1
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient’s age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
2
|
Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1949-1959. [PMID: 29109032 DOI: 10.1016/j.bbadis.2017.10.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic 'backfill' and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
3
|
Abstract
The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system's homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte's function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart's metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions.
Collapse
Affiliation(s)
- Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| |
Collapse
|
4
|
Marazzi G, Wajngarten M, Vitale C, Patrizi R, Pelliccia F, Gebara O, Pierri H, Ramires JAF, Volterrani M, Fini M, Rosano GMC. Effect of free fatty acid inhibition on silent and symptomatic myocardial ischemia in diabetic patients with coronary artery disease. Int J Cardiol 2007; 120:79-84. [PMID: 17134770 DOI: 10.1016/j.ijcard.2006.08.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 08/10/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Free fatty acid inhibition with trimetazidine (TMZ) improves myocardial metabolism and myocardial ischemia in patients with coronary artery disease (CAD). Because of its effect on myocardial glucose utilization TMZ may represent a therapeutic option in diabetic patients with CAD. Aim of the present study was to evaluate whether the metabolic effect of TMZ may improve episodes of myocardial ischemia in diabetic patients with CAD. RESEARCH DESIGN AND METHODS We assessed the effect of TMZ on 24 h ambulatory ECG monitoring (AEM) in 30 patients (22 males and 8 females, mean (SE) age 67+/-6.5 years) with NIDDM and ischemic cardiomyopathy. Patients were randomized to receive on top of standard therapy either TMZ (20 mg, tds) or placebo (tds) and were evaluated at baseline and after 6 months. RESULTS Patients randomized to TMZ or placebo were comparable regarding demographic data, distribution of CAD, and glicated haemoglobin levels. TMZ significantly reduced the number of episodes of transient myocardial ischemia (-24% compared to baseline, p<0.01; -27% compared to placebo, p<0.01), and Total Ischemic Burden (-28% compared to baseline, p<0.01; -29% compared to placebo, p<0.01). TMZ also significantly reduced the number of silent episodes of myocardial ischemia (-42% compared to baseline and -39% compared to placebo, p<0.01) and the time of silent myocardial ischemia/24 h (-37% compared to baseline and -35% compared to placebo, p<0.01). No significant changes in heart rate were detected between baseline, placebo and TMZ evaluations. CONCLUSIONS TMZ is effective in reducing silent and symptomatic episodes of transient myocardial ischemia in diabetic patients with CAD on standard anti-anginal therapy.
Collapse
Affiliation(s)
- Giuseppe Marazzi
- Department of Medical Sciences, Centre for Clinical and Basic Research, IRCCS San Raffaele, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Patients with diabetes mellitus and ischemic heart disease more frequently develop heart failure and have a greater amount of myocardial ischemia, often silent, compared with patients without diabetes. Furthermore, patients with coronary artery disease (CAD) and diabetes or insulin resistance have altered myocardial metabolism and accelerated and diffuse atherogenesis with involvement of distal coronary segments that causes chronic hypoperfusion and hibernation. Therefore, in patients with diabetes and CAD, the ischemic metabolic changes are heightened by the metabolic changes in patients with diabetes. An important metabolic alteration in patients with diabetes is the increase in free fatty acid (FFA) concentrations and the increased skeletal muscle and myocardial FFA uptake and oxidation. The increased uptake and utilization of FFA and the reduced utilization of glucose as a source of energy during stress and ischemia contribute to the increased susceptibility of diabetic hearts to myocardial ischemia and to a greater decrease of myocardial performance for a given amount of ischemia compared with nondiabetic hearts. A therapeutic approach aimed at an improvement in cardiac metabolism through manipulations of the use of metabolic substrates should result in an improvement in myocardial ischemia and left ventricular (LV) function. The inhibition of FFA oxidation with trimetazidine improves cardiac metabolism at rest, increases cardiac resistance to ischemia, and therefore reduces the decrease of LV function caused by chronic hypoperfusion and repetitive episodes of myocardial ischemia in patients with and without diabetes. Thus, modulation of myocardial FFA metabolism should be the key target for metabolic interventions in patients with CAD with and without diabetes. In patients with diabetes, the effects of modulation of FFA metabolism should be even greater compared with those observed in patients without diabetes. Because of its effect on cardiac metabolism at rest and its effects on myocardial ischemia and LV function, trimetazidine should always be considered for the treatment of patients with diabetes with CAD with or without LV dysfunction.
Collapse
Affiliation(s)
- Giuseppe M C Rosano
- Center for Clinical and Basic Research, IRCCS San Raffaele Roma, Rome, Italy.
| | | | | |
Collapse
|
6
|
Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q. Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2006; 2:2006.0031. [PMID: 16760902 PMCID: PMC1681503 DOI: 10.1038/msb4100071] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/05/2006] [Indexed: 12/02/2022] Open
Abstract
To better understand the dynamic regulation of optimality in metabolic networks under perturbed conditions, we reconstruct the energetic-metabolic network in mammalian myocardia using dynamic flux balance analysis (DFBA). Additionally, we modified the optimal objective from the maximization of ATP production to the minimal fluctuation of the profile of metabolite concentration under ischemic conditions, extending the hypothesis of original minimization of metabolic adjustment to create a composite modeling approach called M-DFBA. The simulation results are more consistent with experimental data than are those of the DFBA model, particularly the retentive predominant contribution of fatty acid to oxidative ATP synthesis, the exact mechanism of which has not been elucidated and seems to be unpredictable by the DFBA model. These results suggest that the systemic states of metabolic networks do not always remain optimal, but may become suboptimal when a transient perturbation occurs. This finding supports the relevance of our hypothesis and could contribute to the further exploration of the underlying mechanism of dynamic regulation in metabolic networks.
Collapse
Affiliation(s)
- Ruo-Yu Luo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sha Liao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Yang Tao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Shaoqun Zeng
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China. Tel.: +86 1387 1155 789; Fax: +86 27 8779 2034; E-mail:
| | - Qingming Luo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China. Tel.: +86 1391 6378 087; Fax: +86 21 5406 5058; E-mail:
| |
Collapse
|
7
|
Rosano GMC, Vitale C, Volterrani M, Fini M. Metabolic therapy for the diabetic patients with ischaemic heart disease. Coron Artery Dis 2005; 16 Suppl 1:S17-21. [PMID: 16340399 DOI: 10.1097/00019501-200511001-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diabetic patients with ischaemic heart disease have a greater amount of myocardial ischaemia, often silent, and an increased incidence of heart failure compared to nondiabetic patients. This is the result of altered myocardial metabolism and accelerated atherogenesis with involvement of peripheral coronary segments causing chronic hypoperfusion and diffuse hybernation. In patients with diabetes mellitus and myocardial ischaemia, the metabolic changes occurring as a consequence of the mismatch between blood supply and cardiac metabolic requirements are heightened by the diabetic metabolic changes. An important metabolic alteration of diabetes is the increase in free fatty acid concentrations and increased muscular and myocardial free fatty acid uptake and oxidation. This increased uptake and utilization of free fatty acid during stress and ischaemia is responsible for the increased susceptibility of the diabetic heart to myocardial ischaemia and to a greater decrease of myocardial performance for a given amount of ischaemia compared to nondiabetic hearts. Given the metabolic alterations of the diabetic heart at rest and during episodes of myocardial ischaemia, a therapeutic approach aimed at an improvement of cardiac metabolism through manipulations of the utilization of metabolic substrates should result in an improvement of myocardial ischaemia and of left ventricular function. Modulation of myocardial free fatty acid metabolism should be the key target for metabolic interventions in patients with coronary artery disease with and without diabetes. In diabetic patients, the effects of modulation of free fatty acid metabolism should be even greater than those observed in patients without diabetes. The inhibition of FFA oxidation with trimetazidine improves cardiac metabolism at rest, decreases cardiac ischaemia and therefore prevents the decline of left ventricular function due to chronic hypoperfusion and repetitive episodes of myocardial ischaemia. Because of its effect on cardiac metabolism at rest, its effects on myocardial ischaemia and left ventricular function trimetazidine should always be considered for the treatment of diabetic patients with ischaemic heart disease with or without left ventricular dysfunction.
Collapse
|
8
|
Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J Physiol 2005; 569:925-37. [PMID: 16223766 PMCID: PMC1464269 DOI: 10.1113/jphysiol.2005.093146] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ischaemia decreases mitochondrial NADH oxidation, activates glycolysis, increases the NADH/NAD+ ratio, and causes lactate production. The mechanisms that regulate anaerobic glycolysis and the NADH/NAD+ ratio during ischaemia are unclear. Although continuous measurements of metabolic fluxes and NADH/NAD+ in cytosol and mitochondria are not possible in vivo with current experimental techniques, computational models can be used to predict these variables by simulations with in silico experiments. Such predictions were obtained using a mathematical model of cellular metabolism in perfused myocardium. This model, which distinguishes cytosolic and mitochondrial domains, incorporates key metabolic species and processes associated with energy transfer. Simulation of metabolic responses to mild, moderate and severe ischaemia in large animals showed that mitochondrial NADH/NAD+ was rapidly reset to higher values in proportion to the reduced O2 delivery and myocardial oxygen consumption . Cytosolic NADH/NAD+, however, showed a biphasic response, with a sharp initial increase that was due to activation of glycogen breakdown and glycolysis, and corresponded with lactate production. Whereas the rate of glycolysis and the malate-aspartate shuttle had a significant effect on the cytosolic NADH/NAD+, their effects on the mitochondrial NADH/NAD+ were minimal. In summary, model simulations of the metabolic response to ischaemia showed that mitochondrial NADH/NAD+ is primarily determined by O2 consumption, while cytosolic NADH/NAD+ is largely a function of glycolytic flux during the initial phase, and is determined by mitochondrial NADH/NAD+ and the malate-aspartate shuttle during the steady state.
Collapse
Affiliation(s)
- Lufang Zhou
- Pediatric Cardiology, Rainbow Babies and Children's Hospital 11100 Euclid Avenue, RBC-389 Cleveland, OH 44106-6011, USA
| | | | | | | | | |
Collapse
|
9
|
Salem JE, Stanley WC, Cabrera ME. Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Biomed Eng Online 2004; 3:15. [PMID: 15175110 PMCID: PMC421738 DOI: 10.1186/1475-925x-3-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 06/02/2004] [Indexed: 11/10/2022] Open
Abstract
Background A computational model of myocardial energy metabolism was used to assess the metabolic responses to normal and reduced myocardial blood flow. The goal was to examine to what extent glycolysis and lactate formation are controlled by the supply of glycolytic substrate and/or the cellular redox (NADH/NAD+) and phosphorylation (ATP/ADP) states. Methods Flow was reduced over a wide range and for a sufficient duration in order to investigate the sequence of events that occur during the transition to a new metabolic steady state. Results Simulation results indicated multiple time-dependent controls over both glycolysis and lactate formation. Conclusions Changes in phosphorylation state and glucose uptake only significantly affect the initial phase of the glycolytic response to ischemia, while glycogen breakdown exerts control over glycolysis during the entire duration of ischemia. Similarly, changes in the redox state affect the rates of lactate formation and release primarily during the initial transient phase of the response to the reductions in blood flow, while the rate of glycolysis controls the rate of lactate formation throughout the entire period of adaptation.
Collapse
Affiliation(s)
- Jennifer E Salem
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - William C Stanley
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Marco E Cabrera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
10
|
Li SH, McNeill JH. In vivo effects of vanadium on GLUT4 translocation in cardiac tissue of STZ-diabetic rats. Mol Cell Biochem 2001; 217:121-9. [PMID: 11269655 DOI: 10.1023/a:1007224828753] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of vanadium treatment on insulin-stimulated glucose transporter type 4 (GLUT4) translocation was studied in cardiac tissue of streptozotocin (STZ)-induced diabetic rats by determining the subcellular distribution of GLUT4. Four groups of rats were examined: control and diabetic, with or without bis(maltolato)oxovanadium(IV) (BMOV, an organic form of vanadium) treatment for 8 weeks. The effect of vanadium on insulin-induced GLUT4 translocation was studied at 5 min as the early insulin response and at 15 min after insulin injection as the maximal insulin response. At 5 min after insulin injection, plasma membrane GLUT4 level in the diabetic-treated group was not different from the control groups and was significantly higher than that of the insulin-stimulated diabetic group, indicating an enhancement of insulin response on GLUT4 translocation brought about by vanadium treatment. In contrast to that at 5 min after insulin injection, no significant difference in the plasma membrane GLUT4 level was observed between the diabetic and the diabetic-treated groups at 15 min after insulin injection. GLUT4 mobilization from the intracellular pool in response to insulin was also investigated at 15 min after insulin injection. Basal intracellular GLUT4 content was significantly higher in the diabetic-treated group when compared to the diabetic group under the same condition. However, the increased basal intracellular GLUT4 in the diabetic-treated group did not result in more insulin-mediated GLUT4 translocation at 15 min after insulin injection. In conclusion, the finding that plasma membrane GLUT4 in the diabetic-treated group is significantly higher than that of the diabetic group at 5 min but not at 15 min post-insulin injection indicates that vanadium treatment enhances insulin-mediated GLUT4 translocation in cardiac tissue by enhancing its early response.
Collapse
Affiliation(s)
- S H Li
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
11
|
Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H195-203. [PMID: 9688914 DOI: 10.1152/ajpheart.1998.275.1.h195] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several studies have shown that maintenance of glycolysis limits the metabolic and functional consequences of low-flow ischemia. Because diabetic animals are known to have impaired glycolytic metabolism coupled with increased flux through the aldose reductase (AR) pathway, we hypothesized that inhibition of AR would enhance glycolysis and thereby improve metabolic and functional recovery during low-flow ischemia. Hearts (n = 12) from nondiabetic control and diabetic rats were isolated and retrograde perfused using 11 mM glucose with or without the AR inhibitor zopolrestat (1 microM). Hearts were subjected to 30 min of low-flow ischemia (10% of baseline flow) and 30 min of reperfusion. 31P NMR spectroscopy was used to monitor time-dependent changes in phosphocreatine (PCr), ATP, and intracellular pH. Changes in the cytosolic redox ratio of NADH to NAD+ were obtained by measuring the ratio of tissue lactate to pyruvate. Effluent lactate concentrations and oxygen consumption were determined from the perfusate. AR inhibition improved functional recovery in both control and diabetic hearts, coupled with a lower cytosolic redox state and greater effluent lactate concentrations during ischemia. ATP levels during ischemia were significantly higher in AR-inhibited hearts, as was recovery of PCr. In diabetic hearts, AR inhibition also limited acidosis during ischemia and normalized pH recovery on reperfusion. These data demonstrate that AR inhibition maintains higher levels of high-energy phosphates and improves functional recovery upon reperfusion in hearts subjected to low-flow ischemia, consistent with an increase in glycolysis. Accordingly, this approach of inhibiting AR offers a novel method for protecting ischemic myocardium.
Collapse
Affiliation(s)
- R Ramasamy
- Division of Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
12
|
Tsuchida T, Yonekura Y, Wada Y, Sadato N, Yamamoto K, Waki A, Nakano A, Lee JD, Hayashi N, Ishii Y. Delayed enhancement of myocardial FDG uptake on glucose loading FDG-PET in NIDDM patient. Ann Nucl Med 1997; 11:331-4. [PMID: 9460526 DOI: 10.1007/bf03165302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a case of delayed enhancement of myocardial FDG uptake in NIDDM patient after oral glucose loading. A 65-year-old man who had a past history of NIDDM received FDG-PET examination during fasting and glucose loading. In neither condition, was an accumulation of FDG in the myocardium, and myocardial blood flow was normal. An oral glucose tolerance test (OGTT) was performed to find the best time for FDG injection and 3 hours after loading, the serum insulin concentration was increased significantly. When the interval between glucose loading and the injection of FDG was set at 3 hours, enhancement of myocardial FDG uptake was demonstrated. To know the best time for the FDG injection in advance is thought to be important in obtaining better image quality and interpreting the myocardial viability when FDG-PET examination during glucose loading is performed in NIDDM patients.
Collapse
Affiliation(s)
- T Tsuchida
- Department of Radiology, Fukui Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Osborn BA, Daar JT, Laddaga RA, Romano FD, Paulson DJ. Exercise training increases sarcolemmal GLUT-4 protein and mRNA content in diabetic heart. J Appl Physiol (1985) 1997; 82:828-34. [PMID: 9074970 DOI: 10.1152/jappl.1997.82.3.828] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study determined whether dynamic exercise training of diabetic rats would increase the expression of the GLUT-4 glucose transport protein in prepared cardiac sarcolemmal membranes. Four groups were compared: sedentary control, sedentary diabetic, trained control, and trained diabetic. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained control and diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Sarcolemmal membranes were isolated by using differential centrifugation, and the activity of sarcolemmal K(-)-p-nitrophenylphosphatase (pNPPase; an indicator of Na(+)-K(+)-adenosinetriphosphatase activity) was quantified. Hearts from the sedentary diabetic group exhibited a significant depression of sarcolemmal pNPPase activity. Exercise training did not significantly alter pNPPase activity. Sedentary diabetic rats exhibited an 84 and 58% decrease in GLUT-4 protein and mRNA, respectively, relative to control rats. In the trained diabetic animals, sarcolemmal GLUT-4 protein levels were only reduced by 50% relative to control values, whereas GLUT-4 mRNA were returned to control levels. The increase in myocardial sarcolemmal GLUT-4 may be beneficial to the diabetic heart by enhancing myocardial glucose oxidation and cardiac performance.
Collapse
Affiliation(s)
- B A Osborn
- Department of Physiology, Midwestern University, Downers Grove, Illinois 60515, USA
| | | | | | | | | |
Collapse
|
14
|
Stanley WC, Hall JL, Hacker TA, Hernandez LA, Whitesell LF. Decreased myocardial glucose uptake during ischemia in diabetic swine. Metabolism 1997; 46:168-72. [PMID: 9030824 DOI: 10.1016/s0026-0495(97)90297-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of the study was to assess myocardial glucose uptake in nondiabetic (n = 5) and streptozotocin-diabetic (n = 6) Yucatan miniature swine under matched hyperglycemic and hypoinsulinemic conditions. Fasting conscious diabetic swine had significantly higher plasma glucose levels (20.9 +/- 2.6 v 5.2 +/- 0.3 mmol/L) and lower insulin levels (6 +/- 1 v 14 +/- 4 microU/mL) than nondiabetic animals. Myocardial glucose uptake was measured in open-chest anesthetized animals under aerobic and ischemic conditions 12 weeks after streptozotocin treatment. Coronary blood flow was controlled by an extracorporeal perfusion circuit. Ischemia was induced by reducing left anterior descending (LAD) coronary artery blood flow by 60% for 40 minutes. Animals were treated with somatostatin to suppress insulin secretion, and nondiabetic swine received intravenous (IV) glucose to match the hyperglycemia in the diabetic animals. The rate of glucose uptake by the myocardium was not statistically different under aerobic conditions, but was significantly lower in diabetic swine during ischemia (0.20 +/- 0.08 v 0.63 +/- 0.14 micromol x g(-1) x min(-1), P < .01). Myocardial glucose transporter (GLUT4) protein concentration was decreased by 31% in diabetic swine. In conclusion, 12 weeks of streptozotocin diabetes in swine caused a significant decrease in myocardial GLUT4 protein and a decrease in myocardial glucose uptake during ischemia.
Collapse
Affiliation(s)
- W C Stanley
- Section of Cardiovascular Pharmacology, Syntex Discovery Research, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Hall JL, Henderson J, Hernandez LA, Kellerman LA, Stanley WC. Hyperglycemia results in an increase in myocardial interstitial glucose and glucose uptake during ischemia. Metabolism 1996; 45:542-9. [PMID: 8622595 DOI: 10.1016/s0026-0495(96)90022-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this investigation was to assess the effects of hyperglycemia, in the absence of changes in plasma insulin and arterial free fatty acid (FFA) levels, on interstitial glucose levels and glucose uptake across the left ventricular wall during ischemia in domestic swine. Insulin secretion was suppressed with a continuous infusion of somatostatin. Arterial FFA levels remained stable due to the suppression of insulin. Microdialysis probes were used to estimate changes in interstitial glucose and lactate, and were placed in the subepicardium and the subendocardium of the left anterior descending ([LAD] ischemic) coronary artery perfusion bed and in the midmyocardium of the circumflex ([CFX] nonischemic) perfusion bed. The LAD coronary artery was cannulated and perfused with blood from the femoral artery through an extracorporal perfusion circuit. Ischemia was induced in the LAD perfusion bed by reducing the flow of the LAD perfusion pump by 60% for 50 minutes, and was followed by 30 minutes of reperfusion. Twenty minutes into the ischemic period, seven animals were given a bolus injection of 50% glucose (200 mg/kg) followed by a glucose infusion (10 mg/kg/min), resulting in an increase in arterial glucose levels from 5 to 13 mmol/L in the hyperglycemic group. Hyperglycemia resulted in a marked increase in dialysate glucose during ischemia and a greater than twofold increase in glucose extraction and uptake. Dialysate glucose correlated with plasma glucose in all three perfusion beds. In conclusion, hyperglycemia, in the absence of an increase in insulin and a decrease in arterial FFA, resulted in a doubling of glucose extraction, delivery, and uptake, which corresponded to the twofold elevation in interstitial glucose during ischemia.
Collapse
Affiliation(s)
- J L Hall
- Syntex Discovery Research, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Roth DA, White CD, Hamilton CD, Hall JL, Stanley WC. Adrenergic desensitization in left ventricle from streptozotocin diabetic swine. J Mol Cell Cardiol 1995; 27:2315-25. [PMID: 8576946 DOI: 10.1016/s0022-2828(95)91875-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with diabetes mellitus that exhibit cardiac pump failure display compromised stroke volume, ejection fraction, and slower rates of rise and fall of left ventricular (LV) dP/dt in the absence of ischemic injury. We hypothesized that diabetic cardiomyopathy may involve decrements in adrenergic sensitivity, with specific molecular alterations in the beta-adrenergic receptor (beta AR)- G protein- adenylyl cyclase (AC) signal transduction system. We assessed the effects of 3 months of streptozotocin-induced diabetes (125 mg/kg i.v.; DIAB, n = 10) on myocardial signal transduction in mini-pigs. DIAB were hyperglycemic compared to controls (CON, n = 10; 20.92 +/- 2.64 v 5.24 +/- 0.35 mM glucose), and had lower fasting insulin levels (6.46 +/- 0.97 v 13.68 +/- 3.91 microU/ml). Transmural LV free wall homogenates from DIAB exhibited similar beta AR density as CON, but decreased cAMP production (pmol cAMP/mg prot.min) using these pharmacological stimulators: 10 microM Isoproterenol plus 100 microM GTP (74 +/- 5 v 97 +/- 11); 100 microM Gpp(NH)p (116 +/- 7 v 161 +/- 17); 10 mM fluoride ion (266 +/- 16 v 324 +/- 25). No differences between DIAB and CON were observed when stimulated by 100 microM forskolin (440 +/- 20 v 429 +/- 33), suggesting no alterations in the catalytic subunit of AC. In DIAB, quantitative immunoblotting indicated slightly depressed levels of Gs (552 +/- 44 v 630 +/- 59 pmol/g ww; NS), but a significant redistribution of alpha s from the sarcolemma to the cytosol (32.7 +/- 0.82% v 25.9 +/- 1.7%). Significantly elevated levels of cardiac Gi were seen in DIAB homogenates compared to CON ventricles (2326 +/- 145 v 1522 +/- 181 pmol/g ww), with no alpha i subunit redistribution. We conclude that despite maintained beta AR density, receptor-dependent and G protein-dependent stimulation of AC is depressed so that streptozotocin-induced diabetic LV is affected by increased cardiac Gi, redistribution of Gs alpha to the cytosol, and an increase in the Gi/Gs ratio. These results help explain depressed catecholamine responsiveness and cardiac performance exhibited by diabetic patients.
Collapse
Affiliation(s)
- D A Roth
- Department of Kinesiology, University of Colorado, Boulder 80309-0354, USA
| | | | | | | | | |
Collapse
|
18
|
Liedtke AJ, Renstrom B, Nellis SH, Hall JL, Stanley WC. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol 1995; 26:815-25. [PMID: 7642877 DOI: 10.1016/0735-1097(95)00223-q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES This study sought to evaluate the functional and metabolic consequences of imposing a chronic external coronary stenosis around the left anterior descending coronary artery for 4 days in an intact pig model. BACKGROUND A clinical condition termed hibernating myocardium has been described wherein as a result of chronic sustained or intermittent coronary hypoperfusion, heart muscle minimizes energy demands by decreasing mechanical function and thus avoids cell death. The use of chronic animal models to stimulate this disorder may assist in establishing causative associations among determinants to explain this phenomenon. METHODS A hydraulic cuff occluder was placed around the left anterior descending coronary artery in eight pigs. Coronary flow velocity was reduced by a mean (+/- SE) of 49 +/- 5% of prestenotic values, as estimated by a Doppler velocity probe. After 4 days the pigs were prepared with extracorporeal coronary circulation and evaluated at flow conditions dictated by the cuff occluder. Substrate utilizations were described using equilibrium labeling with [U-14C]palmitate and [5-3H]glucose. Results were compared with a combined group of 21 acute and chronic (4 day) sham animals. RESULTS Four days of partial coronary stenosis significantly decreased regional systolic shortening by 54%. Myocardial oxygen consumption was maintained at aerobic levels, and rest coronary flows were normal. Fatty acid oxidation was decreased by 43% below composite sham values, and exogenous glucose utilization was increased severalfold. Alterations in myocardial metabolism were accompanied by a decline in tissue content of adenosine triphosphate. CONCLUSIONS These data suggest that chronic coronary stenosis in the absence of macroscarring imparts an impairment in mechanical function, whereas coronary flow and myocardial oxygen consumption are preserved at rest. The increases in glycolytic flux of exogenous glucose are similar to observations on glucose uptake assessed by fluorine-18 2-deoxy-2-fluoro-D-glucose in patients with advanced coronary artery disease. We speculate that intermittent episodes of ischemia and reperfusion are the cause of this phenomenon.
Collapse
Affiliation(s)
- A J Liedtke
- Cardiology Section, University of Wisconsin Hospital and Clinics, Madison 53792-3248, USA
| | | | | | | | | |
Collapse
|
19
|
Hall JL, Hernandez LA, Henderson J, Kellerman LA, Stanley WC. Decreased interstitial glucose and transmural gradient in lactate during ischemia. Basic Res Cardiol 1994; 89:468-86. [PMID: 7702538 DOI: 10.1007/bf00788283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this investigation was to assess the effects of ischemia and reperfusion on the transmural levels of glucose and lactate in the interstitium in 11 open-chest swine. Microdialysis probes were used to estimate changes in interstitial metabolities across the ventricular wall. Probes were placed in the subepicardium and the subendocardium of the left anterior descending (LAD) coronary artery perfusion bed and in the midmyocardium of the circumflex (CFX) perfusion bed. The LAD coronary artery was cannulated and perfused with blood from the femoral artery through an extracorporal perfusion circuit. Ischemia was induced in the LAD perfusion bed by reducing the flow of the LAD perfusion pump by 60% for 50 min, and was followed by 30 min of reperfusion. Regional myocardial blood flow was assessed with fluorescent microspheres. Ischemia resulted in a transmural gradient in blood flow, with the most severe reduction in flow occurring in the subendocardium (p < 0.05). We found a significant reduction in interstitial glucose in both the LAD subepicardium (1.26 +/- 0.24 mM) (p = 0.0009) and subendocardium (0.89 +/- 0.21 mM) (p = 0.0001) during ischemia compared to the aerobic (non-ischemic) period (1.97 +/- 0.25 mM, 2.03 +/- 0.29 mM for the subepicardium and subendocardium, respectively). This coincided with a significant reduction in glucose delivery (LAD pump flow * arterial glucose) to the LAD perfusion bed during ischemia (54.5 +/- 8.5 mumol/min) compared to aerobic values (182.1 +/- 25.3 mumol/min) (p < 0.05). Interstitial lactate levels were significantly increased during ischemia in the LAD subendocardium (3.39 +/- 0.46 mM) compared to the aerobic values (1.73 +/- 0.46 mM) (p < 0.0029). A transmural gradient in interstitial lactate levels was observed during ischemia: this gradient was not seen during the aerobic period and was negated upon reperfusion. In conclusion, ischemia resulted in a decrease in interstitial glucose in both the LAD subepicardium and subendocardium, and an increase in interstitial lactate in the LAD subendocardium. Further, a transmural gradient in interstitial lactate levels was observed during ischemia, with the highest lactate values appearing in the subendocardium.
Collapse
Affiliation(s)
- J L Hall
- Institute of Pharmacology, Syntex Discovery Research, Palo Alto, CA
| | | | | | | | | |
Collapse
|