1
|
Tai L, Li BB, Nie XM, Zhang PP, Hu CH, Zhang L, Liu WT, Li WQ, Chen KM. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:681. [PMID: 31275331 PMCID: PMC6593290 DOI: 10.3389/fpls.2019.00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 05/02/2023]
Abstract
Calcium (Ca2+) signaling and nicotinamide adenine dinucleotide (NAD) signaling are two basic signal regulation pathways in organisms, playing crucial roles in signal transduction, energy metabolism, stress tolerance, and various developmental processes. Notably, calmodulins (CaMs) and NAD kinases (NADKs) are important hubs for connecting these two types of signaling networks, where CaMs are the unique activators of NADKs. NADK is a key enzyme for NADP (including NADP+ and NADPH) biosynthesis by phosphorylating NAD (including NAD+ and NADH) and therefore, maintains the balance between NAD pool and NADP pool through an allosteric regulation mode. In addition, the two respective derivatives from NAD+ (substrate of NADK) and NADP+ (product of NADK), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), have been considered to be the important messengers for intracellular Ca2+ homeostasis which could finally influence the combination between CaM and NADK, forming a feedback regulation mechanism. In this review article, we briefly summarized the major research advances related to the feedback regulation pathway, which is activated by the interaction of CaM and NADK during plant development and signaling. The theories and fact will lay a solid foundation for further studies related to CaM and NADK and their regulatory mechanisms as well as the NADK-mediated NAD signaling behavior in plant development and response to stress.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains. Int J Parasitol 2014; 44:543-9. [PMID: 24874264 DOI: 10.1016/j.ijpara.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022]
Abstract
Two Norwegian isolates of the monogenean Gyrodactylus salaris Malmberg, 1957 with identical cytochrome c oxidase subunit I barcodes from different hosts, show highly divergent biological and behavioural characteristics. The Lierelva parasite strain, typically infecting Atlantic salmon, Salmo salar L., grew exponentially on Atlantic salmon, but the Pålsbufjorden parasite strain, commonly infecting Arctic charr, Salvelinus alpinus L., grew slowly on both hosts and was non-pathogenic to Atlantic salmon. Both parasite strains reproduced successfully on Arctic charr, but the Atlantic salmon-infecting Lierelva strain grew faster on both hosts. Experiments with isolated worms revealed differences in reproductive rates which may account for the observed population differences. Atlantic salmon parasites consistently gave birth at an earlier age than the Arctic charr parasites, with the differential increasing from 1 day for the first birth up to 2-4 days for the third birth. Arctic charr-infecting parasites were more active on Atlantic salmon than salmon parasites on Arctic charr, a behavioural strategy leading to enhanced G. salaris mortality. Sequencing of 10 kb of nuclear genomic markers revealed only four single nucleotide polymorphisms, confirming that isolates of G. salaris with differences in fitness traits influencing establishment, fecundity and behaviour may be remarkably similar at a molecular level. The framework for reporting and control of G. salaris requires re-appraisal in light of the discovery of variants with such divergent biology.
Collapse
|
3
|
Chen ZF, Wang H, Matsumura K, Qian PY. Expression of calmodulin and myosin light chain kinase during larval settlement of the Barnacle Balanus amphitrite. PLoS One 2012; 7:e31337. [PMID: 22348072 PMCID: PMC3278446 DOI: 10.1371/journal.pone.0031337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus ( = Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca(2+)/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
4
|
Huo L, Wong AOL. Genomic structure and transcriptional regulation of grass carp calmodulin gene. Biochem Biophys Res Commun 2009; 390:827-33. [PMID: 19853581 DOI: 10.1016/j.bbrc.2009.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/13/2009] [Indexed: 11/24/2022]
Abstract
A fish calmodulin (CaM) gene was characterized for the first time in grass carp. The CaM gene is about 12-Kb in size with identical intron/exon organization as that of mammalian CaM genes. When compared to mammalian counterparts, the 5'-promoter region of grass carp CaM gene contains a TATA box and has a much lower GC content and CpG dinucleotide frequency. Interestingly, the 5'-promoter of carp CaM gene is AT-rich with multiple IRS elements and putative binding sites for Pit-1, Sp1/Sp3 and AP1. Using luciferase reporter assay, a potent silencer region was identified in the distal region of grass carp CaM promoter. Besides, the CaM promoter activity could be upregulated by IGF but suppressed by PACAP, forskolin and over-expression of Sp1 and Sp3. These findings, taken together, indicate that grass carp CaM gene does not exhibit the typical features of housekeeping genes and its expression is under the control of hormone factors, presumably by coupling with the appropriate signaling pathways/transcription factors.
Collapse
Affiliation(s)
- Longfei Huo
- Endocrinology Division, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | | |
Collapse
|
5
|
Friedrich FW, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, Richard P, Wegscheider K, Schwartz K, Brito D, Arbustini E, Waldenstrom A, Isnard R, Komajda M, Eschenhagen T, Carrier L. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J 2009; 30:1648-55. [DOI: 10.1093/eurheartj/ehp153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Gao Y, Gillen CM, Wheatly MG. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:216-25. [PMID: 19095075 DOI: 10.1016/j.cbpb.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/21/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
Calmodulin (CaM) is a highly conserved calcium (Ca(2+)) binding protein that transduces Ca(2+) signals into downstream effects influencing a range of cellular processes, including Ca(2+) homeostasis. The present study explores CaM expression when Ca(2+) homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca(2+) ATPase (PMCA) known to regulate intracellular Ca(2+) through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca(2+) flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.
Collapse
Affiliation(s)
- Yongping Gao
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
7
|
Chiou CY, Chen IP, Chen C, Wu HJL, Wei NV, Wallace CC, Chen CA. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 2008; 66:317-24. [PMID: 18322634 DOI: 10.1007/s00239-008-9084-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/06/2007] [Accepted: 01/25/2008] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5'-untranslated region (UTR), 296 bp of 3'-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.
Collapse
Affiliation(s)
- Chih-Yung Chiou
- Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Luan J, Liu Z, Zhang S, Li H, Fan C, Li L. Characterization, evolution and expression of the calmodulin1 genes from the amphioxus Branchiostoma belcheri tsingtauense. Acta Biochim Biophys Sin (Shanghai) 2007; 39:255-64. [PMID: 17417680 DOI: 10.1111/j.1745-7270.2007.00277.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Two full-length cDNAs, named CaM1a and CaM1b, encoding the highly conserved calmodulin1 (CaM1) proteins, were isolated from the cDNA library of amphioxus Branchiostoma belcheri tsingtauense. There are only two nucleotide differences between them, producing one amino acid difference between CaM1a and CaM1b. Comparison of the amino acid sequence of CaM1 reveals that the B. belcheri tsingtauense CaM1a is identical with CaM1 proteins of B. floridae and B. lanceolatum, Drosophila melanogaster CaM, ascidian Halocynthia roretzi CaMA and mollusk Aplysia californica CaM, and CaM1b differs only at one position (138, Asn to Asp). The phylogenetic analysis indicates that the CaM1 in all three amphioxus species appears to encode the conventional CaM and CaM2 might be derived from gene duplication of CaM1. Southern blot suggests that there are two copies of CaM1 in the genome of B. belcheri tsingtauense. Northern blot and in situ hybridization analysis shows the presence of two CaM1 mRNA transcripts with various expression levels in different adult tissues and embryonic stages in amphioxus B. belcheri tsingtauense. The evolution and diversity of metazoan CaM mRNA transcripts are also discussed.
Collapse
Affiliation(s)
- Jing Luan
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
9
|
Orojan I, Bakota L, Gulya K. Differential calmodulin gene expression in the nuclei of the rat midbrain-brain stem region. Acta Histochem 2006; 108:455-62. [PMID: 16949651 DOI: 10.1016/j.acthis.2006.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/12/2006] [Accepted: 06/20/2006] [Indexed: 11/22/2022]
Abstract
We investigated the expression patterns of the three calmodulin (CaM) genes, using in situ hybridization techniques, to detect gene-specific [(35)S]- and digoxigenin-labeled cRNA probes complementary to the multiple CaM mRNAs in the nuclei of the midbrain-brain stem region of the adult rat. The distinct CaM genes were widely expressed throughout this region with moderate intensities. In spite of the similar general pattern, significant differences in the distributions of the multiple CaM mRNA species were found in certain areas. In general, the CaM III mRNAs were most abundant, followed by the CaM I and CaM II mRNA populations. Most of the transcripts were found in the neuronal somata comprising the medullar nuclei, while much less label was detected in the neuropil. The CaM III mRNAs were more than 2.5 times more abundant than the CaM II mRNAs in the nucleus of the trapezoid body, and more than two times more abundant in the motor trigeminal nucleus, the principal sensory trigeminal nucleus and the olivary nucleus. The CaM III mRNAs were less dominant in the medial lemniscus, the inferior colliculus and the pontine reticular nucleus than those of the other CaM gene-specific transcripts. The CaM mRNA levels were low to moderate, without significant differences, in the mesencephalic trigeminal nucleus. The differential control of the expression of the CaM genes may contribute to the regulation of the multiple neuronal functions linked to this complex brain region and regulated by different CaM-dependent mechanisms via its target proteins.
Collapse
Affiliation(s)
- Ivan Orojan
- Oncoradiology Center, Municipal Hospital, Kecskemet, Hungary
| | | | | |
Collapse
|
10
|
Simpson RJ, Wilding CS, Grahame J. Intron Analyses Reveal Multiple Calmodulin Copies in Littorina. J Mol Evol 2005; 60:505-12. [PMID: 15883885 DOI: 10.1007/s00239-004-0232-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 10/11/2004] [Indexed: 10/25/2022]
Abstract
Intron 3 and the flanking exons of the calmodulin gene have been amplified, cloned, and sequenced from 18 members of the gastropod genus Littorina. From the 48 sequences, at least five different gene copies have been identified and their functionality characterized using a strategy based upon the potential protein product predicted from flanking exon data. The functionality analyses suggest that four of the genes code for functional copies of calmodulin. All five copies have been identified across a wide range of littorinid species although not ubiquitously. Using this novel approach based on intron sequences, we have identified an unprecedented number of potential calmodulin copies in Littorina, exceeding that reported for any other invertebrate. This suggests a higher number of, and more ancient, gene duplications than previously detected in a single genus.
Collapse
Affiliation(s)
- R J Simpson
- School of Biology, The University of Leeds, Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
11
|
Huo L, Lee EKY, Leung PC, Wong AOL. Goldfish calmodulin: molecular cloning, tissue distribution, and regulation of transcript expression in goldfish pituitary cells. Endocrinology 2004; 145:5056-67. [PMID: 15297449 DOI: 10.1210/en.2004-0584] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calmodulin (CaM) is a Ca(2+)-binding protein essential for biological functions mediated through Ca(2+)-dependent mechanisms. In the goldfish, CaM is involved in the signaling events mediating pituitary hormone secretion induced by hypothalamic factors. However, the structural identity of goldfish CaM has not been established, and the neuroendocrine mechanisms regulating CaM gene expression at the pituitary level are still unknown. Here we cloned the goldfish CaM and tested the hypothesis that pituitary expression of CaM transcripts can be the target of modulation by hypothalamic factors. Three goldfish CaM cDNAs, namely CaM-a, CaM-bS, and CaM-bL, were isolated by library screening. These cDNAs carry a 450-bp open reading frame encoding the same 149-amino acid CaM protein, the amino acid sequence of which is identical with that of mammals, birds, and amphibians and is highly homologous (>/=90%) to that in invertebrates. In goldfish pituitary cells, activation of cAMP- or PKC-dependent pathways increased CaM mRNA levels, whereas the opposite was true for induction of Ca(2+) entry. Basal levels of CaM mRNA was accentuated by GnRH and pituitary adenylate cyclase-activating polypeptide but suppressed by dopaminergic stimulation. Pharmacological studies using D1 and D2 analogs revealed that dopaminergic inhibition of CaM mRNA expression was mediated through pituitary D2 receptors. At the pituitary level, D2 activation was also effective in blocking GnRH- and pituitary adenylate cyclase-activating polypeptide-stimulated CaM mRNA expression. As a whole, the present study has confirmed that the molecular structure of CaM is highly conserved, and its mRNA expression at the pituitary level can be regulated by interactions among hypothalamic factors.
Collapse
Affiliation(s)
- Longfei Huo
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Abstract
Calmodulin (CaM), a multifunctional intracellular calcium receptor, is a key element in signaling mechanisms. It is encoded in vertebrates by multiple apparently redundant genes (CaM I, II, III). To investigate whether differential expression takes place in the developing rat brain, a quantitative in situ hybridization analysis was carried out involving 15 brain areas at six ages between embryonic day 19 and postnatal day 20 (PD20) with gene-specific [(35)S]cRNA probes. A widespread, developmental stage-specific and differential expression of the three CaM genes was observed. The characteristic changes in the CaM mRNA levels in the examined time frame allowed the brain regions to be classified into three categories. For the majority of the areas (e.g. the piriform cortex for CaM III), the signal intensities peaked at around PD10 and the expression profile was symmetric (type 1). Other regions (e.g. the cerebral cortex, layer 1 for CaM II) displayed their highest signal intensities at the earliest age measured, followed by a gradual decrease (type 2). The signal intensities in the regions in the third group (e.g. the hypothalamus for CaM III) fluctuated from age to age (type 3). Marked CaM mRNA levels were measured for each transcript corresponding to the three CaM genes in the molecular layers of the cerebral and cerebellar cortici and hippocampus, suggesting their dendritic translocation. The highest signal intensity was measured for CaM II mRNA, followed by those for CaM III and CaM I mRNAs on PD1. However, the CaM II and CaM III mRNAs subsequently decreased steeply, while the CaM I mRNAs were readily detected even on PD20. Our results suggest that during development (1) the transcription of the CaM genes is under differential, area-specific control, and (2) a large population of CaM mRNAs is targeted to the dendritic compartment in a gene-specific manner.
Collapse
Affiliation(s)
- E Kortvely
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem Street, P.O. Box 659, H-6722 Szeged, Hungary
| | | | | | | |
Collapse
|
13
|
Kovacs B, Gulya K. Differential expression of multiple calmodulin genes in cells of the white matter of the rat spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:28-34. [PMID: 12191491 DOI: 10.1016/s0169-328x(02)00159-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calmodulin (CaM) displays complex cytoplasmic and synaptic functions in the nervous system. However, the very little information that is available on the gene expression of the multiple CaM genes in different glial cell types are from brain tissues of rodents, and no data have been published on their CaM gene expression in the spinal cord. Therefore, we have modified and tested a color in situ hybridization method sensitive enough to detect mRNA populations in cells with low CaM mRNA abundances in the white matter of the rat lumbar spinal cord. Morphologically, two distinct cell types expressing CaM mRNAs were detected. Differential CaM gene expression was demonstrated in medium-sized astrocyte-like cells that reside predominantly in the dorsal column of the spinal cord, where CaM I mRNA was most abundant, followed by the CaM III and CaM II mRNA populations. The oligodendrocytes displayed a less differential CaM gene expression in both the dorsal and the lateral columns, but the CaM I gene had a slightly higher expression level than those of the other CaM genes. The results indicate that the CaM gene expression profile of the spinal cord is richer and more complex than previously thought on the basis of conventional radioactive in situ hybridization techniques. Thus, when a method that is sufficiently sensitive was used, more cell types could be demonstrated to express CaM mRNAs; hence, in spite of their lower CaM expression, glial cells could also be visualized.
Collapse
Affiliation(s)
- Beatrix Kovacs
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem u., P.O. Box 659, Szeged, Hungary
| | | |
Collapse
|
14
|
Palfi A, Kortvely E, Fekete E, Kovacs B, Varszegi S, Gulya K. Differential calmodulin gene expression in the rodent brain. Life Sci 2002; 70:2829-55. [PMID: 12269397 DOI: 10.1016/s0024-3205(02)01544-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apparently redundant members of the calmodulin (CaM) gene family encode for the same amino acid sequence. CaM, a ubiquitous cytoplasmic calcium ion receptor, regulates the function of a variety of target molecules even in a single cell. Maintenance of the fidelity of the active CaM-target interactions in different compartments of the cell requires a rather complex control of the total cellular CaM pool comprising multiple levels of regulatory circuits. Among these mechanisms, it has long been proposed that a multigene family maximizes the regulatory potentials at the level of the gene expression. CaM genes are expressed at a particularly profound level in the mammalian central nervous system (CNS), especially in the highly polarized neurons. Thus, in the search for clear evidence of the suggested differential expression of the CaM genes, much of the research has been focused on the elements of the CNS. This review aims to give a comprehensive survey on the current understanding of this field at the level of the regulation of CaM mRNA transcription and distribution in the rodent brain. The results indicate that the CaM genes are indeed expressed in a gene-specific manner in the developing and adult brain under physiological conditions. To establish local CaM pools in distant intracellular compartments (dendrites and glial processes), local protein synthesis from differentially targeted mRNAs is also employed. Moreover, the CaM genes are controlled in a unique, gene-specific fashion when responding to certain external stimuli. Additionally, putative regulatory elements have been identified on the CaM genes and mRNAs.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Zoology and Cell Biology, University of Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The troponin C (TnC) superfamily genes generally possess five introns, and the positions where they are inserted are well conserved except for the fourth intron. Based on a structural comparison of TnC genes, we proposed that the common ancestor of TnC or TnC superfamily genes had no intron corresponding to the modern fourth intron, and therefore members of the superfamily have gained the fourth intron independently within each lineage. Here, we cloned calmodulin (CaM, one of the members of the TnC superfamily) cDNAs from two lower marine nonvertebrates, the sea anemone, Metridium senile, belonging to the Cnidaria, and the sponge, Halichondria okadai, belonging to the Porifera, and also determined their genomic organization. Chordate CaM genes generally possess five introns, but neither sea anemone nor sponge CaM has anything corresponding to the fourth intron of chordate CaMs, suggesting that the early metazoan CaM must have had only four introns. The modern fourth intron of chordate CaMs was acquired within the chordate lineage after nonvertebrate/chordate divergence. This notion concurs with our proposal explaining the evolution of the TnC superfamily genes.
Collapse
Affiliation(s)
- H J Yuasa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
16
|
Vizi S, Palfi A, Hatvani L, Gulya K. Methods for quantification of in situ hybridization signals obtained by film autoradiography and phosphorimaging applied for estimation of regional levels of calmodulin mRNA classes in the rat brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:32-44. [PMID: 11522526 DOI: 10.1016/s1385-299x(01)00082-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comparative analysis of the regional abundances of the various mRNAs in neural tissues requires the quantitation of target nucleic acid sequences while their tissue distribution is preserved. A quantitative in situ hybridization protocol is presented for the assessment of regional levels of calmodulin (CaM) I, II and III mRNAs in the rat brain. Coronal brain cryostat sections were hybridized with multiple CaM [35S]cRNA probes and co-exposed to an autoradiographic film or storage phosphor screen, together with a membrane-based radioactive standard scale. The membrane scale was calibrated against a brain paste standard scale. Regression analyses of the sensitometric graphs of standard scales corresponding to the autoradiographic film and to the storage phosphor screen were performed by means of exponential (ROD=p(1)(1-exp[-p(2)x])) and linear (LI=ax) functions, respectively (ROD is relative optical density, LI is labeling intensity, and x is radioactivity). The ROD/LI values for the hybridized brain regions were converted into cRNA probe copy numbers (estimations of mRNA copy numbers) through use of the above standard scales. This method was applied to compare the regional abundances of multiple CaM mRNAs in the brains of control, dehydrated, chronic ethanol-treated and ethanol withdrawal-treated animals.
Collapse
Affiliation(s)
- S Vizi
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem Street, PO Box 659, H-6722, Szeged, Hungary
| | | | | | | |
Collapse
|
17
|
Solà C, Barrón S, Tusell JM, Serratosa J. The Ca2+/calmodulin system in neuronal hyperexcitability. Int J Biochem Cell Biol 2001; 33:439-55. [PMID: 11331200 DOI: 10.1016/s1357-2725(01)00030-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Calmodulin (CaM) is a major Ca2+-binding protein in the brain, where it plays an important role in the neuronal response to changes in the intracellular Ca2+ concentration. Calmodulin modulates numerous Ca2+-dependent enzymes and participates in relevant cellular functions. Among the different CaM-binding proteins, the Ca2+/CaM dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. Therefore, the role of the Ca2+/CaM signalling system in different neurotoxicological or neuropathological conditions associated to alterations in the intracellular Ca2+ concentration is a subject of interest. We here report different evidences showing the involvement of CaM and the CaM-binding proteins above mentioned in situations of neuronal hyperexcitability induced by convulsant agents. Signal transduction pathways mediated by specific CaM binding proteins warrant future study as potential targets in the development of new drugs to inhibit convulsant responses or to prevent or attenuate the alterations in neuronal function associated to the deleterious increases in the intracellular Ca2+ levels described in different pathological situations.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consell Superior d'Investigacions Científiques, Barcelona, Spain.
| | | | | | | |
Collapse
|
18
|
Gallinat S, Busche S, Yang H, Raizada MK, Sumners C. Gene expression profiling of rat brain neurons reveals angiotensin II-induced regulation of calmodulin and synapsin I: possible role in neuromodulation. Endocrinology 2001; 142:1009-16. [PMID: 11181513 DOI: 10.1210/endo.142.3.8016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin (Ang II) activates neuronal AT(1) receptors located in the hypothalamus and the brainstem and stimulates noradrenergic neurons that are involved in the control of blood pressure and fluid intake. In this study we used complementary DNA microarrays for high throughput gene expression profiling to reveal unique genes that are linked to the neuromodulatory actions of Ang II in neuronal cultures from newborn rat hypothalamus and brainstem. Of several genes that were regulated, we focused on calmodulin and synapsin I. Ang II (100 nM; 1-24 h) elicited respective increases and decreases in the levels of calmodulin and synapsin I messenger RNAs, effects mediated by AT(1) receptors. This was associated with similar changes in calmodulin and synapsin protein expression. The actions of Ang II on calmodulin expression involve an intracellular pathway that includes activation of phospholipase C, increased intracellular calcium, and stimulation of protein kinase C. Taken together with studies that link calmodulin and synapsin I to axonal transport and exocytotic processes, the data suggest that Ang II regulates these two proteins via a Ca(2+)-dependent pathway, and that this may contribute to longer term or slower neuromodulatory actions of this peptide.
Collapse
Affiliation(s)
- S Gallinat
- Department of Physiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
19
|
Calmodulin gene expression in an immortalized striatal GABAergic cell line. ACTA BIOLOGICA HUNGARICA 2000. [DOI: 10.1007/bf03542966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Niu S, Kuo CH, Gan Y, Nishikawa E, Sadakata T, Ichikawa H, Miki N. Increase of calmodulin III gene expression by mu-opioid receptor stimulation in PC12 cells. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:412-7. [PMID: 11202613 DOI: 10.1254/jjp.84.412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calmodulin (CaM) is a principal multifunctional mediator of Ca2+ signaling in cells. It is reported that morphine increases CaM contents in mouse brain. However, the precise mechanism of CaM induction by morphine is unknown. We investigated the changes of CaM by opioid receptor stimulation in mRNA and protein levels. Expression of CaM was increased in dose- and time-dependent manners by morphine with RT-PCR assay in PC12 cells, and naloxone inhibited the effect of morphine. The expression was also increased with DAMGO (mu-opioid agonist), but not by DPDPE (delta) and U50488 (kappa). Northern blot analysis revealed that the CaMIII gene was responsive to morphine or DAMGO. CaM protein increased by DAMGO were distributed in both soluble and membranous fractions in the cells. Taken together, the data suggest that morphine induces the expression of CaMIII gene through mu-opioid receptor stimulation.
Collapse
Affiliation(s)
- S Niu
- Department of Pharmacology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Michelhaugh SK, Gnegy ME. Differential regulation of calmodulin content and calmodulin messenger RNA levels by acute and repeated, intermittent amphetamine in dopaminergic terminal and midbrain areas. Neuroscience 2000; 98:275-85. [PMID: 10854758 DOI: 10.1016/s0306-4522(00)00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Repeated doses of psychoactive drugs often produce adaptive responses that differ from the initial drug application and additional adaptive processes occur following cessation of the drug. The relationship between alterations in calmodulin protein and messenger RNA produced by an initial versus a repeated dose of amphetamine was examined, as well as changes following drug cessation. Calmodulin protein and messenger RNA of the three individual calmodulin genes were measured in rat dopaminergic cell body and terminal areas following acute or repeated amphetamine. Rats were either injected once with 2.5mg/kg amphetamine or saline and decapitated after 3h, or given 10 injections of amphetamine three to four days apart and decapitated 3h after the final injection. Calmodulin messenger RNA and protein were also measured three and seven days after ceasing drug treatment. Acute amphetamine increased calmodulin 1.7-fold in the striatum and threefold in the ventral mesencephalon, with corresponding elevations in calmodulin messenger RNAs. In response to the 10th dose of amphetamine, however, the degree of increase in calmodulin was diminished in the striatum and ablated in the ventral mesencephalon. Correspondingly, select species of calmodulin messenger RNA were decreased from control levels. In the frontal cortex or nucleus accumbens, calmodulin levels were basically unaltered by the first or 10th doses of amphetamine, but both calmodulin and its messenger RNA were altered with time upon cessation of the drug. Three days later, both calmodulin protein and messenger RNA were decreased in select brain areas. By seven days after the 10th injection, calmodulin content was altered compared to saline controls in all areas, but the change in messenger RNA no longer paralleled the change in protein.Our findings demonstrate that both calmodulin protein and select species of calmodulin messenger RNA are altered by acute amphetamine, but this effect is attenuated after repeated, intermittent amphetamine. There are further time-dependent changes after cessation of repeated amphetamine, which may reflect compensatory neuronal responses. The alterations in calmodulin content and synthesis could contribute to changes in patterns or duration of behaviors that occur upon cessation of repeated amphetamine.
Collapse
Affiliation(s)
- S K Michelhaugh
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0634, USA
| | | |
Collapse
|
22
|
Toutenhoofd SL, Strehler EE. The calmodulin multigene family as a unique case of genetic redundancy: multiple levels of regulation to provide spatial and temporal control of calmodulin pools? Cell Calcium 2000; 28:83-96. [PMID: 10970765 DOI: 10.1054/ceca.2000.0136] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved calcium sensor protein involved in the regulation of a wide variety of cellular events. In vertebrates, an identical CaM protein is encoded by a family of non-allelic genes, raising questions concerning the evolutionary pressure responsible for the maintenance of this apparently redundant family. Here we review the evidence that the control of the spatial and temporal availability of CaM may require multiple regulatory levels to ensure the proper localization, maintenance and size of intracellular CaM pools. Differential transcription of the CaM genes provides one level of regulation to meet tissue-specific, developmental and cell-specific needs for altered CaM levels. Post-transcriptional regulation occurs at the level of mRNA stability, perhaps dependent on alternative polyadenylation and differences in the untranslated sequences of the multiple gene transcripts. Recent evidence indicates that trafficking of specific CaM mRNAs may occur to specialized cellular locales such as the dendrites of neurons. This could allow local CaM synthesis and thereby help generate local pools of CaM. Local CaM activity may be further regulated by post-translational mechanisms such as phosphorylation or storage of CaM in a 'masked' form. The spatial resolution of CaM activity is enhanced by the limited free diffusion of CaM combined with differential affinity for and availability of target proteins. Preserving multiple CaM genes with divergent noncoding sequences may be necessary in complex organisms to ensure that the many CaM-dependent processes occur with the requisite spatial and temporal resolution. Transgenic mouse models and studies on mice carrying single and double gene 'knockouts' promise to shed further light on the role of specificity versus redundancy in the evolutionary maintenance of the vertebrate CaM multigene family.
Collapse
Affiliation(s)
- S L Toutenhoofd
- Program in Molecular Neuroscience, Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
23
|
Pan X, Solomon SS, Shah RJ, Palazzolo MR, Raghow RS. Members of the Sp transcription factor family regulate rat calmodulin gene expression. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:157-63. [PMID: 10945244 DOI: 10.1067/mlc.2000.108149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that insulin positively regulates transcription of the rat calmodulin (CaM) I gene and that both basal and insulin stimulation of this gene are critically dependent on Sp1. Furthermore, a 392 bp CaM promoter was stimulated by insulin equal to the full promoter but lost activity with deletion of any of the three Sp1 sites (Solomon SS, Palazzolo MR, Takahashi T, Raghow R. Endocrinology 1997;138:5052-5054). Herein we document that Sp1 preferentially binds to the upstream sites Sp1(2) and Sp1(3) but not Sp1(1). Furthermore, gel-mobility super-shift assays demonstrate that both Sp1 and Sp3 protein are found in these complexes. When pPac-Spl, pPac-Sp3, pPac-USp3, and pPac-Sp4 were cotransfected with rCaM 1-392 promoter into Drosophila SL2 cells and challenged with 10,000 microU/mL insulin, we discovered that (1) Sp1 enhanced both basal and insulin-stimulated CaM I gene expression; (2) USp3, a "long" form of the Sp3 molecule, had a stimulatory effect on CaM I gene expression; (3) Sp1 or USp3 is involved in mediating insulin-stimulation of the CaM I gene in SL2 cells; and (4) Sp3, a "short" form of the Sp3 molecule, and Sp4 inhibited Spl-stimulated and insulin-stimulated Sp1-mediated CaM I gene expression. Together these data corroborate and extend our previous observations on Sp1 and elucidate that other members of the Sp family of transcription factors may also be involved in regulating the activity of the CaM promoter.
Collapse
Affiliation(s)
- X Pan
- Veterans Affairs Medical Center Research Service, Department of Medicine, University of Tennessee Memphis, The Health Science Center, USA
| | | | | | | | | |
Collapse
|
24
|
Vizi S, Gulya K. Calculation of maximal hybridization capacity (Hmax) for quantitative in situ hybridization: a case study for multiple calmodulin mRNAs. J Histochem Cytochem 2000; 48:893-904. [PMID: 10858266 DOI: 10.1177/002215540004800702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In estimations of mRNA copy numbers, quantitative in situ hybridization (ISH) is expected to be performed at saturating probe concentration. In practice, however, this condition can rarely be fulfilled when medium to high amounts of transcripts exist and/or in large-scale experiments. To resolve this problem, we developed and tested a double-step procedure involving the use of calmodulin (CaM) I, II, and III [(35)S]-cRNA probes on adult rat brain sections; the hybridization signals were detected with a phosphorimager. By means of hybridization at increasing probe concentrations for a time sufficient for saturation, saturation curves were created for and maximal hybridization capacity (Hmax) values were assigned to selected brain areas. The Kd values of these various brain areas did not differ significantly, which allowed the creation and use of one calibration graph of Hmax vs hybridized [(35)S]-cRNA values for all brain areas for a given probe concentration. Large-scale ISH experiments involving a subsaturating probe concentration were performed to estimate Hmax values for multiple CaM mRNAs. A calibration graph corresponding to this probe concentration was created and Hmax values (expressed in ISH copy no/mm(2) units) were calculated for several brain regions via the calibration. The value of the method was demonstrated by simultaneous quantification of the total accessible multiple CaM mRNA contents of several brain areas in a precise and economical way.
Collapse
Affiliation(s)
- S Vizi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
25
|
Palfi A, Gulya K. Water deprivation upregulates the three calmodulin genes in exclusively the supraoptic nucleus of the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:111-6. [PMID: 10640681 DOI: 10.1016/s0169-328x(99)00270-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM), the ubiquitous intracellular calcium-binding protein, is coded by three bona fide CaM genes (CaM I, CaM II and CaM III) in mammals. They code for the same protein and are transcribed at particularly high levels in the brain, where CaM plays an essential role in basic neuronal functions. In this study, the expression of the three CaM genes in response to osmotic stimuli by water deprivation was investigated in the rat brain, with particular interest as concerns the hypothalamic magnocellular nuclei. CaM mRNA levels were determined by quantitative in situ hybridization autoradiography with gene-specific [35S]cRNA probes. In response to osmotic challenge, it was found that upregulation of the three CaM genes participates in the activation of the hypothalamo-hypophyseal system in the supraoptic nucleus (SON) (126% to 169%), but not in the magnocellular part of the paraventricular hypothalamic nucleus (PVN) (-10%). CaM mRNA levels decreased by 10%-15% in the suprachiasmatic nucleus (SCh) and many other extrahypothalamic brain areas. The opposite responses of the CaM gene expression in the SON and the magnocellular part of the PVN suggest a functional difference between them. Moreover, the significantly different magnitudes of the changes in the CaM mRNA levels in the SON nucleus (138%, 126% and 169% for CaM I, CaM II and CaM III, respectively) exemplify the precise differential control of the CaM gene expression in the brain.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem St., POB 659, H-6722, Szeged, Hungary
| | | |
Collapse
|
26
|
Solà C, Barrón S, Tusell JM, Serratosa J. The Ca2+/calmodulin signaling system in the neural response to excitability. Involvement of neuronal and glial cells. Prog Neurobiol 1999; 58:207-32. [PMID: 10341361 DOI: 10.1016/s0301-0082(98)00082-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ plays a critical role in the normal function of the central nervous system. However, it can also be involved in the development of different neuropathological and neurotoxicological processes. The processing of a Ca2+ signal requires its union with specific intracellular proteins. Calmodulin is a major Ca(2+)-binding protein in the brain, where it modulates numerous Ca(2+)-dependent enzymes and participates in relevant cellular functions. Among the different calmodulin-binding proteins, the Ca2+/calmodulin-dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. We present an overview on different works aimed at the study of the Ca2+/calmodulin signalling system in the neural response to convulsant agents. Ca2+ and calmodulin antagonists inhibit the seizures induced by different convulsant agents, showing that the Ca2+/calmodulin signalling system plays a role in the development of the seizures induced by these agents. Processes occurring in association with seizures, such as activation of c-fos, are not always sensitive to calmodulin, but depend on the convulsant agent considered. We characterized the pattern of expression of the three calmodulin genes in the brain of control mice and detected alterations in specific areas after inducing seizures. The results obtained are in favour of a differential regulation of these genes. We also observed alterations in the expression of the Ca2+/calmodulin-dependent protein kinase II and calcineurin after inducing seizures. In addition, we found that reactive microglial cells increase the expression of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the brain after seizures.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consell, Superior d'Investigacions Cientifiques.
| | | | | | | |
Collapse
|
27
|
Palfi A, Vizi S, Gulya K. Differential distribution and intracellular targeting of mRNAs corresponding to the three calmodulin genes in rat brain. A quantitative in situ hybridization study. J Histochem Cytochem 1999; 47:583-600. [PMID: 10219052 DOI: 10.1177/002215549904700502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the pattern of expression of the three calmodulin (CaM) genes by in situ hybridization, gene-specific [35S]-cRNA probes complementary to the multiple CaM mRNAs were hybridized in rat brain sections and subsequently detected by quantitative film or high-resolution nuclear emulsion autoradiography. A widespread and differential area-specific distribution of the CaM mRNAs was detected. The expression patterns corresponding to the three CaM genes differed most considerably in the olfactory bulb, the cerebral and cerebellar cortices, the diagonal band, the suprachiasmatic and medial habenular nuclei, and the hippocampus. Moreover, the significantly higher CaM I and CaM III mRNA copy numbers than that of CaM II in the molecular layers of certain brain areas revealed a differential dendritic targeting of these mRNAs. The results indicate a differential pattern of distribution of the multiple CaM mRNAs at two levels of cellular organization in the brain: (a) region-specific expression and (b) specific intracellular targeting. A precise and gene-specific regulation of synthesis and distribution of CaM mRNAs therefore exists under physiological conditions in the rat brain.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
28
|
Yuasa HJ, Yamamoto H, Takagi T. The structural organization of the ascidian, Halocynthia roretzi, calmodulin genes. The vicissitude of introns during the evolution of calmodulin genes. Gene 1999; 229:163-9. [PMID: 10095116 DOI: 10.1016/s0378-1119(99)00028-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two distinct calmodulin (CaM) genes are isolated from the ascidian, Halocynthia roretzi, (Hr-CaM A and Hr-CaM B) and those structures are determined. There are three nucleotide substitutions, producing two amino acid differences between Hr-CaM A and Hr-CaM B, and those are corresponding to two of the known eight variable residues among metazoan CaMs. Both Hr-CaM A and Hr-CaM B are constructed from six exons and five introns, and the positions of introns are identical. The positions of introns of Hr-CaMs are also identical with those of vertebrate CaMs, except third introns. The third introns of Hr-CaMs are inserted at 28bp upstream when compared with vertebrate CaMs. Thus, sliding of the third intron might have occurred in only the ascidian lineage prior to the gene duplication that also occurred only in that lineage. In addition, with the comparison of the intron positions, we attempt to investigate the vicissitude of introns during the evolution of metazoan CaMs.
Collapse
Affiliation(s)
- H J Yuasa
- Biological Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
29
|
Palfi A, Hatvani L, Gulya K. A new quantitative film autoradiographic method of quantifying mRNA transcripts for in situ hybridization. J Histochem Cytochem 1998; 46:1141-49. [PMID: 9742070 DOI: 10.1177/002215549804601006] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We developed and tested a novel quantitative method for the quantification of film autoradiographs, involving a mathematical model and a dot-blot-based membrane standard scale. The exponential model introduced here, ROD = p1(1 - exp[p2x]), appropriately (r2>0. 999), describes the relation between relative optical density (ROD) and radioactivity (x) in the range between 0 and 240 gray scale values (using a 256-gray scale level digitizer). By means of this model, standard curves with distinct quenching properties can be exactly interconverted, permitting the tissue-equivalent calibration of different standard scales. The membrane standard scale employed here has several advantages, including the flexible radioactivity range, the facile and rapid preparation technique, and the compact size. The feasibility of the quantification procedure is exemplified by the comparative quantification of multiple calmodulin mRNAs in the rat brain by in situ hybridization with [35S]-cRNA probes. The procedure for quantification provides a significant improvement in that the direct and exact comparison of radiolabeled species, even from different experiments, can be reliably performed. Further, the procedure can be adapted to the quantification of autoradiographs produced by other methods.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
30
|
Hou WF, Zhang SP, Davidkova G, Nichols RA, Weiss B. Effect of antisense oligodeoxynucleotides directed to individual calmodulin gene transcripts on the proliferation and differentiation of PC12 cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:295-308. [PMID: 9743467 DOI: 10.1089/oli.1.1998.8.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calmodulin (CaM) is encoded by three different genes that collectively give rise to five transcripts. In the present study, we used antisense oligodeoxynucleotides targeted to unique sequences in the transcripts from the individual CaM genes to selectively block the expression of the different genes and to investigate the roles these individual genes play in the proliferation and nerve growth factor (NGF)-induced differentiation of PC12 cells. Culturing PC12 cells in the presence of oligodeoxynucleotide antisense to the transcripts from CaM genes I and II caused a significant decrease in the proliferation and a significant delay in the NGF-induced differentiation of PC12 cells when compared with untreated cells and with cells treated with the corresponding randomized oligodeoxynucleotides. However, an oligodeoxynucleotide antisense to CaM gene III did not significantly alter the proliferation or the NGF-induced differentiation of PC12 cells. The inhibition of cell proliferation could be reversed by washing out the antisense oligodeoxynucleotides. The levels of CaM in cells treated with oligodeoxynucleotides antisense to CaM genes I or II were reduced 52% or 63%, respectively, of the levels found in the control cells. However, the levels of CaM were not significantly reduced in PC12 cells treated with CaM gene III antisense oligodeoxynucleotide. None of the randomized oligodeoxynucleotides had any effect on the levels of CaM in PC12 cells. The reduced levels of CaM in PC12 cells treated with an oligodeoxynucleotide antisense to CaM gene I were accompanied by a reduction in the levels of the CaM gene I mRNAs, supporting a true antisense mechanism of action for these oligodeoxynucleotides. These results suggest that altering the level of CaM by using antisense oligodeoxynucleotides targeted to the dominant CaM transcripts in a particular cell type will specifically inhibit their proliferation and, in the case of neuronal cells, alter the course of their differentiation.
Collapse
Affiliation(s)
- W F Hou
- Department of Pharmacology, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
31
|
Toutenhoofd SL, Foletti D, Wicki R, Rhyner JA, Garcia F, Tolon R, Strehler EE. Characterization of the human CALM2 calmodulin gene and comparison of the transcriptional activity of CALM1, CALM2 and CALM3. Cell Calcium 1998; 23:323-38. [PMID: 9681195 DOI: 10.1016/s0143-4160(98)90028-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human calmodulin is encoded by three genes CALM1, CALM2 and CALM3 located on different chromosomes. To complete the characterization of this family, the exon-intron structure of CALM2 was solved by a combination of genomic DNA library screening and genomic PCR amplification. Intron interruptions were found at identical positions in human CALM2 as in CALM1 and CALM3; however, the overall size of CALM2 (16 kb) was almost twice that of the other two human CALM genes. Over 1 kb of the 5' flanking sequence of human CALM2 were determined, revealing the presence of a TATA-like sequence 27 nucleotides upstream of the transcriptional start site and several conserved sequence elements possibly involved in the regulation of this gene. To determine if differential transcriptional activity plays a major role in regulating cellular calmodulin levels, we directly measured and compared the mRNA abundance and transcriptional activity of the three CALM genes in proliferating human teratoma cells. CALM3 was at least 5-fold more actively transcribed than CALM1 or CALM2. CALM transcriptional activity agreed well with the mRNA abundance profile in the teratoma cells. In transient transfections using luciferase reporter genes driven by 1 kb of the 5' flanking DNA of the three CALM genes, the promoter activity correlated with the endogenous CALM transcriptional activity, but only when the 5' untranslated regions were included in the constructs. We conclude that the CALM gene family is differentially active at the transcriptional level in teratoma cells and that the 5' untranslated regions are necessary to recover full promoter activation.
Collapse
Affiliation(s)
- S L Toutenhoofd
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hayashi N, Matsubara M, Takasaki A, Titani K, Taniguchi H. An expression system of rat calmodulin using T7 phage promoter in Escherichia coli. Protein Expr Purif 1998; 12:25-8. [PMID: 9473453 DOI: 10.1006/prep.1997.0807] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient expression system of rat calmodulin in Escherichia coli is presented. To express rat calmodulin cDNA, we employed a pET expression vector which contains the T7 phage promoter and terminator. After transformation of E. coli BL21(DE3) strain which carries T7 phage RNA polymerase inducible with isopropyl-beta-D-thiogalactopyranoside, induction of the expression, and chromatography of soluble proteins on a phenyl-Sepharose column, about 250 mg of recombinant rat calmodulin was obtained from 1 liter of E. coli culture. The recombinant calmodulin lacked the N-terminal methionine, and posttranslational modifications such as Nalpha-acetylation and methylation. This system facilitates the large amount preparation of calmodulin and the mutant proteins required for the structural analysis by NMR spectrometry and/or X-ray crystallography.
Collapse
Affiliation(s)
- N Hayashi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-11, Japan.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The cDNA and gene for calmodulin (CaM) from the cephalochordate Branchiostoma were isolated and characterized. The nucleotide sequence of the Branchiostoma CaM cDNA is about 80% identical to the CaM of Drosophila and Aplysia. However, all nucleotide substitutions are silent, therefore the amino acid sequences of all these CaMs are identical. Branchiostoma and Aplysia CaM genes have the same exon/intron organization. PCR, Northern and genomic Southern analyses showed that Branchiostoma CaM is encoded by a single copy gene, while fish are known to have at least four CaM genes. These results fit the hypothesis that major gene duplication events occurred close to the origin of vertebrates, i.e., after the divergence of the cephalochordate lineage.
Collapse
Affiliation(s)
- A Karabinos
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
34
|
Shimizu Y, Akiyama K, Kodama M, Ishihara T, Hamamura T, Kuroda S. Alterations of calmodulin and its mRNA in rat brain after acute and chronic administration of methamphetamine. Brain Res 1997; 765:247-58. [PMID: 9313897 DOI: 10.1016/s0006-8993(97)00435-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of acute and chronic administration of methamphetamine (METH) on the levels of calmodulin (CaM) and its mRNAs has been investigated in rat brain using antisense oligonucleotides to three distinct rat CaM genes (CaM I, CaM II, CaM III). CaM I mRNA was reduced in the striatum and nucleus accumbens within 2 h of acute administration of 4 mg/kg METH, but returned to the control level by 6 h. The CaM content in both the cytosolic and membrane fractions of the striatum was reduced 0.5, 2, and 6 h after acute administration of METH. In the chronic experiments, rats were treated with either 4 mg/kg METH or saline once daily for 14 days. This was followed by a withdrawal period of 28 days, and thereafter, the animals were challenged with either METH (4 mg/kg, i.p.) or saline. All the animals were decapitated 6 h after this injection. There were four treatment groups: METH-METH (MM); METH-saline (MS); saline-METH (SM); and saline-saline (SS). There was a significant decrease in the mRNA for CaM I and CaM II in the striatum, and CaM II and CaM III in the nucleus accumbens in the MS group and the MS and MM groups, respectively, when compared to the SS group. The CaM content in the striatal membrane fraction decreased in both the SM and MS groups but not in the MM group. In contrast, the CaM content in the membrane fraction of the mesolimbic area showed a significant increase in the MM group. The CaM content in the cytosolic fraction of these brain areas decreased in both the SM and MM groups. The total CaM decreased significantly in the SM and MM groups of the striatum, but increased significantly in the MM group of the mesolimbic area. The mRNA for CaM I and CaM III decreased significantly in the MM group, and in the SM and MM groups, in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA), respectively. The CaM content in both the cytosolic and membrane fractions and total CaM content of the SN/VTA decreased significantly in the SM, MS and MM group as compared with the SS group. In the medial prefrontal cortex and hippocampus the significant increase of CaM content in the membrane fraction of the MM group was also found, but neither the CaM content in the cytosol fraction nor total CaM content changed. These results suggest that chronic METH administration leads to a translocation of CaM from the cytosolic to membrane fractions; these may underlie METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Y Shimizu
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Ng DC, Carlsen RC, Walsh DA. Neural regulation of the formation of skeletal muscle phosphorylase kinase holoenzyme in adult and developing rat muscle. Biochem J 1997; 325 ( Pt 3):793-800. [PMID: 9271102 PMCID: PMC1218625 DOI: 10.1042/bj3250793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neural influences on the co-ordination of expression of the multiple subunits of skeletal muscle phosphorylase kinase and their assembly to form the holoenzyme complex, alpha4beta4gamma4delta4, have been examined during denervation and re-innervation of adult skeletal muscle and during neonatal muscle development. Denervation of the tibialis anterior and extensor digitorum longus muscles of the rat hindlimb was associated with a rapid decline in the mRNA for the gamma subunit, and an abrupt decrease in gamma-subunit protein. The levels of the alpha- and beta-subunit proteins in the denervated muscles also declined rapidly, their time course of reduction being similar to that for the gamma-subunit protein, but they did not decrease to the same extent. In contrast with the rapid decline in gamma-subunit mRNA upon denervation, alpha- and beta-subunit mRNAs stayed at control innervated levels for approx. 8-10 days, but then decreased rapidly. Their decline coincided very closely with the onset of re-innervation. Re-innervation of the denervated muscles, which occurs rapidly and uniformly after the sciatic nerve crush injury, produced an eventual slow and prolonged recovery of the mRNA for all three subunits and parallel increases in each of the subunit proteins. A similar co-ordinated increase of both subunit mRNA and subunit proteins of the phosphorylase kinase holoenzyme was observed during neonatal muscle development, during the period when the muscles were attaining their adult pattern of motor activity. The phosphorylase kinase holoenzyme remains in a non-activated form during all of these physiological changes, as is compatible with the presence of the full complement of the regulatory subunits. These data are consistent with a model whereby the transcriptional and translational expression of phosphorylase kinase gamma subunit occurs only with concomitant expression of the alpha and beta subunits. This would ensure that free and unregulated, activated gamma subunit alone, which would give rise to unregulated glycogenolysis, is not produced. The data also suggest that control of phosphorylase kinase subunit expression and the formation of the holoenzyme in skeletal muscle is provided by the motor nerve, probably through imposed levels or patterns of muscle activity.
Collapse
Affiliation(s)
- D C Ng
- Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
36
|
Solà C, Tusell JM, Serratosa J. Differential response of calmodulin genes in the mouse brain after systemic kainate administration. Neuroscience 1997; 78:155-64. [PMID: 9135097 DOI: 10.1016/s0306-4522(96)00532-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the central nervous system, many of the effects resulting from an increase in the intracellular levels of calcium are mediated by calmodulin, a major calcium-binding protein in the mammalian brain. Calmodulin is expressed by three different genes, namely CaM I, CaM II and CaM III, all of which encode an identical protein. We studied the expression of calmodulin in the mouse brain at different times after the administration of a convulsant dose of kainate, a potent neuroexcitotoxic agent. We detected the presence of the different calmodulin messenger RNAs and of the protein itself in brain sections by in situ hybridization histochemistry and immunocytochemistry respectively. In addition, we determined the calmodulin content in brain regions by radioimmunoassay. Kainate-treated animals did not show areas of neuronal death at the different times following administration considered. An increase in the hybridization signal for CaM I messenger RNAs was observed from 5 h after kainate administration in the different brain regions tested. In contrast, the CaM II messenger RNA signal decreased gradually to a minimum 24 h after treatment in the hippocampus, while the CaM III messenger RNA signal was mostly unaffected. Calmodulin immunoreactivity also increased in the hippocampus. Nevertheless, we did not detect any significant difference in calmodulin content between brain regions of control and treated animals by radioimmunoassay. Kainate treatment induced modifications in the expression of calmodulin at the level of both messenger RNAs and protein. The results suggest a differential regulation of the three calmodulin genes in the adult mouse brain and a post-transcriptional or a post-translational regulation of calmodulin expression.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Spain
| | | | | |
Collapse
|
37
|
Clément S, Dumont JE, Schurmans S. Loss of calcyphosine gene expression in mouse and other rodents. Biochem Biophys Res Commun 1997; 232:407-13. [PMID: 9125191 DOI: 10.1006/bbrc.1997.6297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcyphosine-for calcium binding and regulated by cyclic AMP through phosphorylation protein-is a target of both the cyclic AMP and the Ca(+2)-phophatidylinositol cascades first isolated from dog thyroid, and then from rabbit and human brain. Although the exact function of this 24kD protein is unknown, calcyphosine could be implicated in the cross-signaling between these cascades to coordinate cellular proliferation and differentiation. Here, we report the sequence of a pseudogene which is the murine calcyphosine homologue, and demonstrate that it represents the unique sequence homologous to the dog calcyphosine gene in the murine genome. The lack of expression of this murine pseudogene in brain and thyroid-two major sites of dog calcyphosine expression-was extended to 5 other rodents, and suggest the existence of alternative pathway(s) to fill the function of calcyphosine in rodents.
Collapse
Affiliation(s)
- S Clément
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
38
|
Davidkova G, Zhang SP, Nichols RA, Weiss B. Reduced level of calmodulin in PC12 cells induced by stable expression of calmodulin antisense RNA inhibits cell proliferation and induces neurite outgrowth. Neuroscience 1996; 75:1003-19. [PMID: 8938737 DOI: 10.1016/0306-4522(96)00230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role calmodulin plays in the growth and differentiation of nerve cells was assessed by altering the levels of calmodulin in the PC12 rat pheochromocytoma cell line and determining the effects of altering these levels on cellular proliferation and differentiation. Calmodulin levels in the PC12 cells were increased or decreased by transfecting the cells with a mammalian expression vector into which the rat calmodulin gene I had been cloned in the sense or antisense orientation, respectively. The cells transfected with the calmodulin sense gene showed increased levels of calmodulin immunoreactivity and increased levels of calmodulin messenger RNA as ascertained by immunocytochemistry and slot-blot analysis, respectively. Cells transfected with the calmodulin antisense construct showed reduced levels of calmodulin immunoreactivity. Reducing the levels of calmodulin by expression of antisense calmodulin messenger RNA resulted in a marked inhibition of cell growth, whereas increasing the levels of calmodulin by overexpressing calmodulin messenger RNA resulted in an acceleration of cell growth. Transfected PC12 cells having reduced levels of calmodulin immunoreactivity exhibited spontaneous outgrowth of long, stable and highly branched neuritic processes. PC12 cells in which calmodulin was overexpressed showed no apparent changes in cell morphology, but did show an altered response to the addition of nerve growth factor. While nerve growth factor slowed cellular proliferation and induced extensive neurite outgrowth, in parental PC12 cells nerve growth factor induced little or no neurite outgrowth and little inhibition of cell proliferation in transfected cells overexpressing calmodulin. These results indicate that calmodulin is essential for the proliferation of nerve cells and for the morphological changes that nerve cells undergo during differentiation. The study also suggests the possibility that a calmodulin antisense approach may be used to inhibit the proliferation of neuronal tumors.
Collapse
Affiliation(s)
- G Davidkova
- Department of Pharmacology, Medical College of Pennsylvania, Philadelphia 19129, USA
| | | | | | | |
Collapse
|
39
|
Solà C, Tusell JM, Serratosa J. Comparative study of the pattern of expression of calmodulin messenger RNAs in the mouse brain. Neuroscience 1996; 75:245-56. [PMID: 8923538 DOI: 10.1016/0306-4522(96)00214-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calmodulin is a major calcium-binding protein in the mammalian brain, playing an important role in neuronal cell function. Its amino acid sequence is highly conserved and the protein is encoded by multiple genes. In the mouse brain, as well as in the rat and the human brain, three different genes have been detected for calmodulin, CaM I, CaM II and CaM III, all of which encode an identical protein. We studied the pattern of expression of the three calmodulin genes and the pattern of calmodulin distribution in the mouse brain by in situ hybridization histochemistry and immunohistochemistry. We found that calmodulin messenger RNAs from the three calmodulin genes were widely expressed in the mouse brain. Nevertheless, there were differences in their patterns of distribution. In general, all calmodulin messenger RNAs were preferentially distributed in hippocampus, cerebral cortex and cerebellar cortex, and CaM II messenger RNA also in caudate-putamen. However, all messenger RNAs showed clearly differentiated patterns of distribution in the hippocampus and the cerebellar cortex. Calmodulin immunoreactivity was present in all cells so far examined. Immunostaining was observed both in the cell nucleus, where it was especially strong, and in the cytoplasm. Our results suggest that the three calmodulin genes are differentially regulated in the mouse brain and also that, although all calmodulin genes have a basal expression, precise regulation of calmodulin levels might be attained through the different contribution of the three calmodulin genes.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Spain
| | | | | |
Collapse
|
40
|
Abstract
In the rat, a single calmodulin (CaM) protein is encoded by three separate genes which produce five different transcripts. The significance of the multiple CaM genes is not known; however, individual CaM transcripts could be targeted to specific intracellular sites. In this report, the cellular distribution of CaM I mRNAs was analyzed in the postnatal rat brain. The 4.0-kb CaM I transcript was present in neuronal cell bodies and also localized to apical dendritic processes. In cerebral cortical neurons, the 4.0-kb CaM I mRNA was detected in apical dendrites at postnatal day (PD) 5 to 15. In hippocampal neurons, this CaM message was present in dendritic processes from PD S to 20, whereas in Purkinje neurons it was detected in dendrites at PD 15 and 20. The presence of the 4.0-kb CaM I mRNA in dendrites of the rat brain supports the notion of targeting transcripts derived from the CaM multigene family to discrete intracellular destinations.
Collapse
Affiliation(s)
- F B Berry
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Berry FB, Prusky GT, Brown IR. Alteration of CaM I mRNA expression in the developing rat superior colliculus following chronic treatment with an NMDA receptor antagonist. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:171-80. [PMID: 8852367 DOI: 10.1016/0165-3806(95)00172-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The spatial distribution of CaM I mRNA was investigated in the developing superior colliculus of rats that were chronically treated with the NMDA receptor antagonist AP-5. In control animals, CaM I message was localized in a continuous band of cells that extended across the entire rostro caudal axis of the superficial superior colliculus. Chronic AP-5 treatment resulted in a specific reduction of CaM I message in the caudal colliculus at postnatal day 10. Since normal NMDA receptor function has been implicated in activity dependent synaptic plasticity in the superior colliculus, these results suggest that the regulation of calmodulin may be part of a cascade of events that mediate this plasticity following NMDA receptor activation.
Collapse
Affiliation(s)
- F B Berry
- Department of Zoology, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
42
|
Berry F, Brown IR. Developmental expression of calmodulin mRNA and protein in regions of the postnatal rat brain. J Neurosci Res 1995; 42:613-22. [PMID: 8600293 DOI: 10.1002/jnr.490420503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of calmodulin (CaM) protein and mRNA was analyzed in specific regions of the rat brain during postnatal development. CaM levels in the adult brain were more abundant in the cerebral hemispheres and thalamus compared to brain stem and superior plus inferior colliculus. All brain regions contained higher CaM protein and mRNA levels than in non-neural tissues such as the kidney. During postnatal development of the brain, maximal levels of CaM protein and CaM I mRNAs were attained at day 10 or 15. Protein levels declined thereafter in the adult in all regions except the thalamus. With respect to products of the rat CaM I gene, the 4.0 kb neural transcript demonstrated a pronounced increase during postnatal development, whereas the 1.8 kb message showed little change.
Collapse
Affiliation(s)
- F Berry
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Skinner TL, Kerns RT, Bender PK. Three different calmodulin-encoding cDNAs isolated by a modified 5'-RACE using degenerate oligodeoxyribonucleotides. Gene 1994; 151:247-51. [PMID: 7828884 DOI: 10.1016/0378-1119(94)90665-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to obtain the 5' ends of the three mouse calmodulin (CaM) cDNAs, we modified the standard 5' RACE (rapid amplification of cDNA ends) method to use degenerate synthetic oligodeoxyribonucleotides to prime cDNA synthesis of all three CaM mRNAs. In this modified method, the degenerate primers were annealed to mRNAs in an incubation step prior to the reverse transcription reaction. Separating the annealing step from the reverse transcription reaction allowed for greater stringency by using higher temperatures than could be tolerated if the reverse transcriptase were present. Annealing was also done with lower primer concentration and was driven by a longer incubation time. After the annealing step, cDNA synthesis was initiated by diluting the annealing mixture into a 42 degrees C buffer with reverse transcriptase. The synthesized cDNA was poly(dA)-tailed to allow PCR amplification of the first-strand cDNA with an anchor-dT17 primer and the degenerate primers. The CaM cDNAs were evident after this PCR. A second PCR, with nested gene-specific primers, was used to isolate the individual CaM cDNAs from the products of the first PCR. Three distinct CaM cDNAs were cloned and sequenced. By comparison of the 5' untranslated sequences between the mouse CaM DNAs and rat CaM cDNAs, the corresponding homologs were assigned. The results suggest that application of this modified RACE method could improve the success of isolating specific cDNAs in cases where use of a nested primer is not possible or when amino-acid sequence information is available and only degenerate primers can be designed for cloning cDNAs by the 5'-RACE method.
Collapse
Affiliation(s)
- T L Skinner
- Department of Biochemistry and Anaerobic Microbiology, Virginia Tech., Blacksburg 24061
| | | | | |
Collapse
|
44
|
Mori M, Andoh Y, Nojima H, Serikawa T. Chromosomal mapping of calmodulin genes in the rat. Mamm Genome 1994; 5:824-6. [PMID: 7894172 DOI: 10.1007/bf00292026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Mori
- Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
45
|
Rhyner JA, Ottiger M, Wicki R, Greenwood TM, Strehler EE. Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:71-82. [PMID: 7925473 DOI: 10.1111/j.1432-1033.1994.00071.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human CALM1 calmodulin gene has been isolated and characterized. The gene contains six exons spread over about 10 kb of genomic DNA. The exon-intron structure is identical to that of the human CALM3 and of the rat CALM1 and CALM3 genes. A cluster of transcription-start sites was identified 200 bp upstream of the ATG translation-start codon, and several putative regulatory elements were found in the 5' flanking region as well as in intron 1. Sequence comparison with the rat CALM1 gene revealed significant similarities in the promoter regions of the two genes and an even more striking degree of identity (70%) in the available intron 1 sequences. A short CAG trinucleotide repeat region was identified in the 5' untranslated region of the human CALM1 gene; this sequence is not conserved in the rat counterpart. Expression of the CALM1 gene was detected in all human tissues tested, although at varying levels. A 1.7-kb mRNA was uniformly present at comparable levels, whereas a 4.2-kb mRNA species was particularly abundant in brain and skeletal muscle. Clones for two different CALM1-related pseudogenes CALM1P1 and CALM1P2 were also isolated and characterized. Both pseudogenes are intronless and non-functional as judged from the presence of mutations abolishing the open reading frame. Genomic Southern analysis indicates that the human CALM1 gene/pseudogene subfamily comprises at least three but probably no more than four members. The entire family consists of three bona fide CALM genes, at least one expressed calmodulin-like CALML gene as well as at least five pseudogenes.
Collapse
Affiliation(s)
- J A Rhyner
- Laboratory for Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, Zurich
| | | | | | | | | |
Collapse
|
46
|
Eastlake JL, Branford-White CJ, Whish WJ. The distribution of calmodulin/calmodulin binding proteins in the rat tapeworm, Hymenolepis diminuta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 108:487-500. [PMID: 7953068 DOI: 10.1016/0305-0491(94)90102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Live tapeworms have been fixed to retain antigenicity of their proteins, and subsequently prepared for electron microscopy. Thin sections of tapeworms were prepared from resin blocks. Sections were immunocytochemically labelled using a colloidal gold probe and viewed using transmission electron microscopy. Calmodulin was detected associated with cellular structures to which calmodulin has previously been linked in other higher eukaryotes. Calmodulin would appear to have a similar role of importance in tapeworms, as it does in higher eukaryotes although tapeworms are prevalently a syncitium.
Collapse
Affiliation(s)
- J L Eastlake
- Biochemistry Department, Bath University, Claverton Down, U.K
| | | | | |
Collapse
|
47
|
Gannon MN, McEwen BS. Distribution and regulation of calmodulin mRNAs in rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 22:186-92. [PMID: 8015378 DOI: 10.1016/0169-328x(94)90046-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective oligonucleotide probes were developed to determine the distribution and hormonal regulation of different calmodulin genes in rat brain and the relationship to calmodulin-dependent adenylate cyclase activity. (1) Probes directed against known CaMI, CaMII and CaMIII mRNA sequences selectively recognized molecular mRNA species of approximately 4.1 and 1.7 (CaMI mRNA), 1.4 (CaMII mRNA) and 2.0 and 1.0 kb (CaMIII mRNA) in rat brain. All three calmodulin genes appeared actively coexpressed at high levels in neuronal cell layers, as revealed by in situ hybridization and northern analysis. (2) Adrenalectomy selectively attenuated levels of CaMIII, but not CaMI or CaMII mRNA, in both cerebral cortex and hippocampus. (3) Adrenalectomy also decreased calmodulin dependent adenylate cyclase activity in hippocampal, but not cortical, cell membranes. (4) Corticosterone administration prevented adrenalectomy effects on hippocampal adenylate cyclase activity and calmodulin mRNA levels. However, steroid treatment also increased forskolin-stimulated enzyme activity in cerebral cortex, but not in hippocampus. These results suggest that hormonal factors regulate calmodulin gene expression in adult brain. Further evidence is required to establish the temporal interrelationships between steroid regulation of calmodulin and its target proteins.
Collapse
Affiliation(s)
- M N Gannon
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021
| | | |
Collapse
|
48
|
Matsuo K, Ikeshima H, Shimoda K, Umezawa A, Hata J, Maejima K, Nojima H, Takano T. Expression of the rat calmodulin gene II in the central nervous system: a 294-base promoter and 68-base leader segment mediates neuron-specific gene expression in transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:9-20. [PMID: 8255185 DOI: 10.1016/0169-328x(93)90106-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deletion analysis of the rat CaMII promoter demonstrated that the segment from -294 to +68 bases of CaMII was efficient as a promoter in NIH3T3 by transient assay. We developed transgenic mice carrying a fusion gene of this promoter segment and a beta-galactosidase reporter gene. This short CaMII promoter mediated the transgene expression in pyramidal cells of the cerebral neocortex, the pyriformcortex and the hippocampal regions CA1 to CA3, in granule cells of the dentate gyrus, in Purkinje cells of the cerebellum, and in neurons of the lateral vestibular nucleus of pons and the spinal cord of adult transgenic mice. The expression of endogenous CaMII was precisely analyzed by in situ hybridization in the nervous tissues. The localization of transgene expression was consistent with those of the endogenous CaMII in the adult transgenic mice. In the embryos at 13.5-15.5 days of gestation, the transgene was expressed in various neurons similarly to the endogenous CaMII but certain subtle differences were observed in the localization of expression. This short promoter of rat CaMII carried two sequence stretches highly conserved in the mouse, dog, chicken and Xenopus CaMII promoters. These conserved stretches may be involved in the observed neuron-specific expression of rat CaMII gene.
Collapse
Affiliation(s)
- K Matsuo
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ikeshima H, Yuasa S, Matsuo K, Kawamura K, Hata J, Takano T. Expression of three nonallelic genes coding calmodulin exhibits similar localization on the central nervous system of adult rats. J Neurosci Res 1993; 36:111-9. [PMID: 8230317 DOI: 10.1002/jnr.490360112] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By Northern blot analysis with the digoxigenin-labeled antisense RNA probes of the noncoding regions, the transcripts of three calmodulin (CaM) genes, CaMI, CaMII, and CaMIII, were separately detected in 12 different tissues of adult Wistar albino rats, without any cross-hybridization. The mRNAs of all three CaM genes were abundant in the central nervous system (CNS) as well as in the testis, although ubiquitous expression was detected at low levels in the other tissues. There were subtle but significant differences in the tissue-specific distribution of the three CaM gene RNAs. By in situ hybridization, strong hybridization of the three CaM gene probes was observed in common in large projection neurons of the CNS: the hippocampal pyramidal cells, the cerebellar Purkinje cells, and the large neurons of the cerebral neocortex, the pyriform cortex, the mesencephalon, the pons, and the spinal cord. The expression of the three CaM genes was at lower levels in small interneurons of the CNS. These profiles of expression were almost the same among the three CaM genes. Thus, all three CaM genes were coordinately expressed in neurons of the adult rat CNS. Certain regulatory mechanisms of the three CaM genes seemed to mediate similar tissue- and cell type-specific expression in the CNS.
Collapse
Affiliation(s)
- H Ikeshima
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Fujikawa K, Imai S, Sakane F, Kanoh H. Isolation and characterization of the human diacylglycerol kinase gene. Biochem J 1993; 294 ( Pt 2):443-9. [PMID: 8396913 PMCID: PMC1134474 DOI: 10.1042/bj2940443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 80 kDa diacylglycerol kinase (DGK) is abundantly expressed in oligodendrocytes and lymphocytes but not to a detectable extent in other cells such as neurons and hepatocytes. As an initial attempt to delineate the mechanism of the transcriptional control of the DGK gene, we have cloned from a human genomic library a 22 kb genomic fragment. The genomic clone consists of the 5'-flanking region and 17 exons coding for approx. 53% of the total exons of human DGK, including those encoding EF-hand and zinc-finger regions. The translation initiation site is located in the second exon. S1 nuclease mapping and primer extension analysis of the human DGK mRNA identified a major transcription initiation site (position +1) at 264 bp upstream from the initiator ATG. In the 5'-flanking sequence we detected a single GC box at -35 but no canonical TATA and CAAT sequences. However, the sequence starting from the cap site (AGTTCCTGCCA) is very similar to the initiator element that specifies the transcription initiation site of some housekeeping genes. In addition, the 5'-upstream region contains several putative cis-elements. Jurkat and HepG2 cells were transfected with various 5'-deletion mutants of the upstream region fused to the structural gene of chloramphenicol acetyltransferase (CAT). The CAT assay revealed that among constructs containing up to 3.4 kb of the 5'-flanking region, a fragment of 263 bp from the transcription initiation site contains a basic promoter that is active in both types of cells. Moreover, the region between -263 and -850 contains a negative element that is active in HepG2 but not in Jurkat cells. This negative element may, at least in part, be responsible for the cell type-specific expression of the DGK gene.
Collapse
Affiliation(s)
- K Fujikawa
- Department of Internal Medicine (Section 4), Sapporo Medical College, Japan
| | | | | | | |
Collapse
|