rainbow trout.
Collapse
Affiliation(s)
- N M Carneiro
- Department of Zoology, North Dakota State University, 58105, Fargo, ND, USA
| | | | | |
Collapse
|
42
|
Conlon JM, Yano K, Waugh D, Hazon N. Distribution and molecular forms of urotensin II and its role in cardiovascular regulation in vertebrates. ACTA ACUST UNITED AC 1996. [PMID: 8676097 DOI: 10.1002/(sici)1097-010x(19960601/15)275:2/3%3c226::aid-jez14%3e3.0.co;2-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- J M Conlon
- Department of Biomedical Sciences, Creighton University Medical School, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
43
|
Conlon JM, Yano K, Waugh D, Hazon N. Distribution and molecular forms of urotensin II and its role in cardiovascular regulation in vertebrates. ACTA ACUST UNITED AC 1996. [DOI: 10.1002/(sici)1097-010x(19960601/15)275:2/3<226::aid-jez14>3.0.co;2-h] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Chartrel N, Conlon JM, Collin F, Braun B, Waugh D, Vallarino M, Lahrichi SL, Rivier JE, Vaudry H. Urotensin II in the central nervous system of the frog Rana ridibunda: immunohistochemical localization and biochemical characterization. J Comp Neurol 1996; 364:324-39. [PMID: 8788253 DOI: 10.1002/(sici)1096-9861(19960108)364:2<324::aid-cne10>3.0.co;2-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians.
Collapse
Affiliation(s)
- N Chartrel
- Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U 413, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weber JM, Zwingelstein G. Chapter 2 Circulatory substrate fluxes and their regulation. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1873-0140(06)80005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
46
|
Effects of somatostatin-25 on lipid mobilization from rainbow trout, Oncorhynchus mykiss, liver and adipose tissue incubated in vitro. Comparison with somatostatin-14. J Comp Physiol B 1994. [DOI: 10.1007/bf00354087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
|
48
|
Adipose tissue. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-444-82033-4.50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
49
|
Agulleiro B, Lozano MT, Abad ME, Garc�a Hern�ndez MP. Electron-microscopic immunocytochemical study of the endocrine pancreas of sea bass (Dicentrarchus labrax). Cell Tissue Res 1993. [DOI: 10.1007/bf00318749] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Affiliation(s)
- C B Cowey
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|