1
|
Song S, Ren Z, Chen J, Li M, Jiang Y, Liu Y, Zhang B, Lu H, Zhao W, Shen C, Yang Y. Analysis of binding and authentic virus-neutralizing activities of immune sera induced by various monkeypox virus antigens. Immunol Res 2024; 72:902-907. [PMID: 38829493 DOI: 10.1007/s12026-024-09499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Monkeypox cases continue to increase globally, and there is an urgent need to develop a highly effective vaccine against monkeypox. This study investigated the binding and authentic-virus neutralizing activities of sera from mice immunized with EEV (extracellularly enveloped viruses) antigens B6R and A35R, and IMV (intrinsic material viruses) antigens M1R, A29L, E8L, and H3L against monkeypox virus. The results showed that immunizations of A35R and E8L could only induce lower titers of binding antibodies, in contrast, immunization of M1R induced the highest titers of binding antibodies, while immunization of B6R, H3L, and A29L induced moderate titers of binding antibodies. For the live monkeypox virus neutralization assay, the results showed that immunization with two doses of EEV antigen B6R did not effectively induce humoral immune responses to neutralize monkeypox live virus, immunization with EEV-A35R only induced weak monkeypox-neutralizing antibodies. In contrast, the immunization of the four types of monkeypox virus IMV antigens can all induce neutralizing antibodies against authentic monkeypox virus, among them, A29L and H3L induced the highest neutralizing antibody titers. The results of this study provide important references for the selection of antigens in the development of the next generation of monkeypox vaccines.
Collapse
Affiliation(s)
- Shuo Song
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Zuning Ren
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yingxia Liu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.
- Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Guangzhou, People's Republic of China.
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.
- Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Guangzhou, People's Republic of China.
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Yang Yang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Li M, Ren Z, Wang Y, Jiang Y, Yang M, Li D, Chen J, Liang Z, Lin Y, Zeng Z, Xu R, Wang Y, Zhu L, Xiao W, Wu Q, Zhang B, Wan C, Yang Y, Wu B, Peng J, Zhao W, Shen C. Three neutralizing mAbs induced by MPXV A29L protein recognizing different epitopes act synergistically against orthopoxvirus. Emerg Microbes Infect 2023; 12:2223669. [PMID: 37288876 PMCID: PMC10286687 DOI: 10.1080/22221751.2023.2223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
The worldwide outbreak of the monkeypox virus (MPXV) has become a "Public Health Emergency of International Concern" (PHEIC). Severe monkeypox virus infection can be fatal, however, effective therapeutic methods are yet to be developed. Mice were immunized with A35R protein and A29L protein of MPXV, and the binding and neutralizing activities of the immune sera against poxvirus-associated antigens and viruses were identified. A29L protein and A35R protein-specific monoclonal antibodies (mAbs) were generated and their antiviral activities of these mAbs were characterized in vitro and in vivo. Immunization with the MPXV A29L protein and A35R protein induced neutralizing antibodies against the orthopoxvirus in mice. None of the mAbs screened in this study against A35R could effectively neutralize the vaccinia virus (VACV), while three mAbs against A29L protein, 9F8, 3A1 and 2D1 were confirmed to have strong broad binding and neutralizing activities against orthopoxvirus, among which 9F8 showed the best neutralizing activity. 9F8, 3A1, and 2D1 recognized different epitopes on MPXV A29L protein, showing synergistic antiviral activity in vitro against the VACV Tian Tan and WR strains; the best activity was observed when the three antibodies were combined. In the vivo antiviral prophylactic and therapeutic experiments, 9F8 showed complete protective activity, whereas 3A1 and 2D1 showed partial protective activity. Similarly, the three antibodies showed synergistic antiviral protective activity against the two VACVs. In conclusion, three mAbs recognized different epitopes on MPXV A29L protein were developed and showed synergistic effects against orthopoxvirus.
Collapse
Affiliation(s)
- Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zuning Ren
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Minghui Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People’s Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuhao Lin
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhujun Zeng
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
- Medical Laboratory Dept, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, People’s Republic of China
| | - Rui Xu
- Medical Laboratory Dept, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, People’s Republic of China
| | - Yiting Wang
- Department of Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, People’s Republic of China
| | - Li Zhu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiwei Xiao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Qinghua Wu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Bo Wu
- Hoyotek Biomedical Co., Ltd., Tianjin, People’s Republic of China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex. J Virol 2020; 94:JVI.00077-20. [PMID: 32132239 DOI: 10.1128/jvi.00077-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.
Collapse
|
4
|
Lorenzo MM, Sánchez-Puig JM, Blasco R. Genes A27L and F13L as Genetic Markers for the Isolation of Recombinant Vaccinia Virus. Sci Rep 2019; 9:15684. [PMID: 31666569 PMCID: PMC6821840 DOI: 10.1038/s41598-019-52053-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
After assembly in the cytosol, some Vaccinia virus particles go through a complex process that leads to virus egress and eventually cell-to-cell transmission. Intracellular particles are fully infectious, and therefore virus mutants lacking essential functions in the exit pathway are unable to form plaques but can multiply intracellularly. We isolated virus mutants in which two of the genes required for virus spread (F13L and A27L) were deleted independently or concurrently. The phenotypes of the mutant viruses were consistent with the need of A27L and F13L for intercellular virus transmission, the effect of the ΔA27L mutation being more severe than that of ΔF13L. Despite their defect in spread, ΔA27L mutant viruses could be expanded by infecting cell cultures at high multiplicity of infection, followed by the release of virions from infected cells by physical means. We developed a novel system for the isolation of recombinant Vaccinia virus in which selection is efficiently achieved by recovering plaque formation capacity after re-introduction of A27L into a ΔA27L virus. This system allowed the insertion of foreign DNA into the viral genome without the use of additional genetic markers. Furthermore, starting with a double mutant (ΔA27L-ΔF13L) virus, A27L selection was used in conjunction with F13L selection to mediate simultaneous dual insertions in the viral genome. This selection system facilitates combined expression of multiple foreign proteins from a single recombinant virus.
Collapse
Affiliation(s)
- María M Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040, Madrid, Spain
| | - Juana M Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040, Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040, Madrid, Spain.
| |
Collapse
|
5
|
Yamase K, Tanigawa Y, Yamamoto Y, Tanaka H, Komiya T. Mouse TMCO5 is localized to the manchette microtubules involved in vesicle transfer in the elongating spermatids. PLoS One 2019; 14:e0220917. [PMID: 31393949 PMCID: PMC6687282 DOI: 10.1371/journal.pone.0220917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of a high-throughput in situ hybridization screening for adult mouse testes, we found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5 belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region. A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the manchette, a transiently emerging construction, which predominantly consists of cytoskeleton microtubules and actin filaments. This structure serves in the transport of Golgi-derived non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi apparatus. Judging from the results and considering the domain structure of TMCO5, we assume that Tmco5 may have a role in vesicle transport along the manchette.
Collapse
Affiliation(s)
- Kenya Yamase
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yoko Tanigawa
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yasufumi Yamamoto
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tohru Komiya
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
6
|
Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses 2019; 11:v11060493. [PMID: 31146446 PMCID: PMC6631127 DOI: 10.3390/v11060493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5–200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A–D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
Collapse
|
7
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
8
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. J Virol 2015; 89:8365-82. [PMID: 26041286 DOI: 10.1128/jvi.00209-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm.
Collapse
|
10
|
Hughes LJ, Goldstein J, Pohl J, Hooper JW, Lee Pitts R, Townsend MB, Bagarozzi D, Damon IK, Karem KL. A highly specific monoclonal antibody against monkeypox virus detects the heparin binding domain of A27. Virology 2014; 464-465:264-273. [PMID: 25108113 PMCID: PMC9629035 DOI: 10.1016/j.virol.2014.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 11/23/2022]
Abstract
The eradication of smallpox and the cessation of global vaccination led to the increased prevalence of human infections in Central Africa. Serologic and protein-based diagnostic assay for MPXV detection is difficult due to cross-reactive antibodies that do not differentiate between diverse orthopoxvirus (OPXV) species. A previously characterized monoclonal antibody (mAb 69-126-3-7) against MPXV [1] was retested for cross-reactivity with various OPXVs. The 14.5 kDa band protein that reacted with mAb 69-126-3 was identified to be MPXV A29 protein (homolog of vaccinia virus Copenhagen A27). Amino acid sequence analysis of the MPXV A29 with other OPXV homologs identified four amino acid changes. Peptides corresponding to these regions were designed and evaluated for binding to mAb 69-126-3 by ELISA and BioLayer Interferometry (BLI). Further refinement and truncations mapped the specificity of this antibody to a single amino acid difference in a 30-mer peptide compared to other OPXV homologs. This particular residue is proposed to be essential for heparin binding by VACV A27 protein. Despite this substitution, MPXV A29 bound to heparin with similar affinity to that of VACV A27 protein, suggesting flexibility of this motif for heparin binding. Although binding of mAb 69-126-3-7 to MPXV A29 prevented interaction with heparin, it did not have any effect on the infectivity of MPXV. Characterization of 69-126-3-7 mAb antibody allows for the possibility of the generation of a serological based species-specific detection of OPXVs despite high proteomic homology.
Collapse
Affiliation(s)
- Laura J Hughes
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jason Goldstein
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - R Lee Pitts
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Inger K Damon
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kevin L Karem
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
11
|
Schmidt FI, Kuhn P, Robinson T, Mercer J, Dittrich PS. Single-virus fusion experiments reveal proton influx into vaccinia virions and hemifusion lag times. Biophys J 2014; 105:420-31. [PMID: 23870263 DOI: 10.1016/j.bpj.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements.
Collapse
Affiliation(s)
- Florian I Schmidt
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 2013; 9:e1003563. [PMID: 23990784 PMCID: PMC3749956 DOI: 10.1371/journal.ppat.1003563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 07/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21-84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus infection.
Collapse
|
13
|
Schmidt F, Bleck C, Reh L, Novy K, Wollscheid B, Helenius A, Stahlberg H, Mercer J. Vaccinia Virus Entry Is Followed by Core Activation and Proteasome-Mediated Release of the Immunomodulatory Effector VH1 from Lateral Bodies. Cell Rep 2013; 4:464-76. [DOI: 10.1016/j.celrep.2013.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022] Open
|
14
|
Julien P, Thielens NM, Crouch E, Spehner D, Crance JM, Favier AL. Protective effect of surfactant protein d in pulmonary vaccinia virus infection: implication of A27 viral protein. Viruses 2013; 5:928-53. [PMID: 23518578 PMCID: PMC3705305 DOI: 10.3390/v5030928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/12/2022] Open
Abstract
Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.
Collapse
Affiliation(s)
- Perino Julien
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
| | - Nicole M. Thielens
- Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, Grenoble, France; E-Mail: (N-M.T.)
| | - Erika Crouch
- Dept of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA; E-Mail: (E.C.)
| | - Danièle Spehner
- IGBMC; CNRS, UMR 7104; Inserm U 596; Illkirch, F-67400 France; Université Louis Pasteur, Strasbourg, F-67000 France; E-Mail: (D.S.)
| | - Jean-Marc Crance
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
| | - Anne-Laure Favier
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
- Author to whom correspondence should be addressed; E-Mail: (A-L.F.); Tel.: +33-4-76-63-97-72; Fax: +33-4-76-63-69-06
| |
Collapse
|
15
|
Bengali Z, Satheshkumar PS, Moss B. Orthopoxvirus species and strain differences in cell entry. Virology 2012; 433:506-12. [PMID: 22999097 PMCID: PMC3470877 DOI: 10.1016/j.virol.2012.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022]
Abstract
Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 "fusion-suppressor" proteins, impact entry properties.
Collapse
Affiliation(s)
- Zain Bengali
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA
| | | | | |
Collapse
|
16
|
Poxvirus cell entry: how many proteins does it take? Viruses 2012; 4:688-707. [PMID: 22754644 PMCID: PMC3386626 DOI: 10.3390/v4050688] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.
Collapse
|
17
|
Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 2012; 86:6677-87. [PMID: 22496232 DOI: 10.1128/jvi.06860-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.
Collapse
|
18
|
The lipid raft-associated protein CD98 is required for vaccinia virus endocytosis. J Virol 2012; 86:4868-82. [PMID: 22345471 DOI: 10.1128/jvi.06610-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.
Collapse
|
19
|
Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH. J Virol 2012; 86:3809-18. [PMID: 22278246 DOI: 10.1128/jvi.06081-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.
Collapse
|
20
|
Wolfe CL, Ojeda S, Moss B. Transcriptional repression and RNA silencing act synergistically to demonstrate the function of the eleventh component of the vaccinia virus entry-fusion complex. J Virol 2012; 86:293-301. [PMID: 22013036 PMCID: PMC3255872 DOI: 10.1128/jvi.05935-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022] Open
Abstract
Poxviruses have an elaborate system for infecting cells comprising several proteins for attachment and a larger number dedicated to membrane fusion and entry. Thus far, 11 proteins have been identified as components of the vaccinia virus (VACV) entry-fusion complex (EFC), and 10 of these proteins have been shown to be required for entry. J5, the remaining functionally uncharacterized component of the complex, is conserved in all poxviruses, has a predicted C-terminal transmembrane domain, and is an N-terminally truncated paralog of two other EFC proteins. To determine the role of J5, we constructed a mutant that inducibly regulates J5 transcription. Although the virus yield was reduced only about 80% without inducer, the inability to isolate a J5 deletion mutant suggested an essential function. To enhance stringency, we employed RNA silencing alone and together with transcriptional repression of the inducible mutant. The yield of infectious virus was reduced 4- to 5-fold by repression, 2-fold by silencing, and 60-fold by the combination of the two. Virus particles made under the latter conditions appeared to contain a full complement of proteins excluding J5 but had very low infectivity. Further studies indicated that after binding to cells, J5-deficient virions had a defect in core entry and an inability to induce syncytium formation. In addition, we confirmed that J5 is associated with the EFC by affinity purification. These data indicate that J5 is a functional component of the EFC and highlights the advantage of combining transcriptional repression and RNA silencing for stringent reduction of gene expression.
Collapse
Affiliation(s)
- Cindy L Wolfe
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210, USA
| | | | | |
Collapse
|
21
|
Vaccinia virus A25 and A26 proteins are fusion suppressors for mature virions and determine strain-specific virus entry pathways into HeLa, CHO-K1, and L cells. J Virol 2010; 84:8422-32. [PMID: 20538855 DOI: 10.1128/jvi.00599-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mature vaccinia virus enters cells through either fluid-phase endocytosis/macropinocytosis or plasma membrane fusion. This may explain the wide range of host cell susceptibilities to vaccinia virus entry; however, it is not known how vaccinia virus chooses between these two pathways and which viral envelope proteins determine such processes. By screening several recombinant viruses and different strains, we found that mature virions containing the vaccinia virus A25 and A26 proteins entered HeLa cells preferentially through a bafilomycin-sensitive entry pathway, whereas virions lacking these two proteins entered through a bafilomycin-resistant pathway. To investigate whether the A25 and A26 proteins contribute to entry pathway specificity, two mutant vaccinia viruses, WRDeltaA25L and WRDeltaA26L, were subsequently generated from the wild-type WR strain. In contrast to the WR strain, both the WRDeltaA25L and WRDeltaA26L viruses became resistant to bafilomycin, suggesting that the removal of the A25 and A26 proteins bypassed the low-pH endosomal requirement for mature virion entry. Indeed, WRDeltaA25L and WRDeltaA26L virus infections of HeLa, CHO-K1, and L cells immediately triggered cell-to-cell fusion at a neutral pH at 1 to 2 h postinfection (p.i.), providing direct evidence that viral fusion machinery is readily activated after the removal of the A25 and A26 proteins to allow virus entry through the plasma membrane. In summary, our data support a model that on vaccinia mature virions, the viral A25 and A26 proteins are low-pH-sensitive fusion suppressors whose inactivation during the endocytic route results in viral and cell membrane fusion. Our results also suggest that during virion morphogenesis, the incorporation of the A25 and A26 proteins into mature virions may help restrain viral fusion activity until the time of infections.
Collapse
|
22
|
Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 2009; 83:12822-32. [PMID: 19812151 DOI: 10.1128/jvi.01744-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The original annotation of the vaccinia virus (VACV) genome was limited to open reading frames (ORFs) of at least 65 amino acids. Here, we characterized a 35-amino-acid ORF (O3L) located between ORFs O2L and I1L. ORFs similar in length to O3L were found at the same genetic locus in all vertebrate poxviruses. Although amino acid identities were low, the presence of a characteristic N-terminal hydrophobic domain strongly suggested that the other poxvirus genes were orthologs. Further studies demonstrated that the O3 protein was expressed at late times after infection and incorporated into the membrane of the mature virion. An O3L deletion mutant was barely viable, producing tiny plaques and a 3-log reduction in infectious progeny. A mutant VACV with a regulated O3L gene had a similar phenotype in the absence of inducer. There was no apparent defect in virus morphogenesis, though O3-deficient virus had low infectivity. The impairment was shown to be at the stage of virus entry, as cores were not detected in the cytoplasm after virus adsorption. Furthermore, O3-deficient virus did not induce fusion of infected cells when triggered by low pH. These characteristics are hallmarks of a group of proteins that form the entry/fusion complex (EFC). Affinity purification experiments demonstrated an association of O3 with EFC proteins. In addition, the assembly or stability of the EFC was impaired when expression of O3 was repressed. Thus, O3 is the newest recognized component of the EFC and the smallest VACV protein shown to have a function.
Collapse
|
23
|
Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets. PLoS One 2009; 4:e7162. [PMID: 19779614 PMCID: PMC2745575 DOI: 10.1371/journal.pone.0007162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 08/14/2009] [Indexed: 11/19/2022] Open
Abstract
The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification.
Collapse
|
24
|
Altmann SE, Jones JC, Schultz-Cherry S, Brandt CR. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide. Virology 2009; 388:248-59. [PMID: 19395056 DOI: 10.1016/j.virol.2009.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/20/2008] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
Abstract
Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC(50) of 15 microM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC50>200 microM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC(50) of 45 microM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p<0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.
Collapse
Affiliation(s)
- S E Altmann
- Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
25
|
Disulfide bond formation at the C termini of vaccinia virus A26 and A27 proteins does not require viral redox enzymes and suppresses glycosaminoglycan-mediated cell fusion. J Virol 2009; 83:6464-76. [PMID: 19369327 DOI: 10.1128/jvi.02295-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.
Collapse
|
26
|
Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion. J Virol 2008; 83:1546-54. [PMID: 19036815 DOI: 10.1128/jvi.01684-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.
Collapse
|
27
|
The vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 2008; 82:10247-61. [PMID: 18701587 DOI: 10.1128/jvi.01035-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The previously unstudied vaccinia virus gene I2L is conserved in all orthopoxviruses. We show here that the 8-kDa I2 protein is expressed at late times of infection, is tightly associated with membranes, and is encapsidated in mature virions. We have generated a recombinant virus in which I2 expression is dependent upon the inclusion of tetracycline in the culture medium. In the absence of I2, the biochemical events of the viral life cycle progress normally, and virion morphogenesis culminates in the production of mature virions. However, these virions show an approximately 400-fold reduction in specific infectivity due to an inability to enter target cells. Several proteins that have been previously identified as components of an essential entry/fusion complex are present at reduced levels in I2-deficient virions, although other membrane proteins, core proteins, and DNA are encapsidated at normal levels. A preliminary structure/function analysis of I2 has been performed using a transient complementation assay: the C-terminal hydrophobic domain is essential for protein stability, and several regions within the N-terminal hydrophilic domain are essential for biological competency. I2 is thus yet another component of the poxvirus virion that is essential for the complex process of entry into target cells.
Collapse
|
28
|
Abstract
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.
Collapse
|
29
|
Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex. J Virol 2008; 82:5153-60. [PMID: 18353946 DOI: 10.1128/jvi.00162-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the A56R or K2L gene of vaccinia virus (VACV) results in the spontaneous fusion of infected cells to form large multinucleated syncytia. A56 and K2 polypeptides bind to one another (A56/K2) and together are required for interaction with the VACV entry fusion complex (EFC); this association has been proposed to prevent the fusion of infected cells. At least eight viral polypeptides comprise the EFC, but no information has been available regarding their interactions either with each other or with A56/K2. Utilizing a panel of recombinant VACVs designed to repress expression of individual EFC subunits, we demonstrated that A56/K2 interacted with two polypeptides: A16 and G9. Both A16 and G9 were required for the efficient binding of each to A56/K2, suggesting that the two polypeptides interact with each other within the EFC. Such an interaction was established by the copurification of A16 and G9 from infected cells under conditions in which a stable EFC complex failed to assemble and from detergent-treated lysates of uninfected cells that coexpressed A16 and G9. A recombinant VACV that expressed G9 modified with an N-terminal epitope tag induced the formation of syncytia, suggesting partial interference with the functional interaction of A56/K2 with the EFC during infection. These data suggest that A16 and G9 are physically associated within the EFC and that their interaction with A56/K2 suppresses spontaneous syncytium formation and possibly "fuse-back" superinfection of cells.
Collapse
|
30
|
Kochan G, Escors D, González JM, Casasnovas JM, Esteban M. Membrane cell fusion activity of the vaccinia virus A17-A27 protein complex. Cell Microbiol 2008; 10:149-64. [PMID: 17708756 DOI: 10.1111/j.1462-5822.2007.01026.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccinia virus enters cells by endocytosis and via a membrane fusion mechanism mediated by viral envelope protein complexes. While several proteins have been implicated in the entry/fusion event, there is no direct proof for fusogenic activity of any viral protein in heterologous systems. Transient coexpression of A17 and A27 in mammalian cells led to syncytia formation in a pH-dependent manner, as ascertained by confocal fluorescent immunomicroscopy. The pH-dependent fusion activity was identified to reside in A17 amino-terminal ectodomain after overexpression in insect cells using recombinant baculoviruses. Through the use of A17 ectodomain deletion mutants, it was found that the domain important for fusion spanned between residues 18 and 34. To further characterize A17-A27 fusion activity in mammalian cells, 293T cell lines stably expressing A17, A27 or coexpressing both proteins were generated using lentivectors. A27 was exposed on the cell surface only when A17 was coexpressed. In addition, pH-dependent fusion activity was functionally demonstrated in mammalian cells by cytoplasmic transfer of fluorescent proteins, only when A17 and A27 were coexpressed. Bioinformatic tools were used to compare the putative A17-A27 protein complex with well-characterized fusion proteins. Finally, all experimental evidence was integrated into a working model for A17-A27-induced pH-dependent cell-to-cell fusion.
Collapse
Affiliation(s)
- Grazyna Kochan
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Turner PC, Dilling BP, Prins C, Cresawn SG, Moyer RW, Condit RC. Vaccinia virus temperature-sensitive mutants in the A28 gene produce non-infectious virions that bind to cells but are defective in entry. Virology 2007; 366:62-72. [PMID: 17499330 PMCID: PMC2062567 DOI: 10.1016/j.virol.2007.03.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/05/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
The vaccinia virus temperature-sensitive mutations Cts6 and Cts9 were mapped by marker rescue and DNA sequencing to the A28 gene. Cts6 and Cts9 contain an identical 2-bp deletion truncating the A28 protein and removing the fourth conserved cysteine near the C-terminus. Cts9 mutant virions produced at 40 degrees C were non-infectious and unable to cause cytopathic effect. However, the mutant A28 protein localized to purified mature virions (MV) at 31 degrees C and 40 degrees C. MV of Cts9 produced at 40 degrees C bound to cells but did not enter cells. Low pH treatment of Cts9-infected cells at 18 h p.i. failed to produce fusion from within at 40 degrees C, but gave fusion at 31 degrees C. Adsorption of Cts9 mutant virions to cells followed by low pH treatment showed a defect in fusion from without. The Cts9 phenotype suggests that the A28 protein is involved in both virus entry and cell-cell fusion, and supports the linkage between the two processes.
Collapse
Affiliation(s)
- Peter C Turner
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610-0266, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Wagenaar TR, Moss B. Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J Virol 2007; 81:6286-93. [PMID: 17409143 PMCID: PMC1900102 DOI: 10.1128/jvi.00274-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteins encoded by the A56R and K2L genes of vaccinia virus form a heterodimer (A56/K2) and have a fusion regulatory role as deletion or mutation of either causes infected cells to form large syncytia spontaneously. Here, we showed that syncytia formation is dependent on proteins of the recently described entry fusion complex (EFC), which are also required for virus-cell fusion and low-pH-triggered cell-cell fusion. This finding led us to consider that A56/K2 might prevent fusion by direct or indirect interaction with the EFC. To test this hypothesis, we made a panel of recombinant vaccinia viruses that have a tandem affinity purification tag attached to A56, K2, or the A28 EFC protein. Interaction between A56/K2 and the EFC was demonstrated by their copurification from detergent-treated lysates of infected cells and identification by mass spectrometry or Western blotting. In addition, a purified soluble transmembrane-deleted form of A56/K2 was shown to interact with the EFC. Tagged A56 did not interact with the EFC in the absence of K2, nor did tagged K2 interact with the EFC in the absence of A56. The finding that both A56 and K2 are required for efficient binding to the EFC fits well with prior experiments showing that mutation of either A56 or K2 results in spontaneous fusion of infected cells. Because A56 and K2 are located on the surface of infected cells, they are in position to interact with the EFC of released progeny virions and prevent back-fusion and syncytia formation.
Collapse
Affiliation(s)
- Timothy R Wagenaar
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 229, Bethesda, MD 20892-0310, USA
| | | |
Collapse
|
33
|
Ojeda S, Senkevich TG, Moss B. Entry of vaccinia virus and cell-cell fusion require a highly conserved cysteine-rich membrane protein encoded by the A16L gene. J Virol 2007; 80:51-61. [PMID: 16352530 PMCID: PMC1317547 DOI: 10.1128/jvi.80.1.51-61.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus A16L open reading frame encodes a 378-amino-acid protein with a predicted C-terminal transmembrane domain and 20 invariant cysteine residues that is conserved in all sequenced members of the poxvirus family. The A16 protein was expressed late in infection and incorporated into intracellular virus particles with the N-terminal segment of the protein exposed on the surface. The cysteine residues were disulfide bonded via the poxvirus cytoplasmic redox system. Unsuccessful attempts to isolate a mutant virus with the A16L gene deleted suggested that the protein is essential for replication. To study the role of the A16 protein, we made a recombinant vaccinia virus that has the Escherichia coli lac operator system regulating transcription of the A16L gene. In the absence of inducer, A16 synthesis was repressed and plaque size and virus yield were greatly reduced. Nevertheless, virus morphogenesis occurred and normal-looking intracellular and extracellular virus particles formed. Purified virions made in the presence and absence of inducer were indistinguishable, though the latter had 60- to 100-fold-lower specific infectivity. A16-deficient virions bound to cells, but their cores did not penetrate into the cytoplasm. Furthermore, A16-deficient virions were unable to induce low-pH-triggered syncytium formation. The phenotype of the inducible A16L mutant was similar to those of mutants in which synthesis of the A21, A28, H2, or L5 membrane protein was repressed, indicating that at least five conserved viral proteins are required for entry of poxviruses into cells as well as for cell-cell fusion.
Collapse
Affiliation(s)
- Suany Ojeda
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | |
Collapse
|
34
|
Abstract
The vaccinia virus A35R gene is highly conserved among poxviruses and encodes a previously uncharacterized hydrophobic acidic protein. Western blotting with anti-A35R peptide antibodies indicated that the protein is expressed early in infection and resolved as a single sharp band of approximately 23 kDa, slightly higher than the 20 kDa predicted from its sequence. The protein band appeared to be the same molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whether expressed in an in vitro transcription/translation system without microsomes or expressed in infected cells, suggesting that it was not glycosylated. A mutant virus with the A35R gene deleted (vA35Delta) formed wild-type-sized plaques on all cell lines tested (human, monkey, mouse, and rabbit); thus, A35R is not required for replication and does not appear to be a host range gene. Although the A35R protein is hydrophobic, it is unlikely to be an integral membrane protein, as it partitioned to the aqueous phase during TX-114 partitioning. The protein could not be detected in virus-infected cell supernatants. A35R localized intracellularly to the virus factories, where the first stages of morphogenesis occur. The vA35Delta mutant formed near-normal levels of the various morphogenic stages of infectious virus particles and supported normal acid-induced fusion of virus-infected cells. Despite normal growth and morphogenesis in vitro, the vA35Delta mutant virus was attenuated in intranasal challenge of mice compared to wild-type and A35R rescue virus. Thus, the intracellular A35R protein plays a role in virulence. The A35R has little homology to any protein outside of poxviruses, suggesting a novel virulence mechanism.
Collapse
Affiliation(s)
- Rachel L Roper
- East Carolina University, Brody School of Medicine, 600 Moye Blvd., 5E106A, Department of Microbiology & Immunology, Greenville, NC 27834, USA.
| |
Collapse
|
35
|
Ojeda S, Domi A, Moss B. Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 2006; 80:9822-30. [PMID: 16973586 PMCID: PMC1617269 DOI: 10.1128/jvi.00987-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus G9R gene (VACWR087) encodes a protein of 340 amino acids with the following structural features that are conserved in all poxviruses: a site for N-terminal myristoylation, 14 cysteines, and a C-terminal transmembrane domain. Previous studies showed that G9 is one of eight proteins associated in a putative entry-fusion complex. Our attempt to isolate a mutant without the G9R gene was unsuccessful, suggesting that it is essential for virus replication. To further investigate its role, we constructed a recombinant vaccinia virus in which G9R is regulated by addition of an inducer. Induced G9 protein was associated with mature infectious virions and could be labeled with a membrane-impermeant biotinylation reagent, indicating surface exposure. Omission of inducer reduced the infectious-virus yield by about 1.5 logs; nevertheless, all stages of virus morphogenesis appeared normal and extracellular virions were present on the cell surface. Purified virions assembled without inducer had a specific infectivity of less than 5% of the normal level and a comparably small amount of G9, whereas their overall polypeptide composition, including other components of the entry-fusion complex, was similar to that of virions made in the presence of inducer or of wild-type virions. G9-deficient virions bound to cells, but penetration of cores into the cytoplasm and early viral RNA synthesis were barely detected, and cell-cell fusion was not triggered by low pH. Of the identified components of the multiprotein complex, G9 is the sixth that has been shown to be required for entry and membrane fusion.
Collapse
Affiliation(s)
- Suany Ojeda
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | | | |
Collapse
|
36
|
Townsley AC, Weisberg AS, Wagenaar TR, Moss B. Vaccinia virus entry into cells via a low-pH-dependent endosomal pathway. J Virol 2006; 80:8899-908. [PMID: 16940502 PMCID: PMC1563910 DOI: 10.1128/jvi.01053-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies established that vaccinia virus could enter cells by fusion with the plasma membrane at neutral pH. However, low pH triggers fusion of vaccinia virus-infected cells, a hallmark of viruses that enter by the endosomal route. Here, we demonstrate that entry of mature vaccinia virions is accelerated by brief low-pH treatment and severely reduced by inhibitors of endosomal acidification, providing evidence for a predominant low-pH-dependent endosomal pathway. Entry of vaccinia virus cores into the cytoplasm, measured by expression of firefly luciferase, was increased more than 10-fold by exposure to a pH of 4.0 to 5.5. Furthermore, the inhibitors of endosomal acidification bafilomycin A1, concanamycin A, and monensin each lowered virus entry by more than 70%. This reduction was largely overcome by low-pH-induced entry through the plasma membrane, confirming the specificities of the drugs. Entry of vaccinia virus cores with or without brief low-pH treatment was visualized by electron microscopy of thin sections of immunogold-stained cells. Although some virus particles fused with the plasma membrane at neutral pH, 30 times more fusions and a greater number of cytoplasmic cores were seen within minutes after low-pH treatment. Without low-pH exposure, the number of released cores lagged behind the number of virions in vesicles until 30 min posttreatment, when they became approximately equal, perhaps reflecting the time of endosome acidification and virus fusion. The choice of two distinct pathways may contribute to the ability of vaccinia virus to enter a wide range of cells.
Collapse
Affiliation(s)
- Alan C Townsley
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Drive, MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | |
Collapse
|
37
|
Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis JHL, Braciale TJ, Eisenberg RJ, Cohen GH, Isaacs SN. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine 2006; 25:1214-24. [PMID: 17098336 PMCID: PMC1857298 DOI: 10.1016/j.vaccine.2006.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/27/2006] [Accepted: 10/05/2006] [Indexed: 01/28/2023]
Abstract
The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine.
Collapse
Affiliation(s)
- Yuhong Xiao
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Lydia Aldaz-Carroll
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Alexandra M. Ortiz
- Beirne B. Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908
| | - J. Charles Whitbeck
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Edward Alexander
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Huan Lou
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - J. Heather L. Davis
- Coley Pharmaceutical Canada, 200–340 Terry Fox Drive, Ottawa, ON, Canada K2K 3A2
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908
| | - Roselyn J. Eisenberg
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Gary H. Cohen
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Stuart N. Isaacs
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
38
|
Izmailyan RA, Huang CY, Mohammad S, Isaacs SN, Chang W. The envelope G3L protein is essential for entry of vaccinia virus into host cells. J Virol 2006; 80:8402-10. [PMID: 16912291 PMCID: PMC1563860 DOI: 10.1128/jvi.00624-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus G3L/WR079 gene encodes a conserved protein with a predicted transmembrane domain. Our proteomic analyses of vaccinia virus revealed that G3L protein is incorporated into intracellular mature virus; however, the function of G3L protein in the vaccinia virus life cycle has not been investigated. In this study, a recombinant vaccinia virus, viG3L, expressing G3L protein under IPTG (isopropyl-beta-d-thiogalactopyranoside) regulation was constructed. Under permissive conditions when G3L protein was expressed, the vaccinia virus life cycle proceeded normally, resulting in plaque formation in BSC40 cells. In contrast, under nonpermissive conditions when G3L protein expression was repressed, no plaques were formed, showing that G3L protein is essential for vaccinia virus growth in cell cultures. In infected cells when G3L protein was not expressed, the formation of intracellular mature virus (IMV) and cell-associated enveloped virus occurred normally, showing that G3L protein is not required for virion morphogenesis. IMV particles containing (G3L(+)) or lacking (G3L(-)) G3L protein were purified and were found to be indistinguishable on microscopic examination. Both G3L(+) and G3L(-) IMV bound to HeLa cells; however, G3L(-) IMV failed to enter the cells, showing that G3L protein is required for IMV penetration into cells. Finally, G3L protein was required for fusion of the infected cells under low-pH treatment. Thus, our results provide direct evidence that G3L is an essential component of the vaccinia virus fusion complex, in addition to the previously reported A28, H2, L5, A21, and A16 proteins.
Collapse
|
39
|
Turner PC, Moyer RW. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. Virology 2006; 347:88-99. [PMID: 16378629 DOI: 10.1016/j.virol.2005.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
The serpin SPI-3 and the hemagglutinin (HA) encoded by cowpox virus (CPV) block cell-cell fusion, and colocalize at the cell surface. wtCPV does not fuse cells, but inactivation of either gene leads to fusion. SPI-3 mAb added to wtCPV-infected cells caused fusion, confirming that SPI-3 protein at the cell surface prevents fusion. The SPI-3 mAb epitope mapped to an 85-amino acid region at the C-terminus. Removal of either 44 residues from the SPI-3 C-terminus or 48 residues following the N-terminal signal sequence resulted in fusion. Interaction between SPI-3 and HA proteins in infected cells was shown by coimmunoprecipitation. SPI-3/HA was not associated with the A27L "fusion" protein. SPI-3 and HA were able to associate in uninfected cells in the absence of other viral proteins. The HA-binding domain in SPI-3 resided in the C-terminal 229 residues, and did not include helix D, which mediates cofactor interaction in many other serpins.
Collapse
Affiliation(s)
- Peter C Turner
- Department of Molecular Genetics and Microbiology, Box 100266/1600 SW Archer Road, ARB R2-231, University of Florida, Gainesville, FL 32610-0266, USA.
| | | |
Collapse
|
40
|
Abstract
The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA.
| |
Collapse
|
41
|
Townsley AC, Senkevich TG, Moss B. The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell-cell fusion. J Virol 2005; 79:10988-98. [PMID: 16103150 PMCID: PMC1193616 DOI: 10.1128/jvi.79.17.10988-10998.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L5R gene of vaccinia virus is conserved among all sequenced members of the Poxviridae but has no predicted function or recognized nonpoxvirus homolog. Here we provide the initial characterization of the L5 protein. L5 is expressed following DNA replication with kinetics typical of a viral late protein, contains a single intramolecular disulfide bond formed by the virus-encoded cytoplasmic redox pathway, and is incorporated into intracellular mature virus particles, where it is exposed on the membrane surface. To determine whether L5 is essential for virus replication, we constructed a mutant that synthesizes L5 only in the presence of an inducer. The mutant exhibited a conditional-lethal phenotype, as cell-to-cell virus spread and formation of infectious progeny were dependent on the inducer. Nevertheless, all stages of replication occurred in the absence of inducer and intracellular and extracellular progeny virions appeared morphologically normal. Noninfectious virions lacking L5 could bind to cells, but the cores did not enter the cytoplasm. In addition, virions lacking L5 were unable to mediate low-pH-triggered cell-cell fusion from within or without. The phenotype of the L5R conditional lethal mutant is identical to that of recently described mutants in which expression of the A21, A28, and H2 genes is repressed. Thus, L5 is the fourth component of the poxvirus cell entry/fusion apparatus that is required for entry of both the intracellular and extracellular infectious forms of vaccinia virus.
Collapse
Affiliation(s)
- Alan C Townsley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | | | |
Collapse
|
42
|
Yi G, Wang Z, Qi Y, Yao L, Qian J, Hu L. Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. BMB Rep 2005; 37:726-34. [PMID: 15607033 DOI: 10.5483/bmbrep.2004.37.6.726] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.
Collapse
Affiliation(s)
- Guohua Yi
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China, 430072
| | | | | | | | | | | |
Collapse
|
43
|
Townsley AC, Senkevich TG, Moss B. Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J Virol 2005; 79:9458-69. [PMID: 16014909 PMCID: PMC1181583 DOI: 10.1128/jvi.79.15.9458-9469.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We provide the initial characterization of the product of the vaccinia virus A21L (VACWR140) gene and demonstrate that it is required for cell entry and low pH-triggered membrane fusion. The A21L open reading frame, which is conserved in all sequenced members of the poxvirus family, encodes a protein of 117 amino acids with an N-terminal hydrophobic domain and four invariant cysteines. Expression of the A21 protein occurred at late times of infection and was dependent on viral DNA replication. The A21 protein contained two intramolecular disulfide bonds, the formation of which required the vaccinia virus-encoded cytoplasmic redox pathway, and was localized on the surface of the lipoprotein membrane of intracellular mature virions. A conditional lethal mutant, in which A21L gene expression was regulated by isopropyl-beta-d-thiogalactopyranoside, was constructed. In the absence of inducer, cell-to-cell spread of virus did not occur, despite the formation of morphologically normal intracellular virions and extracellular virions with actin tails. Purified virions lacking A21 were able to bind to cells, but cores did not penetrate into the cytoplasm and synthesize viral RNA. In addition, virions lacking A21 were unable to mediate low pH-triggered cell-cell fusion. The A21 protein, like the A28 and H2 proteins, is an essential component of the poxvirus entry/fusion apparatus for both intracellular and extracellular virus particles.
Collapse
Affiliation(s)
- Alan C Townsley
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | | | |
Collapse
|
44
|
Ward BM. Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions. J Virol 2005; 79:4755-63. [PMID: 15795261 PMCID: PMC1069544 DOI: 10.1128/jvi.79.8.4755-4763.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work indicated that vaccinia intracellular mature virus (IMV) utilizes microtubules to move from the viral factory to the site of intracellular envelopment and that expression of the viral A27 protein is required for this transport. To investigate further the role of A27 in IMV intracellular transport, a recombinant vaccinia virus was constructed that had the A27L gene deleted and expressed a yellow fluorescent protein (YFP)-A4 chimera in place of the normal A4 protein. The resulting recombinant, vYFP-A4/DeltaA27, produced relatively normal quantities of virus in a one-step growth curve but had a small plaque phenotype. Subsequent experiments demonstrated that vYFP-A4/DeltaA27 was severely defective in envelope virus production. Despite the absence of A27, live digital video fluorescent microscopy visualized YFP-labeled IMV movement in cells infected with the recombinant. Virion movement approached 3 mum/s and was sensitive to the microtubule depolymerizing drug nocodazole. In addition, IMV could be discerned transiting away from and back towards viral factories. Immunofluorescent staining determined that the distance traveled by A27-deficient virions was sufficient for transport to the site of envelopment. These results indicate that IMVs are capable of bidirectional movement on microtubules, suggesting that they are able to interact with both kinesin and dynein microtubule motors in the absence of A27 and that the distance traveled is sufficient to deliver IMV to the site of wrapping.
Collapse
Affiliation(s)
- Brian M Ward
- Department of Microbiology and Immunology, Rochester, NY 14642, USA.
| |
Collapse
|
45
|
Senkevich TG, Moss B. Vaccinia virus H2 protein is an essential component of a complex involved in virus entry and cell-cell fusion. J Virol 2005; 79:4744-54. [PMID: 15795260 PMCID: PMC1069540 DOI: 10.1128/jvi.79.8.4744-4754.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus H2R gene (VACWR 100) is conserved in all sequenced members of the poxvirus family and encodes a protein with a predicted transmembrane domain and four invariant cysteines. A recombinant vaccinia virus, in which expression of the H2 protein is stringently regulated, was unable to replicate without inducer. However, under nonpermissive conditions, all stages of virus morphogenesis appeared normal and extracellular virions were detected at the tips of actin tails. Nevertheless, virus did not spread to neighboring cells nor did syncytia form after low-pH treatment. Purified -H2 and +H2 virions from cells infected in the absence or presence of inducer, respectively, were indistinguishable in microscopic appearance and contained the same complement of major proteins, though only +H2 virions were infectious. The -H2 virions bound to cells, but their cores did not penetrate into the cytoplasm. In addition, exogenously added -H2 virions were unable to mediate the formation of syncytia after low-pH treatment. In contrast, virions lacking the A27 (p14) protein, which was previously considered to have an essential role in fusion, penetrated cells and induced extensive syncytia. The properties of H2, however, are very similar to those recently reported for the A28 protein. Moreover, coimmunoprecipitation experiments indicated an interaction between H2 and A28. Therefore, H2 and A28 are the only proteins presently known to be specifically required for vaccinia virus entry and are likely components of a fusion complex.
Collapse
Affiliation(s)
- Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
46
|
Carter GC, Law M, Hollinshead M, Smith GL. Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J Gen Virol 2005; 86:1279-1290. [PMID: 15831938 DOI: 10.1099/vir.0.80831-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) produces two distinct enveloped virions, the intracellular mature virus (IMV) and the extracellular enveloped virus (EEV), but the entry mechanism of neither virion is understood. Here, the binding and entry of IMV particles have been investigated. The cell receptors for IMV are unknown, but it was proposed that IMV can bind to glycosaminoglycans (GAGs) on the cell surface and three IMV surface proteins have been implicated in this. In this study, the effect of soluble GAGs on IMV infectivity was reinvestigated and it was demonstrated that GAGs affected IMV infectivity partially in some cells, but not at all in others. Therefore, binding of IMV to GAGs is cell type-specific and not essential for IMV entry. By using electron microscopy, it is demonstrated that IMV from strains Western Reserve and modified virus Ankara enter cells by fusion with the plasma membrane. After an IMV particle bound to the cell, the IMV membrane fused with the plasma membrane and released the virus core into the cytoplasm. IMV surface antigen became incorporated into the plasma membrane and was not left outside the cell, as claimed in previous studies. Continuity between the IMV membrane and the plasma membrane was confirmed by tilt-series analysis to orientate membranes perpendicularly to the beam of the electron microscope. This analysis shows unequivocally that IMV is surrounded by a single lipid membrane and enters by fusion at the cell surface.
Collapse
Affiliation(s)
- Gemma C Carter
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Mansun Law
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
47
|
Abstract
Vaccinia virus (VACV) is the prototypic member of the Poxviridae a group of large DNA viruses that replicate in the cell cytoplasm. The entry and exit of VACV are complicated by the existence of two distinct forms of virus, intracellular mature virus (IMV) and extracellular enveloped virus (EEV), that are surrounded by different numbers of lipid membranes and have different surface proteins. Here the mechanisms used by these different forms of VACV to leave the infected cell are reviewed. Whereas some enveloped viruses complete virus assembly by budding through the plasma membrane, infectious poxvirus particles (IMV) are produced within the cytoplasm. These particles are either further enveloped by intracellular membranes to form intracellular enveloped virus (IEV) that are transported to the cell surface on microtubules and exposed on the cell surface by exocytosis, or are released after cell lysis. If the enveloped virion remains attached to the cell surface it is called cell-associated enveloped virus (CEV) and is propelled into surrounding cells by growing actin tails beneath the plasma membrane. Alternatively, the surface virion may be released as EEV.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
48
|
Senkevich TG, Ward BM, Moss B. Vaccinia virus entry into cells is dependent on a virion surface protein encoded by the A28L gene. J Virol 2004; 78:2357-66. [PMID: 14963132 PMCID: PMC369249 DOI: 10.1128/jvi.78.5.2357-2366.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The A28L gene of vaccinia virus is conserved in all poxviruses and encodes a protein that is anchored to the surface of infectious intracellular mature virions (IMV) and consequently lies beneath the additional envelope of extracellular virions. A conditional lethal recombinant vaccinia virus, vA28-HAi, with an inducible A28L gene, undergoes a single round of replication in the absence of inducer, producing IMV, as well as extracellular virions with actin tails, but fails to infect neighboring cells. We show here that purified A28-deficient IMV appeared to be indistinguishable from wild-type IMV and were competent to synthesize RNA in vitro. Nevertheless, A28-deficient virions did not induce cytopathic effects, express early genes, or initiate a productive infection. Although A28-deficient IMV bound to the surface of cells, their cores did not penetrate into the cytoplasm. An associated defect in membrane fusion was demonstrated by the failure of low pH to trigger syncytium formation when cells were infected with vA28-HAi in the absence of inducer (fusion from within) or when cells were incubated with a high multiplicity of A28-deficient virions (fusion from without). The correlation between the entry block and the inability of A28-deficient virions to mediate fusion provided compelling evidence for a relationship between these events. Because repression of A28 inhibited cell-to-cell spread, which is mediated by extracellular virions, all forms of vaccinia virus regardless of their outer coat must use a common A28-dependent mechanism of cell penetration. Furthermore, since A28 is conserved, all poxviruses are likely to penetrate cells in a similar way.
Collapse
Affiliation(s)
- Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
49
|
Abstract
Vaccinia virus (VV), the virus smallpox vaccine, replicates in the cytoplasm of infected cells. The intracellular movement of this large virus would be inefficient without specific transport mechanisms; therefore, VV uses microtubules for movement during both entry and egress. In addition, the dissemination of virus from infected cells to adjacent cells is promoted by the polymerization of actin beneath cell surface virions to drive virus particles away from the cell. Last, the roles of different VV particles in virus movement within and between hosts are discussed.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, The Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom.
| | | | | |
Collapse
|
50
|
Ramírez JC, Tapia E, Esteban M. Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication efficiently under prophylactic and therapeutic conditions. J Gen Virol 2002; 83:1059-1067. [PMID: 11961260 DOI: 10.1099/0022-1317-83-5-1059] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The WHO smallpox eradication program was concluded 21 years ago and the non-vaccinated population is now at risk of poxvirus infections, either by contact with monkeypox or through bioterrorism. Since drugs specific against poxvirus infections are limited, neutralizing monoclonal antibodies (mAbs) that are effective in vivo may be an important tool in controlling poxvirus infections. To this end, we studied the efficacy of the mAb C3, reactive against the trimeric 14-kDa protein of vaccinia virus (VV) localized in the membrane of the intracellular form of mature virus, for its ability to neutralize VV infection in mice. The results show that prophylactic as well as therapeutic administration of mAb C3 can be an effective means of control of VV replication within the host. The interval of antibody efficacy following a single administration, before and after VV inoculation, has been defined. This study reinforces the notion that neutralizing mAbs should be developed to control health-related human infections by poxviruses.
Collapse
Affiliation(s)
- Juan C Ramírez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain1
| | - Esther Tapia
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain1
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain1
| |
Collapse
|