1
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Qi Y, Li L, Wei Y, Ma F. PP2A as a potential therapeutic target for breast cancer: Current insights and future perspectives. Biomed Pharmacother 2024; 173:116398. [PMID: 38458011 DOI: 10.1016/j.biopha.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China.
| |
Collapse
|
3
|
Lukosevicius R, Alzbutas G, Varkalaite G, Salteniene V, Tilinde D, Juzenas S, Kulokiene U, Janciauskas D, Poskiene L, Adamonis K, Kiudelis G, Kupcinskas J, Skieceviciene J. 5'-Isoforms of miR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical miR-1246 in Colorectal Cancer Cells In Vitro. Int J Mol Sci 2024; 25:2808. [PMID: 38474054 DOI: 10.3390/ijms25052808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.
Collapse
Affiliation(s)
- Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Alzbutas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Deimante Tilinde
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Biotechnology, Life Science Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dainius Janciauskas
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Kestutis Adamonis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Kiudelis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
4
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Gerlt V, Mayr J, Del Sarto J, Ludwig S, Boergeling Y. Cellular Protein Phosphatase 2A Regulates Cell Survival Mechanisms in Influenza A Virus Infection. Int J Mol Sci 2021; 22:11164. [PMID: 34681823 PMCID: PMC8540457 DOI: 10.3390/ijms222011164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) are respiratory pathogens that are able to hijack multiple cellular mechanisms to drive their replication. Consequently, several viral and cellular proteins undergo posttranslational modifications such as dynamic phosphorylation/dephosphorylation. In eukaryotic cells, dephosphorylation is mainly catalyzed by protein phosphatase 2A (PP2A). While the function of kinases in IAV infection is quite well studied, only little is known about the role of PP2A in IAV replication. Here, we show, by using knockdown and inhibition approaches of the catalytic subunit PP2Ac, that this phosphatase is important for efficient replication of several IAV subtypes. This could neither be attributed to alterations in the antiviral immune response nor to changes in transcription or translation of viral genes. Interestingly, decreased PP2Ac levels resulted in a significantly reduced cell viability after IAV infection. Comprehensive kinase activity profiling identified an enrichment of process networks related to apoptosis and indicated a synergistic action of hyper-activated PI3K/Akt, MAPK/JAK-STAT and NF-kB signaling pathways, collectively resulting in increased cell death. Taken together, while IAV seems to effectively tap leftover PP2A activity to ensure efficient viral replication, reduced PP2Ac levels fail to orchestrate cell survival mechanisms to protect infected cells from early cell death.
Collapse
Affiliation(s)
- Vanessa Gerlt
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Juliane Mayr
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Juliana Del Sarto
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
- Department of Neurology, Institute of Translational Neurology, Medical Faculty, University Hospital Muenster, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (V.G.); (J.M.); (J.D.S.); (S.L.)
| |
Collapse
|
6
|
Woydziak ZR, Yucel AJ, Chamberlin AR. Tautomycetin Synthetic Analogues: Selective Inhibitors of Protein Phosphatase I. ChemMedChem 2021; 16:839-850. [PMID: 33301228 PMCID: PMC8582298 DOI: 10.1002/cmdc.202000801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Ser/Thr protein phosphatases (PPs) regulate a substantial range of cellular processes with protein phosphatases 1 (PP1) and 2 A (PP2A) accounting for over 90 % of the activity within cells. Nevertheless, tools to study PPs are limited as PPs inhibitors, particularly those selective for PP1 inhibition, are relatively scarce. Two examples of PP1-selective inhibitors, which share structural similarities, are tautomycin (TTM) and tautomycetin (TTN). This work describes the development of PP1/PP2A inhibitors that incorporate key structural features of TTM and TTN and are designed to conserve regions known to bind the active site of PP1/PP2A but vary regions that differentially contact the hydrophobic groove of PP1/PP2A. In all 28 TTN analogues were synthetically generated that inhibit PP1/PP2A activity at <250 mM; seven possessed inhibition activity at 100 nM. The IC50 values were determined for the seven most active analogues, which ranged from 34 to 1500 nM (PP1) and 70 to 6800 nM (PP2A). Four of the seven analogues possessed PP1 selectivity, and one demonstrated eightfold selectivity in the nanomolar range (PP1 IC50 =34 nM, PP2A IC50 =270 nM). A rationale is given for the observed differences in selectivity.
Collapse
Affiliation(s)
- Zachary R Woydziak
- Department of Physical and Life Sciences, Nevada State College, 1300, Nevada State Dr., Henderson, NV 89002, USA
| | - A John Yucel
- Department of Pharmaceutical Sciences, University of California, Irvine, 147 Biol. Sci. Admin., Irvine, CA 92697, USA
| | - A Richard Chamberlin
- Department of Pharmaceutical Sciences, University of California, Irvine, 147 Biol. Sci. Admin., Irvine, CA 92697, USA
| |
Collapse
|
7
|
Muñoz-Chimeno M, Cenalmor A, Garcia-Lugo MA, Hernandez M, Rodriguez-Lazaro D, Avellon A. Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder. Microorganisms 2020; 8:microorganisms8091417. [PMID: 32942608 PMCID: PMC7564002 DOI: 10.3390/microorganisms8091417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
The hepatitis E virus (HEV) hypervariable region (HVR) presents the highest divergence of the entire HEV genome. It is characteristically rich in proline, and so is also known as the “polyproline region” (PPR). HEV genotype 3 (HEV-3) exhibits different PPR lengths due to insertions, PPR and/or RNA-dependent RNA polymerase (RdRp) duplications and deletions. A total of 723 PPR-HEV sequences were analyzed, of which 137 HEV-3 sequences were obtained from clinical specimens (from acute and chronic infection) by Sanger sequencing. Eight swine stool/liver samples were also analyzed. N- and C-terminal fragments were confirmed as being conserved, but they harbored differences between genotypes and were not proline-plentiful regions. The genuine PPR is the intermediate region between them. HEV-3 PPR contains a higher percentage (30.4%) of prolines than other genotypes. We describe for the first time: (1) the specific placement of HEV-3 PPR rearrangements in sites 1 to 14 of the PPR, noting that duplications are more frequently attached to sites 11 and 12 (AAs 74–79 and 113–118, respectively); (2) the cadence of repetitions follows a circular-like pattern of blocks A to J, with F, G, H, and I being the most frequent; (3) a previously unreported insertion homologous to apolipoprotein C1; and (4) the increase in frequency of potential N-glycosylation sites and differences in AAs composition related to duplications.
Collapse
Affiliation(s)
- Milagros Muñoz-Chimeno
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, 28220 Madrid, Spain; (M.M.-C.); (A.C.); (M.A.G.-L.)
| | - Alejandro Cenalmor
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, 28220 Madrid, Spain; (M.M.-C.); (A.C.); (M.A.G.-L.)
| | - Maira Alejandra Garcia-Lugo
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, 28220 Madrid, Spain; (M.M.-C.); (A.C.); (M.A.G.-L.)
| | - Marta Hernandez
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain;
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | | | - Ana Avellon
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, 28220 Madrid, Spain; (M.M.-C.); (A.C.); (M.A.G.-L.)
- CIBER Epidemiology and Public Health, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proc Natl Acad Sci U S A 2019; 116:12500-12505. [PMID: 31160454 DOI: 10.1073/pnas.1820131116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency in the E3 ubiquitin ligase UBE3A leads to the neurodevelopmental disorder Angelman syndrome (AS), while additional dosage of UBE3A is linked to autism spectrum disorder. The mechanisms underlying the downstream effects of UBE3A gain or loss of function in these neurodevelopmental disorders are still not well understood, and effective treatments are lacking. Here, using stable-isotope labeling of amino acids in mammals and ubiquitination assays, we identify PTPA, an activator of protein phosphatase 2A (PP2A), as a bona fide ubiquitin ligase substrate of UBE3A. Maternal loss of Ube3a (Ube3a m-/p+) increased PTPA level, promoted PP2A holoenzyme assembly, and elevated PP2A activity, while maternal 15q11-13 duplication containing Ube3a down-regulated PTPA level and lowered PP2A activity. Reducing PTPA level in vivo restored the defects in dendritic spine maturation in Ube3a m-/p+ mice. Moreover, pharmacological inhibition of PP2A activity with the small molecule LB-100 alleviated both reduction in excitatory synaptic transmission and motor impairment in Ube3a m-/p+ mice. Together, our results implicate a critical role of UBE3A-PTPA-PP2A signaling in the pathogenesis of UBE3A-related disorders and suggest that PP2A-based drugs could be potential therapeutic candidates for treatment of UBE3A-related disorders.
Collapse
|
9
|
Bott A, Erdem N, Lerrer S, Hotz-Wagenblatt A, Breunig C, Abnaof K, Wörner A, Wilhelm H, Münstermann E, Ben-Baruch A, Wiemann S. miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A. Oncotarget 2018; 8:43897-43914. [PMID: 28159925 PMCID: PMC5546423 DOI: 10.18632/oncotarget.14915] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) has an impact on breast cancer progression by creating a pro-inflammatory milieu within the tumor. However, little is known about the roles of miRNAs in cells of the TME during this process. We identified six putative oncomiRs in a breast cancer dataset, all strongly correlating with poor overall patient survival. Out of the six candidates, miR-1246 was upregulated in aggressive breast cancer subtypes and expressed at highest levels in mesenchymal stem/stroma cells (MSCs). Functionally, miR-1246 led to a p65-dependent increase in transcription and release of pro-inflammatory mediators IL-6, CCL2 and CCL5 in MSCs, and increased NF-κB activity. The pro-inflammatory phenotype of miR-1246 in MSCs was independent of TNFα stimulations and mediated by direct targeting of the tumor-suppressors PRKAR1A and PPP2CB. In vitro recapitulation of the TME revealed increased Stat3 phosphorylation in breast epithelial (MCF10A) and cancer cells (SK-BR-3, MCF7, T47D) upon incubation with conditioned medium (CM) of MSCs overexpressing miR-1246. Additionally, this stimulation enhanced proliferation of MCF10A cells, increased migration of MDA-MB-231 cells and induced attraction of THP-1 monocytic cells. Our data shows that miR-1246 acts as both key-enhancer of pro-inflammatory responses in MSCs and putative oncomiR in breast cancer, suggesting its influence on cancer-related inflammation and breast cancer progression.
Collapse
Affiliation(s)
- Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shalom Lerrer
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Genomics & Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Wörner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ewald Münstermann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3062765. [PMID: 27340655 PMCID: PMC4909930 DOI: 10.1155/2016/3062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.
Collapse
|
11
|
Shang L, Henderson LB, Cho MT, Petrey DS, Fong CT, Haude KM, Shur N, Lundberg J, Hauser N, Carmichael J, Innis J, Schuette J, Wu YW, Asaikar S, Pearson M, Folk L, Retterer K, Monaghan KG, Chung WK. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 2015; 17:43-9. [PMID: 26576547 DOI: 10.1007/s10048-015-0466-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | | | - Donald S Petrey
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Chin-To Fong
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | - Jeffrey Innis
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jane Schuette
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne W Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Krumpel M, Reithmeier A, Senge T, Baeumler TA, Frank M, Nyholm PG, Ek-Rylander B, Andersson G. The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells. Exp Cell Res 2015; 339:154-62. [PMID: 26428664 DOI: 10.1016/j.yexcr.2015.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/17/2023]
Abstract
Tartrate-resistant acid phosphatase (TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5) has received considerable attention as a newly discovered proinvasion metastasis driver associated with different malignancies. This renders TRAP an interesting target for novel anti-cancer therapy approaches. TRAP exists as two isoforms, 5a and 5b, where the 5a isoform represents an enzymatically less active monomeric precursor to the more enzymatically active 5b isoform generated by proteolytic excision of a repressive loop domain. Recently, three novel lead compounds were identified by fragment-based screening and demonstrated to be efficient TRAP enzyme inhibitors in vitro. We conclude that one of the three compounds i.e. 5-phenylnicotinic acid (CD13) was efficient as a TRAP inhibitor with Kic values in the low micromolar range towards the TRAP 5b isoform, but was not able to inhibit the TRAP 5a isoform. Structure-based docking revealed similar interactions of CD13 with the active site in both TRAP isoforms. In stably TRAP-overexpressing MDA-MB-231 breast cancer cells, CD13 inhibited intracellular TRAP activity and showed no cytotoxicity at 200 µM. Furthermore, CD13 selectively blocked the TRAP 5b isoform compared to the TRAP 5a in cultured cells, indicating the usefulness of CD13 for assessing the different biological functions of the two TRAP isoforms 5a and 5b in cell systems. Moreover, inhibition of cell migration and invasion of stably TRAP-overexpressing MDA-MB-231 by CD13 was observed. These data establish a proof of principle that a small chemical inhibitor of the TRAP enzyme can block TRAP-dependent functions in cancer cells.
Collapse
Affiliation(s)
- Michael Krumpel
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Anja Reithmeier
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Teresa Senge
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Toni Andreas Baeumler
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Martin Frank
- Biognos AB, PO Box 8963, SE-402 74 Gothenburg, Sweden.
| | | | - Barbro Ek-Rylander
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Göran Andersson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
13
|
Posttranslational Modifications. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Joseph BK, Liu HY, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, Giordano C, Bata A, Nickels JT. Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d. J Biol Chem 2015; 290:10588-98. [PMID: 25694423 DOI: 10.1074/jbc.m114.626259] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
AMP kinase is a heterotrimeric serine/threonine protein kinase that regulates a number of metabolic processes, including lipid biosynthesis and metabolism. AMP kinase activity is regulated by phosphorylation, and the kinases involved have been uncovered. The particular phosphatases counteracting these kinases remain elusive. Here we discovered that the protein phosphatase 2A heterotrimer, PP2A(Ppp2r2d), regulates the phosphorylation state of AMP kinase by dephosphorylating Thr-172, a residue that activates kinase activity when phosphorylated. Co-immunoprecipitation and co-localization studies indicated that PP2A(Ppp2r2d) directly interacted with AMP kinase. PP2A(Ppp2r2d) dephosphorylated Thr-172 in rat aortic and human vascular smooth muscle cells. A positive correlation existed between decreased phosphorylation, decreased acetyl-CoA carboxylase Acc1 phosphorylation, and sterol response element-binding protein 1c-dependent gene expression. PP2A(Ppp2r2d) protein expression was up-regulated in the aortas of mice fed a high fat diet, and the increased expression correlated with increased blood lipid levels. Finally, we found that the aortas of mice fed a high fat diet had decreased AMP kinase Thr-172 phosphorylation, and contained an Ampk-PP2A(Ppp2r2d) complex. Thus, PP2A(Ppp2r2d) may antagonize the aortic AMP kinase activity necessary for maintaining normal aortic lipid metabolism. Inhibiting PP2A(Ppp2r2d) or activating AMP kinase represents a potential pharmacological treatment for many lipid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adam Bata
- Invivotek, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | | |
Collapse
|
15
|
Lei M, Wang X, Ke Y, Solaro RJ. Regulation of Ca(2+) transient by PP2A in normal and failing heart. Front Physiol 2015; 6:13. [PMID: 25688213 PMCID: PMC4310266 DOI: 10.3389/fphys.2015.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 11/13/2022] Open
Abstract
Calcium transient in cardiomyocytes is regulated by multiple protein kinases and phosphatases. PP2A is a major protein phosphatase in the heart modulating Ca2+ handling through an array of ion channels, antiporters and pumps, etc. The assembly, localization/translocation, and substrate specificity of PP2A are controlled by different post-translational mechanisms, which in turn are linked to the activities of upstream signaling molecules. Abnormal PP2A expression and activities are associated with defective response to β-adrenergic stimulation and are indication and causal factors in arrhythmia and heart failure.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Xin Wang
- Faculty of Life Science, University of Manchester Manchester, UK
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
16
|
Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS One 2014; 9:e112034. [PMID: 25375323 PMCID: PMC4223108 DOI: 10.1371/journal.pone.0112034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/11/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs) has great implication for therapeutics. METHODS In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques. RESULTS Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49%) and Random Forest (55.66%). However the specificity of Naïve Bayes was the highest (99.52%) as compared with SVM (74%) and Random Forest (89.08%). Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively. CONCLUSION The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV), interacting partners of host protein were identified using optimised SVM model.
Collapse
Affiliation(s)
- Ranjan Kumar Barman
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (SD)
| | - Santasabuj Das
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- * E-mail: (SS); (SD)
| |
Collapse
|
17
|
Kirchhefer U, Heinick A, König S, Kristensen T, Müller FU, Seidl MD, Boknik P. Protein phosphatase 2A is regulated by protein kinase Cα (PKCα)-dependent phosphorylation of its targeting subunit B56α at Ser41. J Biol Chem 2013; 289:163-76. [PMID: 24225947 DOI: 10.1074/jbc.m113.507996] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser(41) of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca(2+) release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser(41). This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Uwe Kirchhefer
- From the Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Staser K, Shew MA, Michels EG, Mwanthi MM, Yang FC, Clapp DW, Park SJ. A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol 2012; 41:56-66.e2. [PMID: 23063725 DOI: 10.1016/j.exphem.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 01/12/2023]
Abstract
Mast cells coordinate allergy and allergic asthma and are crucial cellular targets in therapeutic approaches to inflammatory disease. Allergens cross-link immunoglobulin E bound at high-affinity receptors on the mast cell's surface, causing release of preformed cytoplasmic granules containing inflammatory molecules, including histamine, a principal effector of fatal septic shock. Both p21 activated kinase 1 (Pak1) and protein phosphatase 2A (PP2A) modulate mast cell degranulation, but the molecular mechanisms underpinning these observations and their potential interactions in common or disparate pathways are unknown. In this study, we use genetic and other approaches to show that Pak1's kinase-dependent interaction with PP2A potentiates PP2A's subunit assembly and activation. PP2A then dephosphorylates threonine 567 of Ezrin/Radixin/Moesin (ERM) molecules that have been shown to couple F-actin to the plasma membrane in other cell systems. In our study, the activity of this Pak1-PP2A-ERM axis correlates with impaired systemic histamine release in Pak1(-/-) mice and defective F-actin rearrangement and impaired degranulation in Ezrin disrupted (Mx1Cre(+)Ezrin(flox/flox)) primary mast cells. This heretofore unknown mechanism of mast cell degranulation provides novel therapeutic targets in allergy and asthma and may inform studies of kinase regulation of cytoskeletal dynamics in other cell lineages.
Collapse
Affiliation(s)
- Karl Staser
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Protein phosphatase 2A affects myofilament contractility in non-failing but not in failing human myocardium. J Muscle Res Cell Motil 2011; 32:221-33. [PMID: 21959857 PMCID: PMC3205269 DOI: 10.1007/s10974-011-9261-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/09/2011] [Indexed: 02/04/2023]
Abstract
Protein phosphatase (PP) type 2A is a multifunctional serine/threonine phosphatase that is involved in cardiac excitation-contraction coupling. The PP2A core enzyme is a dimer, consisting of a catalytic C and a scaffolding A subunit, which is targeted to several cardiac proteins by a regulatory B subunit. At present, it is controversial whether PP2A and its subunits play a critical role in end-stage human heart failure. Here we report that the application of purified PP2AC significantly increased the Ca2+-sensitivity (ΔpCa50=0.05±0.01) of the contractile apparatus in isolated skinned myocytes of non-failing (NF) hearts. A higher phosphorylation of troponin I (cTnI) was found at protein kinase A sites (Ser23/24) in NF compared to failing myocardium. The basal Ca2+-responsiveness of myofilaments was enhanced in myocytes of ischemic (ICM, ΔpCa50=0.10±0.03) and dilated (DCM, ΔpCa50=0.06±0.04) cardiomyopathy compared to NF. However, in contrast to NF myocytes the treatment with PP2AC did not shift force-pCa relationships in failing myocytes. The higher basal Ca2+-sensitivity in failing myocytes coincided with a reduced protein expression of PP2AC in left ventricular tissue from patients suffering from ICM and DCM (by 50 and 56% compared to NF, respectively). However, PP2A activity was unchanged in failing hearts despite an increase of both total PP and PP1 activity. The expression of PP2AB56α was also decreased by 51 and 62% in ICM and DCM compared to NF, respectively. The phosphorylation of cTnI at Ser23/24 was reduced by 66 and 49% in ICM and DCM compared to NF hearts, respectively. Our results demonstrate that PP2A increases myofilament Ca2+-sensitivity in NF human hearts, most likely via cTnI dephosphorylation. This effect is not present in failing hearts, probably due to the lower baseline cTnI phosphorylation in failing compared to non-failing hearts.
Collapse
|
20
|
Li Y, Zhang C, Chen X, Yu J, Wang Y, Yang Y, Du M, Jin H, Ma Y, He B, Cao Y. ICP34.5 protein of herpes simplex virus facilitates the initiation of protein translation by bridging eukaryotic initiation factor 2alpha (eIF2alpha) and protein phosphatase 1. J Biol Chem 2011; 286:24785-92. [PMID: 21622569 DOI: 10.1074/jbc.m111.232439] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ICP34.5 protein of herpes simplex virus type 1 is a neurovirulence factor that plays critical roles in viral replication and anti-host responses. One of its functions is to recruit protein phosphatase 1 (PP1) that leads to the dephosphorylation of the α subunit of translation initiation factor eIF2 (eIF2α), which is inactivated by infection-induced phosphorylation. As PP1 is a protein phosphatase with a wide range of substrates, the question remains to be answered how ICP34.5 directs PP1 to specifically dephosphorylate eIF2α. Here we report that ICP34.5 not only binds PP1 but also associates with eIF2α by in vitro and in vivo assays. The binding site of eIF2α is identified at amino acids 233-248 of ICP34.5, which falls in the highly homologous region with human gene growth arrest and DNA damage 34. The interaction between ICP34.5 and eIF2α is independent of the phosphorylation status of eIF2α at serine 51. Deletion mutation of this region results in the failure of dephosphorylation of eIF2α by PP1 and, consequently, interrupts viral protein synthesis and replication. Our data illustrated that the binding between viral protein ICP34.5 and the host eIF2α is crucial for the specific dephosphorylation of eIF2α by PP1. We propose that herpes simplex virus protein ICP34.5 bridges PP1 and eIF2α via their binding motifs and thereby facilitates the protein synthesis and viral replication.
Collapse
Affiliation(s)
- Yapeng Li
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Qian J, Vafiadaki E, Florea SM, Singh VP, Song W, Lam CK, Wang Y, Yuan Q, Pritchard TJ, Cai W, Haghighi K, Rodriguez P, Wang HS, Sanoudou D, Fan GC, Kranias EG. Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling. Circ Res 2011; 108:1429-38. [PMID: 21493896 DOI: 10.1161/circresaha.110.237644] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heat shock proteins (Hsp) are known to enhance cell survival under various stress conditions. In the heart, the small Hsp20 has emerged as a key mediator of protection against apoptosis, remodeling, and ischemia/reperfusion injury. Moreover, Hsp20 has been implicated in modulation of cardiac contractility ex vivo. The objective of this study was to determine the in vivo role of Hsp20 in the heart and the mechanisms underlying its regulatory effects in calcium (Ca) cycling. METHODS AND RESULTS Hsp20 overexpression in intact animals resulted in significant enhancement of cardiac function, coupled with augmented Ca cycling and sarcoplasmic reticulum Ca load in isolated cardiomyocytes. This was associated with specific increases in phosphorylation of phospholamban (PLN) at both Ser16 and Thr17, relieving its inhibition of the apparent Ca affinity of SERCA2a. Accordingly, the inotropic effects of Hsp20 were abrogated in cardiomyocytes expressing nonphosphorylatable PLN (S16A/T17A). Interestingly, the activity of type 1 protein phosphatase (PP1), a known regulator of PLN signaling, was significantly reduced by Hsp20 overexpression, suggesting that the Hsp20 stimulatory effects are partially mediated through the PP1-PLN axis. This hypothesis was supported by cell fractionation, coimmunoprecipitation, and coimmunolocalization studies, which revealed an association between Hsp20, PP1, and PLN. Furthermore, recombinant protein studies confirmed a physical interaction between AA 73 to 160 in Hsp20 and AA 163 to 330 in PP1. CONCLUSIONS Hsp20 is a novel regulator of sarcoplasmic reticulum Ca cycling by targeting the PP1-PLN axis. These findings, coupled with the well-recognized cardioprotective role of Hsp20, suggest a dual benefit of targeting Hsp20 in heart disease.
Collapse
Affiliation(s)
- Jiang Qian
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Lee SJ, Lee JK, Maeng YS, Kim YM, Kwon YG. Langerhans cell protein 1 (LCP1) binds to PNUTS in the nucleus: implications for this complex in transcriptional regulation. Exp Mol Med 2009; 41:189-200. [PMID: 19293638 DOI: 10.3858/emm.2009.41.3.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphatase-1 (PP1) nuclear targeting subunit (PNUTS), also called PP1R10, p99, or CAT 53 was originally isolated as a mammalian nuclear PP1-binding protein. In this study, we performed yeast two-hybrid screens to identify PNUTS-interacting proteins. Here, we report that LCP1 (epidermal Langerhans cell protein 1), a novel member of the HMG-box protein family, binds tightly to PNUTS. Co-immunoprecipitation of deletion constructs revealed that the C-terminus of LCP1 is sufficient for the interaction with an N-terminal region of PNUTS that is distinct from its PP1-binding domain. Furthermore, immunofluorescence studies showed that a subpopulation of LCP1 co-localizes with PNUTS in nuclear speckles. Importantly, we found that the N-terminus of LCP1 has a strong trans-activation activity in a GAL4-based heterologous transcription assay. The transcriptional activity of LCP1 is markedly suppressed by its interaction with PNUTS, in a PP1-independent manner. These findings suggest that the coordinated spatial and temporal regulation of LCP1 and PNUTS may be a novel mechanism to control the expression of genes that are critical for certain physiological and pathological processes.
Collapse
Affiliation(s)
- Shin Jeong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
24
|
Yu S, Shen G, Khor TO, Kim JH, Kong ANT. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther 2008; 7:2609-20. [PMID: 18790744 DOI: 10.1158/1535-7163.mct-07-2400] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Akt/mammalian target of rapamycin (mTOR) signaling plays an important role in tumorigenesis and is dysregulated in many tumors, especially metastatic prostate cancers. Curcumin has been shown to effectively prevent or inhibit prostate cancer in vivo and inhibit Akt/mTOR signaling in vitro, but the mechanism(s) remains unclear. Here, we show that curcumin concentration- and time-dependently inhibited the phosphorylation of Akt, mTOR, and their downstream substrates in human prostate cancer PC-3 cells, and this inhibitory effect acts downstream of phosphatidylinositol 3-kinase and phosphatidylinositol-dependent kinase 1. Overexpression of constitutively activated Akt or disruption of TSC1-TSC2 complex by small interfering RNA or gene knockout only partially restored curcumin-mediated inhibition of mTOR and downstream signaling, indicating that they are not the primary effectors of curcumin-mediated inhibition of Akt/mTOR signaling. Curcumin also activated 5'-AMP-activated protein kinase and mitogen-activated protein kinases; however, inhibition of these kinases failed to rescue the inhibition by curcumin. Finally, it was shown that the inhibition of Akt/mTOR signaling by curcumin is resulted from calyculin A-sensitive protein phosphatase-dependent dephosphorylation. Our study reveals the profound effects of curcumin on the Akt/mTOR signaling network in PC-3 cells and provides new mechanisms for the anticancer effects of curcumin.
Collapse
Affiliation(s)
- Siwang Yu
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
25
|
Hill TA, Stewart SG, Sauer B, Gilbert J, Ackland SP, Sakoff JA, McCluskey A. Heterocyclic substituted cantharidin and norcantharidin analogues--synthesis, protein phosphatase (1 and 2A) inhibition, and anti-cancer activity. Bioorg Med Chem Lett 2007; 17:3392-7. [PMID: 17451951 DOI: 10.1016/j.bmcl.2007.03.093] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 03/21/2007] [Accepted: 03/29/2007] [Indexed: 11/23/2022]
Abstract
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.
Collapse
Affiliation(s)
- Timothy A Hill
- Department of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 2006; 445:53-7. [PMID: 17086192 DOI: 10.1038/nature05351] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/16/2006] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
Collapse
Affiliation(s)
- Uhn Soo Cho
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
27
|
Wilson WA, Wang Z, Roach PJ. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochem Biophys Res Commun 2005; 329:161-7. [PMID: 15721288 DOI: 10.1016/j.bbrc.2005.01.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Yeast accumulate glycogen in response to nutrient limitation. The key enzymes of glycogen synthesis and degradation, glycogen synthase, and phosphorylase, are regulated by reversible phosphorylation. Phosphorylation inactivates glycogen synthase but activates phosphorylase. The kinases and phosphatases that control glycogen synthase are well characterized whilst the enzymes modifying phosphorylase are poorly defined. Here, we show that the cyclin-dependent protein kinase, Pho85p, which we have previously found to regulate glycogen synthase also controls the phosphorylation state of phosphorylase.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
28
|
Abstract
The catalytic subunit of the serine-threonine protein phosphatase 2A (PP2A) was previously found to bind to the carboxyl domain of NMDA receptor (NMDAR) subunit NR3A. We now report that NR3A constitutively associates with the PP2A holoenzyme, but not the core enzyme in rat brain synaptic plasma membranes. We also identified critical amino acids in NR3A required for binding to PP2A. We performed alanine-scanning mutagenesis in the PP2A-binding domain of the NR3A C-terminal (NR3Ac), then co-expressed the mutants together with the PP2A catalytic subunit in a yeast two-hybrid system and human embryonic kidney (HEK) 293 cells. We found that mutation of leucine 958, leucine 973 or histidine 974 or deletion of a spacer sequence of more than six amino acids between leucine 958 and histidine 974 disrupted the NR3A/PP2A interaction.
Collapse
Affiliation(s)
- On Ki Ma
- Molecular Neuroscience Center, Biotechnology Research Institute and Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
29
|
Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE. ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 2004; 23:3454-61. [PMID: 14990992 DOI: 10.1038/sj.onc.1207473] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ILKAP is a protein phosphatase 2C that selectively associates with integrin linked kinase, ILK, to modulate cell adhesion and growth factor signaling. We investigated the role of endogenous cellular ILKAP in antagonizing ILK signaling of two key targets, PKB and GSK3beta. Silencing of endogenous ILKAP by short interfering RNA (siRNA) stimulated GSK3beta phosphorylation at S9, with no effect on PKB S473 phosphorylation. In LNCaP prostate carcinoma cells, transient or stable expression of ILKAP suppressed ILK immune complex kinase activity, demonstrating an interaction between ILKAP and ILK. Consistent with the silencing data, ILKAP inhibition of ILK selectively inhibited S9 phosphorylation of GSK3beta without affecting S473 phosphorylation of PKB. The ILKAP-mediated inhibition of S9 phosphorylation was rescued by overexpression of ILK, but not by a dominant-negative ILK mutant. The expression level of cyclin D1, a target of ILK-GSK3beta signaling, was inversely correlated with ILKAP protein levels, suggesting that antagonism of ILK modulates cell cycle progression. ILKAP expression increased the proportion of LNCaP cells in G1, relative to vector control cells, and siRNA suppression of ILKAP increased entry of cells into the S phase, consistent with ILK antagonism. Anchorage-independent growth of LNCaP cells was inhibited by ILKAP, suggesting a critical role in the suppression of cellular transformation. Taken together, our results indicate that endogenous ILKAP activity inhibits the ILK-GSK3beta signaling axis, and suggest that ILKAP activity plays an important role in inhibiting oncogenic transformation.Oncogene (2004) 23, 3454-3461. doi:10.1038/sj.onc.1207473 Published online 1 March 2004
Collapse
Affiliation(s)
- Ashu S Kumar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
van den Ham R, van Dissel-Emiliani FMF, van Pelt AMM. Expression of the scaffolding subunit A of protein phosphatase 2A during rat testicular development. Biol Reprod 2003; 68:1369-75. [PMID: 12606433 DOI: 10.1095/biolreprod.102.004853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously, we found that the poly(A)+ RNA of the scaffolding subunit A (alpha isoform) of protein phosphatase 2A (PP2A-Aalpha) was clearly expressed by fetal gonocytes but weakly expressed by adult single (As), paired (Apr), and aligned (Aal) A spermatogonia. The scaffolding subunit A of PP2A (PP2A-A) is the major subunit in the formation of a functional PP2A holoenzyme. In this study, we investigated the expression of PP2A-A during testicular development in more detail using in situ hybridization, immunohistochemistry, and Western blot with testes of rats of various ages from 16 days postcoitum (pc) to adulthood. The expression of PP2A-A was detected in fetal proliferative gonocytes at 16 days pc, declining thereafter during the quiescent period of the gonocytes. From the day of birth to the start of spermatogenesis (Day 4 postpartum [pp]), the number of PP2A-A-immunopositive gonocytes increased. At Day 4 pp, the first A1 spermatogonia appeared along the basement membrane; all were PP2A-A positive. In the adult, PP2A-A was upregulated during the differentiation of the As, Apr, and Aal spermatogonia to the A1 spermatogonia and expressed thereafter by all other spermatogonia. Spermatocytes from the pachytene stage onward and all spermatids in the adult testis also showed clear expression of PP2A-A. In Sertoli cells, PP2A-A was detected during their proliferative period at 19 days pc to 15 days pp. The presence of a functional enzyme was confirmed by the additional detection of the catalytic subunit C of PP2A using Western blot analyses at various ages during testicular development. This apparent pattern of expression of PP2A-A during testicular development suggests that PP2A may play an important role in the proliferation of distinct populations of testicular cells and during meiosis and sperm maturation.
Collapse
Affiliation(s)
- R van den Ham
- Department of Biochemistry, Cell Biology and Histology, Faculty of Veterinay Medicine, University of Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Mitsuhashi S, Shima H, Tanuma N, Matsuura N, Takekawa M, Urano T, Kataoka T, Ubukata M, Kikuchi K. Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo. J Biol Chem 2003; 278:82-8. [PMID: 12374792 DOI: 10.1074/jbc.m208888200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase type 1 (PP1), together with protein phosphatase 2A (PP2A), is a major eukaryotic serine/threonine protein phosphatase involved in regulation of numerous cell functions. Although the roles of PP2A have been studied extensively using okadaic acid, a well known inhibitor of PP2A, biological analysis of PP1 has remained restricted because of lack of a specific inhibitor. Recently we reported that tautomycetin (TC) is a highly specific inhibitor of PP1. To elucidate the biological effects of TC, we demonstrated in preliminary experiments that treatment of COS-7 cells with 5 microm TC for 5 h inhibits endogenous PP1 by more than 90% without affecting PP2A activity. Therefore, using TC as a specific PP1 inhibitor, the biological effect of PP1 on MAPK signaling was examined. First, we found that inhibition of PP1 in COS-7 cells by TC specifically suppresses activation of ERK, among three MAPK kinases (ERK, JNK, and p38). TC-mediated inhibition of PP1 also suppressed activation of Raf-1, resulting in the inactivation of the MEK-ERK pathway. To examine the role of PP1 in regulation of Raf-1, we overexpressed the PP1 catalytic subunit (PP1C) in COS-7 cells and found that PP1C enhanced activation of Raf-1 activity, whereas phosphatase-dead PP1C blocked Raf-1 activation. Furthermore, a physical interaction between PP1C and Raf-1 was also observed. These data strongly suggest that PP1 positively regulates Raf-1 in vivo.
Collapse
Affiliation(s)
- Shinya Mitsuhashi
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mishra-Gorur K, Singer HA, Castellot JJ. Heparin inhibits phosphorylation and autonomous activity of Ca(2+)/calmodulin-dependent protein kinase II in vascular smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1893-901. [PMID: 12414535 PMCID: PMC1850768 DOI: 10.1016/s0002-9440(10)64465-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular smooth muscle cell (VSMC) hyperproliferation is a characteristic feature of both atherosclerosis and restenosis seen after vascular surgery. A number of studies have shown that heparin inhibits VSMC proliferation in vivo and in culture. To test our hypothesis that heparin mediates its antiproliferative effect by altering Ca(2+) regulated pathways involved in mitogenic signaling in VSMC, we analyzed the effect of heparin on multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaM kinase II) which is abundantly expressed in VSMC. Using activity assays, radioactive labeling, and immunoprecipitation it was found that heparin inhibits the overall phosphorylation of the delta-subunit of CaM kinase II which is consistent with inhibition of autophosphorylation-dependent, Ca(2+)/calmodulin-independent CaM kinase II activity. This effect was less evident in heparin-resistant cells, consistent with a role for CaM kinase II in mediating the antiproliferative effect of heparin. Finally, the effects of pharmacological inhibitors of phosphatases like okadaic acid, calyculin, and tautomycin suggest that heparin inhibits CaM kinase II phosphorylation by activating protein phosphatases 1 and 2A. These findings support the hypothesis that alterations in calcium-mediated mitogenic signaling pathways may be involved in the antiproliferative mechanism of action of heparin.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Program in Cell, Molecular and Developmental Biology, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | | |
Collapse
|
33
|
Torres MST, Ace CI, Okulicz WC. Assessment and Application of Laser Microdissection for Analysis of Gene Expression in the Rhesus Monkey Endometrium1. Biol Reprod 2002; 67:1067-72. [PMID: 12297519 DOI: 10.1095/biolreprod67.4.1067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated the use of laser capture microdissection (LCM) to identify differences in gene expression between cell types or regions within the rhesus monkey endometrium. Different cell types were harvested from the two major regions of the endometrium during midsecretory phases (Days 21-23) of adequate artificial menstrual cycles: glandular epithelia (G) or stroma (S) from the functionalis (F) or the basalis (B). Amplification of the cDNA populations (primer-specific adaptors) was used to increase the amount of nucleic acid for further analysis. This single amplification step allowed us to detect the housekeeping genes (glyceraldehyde-3-phosphate dehydrogenase and 18S rRNA) and the cDNA smears in the samples. Using differential display reverse transcription polymerase chain reaction (DDRT-PCR), six fragments were selected, cloned, and sequenced based on their regional and cell type localization. Primer-specific PCR analysis subsequently confirmed the localization of three fragments: F1, highly expressed in the functionalis but not the basalis, was homologous (93% identical) to the human leukotriene B4 receptor BLT2; FS-1, highly expressed only in the stroma of the functionalis, had a 94% homology with an as yet uncharacterized gene (FLJ124360); and BG-1, primarily expressed only in the glandular epithelia of the basalis, showed a 98% homology with an uncharacterized bacterial artificial chromosome clone sequence. These LCM-generated cDNA populations coupled with DDRT-PCR can provide an important avenue for the identification of new or novel gene fragments that display cell type- or region-specific gene expression in the rhesus monkey endometrium.
Collapse
Affiliation(s)
- Mira S T Torres
- Division of Endocrinology, Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
34
|
Wu DY, Tkachuck DC, Roberson RS, Schubach WH. The human SNF5/INI1 protein facilitates the function of the growth arrest and DNA damage-inducible protein (GADD34) and modulates GADD34-bound protein phosphatase-1 activity. J Biol Chem 2002; 277:27706-15. [PMID: 12016208 DOI: 10.1074/jbc.m200955200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The growth arrest and DNA damage-inducible protein (GADD34) mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase-1 (PP1) and can attenuate translational elongation of key transcriptional factors through dephosphorylation of eukaryotic initiation factor-2alpha. We reported previously that the human trithorax leukemia fusion protein (HRX) can bind to GADD34 and abrogate GADD34-mediated apoptosis in response to UV irradiation. We found that hSNF5/INI1, a component of the hSWI/SNF chromatin remodeling complex, also binds to GADD34 and can coexist with GADD34 and HRX fusion proteins as a trimolecular complexes in vivo. In the present report, we demonstrate that hSNF5/INI1 binds to GADD34 in part through the PP1 docking site within a domain homologous to herpes simplex virus-1 ICP34.5. We found that hSNF5/INI1 can bind PP1 independently and weakly stimulate its phosphatase activity in solution and in complex with GADD34. hSNF5/INI1 and PP1 do not compete for binding to GADD34 but rather form a stable heterotrimeric complex with GADD34. We also show that Epstein-Barr nuclear protein 2, which binds hSNF5/INI1, can disrupt hSNF5/INI1 binding to GADD34 and partially reverse the GADD34-mediated growth suppression function in Ha-ras expressing HIH-3T3 (3T3-ras) cells. These results implicate hSNF5/INI1 in the function of GADD34 and suggest that hSNF5/INI1 may regulate PP1 activity in vivo.
Collapse
Affiliation(s)
- Daniel Y Wu
- Division of Medical Oncology, Department of Medicine, Veterans Administration Puget Sound Health Care System, Seattle Division, Seattle, Washington 98108, USA.
| | | | | | | |
Collapse
|
35
|
Terol J, Bargues M, Carrasco P, Pérez-Alonso M, Paricio N. Molecular characterization and evolution of the protein phosphatase 2A B' regulatory subunit family in plants. PLANT PHYSIOLOGY 2002; 129:808-22. [PMID: 12068121 PMCID: PMC161703 DOI: 10.1104/pp.020004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type 2A serine/threonine protein phosphatases (PP2A) are important components in the reversible protein phosphorylation events in plants and other organisms. PP2A proteins are oligomeric complexes constituted by a catalytic subunit and several regulatory subunits that modulate the activity of these phosphatases. The analysis of the complete genome of Arabidopsis allowed us to characterize four novel genes, AtB'epsilon, AtB'zeta, AtB'eta, and AtB'theta;, belonging to the PP2A B' regulatory subunit family. Because four genes of this type had been described previously, this family is composed of eight members. Reverse transcriptase-polymerase chain reaction experiments showed that AtB'epsilon mRNAs are present in all Arabidopsis tissues analyzed, and their levels do not respond significantly to heat stress. Expressed sequence tags corresponding to AtB'zeta, AtB'eta, and AtB'theta; have been identified, indicating that the new genes are actively transcribed. The genomic organization of this family of PP2A regulatory subunits is reported, as well as its chromosomal location. An extensive survey of the family has been carried out in plants, characterizing B' subunits in a number of different species, and performing a phylogenetic study that included several B' regulatory proteins from animals. Our results indicate that the animal and plant proteins have evolved independently, that there is a relationship between the number of B' isoforms and the complexity of the organism, and that there are at least three main subfamilies of regulatory subunits in plants, which we have named alpha, eta, and kappa.
Collapse
Affiliation(s)
- Javier Terol
- Departament de Genetica, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
36
|
Carr AN, Schmidt AG, Suzuki Y, del Monte F, Sato Y, Lanner C, Breeden K, Jing SL, Allen PB, Greengard P, Yatani A, Hoit BD, Grupp IL, Hajjar RJ, DePaoli-Roach AA, Kranias EG. Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 2002; 22:4124-35. [PMID: 12024026 PMCID: PMC133876 DOI: 10.1128/mcb.22.12.4124-4135.2002] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increases in type 1 phosphatase (PP1) activity have been observed in end stage human heart failure, but the role of this enzyme in cardiac function is unknown. To elucidate the functional significance of increased PP1 activity, we generated models with (i) overexpression of the catalytic subunit of PP1 in murine hearts and (ii) ablation of the PP1-specific inhibitor. Overexpression of PP1 (threefold) was associated with depressed cardiac function, dilated cardiomyopathy, and premature mortality, consistent with heart failure. Ablation of the inhibitor was associated with moderate increases in PP1 activity (23%) and impaired beta-adrenergic contractile responses. Extension of these findings to human heart failure indicated that the increased PP1 activity may be partially due to dephosphorylation or inactivation of its inhibitor. Indeed, expression of a constitutively active inhibitor was associated with rescue of beta-adrenergic responsiveness in failing human myocytes. Thus, PP1 is an important regulator of cardiac function, and inhibition of its activity may represent a novel therapeutic target in heart failure.
Collapse
Affiliation(s)
- Andrew N Carr
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Epinephrine Control of Glycogen Metabolism in Glycogen-associated Protein Phosphatase PP1G/R GLKnockout Mice. BMB Rep 2002. [DOI: 10.5483/bmbrep.2002.35.3.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Barth-Baus D, Stratton CA, Parrott L, Myerson H, Meyuhas O, Templeton DJ, Landreth GE, Hensold JO. S6 phosphorylation-independent pathways regulate translation of 5'-terminal oligopyrimidine tract-containing mRNAs in differentiating hematopoietic cells. Nucleic Acids Res 2002; 30:1919-28. [PMID: 11972328 PMCID: PMC113832 DOI: 10.1093/nar/30.9.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of new ribosomes is an energy costly and thus highly regulated process. Ribosomal protein synthesis is controlled by regulating translation of the corresponding ribosomal protein (rp)mRNAs. In mammalian cells a 5'-terminal oligopyrimidine tract (TOP) is a conserved feature of these mRNAs that has been demonstrated to be essential for their translational regulation. Translation of TOP mRNAs has been proposed to be regulated by phosphorylation of ribosomal protein S6, which is a common effect of mitogenic stimulation of cells. However, as demonstrated here, S6 phosphorylation is not detectable in murine erythroleukemia (MEL) or other hematopoietic cells. The absence of S6 phosphorylation appears to be due to the action of a phosphatase that acts downstream of S6 kinase, presumably on S6 itself. Despite the absence of changes in S6 phosphorylation, translation of TOP mRNAs is repressed during differentiation of MEL cells. These data demonstrate the existence of a mechanism for regulating S6 phosphorylation that is distinct from kinase activation, as well as the existence of mechanisms for regulating translation of TOP mRNAs that are independent of S6 phosphorylation.
Collapse
Affiliation(s)
- Diane Barth-Baus
- Department of Medicine and University/Ireland Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4937, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuksel S, Saydam G, Uslu R, Sanli UA, Terzioglu E, Buyukececi F, Omay SB. Arsenic trioxide and methylprednisolone use different signal transduction pathways in leukemic differentiation. Leuk Res 2002; 26:391-8. [PMID: 11839383 DOI: 10.1016/s0145-2126(01)00147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Certain cell lines like HL 60 and K 562 are utilised as leukemic cell models for leukemogenesis research, which differentiate along the granulocytic and/or monocytic pathway when treated with certain inducer molecules. High dose methylprednisolone treatment has been shown to induce in vivo and in vitro differentiation of myeloid leukemia cells to mature granulocytes in patients with acute promyelocytic leukemia (APL) and other subtypes of acute myeloid leukemia (AML). Arsenic trioxide (As(2)O(3)) has been confirmed to have remission induction effects on APL. However, there are conflicting results on the effects with other AML subtypes. Also, it has been well established that the reversible phosphorylation of proteins is a major regulatory mechanism in the signal transduction pathways that control cell growth and differentiation. Serine/threonine protein phosphatases (PP) are major components of phosphorylation. In this study, we investigated the effect of As(2)O(3) on HL 60 and K 562 myeloid leukemic differentiation and compared the signalling cascades of the two inducers with respect to serine/threonine PP 1 and 2A. We utilised PP1 and PP2A inhibitors okadaic acid and calyculin A. In contrast to methylprednisolone, there was no effect of phosphatase inhibitors on As(2)O(3)-induced leukemic differentiation. Incomplete leukemic differentiation occurred with lower As(2)O(3) concentration as 10(-6)M. Unlike As(2)O(3), methylprednisolone induced complete granulocytic and/or monocytic differentiation of HL 60 and K 562 cells via upregulation of PP2A regulatory subunits. Therefore, As(2)O(3) and methylprednisolone are promising agents that have the potential to be used together in myeloid leukemic differentiation therapy.
Collapse
Affiliation(s)
- Safak Yuksel
- Department of Hematology, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
40
|
Gupta RC, Neumann J, Watanabe AM, Sabbah HN. Inhibition of type 1 protein phosphatase activity by activation of beta-adrenoceptors in ventricular myocardium. Biochem Pharmacol 2002; 63:1069-76. [PMID: 11931839 DOI: 10.1016/s0006-2952(02)00851-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The regulation of protein phosphatase (PP) activity by cardiac beta-adrenergic receptor stimulation with isoproterenol (ISO) was studied in four groups of guinea pigs consisting of seven animals each. Group 1 received the vehicle solution only intraperitoneally; group 2, 6 microg/kg of ISO; group 3, 60 microg/kg of ISO; and group 4, 600 microg/kg of ISO. Total PP activity (consisting of both type 1 and type 2A PP), activity of each PP subtype, the cAMP-dependent protein kinase activity ratio (-cAMP/+cAMP), the phosphorylation of PP inhibitor 1, and the phosphorylation of phospholamban were measured in ventricular tissue. PP activity was also studied in ventricular cardiomyocytes isolated from guinea pigs treated with and without 1 microM ISO or 1 microM ISO plus 10 microM propranolol, an antagonist of the beta-adrenoceptor. PP activity decreased significantly in membrane vesicles, but not in cytosolic fractions, of guinea pigs treated with 60 and 600 microg/kg of ISO compared with untreated animals. The PKA activity ratio, PLB phosphorylation, and PP inhibitor 1 phosphorylation increased in ventricles of guinea pigs treated with 60 and 600 microg/kg of ISO compared with vehicle-treated animals. The decrease in overall PP activity was due primarily to a reduction in type 1 but not type 2A PP activity. In isolated ventricular cardiomyocytes, PP activity was decreased significantly after treatment with 1 microM ISO, and this inhibition was reversed by treatment with 10 microM propranolol. The membrane vesicles of group 1 animals did not release any catalytic subunit of type 1 PP upon phosphorylation by exogenous PKA. These results indicate that activation of cardiac beta-adrenoceptors inhibits type 1 PP activity via phosphorylation of PP inhibitor 1 in the ventricles. This effect is associated with the well-known effect of ISO on increases in the PKA activity ratio and PLB phosphorylation. Inhibition of type 1 PP activity could be one possible mechanism, in addition to activation of adenylate cyclase, by which ISO mediates enhanced contractility of the heart.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart and Vascular Institute, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
41
|
Wada T, Miyata T, Inagi R, Nangaku M, Wagatsuma M, Suzuki D, Wadzinski BE, Okubo K, Kurokawa K. Cloning and characterization of a novel subunit of protein serine/threonine phosphatase 4 from mesangial cells. J Am Soc Nephrol 2001; 12:2601-2608. [PMID: 11729228 DOI: 10.1681/asn.v12122601] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mesangial cells play an important role in maintaining glomeruli structure and function and in the pathogenesis of glomerular diseases. With a novel approach using a rapid large-scale DNA sequencing strategy and computerized data processing, a new human gene, PP4(Rmeg) was cloned. The full-length cDNA clone of human PP4(Rmeg) coded for a novel 950-amino acid protein, which was similar to a subunit of protein serine/threonine phosphatase 4 (PP4). Recombinant PP4(Rmeg) produced in COS-7 cells bound to the catalytic subunit of PP4. PP4(Rmeg) is therefore structurally and functionally related to the recently reported regulatory subunit of PP4, PP4(R1). Amino acid sequence analysis of rat PP4(Rmeg) homologue revealed that the sequences were well conserved between human and rat (86.3% identity). Northern blot analyses of human tissues and cultured cells demonstrated that the regulatory subunits were expressed abundantly in human cultured mesangial cells, although their expression was relatively ubiquitous. In situ hybridization studies in normal human renal tissues confirmed their expression in glomeruli in vivo. The expression was upregulated in glomeruli of anti-Thy1 glomerulonephritis rats before mesangial proliferation. These data demonstrate that PP4(Rmeg) is a novel regulatory subunit of PP4, which is expressed ubiquitously but abundantly in mesangial cells. Its pathophysiologic role in mesangial cells and glomerulus remains unknown. As PP4 is an essential protein for nucleation, growth, and stabilization of microtubules at centrosomes/spindle pole bodies during cell division, PP4(Rmeg) may play a role in regulation of mitosis in mesangial cells.
Collapse
Affiliation(s)
- Takehiko Wada
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Toshio Miyata
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Reiko Inagi
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Masaomi Nangaku
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Masako Wagatsuma
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daisuke Suzuki
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian E Wadzinski
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kousaku Okubo
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kiyoshi Kurokawa
- *Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Department of Internal Medicine, University of Tokyo, Tokyo, and Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka, Japan; and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Tachikawa H, Bloecher A, Tatchell K, Neiman AM. A Gip1p-Glc7p phosphatase complex regulates septin organization and spore wall formation. J Cell Biol 2001; 155:797-808. [PMID: 11724821 PMCID: PMC2150859 DOI: 10.1083/jcb.200107008] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sporulation of Saccharomyces cerevisiae is a developmental process in which a single cell is converted into four haploid spores. GIP1, encoding a developmentally regulated protein phosphatase 1 interacting protein, is required for spore formation. Here we show that GIP1 and the protein phosphatase 1 encoded by GLC7 play essential roles in spore development. The gip1Delta mutant undergoes meiosis and prospore membrane formation normally, but is specifically defective in spore wall synthesis. We demonstrate that in wild-type cells, distinct layers of the spore wall are deposited in a specific temporal order, and that gip1Delta cells display a discrete arrest at the onset of spore wall deposition. Localization studies revealed that Gip1p and Glc7p colocalize with the septins in structures underlying the growing prospore membranes. Interestingly, in the gip1Delta mutant, not only is Glc7p localization altered, but septins are also delocalized. Similar phenotypes were observed in a glc7-136 mutant, which expresses a Glc7p defective in interacting with Gip1p. These results indicate that a Gip1p-Glc7p phosphatase complex is required for proper septin organization and initiation of spore wall formation during sporulation.
Collapse
Affiliation(s)
- H Tachikawa
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
43
|
Mitsuhashi S, Matsuura N, Ubukata M, Oikawa H, Shima H, Kikuchi K. Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. Biochem Biophys Res Commun 2001; 287:328-31. [PMID: 11554729 DOI: 10.1006/bbrc.2001.5596] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we isolated tautomycetin, TC, and examined its phosphatase inhibitory activity. Recently we have reported that the left-hand moiety of tautomycin, TM, and the right one containing the spiroketal are essentially required for inhibition of protein phosphatase, PP, and induction of apoptosis, respectively. TC is structurally almost identical to TM except that TC is lacking the spiroketal, which has the potential apoptosis-inducing activity. TC specifically inhibited PP1 activity, IC50 values for purified PP1 and PP2A enzymes being 1.6 and 62 nM, respectively, whereas the IC50 values of TM were 0.21 and 0.94 nM, respectively. These results demonstrate that TC is the most specific PP1 inhibitor out of over 40 species of natural phosphatase inhibitors reported, strongly suggesting that TC is a novel powerful tool to elucidate the physiological roles of PP1 in various biological events.
Collapse
Affiliation(s)
- S Mitsuhashi
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Bani-Yaghoub M, Felker JM, Ozog MA, Bechberger JF, Naus CC. Array analysis of the genes regulated during neuronal differentiation of human embryonal cells. Biochem Cell Biol 2001. [DOI: 10.1139/o01-024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent advances in genetic technology have provided a new platform on which the simultaneous analysis of a large number of genes is possible in a rapid and efficient fashion. To assess the differential expression of human genes during neuronal differentiation, we compared the transcript profiles of undifferentiated, partially differentiated, and fully differentiated NT2/D1 cultures with cDNA expression arrays. Approximately 75 genes (13% of the gene array pool) were differentially expressed during neuronal development of NT2/D1 cells. Genes coding for pyruvate kinase M2 isozyme, clathrin assembly proteins, calmodulin, fibronectin, laminin, thymosin β-10, and many others were upregulated as NT2/D1 cells differentiated into neurons. In contrast, several kinases, phosphatases, and G-protein coupled receptor genes showed downregulation upon neuronal differentiation. The information provided here is an invaluable reference for characterizing the phenotype of these cells. This information can also be used in cell therapy and transplantation in which the graft microenvironment and interaction with the host tissue is crucial.Key words: Atlas cDNA expression arrays, differentiation, neurodevelopment, neuron, NT2/D1 cells.
Collapse
|
45
|
Lannér C, Suzuki Y, Bi C, Zhang H, Cooper LD, Bowker-Kinley MM, DePaoli-Roach AA. Gene structure and expression of the targeting subunit, RGL, of the muscle-specific glycogen-associated type 1 protein phosphatase, PP1G. Arch Biochem Biophys 2001; 388:135-45. [PMID: 11361130 DOI: 10.1006/abbi.2001.2283] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type I phosphatase associated with glycogen, PP1G, plays an important role in glycogen metabolism. PP1G is targeted to glycogen by the R(GL) subunit, which regulates the function of the enzyme. We report the cloning and characterization of the gene as well as the pattern of expression of the R(GL) subunit from mouse. The gene covers more than 37 kb, is composed of four exons and three introns, and codes for a 1089 residue polypeptide with a calculated molecular weight of 121,000. The amino acid sequence has 60% identity with the human and rabbit R(GL). The 5' flanking region of the gene contains a TATA box, c-Myc sites, and a potential cAMP-responsive element. Muscle specific motifs, such as MyoD and MEF-2, were also found. The A-T rich 3'-UTR contained several polyadenylation signals, two associated with poly(A) down-stream consensus motifs. ARE elements, which regulate mRNA stability, were dispersed throughout the 3'-UTR. Northern analysis of poly(A) mRNA from various murine tissues indicates a major transcript of 7.5 kb in skeletal muscle and heart. Western analysis demonstrates that R(GL) protein is present in skeletal and cardiac muscle from mouse, rat, and rabbit but not in L6 myoblasts, L6 myotubes, 3T3 L1 fibroblasts, 3T3 L1 or rat primary adipocytes, confirming that expression of the gene is specific to striated muscle. Analysis of skeletal muscle from rats made diabetic by streptozotocin treatment reveals that the level of R(GL) protein is the same as in control animals, indicating that expression is not regulated by insulin.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adipocytes/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cells, Cultured
- Cloning, Molecular
- Cyclic AMP/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Exons
- Gene Library
- Humans
- Insulin/metabolism
- Introns
- MEF2 Transcription Factors
- Mice
- Models, Genetic
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Muscles/enzymology
- MyoD Protein/metabolism
- Myogenic Regulatory Factors
- Phosphoprotein Phosphatases/chemistry
- Phosphoprotein Phosphatases/genetics
- Polymorphism, Genetic
- Protein Biosynthesis
- Protein Phosphatase 1
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Sequence Homology, Amino Acid
- Streptozocin/pharmacology
- Tissue Distribution
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- C Lannér
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Forsyth CJ, Dounay AB, Sabes SF, Urbanek RA. Biotherapeutic potential and synthesis of okadaic acid. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:57-102. [PMID: 11077606 DOI: 10.1007/978-3-662-04042-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C J Forsyth
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, USA
| | | | | | | |
Collapse
|
47
|
Ruteshouser EC, Ashworth LK, Huff V. Absence of PPP2R1A mutations in Wilms tumor. Oncogene 2001; 20:2050-4. [PMID: 11360189 DOI: 10.1038/sj.onc.1204301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2000] [Revised: 01/12/2001] [Accepted: 01/24/2001] [Indexed: 11/09/2022]
Abstract
Evidence from genetic linkage analysis indicates that a gene located at 19q13.4, FWT2, is responsible for predisposition to Wilms tumor in many Wilms tumor families. This region has also been implicated in the etiology of sporadic Wilms tumor through loss of heterozygosity analyses. The PPP2R1A gene, encoding the alpha isoform of the heterotrimeric serine/threonine protein phosphatase 2A (PP2A), is located within the FWT2 candidate region and is altered in breast and lung carcinomas. PPP2R1B, encoding the beta isoform, is mutated in lung, colon, and breast cancers. These findings suggested that both PPP2R1A and PPP2R1B may be tumor suppressor genes. Additionally, PP2A is important in fetal kidney growth and differentiation and has an expression pattern similar to that of the Wilms tumor suppressor gene WT1. Since PPP2R1A was therefore a compelling candidate for the FWT2 gene, we analysed the coding region of PPP2R1A in DNA and RNA samples from affected members of four Wilms tumor families and 30 sporadic tumors and identified no mutations in PPP2R1A in any of these 34 samples. We conclude that PPP2R1A is not the 19q familial Wilms tumor gene and that mutation of PPP2R1A is not a common event in the etiology of sporadic Wilms tumor.
Collapse
Affiliation(s)
- E C Ruteshouser
- Department of Experimental Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | | | | |
Collapse
|
48
|
Suzuki Y, Lanner C, Kim JH, Vilardo PG, Zhang H, Yang J, Cooper LD, Steele M, Kennedy A, Bock CB, Scrimgeour A, Lawrence JC, DePaoli-Roach AA. Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol 2001; 21:2683-94. [PMID: 11283248 PMCID: PMC86899 DOI: 10.1128/mcb.21.8.2683-2694.2001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM. PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp Neurol 2001; 168:402-12. [PMID: 11259128 DOI: 10.1006/exnr.2001.7630] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since abnormal tau phosphorylation may play a role in neurofibrillary tangle (NFT) formation in aging and Alzheimer's disease (AD), we probed the distribution and abundance of protein phosphatase 2A (PP2A) catalytic (Calpha) and regulatory (PR55alpha and gamma, PR61varepsilon and delta) subunit mRNA in control and AD hippocampus using in situ hybridization. Quantitation of grain density per neuron area of PP2A subunits and beta-actin was determined for the CA3 region of hippocampus and cerebellum, while a qualitative assessment was performed for CA1, CA4, and dentate gyrus. All subunits are expressed in neurons, while PR55gamma and PR55alpha mRNA are also evident in glia. The expression levels of Calpha, all PP2A regulatory subunits studied, and beta-actin were similar in control and AD cerebellum. beta-Actin mRNA was, however, reduced in AD hippocampus. In addition to the generalized reduction of mRNA, as indicated by decreased beta-actin signal, there was a significant loss of Calpha, PR55gamma, and PR61epsilon mRNA in the CA3 hippocampus of AD. This study delineates the distribution of critical PP2A mRNAs and reveals a neuron- and subunit-specific reduction in PP2A catalytic and regulatory mRNA in AD hippocampus. This could result in decreased protein expression and phosphatase activity, leading to the hyperphosphorylation of tau and the formation of NFTs, as well as neuron degeneration in AD.
Collapse
Affiliation(s)
- V Vogelsberg-Ragaglia
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
50
|
Abstract
A protein phosphatase dephosphorylating acidic ribosomal proteins was purified from Saccharomyces cerevisiae ribosome-free extract. It was shown that phosphoproteins from both P1 and P2 subfamilies as well as 60S "core" P0 protein were substrates for the enzyme. The phosphatase can dephosphorylate ribosomes as well as histones and casein but the two last substrates with significantly lower efficiency. It was found that the enzyme activity is Mn(2+)-dependent and inhibited by okadaic acid, tautomycin, cantharidin and nodularin at concentrations typical for protein phosphatase type 2A. The possible implications of those findings in the control of ribosome phosphorylation and therefore in the control of translation is discussed.
Collapse
Affiliation(s)
- M Pilecki
- Department of Molecular Biology, Faculty of Mathematics and Natural Science, Catholic University of Lublin, Poland
| | | | | | | | | |
Collapse
|